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Abstract. Let Tn be a random recursive tree with n nodes. List vertices of Tn according to a
decreasing order of their degrees as v(1), . . . , v(n), and write deg(v(i)) and h(v(i)) for the degree of
v(i) and the distance of v(i) from the root, respectively. We prove that, as n → ∞ along suitable
subsequences, (

deg(v(i))− blog2 nc,
h(v(i))− µ loge n√

σ2 loge n

)
→ ((Pi, i ≥ 1), (Ni, i ≥ 1)) ,

where µ = 1−(log2 e)/2, σ2 = 1−(log2 e)/4, (Pi, i ≥ 1) is a Poisson point process on Z and (Ni, i ≥
1) is a sequence of independent standard Gaussians. We additionally establish joint normality for
the depths of finitely many uniformly random vertices in Tn, which extends results from Devroye
in 1988 and Mahmoud in 1991. The joint limit holds even if the random vertices are conditioned
to have large degree; in particular, both the mean and variance of the conditional depths remain of
orden lnn.

Our results are based on a n!-to-1 correspondence between (a representation of) Kingman’s n-
coalescent and random recursive trees; a utility that was observed in work by Pittel 1994 and
recovered by Addario-Berry and the author in 2018.

1. Introduction

Random recursive trees (RRTs) have been widely studied since their introduction,
Na and Rapoport (1970), and are closely related to binary search trees, preferential attachment
trees and increasing trees in general, see e.g. Bergeron et al. (1992); Drmota (2009). For n ≥ 1,
let [n] := {1, . . . , n} and let In be the class of increasing trees with vertex set [n]; that is, rooted,
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labelled trees where labels are increasing along paths starting at the root. A random recursive tree
on n vertices is uniformly distributed on In and may be regarded as a degenerate case of linear
preferential attachment trees. We will be concerned with the interplay between degree and depth of
vertices in RRTs and will contrast our results with known results on linear preferential attachment
trees Bhamidi (2007); Móri (2005).

For α ∈ [0,∞), the linear preferential attachment process (Tα,n; n ≥ 1) is defined as follows. Let
Tα,1 be a single vertex labeled 1. For n ∈ Z+ let Tα,n+1 be the tree obtained from Tα,n by adding
an edge from a new vertex labelled n+ 1 to vertex vn ∈ [n]; where, conditional on Tα,n, P (vn = v)
is proportional to α degTα,n(v) + 1. Let

∆α,n := max
v∈[n]

degTα,n(v), (1.1)

Mα,n :={v ∈ [n] : degTα,n = ∆α,n}. (1.2)

Random recursive trees correspond to α = 0 and so the choice of each vn is independent from
the past and uniformly random on [n− 1]. In what follows, we omit the index α from the notation
of RRTs.

The maximum degree of a RRT satisfies ∆n/ log n → 1 a.s. as n → ∞ Devroye and Lu (1995)
and the limiting law of ∆n − blog nc has, up to lattice effects, a (discrete) Gumbel distribution.
This was first shown using singularity analysis of generating functions in Goh and Schmutz (2002).
Addario-Berry and Eslava (2018) provides a probabilistic proof, while Eslava (2021) uses the Chen-
Stein method to improve the tail bounds on the limiting distribution. For α > 0, it has been proven
that ∆α,n/n

1/(2+1/α), converges a.s. and in Lp to a positive, finite random variable with absolutely
continuous distribution, Móri (2005). Furthermore, almost surely there is a unique vertex attaining
the maximum degree and its label v∗ is finite; that is,Mα,n = {v∗} and v∗ = Op(1) a.s. Bhamidi
(2007). Recently, the case of maximal degree vertices in a wider class of growing networks is analysed
in Banerjee and Bhamidi (2021).

In this work we are concerned with the depths of vertices with extremal degree values. We say
that v is a high-degree vertex if degTn(v) ≥ c lnn for some c > 0 and that v is a near-maximum
degree vertex if |degTn(v)− log n| < o(lnn). Addario-Berry and the author describe the number of
high-degree vertices in Tn via the sequence (degTn(v(i)) − blog nc, v(i) ∈ [n]), where (v(i))i∈[n] are
listed in decreasing order of their degrees; see Addario-Berry and Eslava (2018, Theorem 1.2). They
show that, along suitable subsequences, this sequence converges in distribution to a Poisson point
process N in Z ∪ {∞} with E [|N ∩ [j,∞]|] = Θ(2−j) for all j ∈ Z.

The main result of this paper extends such convergence to consider not only the degrees of the
vertices but also their depths; see Theorem 1.2. A remarkable consequence of Theorem 1.2, in
contrast to the behaviour of preferential attachement trees, is that for RRTs there is a random
number of maximum-degree vertices and their labels are increasing with n; see Corollary 1.3. On
the other hand, Theorem 1.2 is essentially based on Theorem 1.1 which states that the depths
of any finite collection of uniformly chosen vertices, conditional on exceeding any given degree, are
asymptotically normal and independent; this extends the known limiting distribution of the depth of
a uniformly chosen vertex in Tn Devroye (1988); Mahmoud (1991). In particular, the distributional
convergence holds when conditioning the vertices on being high-degree or near-maximum-degree
vertices.

The central technique of this paper is the link between RRTs and a representation of Kingman’s
coalescent developed in Addario-Berry (2015); Addario-Berry and Eslava (2018); Eslava (2021) and
it is based on the fact that bijections preserve the uniform measure on finite probability spaces. In
this case, there is an n!-to-1 mapping between the space on n-coalescents (described as n-chains in
Section 2.1) and increasing trees on n vertices. For a general description of Kingman’s coalescent, see
Berestycki (2009, Chapter 2) and for a comparison between distinct representations of Kingman’s
coalescent, see Eslava (2021).
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In contrast to standard constructions, our representation of Kingman’s coalescent is based on
the data structure known as union-find trees. In fact, the (standard) binary tree representation
of Kingman’s coalescent had been previously used to study union-find trees, Devroye (1988), and
the connection between the results therein and the height of RRTs is mentioned in Pittel (1994).
Although the connection between Kingman’s coalescent and random recursive trees had been ob-
served, prior to the works in Addario-Berry and Eslava (2018); Eslava (2021), its utility in studying
vertex degrees seems to have gone unremarked.

We underline two aspects of the correspondence between Kingman’s coalescent and RRTs. First,
it allows us to shift the perspective of vertices arriving at distinct times (and their depths and
degrees being dependent on such arrival times) to a perspective where all vertices are exchangeable.
Second, informally described, we may associate a random number of coin flips to each vertex in
the coalescent, then its degree corresponds to the length of the first streak of heads while its depth
corresponds to the total number of tails (see Section 2.1 for more details). The crux of the analysis
for our results then relies on controlling the correlations that arise in considering several vertices at
once.
Notation. We denote natural logarithms and logarithms with base 2 with ln(·) and log(·),

respectively. We let Z+ := {1, 2, . . .} denote the natural number and use Z≥0 := {0, 1, . . .} to
include zero. The cumulative distribution function of the standard Gaussian distribution is denoted
Φ; when there is no ambiguity, we also use Φ for the measure of the distribution. We write BR for
the Borel sets of R. For x ∈ R and k ∈ Z+ let (x)k = x(x− 1) · · · (x− k + 1) and write (x)0 = 1.

We consider labeled rooted trees T = (V,E) where edges are naturally directed towards the root
which is denoted r(T ). That is, we write e = uv for an edge with tail u and head v. For a vertex
v ∈ V (T ), we write degT (v) for the number of edges directed towards v in T and let hT (v) denote
the distance between v and r(T ); we call degT (v) and hT (v) the degree and depth of v respectively.
Finally, a forest F is a set of trees whose vertex sets are pairwise disjoint. Denote by V (F ) and
E(F ), respectively, the union of the vertex and edge sets of the trees contained in F and for a vertex
v ∈ V (F ), we let degF (v) and hF (v) be the degree and depth of v in the tree in F that contains v.

1.1. Statement of results. Our first result establishes the asymptotic independence of the depth of
k distinct vertices uniformly chosen at random. The distribution of their depths is asymptotically
normal and independent, even after conditioning on arbitrary lower bounds for the vertices’ degrees.

Theorem 1.1. Let k ∈ Z+. Let (Ni)i∈[k] be i.i.d. standard Gaussian variables and let (vi)i∈[k]

be k distinct vertices in Tn chosen uniformly at random. For every (a1, . . . , ak) ∈ [0, 2)k and
(b1, . . . , bk) ∈ Zk, the conditional law of(

hTn(vi)− (1− ai/2) lnn√
(1− ai/4) lnn

, i ∈ [k]

)
,

given that degTn(vi) ≥ bai lnnc+ bi for all i ∈ [k], converges to the law of (Ni)i∈[k].

The case of Theorem 1.1 with k = 1 and a1 = b1 = 0 is implicitly established in Devroye (1988);
Mahmoud (1991) where, hTn(n), the insertion depth in a RRT is studied.

For the next results, we assume that (n`)`≥1 satisfies log n` − blog n`c → ε as ` → ∞, for some
ε ∈ [0, 1]. This condition is necessary due to a lattice effect caused by the fact that (degTn(v))v∈[n]

are integer valued. Let P be a Poisson point process on R with intensity λ(x) = 2−x ln 2. Since
P ∩ [0,∞)

L
= Poi(1) there exists a well defined ordering P = {P1, P2, . . .} such that

|P ∩ [Pi,∞)| = |P ∩ (Pi,∞)|+ 1 = i. (1.3)

For n ≥ 1, list vertices of Tn in decreasing order of degree as v(1), . . . , v(n) (breaking ties uniformly
at random).
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Theorem 1.2. Let (Ni)i≥1 be i.i.d. standard Gaussian variables, independent of P as defined above.
For ε ∈ [0, 1] and any increasing sequence of integers (n`)`≥1 for which log n` − blog n`c → ε as
`→∞, then the sequence((

degTn`
(v(i))− blog n`c,

hTn` (v
(i))− (1− (log e)/2) lnn`√
(1− (log e)/4) lnn`

)
, i ∈ [n]

)
converges in law to ((bPi + εc, Ni), i ≥ 1)).

For the next corollary of Theorem 1.2, recall the definition ofMn` in (1.2). For ε > 0 let Mε be
defined, for each k ≥ 1, by

P (Mε = k) :=
∑
m∈Z

e−2−m+ε 2−(m+1−ε)k

k!
; (1.4)

then Mε is a mixture of Poisson random variables conditioned to being positive; see Lemma 5.1.
The following result focuses on vertices attaining the maximum degree.

Corollary 1.3. Let (Ni)i≥1 be i.i.d. standard Gaussian variables. For ε ∈ [0, 1] and any increasing
sequence of integers (n`)`≥1 for which log n` − blog n`c → ε as `→∞, then(

hTn` (i)− (1− (log e)/2) lnn`√
(1− (log e)/4) lnn`

, i ∈Mn`

)
L−→ (Ni, 1 ≤ i ≤Mε).

In other words, the depths of vertices attaining the maximum degree are asymptotically normal
and independent. Furthermore, the number |Mn| of such vertices converges to a mixture of Poisson
random variables conditioned to be strictly positive.

1.2. Paper overview. In the next section we provide an overview of the proof of the main theorems.
Theorem 2.1 below is an equivalent statement to Theorem 1.1 in terms of Kingman’s coalescent
whose construction is given in Section 2.1; in addition, we lay out the main intermediate results
(Proposition 2.2 and Lemmas 2.6–2.8) for the proof of Theorem 2.1. Section 3 is then concerned
with proving Lemmas 2.7 and 2.8 while Section 4 contains the proof of Proposition 2.2. The proofs
of Theorem 1.2 and Corollary 1.3 are given in Section 5.

2. Outline for the proof of Theorems 1.1 and 1.2

Let Tn = ([n], En) be a RRT and let σ : [n] → [n] be an independent, uniformly random
permutation. Define T ′n = ([n], E′n) where

E′n = {σ(u)σ(v) : uv ∈ En}; (2.1)

that is, T ′n is obtained from Tn by relabelling its vertices with a uniformly random permutation. By
definition of T ′n, Theorem 2.1 below is equivalent to Theorem 1.1; its proof overview is detailed in
Section 2.1.

Theorem 2.1. Let k ∈ Z+. Let (Ni)i∈[k] be i.i.d. standard Gaussian variables. For every
(a1, . . . , ak) ∈ [0, 2)k and (b1, . . . , bk) ∈ Zk, the conditional law of(

hT ′n(i)− (1− ai/2) lnn√
(1− ai/4) lnn

, i ∈ [k]

)
,

given that degT ′n(i) ≥ bai lnnc+ bi for all i ∈ [k], converges to the law of (Ni)i∈[k].
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The advantage of shifting towards this statement is that T ′n may be analysed through a con-
struction of Kingman’s coalescent on n elements Addario-Berry and Eslava (2018); Eslava (2021).
Theorem 2.1 is the first intermediate result for Theorem 1.2.

The next proposition is the second intermediate result for Theorem 1.2. For n ≥ 1, denote

µn :=

(
1− log e

2

)
lnn and σ2

n :=

(
1− log e

4

)
lnn, (2.2)

and for i ∈ Z and B ∈ BR let

X
(n)
i (B) := #{v ∈ [n] : degTn(v) = blog nc+ i, (h(v)− µn)/σn ∈ B}, (2.3)

X
(n)
≥i (B) := #{v ∈ [n] : degTn(v) ≥ blog nc+ i, (h(v)− µn)/σn ∈ B}. (2.4)

Proposition 2.2. Fix K,M ∈ Z+. Let (ak)k∈[K] be non-negative integers such that
∑

k∈[K] ak = M .
Let (jk)k∈[K] be a non-decreasing sequence of integers with 0 ≤ K ′ = min{k : jk+1 = jK} and let
(Bk)k∈K be sets in BR satisfying Bk ∩B` = ∅ whenever jk = j` and k 6= `. Then, we have

E

[
K′∏
k=1

(
X

(n)
jk

(Bk)
)
ak

K∏
k=K′+1

(
X

(n)
≥jK (Bk)

)
ak

]

=

K′∏
k=1

(
2−jk+εn−1Φ(Bk)

)ak K∏
k=K′+1

(
2−jK+εnΦ(Bk)

)ak (1 + o(1)).

Remark 2.3. By generalizing the definitions in (2.3) and (2.4) to include indices i = i(n), one may
extend the result in Proposition 2.2 to hold for any (jk)k∈[K] such that 0 ≤ j1 +log n ≤ jK +log n <
c lnn where c ∈ (0, 2).

The proof of Proposition 2.2 is given in Section 4. We briefly explain an ingredient that is key in
proving Proposition 2.2 which is based on the exchangeability of vertices in the representation of Tn
as a Kingman’s coalescent. As T ′n is a relabelling of Tn, we have, jointly for all i ∈ Z and j ∈ Z+,

#{v ∈ [n] : degTn(v) = i, hTn(v) = j} L= #{v ∈ [n] : degT ′n(v) = i, hT ′n(v) = j}.

Note that each X
(n)
j (B) and X

(n)
≥j (B) is a sum of indicator variables. Therefore, the factorial

moments in Proposition 2.2 are reduced to a sum of probabilities in terms of the degrees and depths
of vertices in T ′n which have the following form:

P
(

degT ′n(j) ≥ mj , hT ′n(j) ∈ Bj , j ∈ [k]
)

=P
(

degT ′n(j) ≥ mj , j ∈ [k]
)
P
(
hT ′n(j) ∈ Bj , j ∈ [k] | degT ′n(j) ≥ mj , j ∈ [k]

)
;

where Bj ∈ BR and mj < 2 lnn for each j ∈ [k]. The joint tails of finitely many vertices in
T ′n have been analyzed in Addario-Berry and Eslava (2018) and we present the relevant result as
Proposition 3.3. The law of the depths conditional on {degT ′n(j) ≥ mj , j ∈ [k]} is approximated
using Theorem 2.1.

For Theorem 1.2, we next formulate the result as a statement about convergence of marked point
processes. Let Z∗ := Z ∪ {∞}. Endow Z∗ with the metric defined by d(i, j) := |2−i − 2−j | and
d(i,∞) := 2−i for i, j ∈ Z. Recall that P is a Poisson point process on R with intensity rate
λ(x) = 2−x ln 2 and let (ξx)x∈P be an independent collection of i.i.d. standard Gaussian variables.

Let ε ∈ [0, 1]. We define a ground process Pε on Z∗, and a marked point processMPε on Z∗×R
given by

Pε :=
∑
x∈P

δbx+εc, MPε :=
∑
x∈P

δ(bx+εc,ξx), (2.5)
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Similarly, for all n ∈ Z+ we use Tn to define empirical point processes given by

P(n) :=
∑
v∈[n]

δdegTn (v)−blognc, MP(n) :=
∑
v∈[n]

δ(degTn (v)−blognc,(h(v)−µn)/σn). (2.6)

LetM#
Z∗ andM

#
Z∗×R be the space of boundedly finite measures of Z∗ and Z∗ × R, respectively.

It is clear that MPε and MP(n) are elements of M#
Z∗×R (see, e.g. Daley and Vere-Jones (2003,

Definition 9.2.I)). The advantage of working on the state space Z∗ is that intervals [i,∞] are compact
and so the convergence of finite dimensional distributions of MP(n`) implies, e.g., convergence in
distribution ofX(n`)

≥i (B) for anyB ∈ BR and i ∈ Z+. We note that the weak convergence P(n`) → Pε,
for suitable sequences (n`)`≥1, had already been established in Addario-Berry and Eslava (2018).

Finally, the statement of Theorem 1.2 is equivalent to the weak convergence ofMP(n`) →MPε
inM#

Z∗×R, for suitable sequences (n`)`≥1. The joint distribution of the variables in Proposition 2.2
are finite dimensional distributions of the marked point processMP(n`). Therefore, Proposition 2.2
together with the method of moments establish the desired weak convergence. The complete details,
together with the proof of Corollary 1.3, are given in Section 5.

2.1. Kingman’s coalescent approach for Theorem 2.1. For each n ≥ 1, we consider the set of forests
Fn := {F : V (F ) = [n]} with vertex set [n]. An n-chain is a sequence (Fn, . . . , F1) of elements of
Fn if for 1 < i ≤ n, Fi−1 is obtained from Fi by adding an edge connecting two of the roots in
Fi; note that Fn is consequently the forest with n one-vertex trees. We write Fi = {T (i)

1 , . . . , T
(i)
i },

listing the trees according to an increasing order of their smallest-labeled vertex.
We next define the construction of Kingman’s n-coalescent as a random n-chainC = (Fn, . . . , F1).

Informally, at each step 1 ≤ j < n, two uniformly random trees of Fn−j+1 are merged by adding
an edge between their roots, the direction of the edge is determined independently and with equal
probability. For an example of the process see Figure 2.1.

Definition 2.4 (Kingman’s n-coalescent). Let n ∈ Z+. For each 1 < i ≤ n, choose {ai, bi} ⊂
{{a, b} : 1 ≤ a < b ≤ i} independently and uniformly at random; also let (ξi)1<i≤n be a sequence of
independent Bernoulli(1/2) random variables.

The n-chain C = (Fn, . . . , F1) is defined as follows. For 1 < i ≤ n, starting from Fi, add an edge
ei−1 between the roots of T (i)

ai and T (i)
bi

; direct ei−1 towards r(T (i)
ai ) if ξi = 1, and towards r(T (i)

bi
)

otherwise. Then Fi−1 contains the new tree and the remaining i− 2 unaltered trees from Fi.

It is not difficult to see that C has a uniform distribution on the n!(n − 1)! possible n-chains
representing Kingman’s n-coalescent, Addario-Berry and Eslava (2018). On the other hand, recall
that Tn has a uniform distribution on the (n− 1)! increasing trees in In. The next result essentially
follows since bijections preserve the uniform measure on finite probability spaces; for details see
Addario-Berry and Eslava (2018, Proposition 3.3) and also Eslava (2021, Propositions 1.2 and 1.3).

Proposition 2.5 (Proposition 3.3 in Addario-Berry and Eslava (2018)). Let n ≥ 1. Let T ′n be de-
fined as in (2.1) and let T (1)

1 correspond to the final tree in C as constructed in Definition 2.4. Then
T ′n
L
= T

(1)
1 ; that is, for any labelled tree T with vertex set [n] we have P (T ′n = T ) = P

(
T

(1)
1 = T

)
.

In the remainder of the paper, we analyse T ′n using the construction in Definition 2.4; that is, we
analyse the n-chain (Fn, . . . , F1) and identify the final tree T (1)

1 = T ′n. To ease the notation, write

dn(v) = degT ′n(v) and hn(v) = hT ′n(v), (2.7)

for the degrees and depths of vertices in T ′n.
For each vertex v ∈ [n] and 1 < i ≤ n, let Ti(v) be the tree in Fi that contains v. Let (si,v)1<i≤n

and (hi,v)1<i≤n be sequences where si,v is the indicator that Ti(v) ∈ {T (i)
ai , T

(i)
bi
} and hi,v is the
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Figure 2.1. An example of Kingman’s n-coalescent C = (Fn, . . . , F1) for n = 6.
For 1 < i ≤ n, we represent the edge in E(Fi−1) \ E(Fi) with a dotted line in Fi.
Edges are marked with the index of the first forest where e is present. In this case,
ξ6 = ξ4 = ξ3 = 1, ξ5 = ξ2 = 0 and {a6, b6} = {2, 5}, {a5, b5} = {1, 5}, {a4, b4} =
{1, 4}, {a3, b3} = {2, 3}, {a2, b2} = {1, 2}.

indicator that the tail of the edge ei−1 is r(Ti(v)). Note that hi,v = 1 only if si,v = 1. Indeed, if
si,v = 0 then, when constructing Fi−1 from Fi, the trees that are merged do not include Ti(v) and
so necessarily hi,v = 0.

Now, conditional on si,v = 1, there are two equally likely events regarding the merger of Ti(v) to
form Fi−1: if ei−1 is directed towards r(Ti(v)), then the degree of r(Ti(v)) increases by one in Fi−1;
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riei

Ti(v)
ri

ei

Ti(v)

Figure 2.2. For v ∈ [n] and 1 < i ≤ n let ri = r(Ti(v)) and suppose i ∈ Sn(v).
Conditional on Fi, if ei is directed towards ri, then the degree of ri increases by one
in Fi−1. If ei is directed outwards ri, then the depth of each u ∈ Ti(v) increases by
one in Fi−1.

otherwise, ei−1 is directed out of r(Ti(v)) and all vertices in Ti(v) increase their depth by one in
Fi−1; see Figure 2.2.

The choice of trees to be merged at each step is both independent and uniform so, for fixed
v ∈ [n], the variables (si,v)1<i≤n are independent Bernoulli random variables with E [si,v] = 2/i.
Moreover, since the variables (ξi)i∈[n−1] are independent from the selection of the trees to be merged,
the variables (hi,v)1<i≤n are also independent Bernoulli random variables with E [hi,v] = 1/i.

For v ∈ [n], let

Sn(v) := {1 < i ≤ n : si,v = 1}, (2.8)

Sn,1(v) := {ln2 n < i ≤ n : si,v = 1}; (2.9)

we call these the selection and truncated selection sets of v and write Sn(v) := |Sn(v)| and Sn,1(v) :=
|Sn,1(v)|, respectively. Using Lindeberg’s condition (e.g., see Durrett (1996, Theorem 3.4.5)) we can
see that, as n→∞,

Sn(v)− 2 lnn√
2 lnn

L−→ N(0, 1) and
Sn,1(v)− 2 lnn√

2 lnn

L−→ N(0, 1). (2.10)

For each 1 < i ≤ n, the law of hi,v conditional on si,v = 1 is Bernoulli with mean 1/2. Since
(si,v)1<i≤n are independent, we have that

hn(v) =

n∑
i=2

hi,v
L
=

Sn(v)∑
j=1

Ij , (2.11)

where (Ij)j≥1 are i.i.d. Bernoulli random variables with mean 1/2 independent of Sn(v). Using the
first expression of hn(v) in (2.11) and Lindeberg’s condition, we have that hn(v) is asymptotically
normal for v ∈ [n] as n→∞. We may also establish the limiting distribution of hn(v) from the last
expression in (2.11) and the following lemma; we include its short proof for completeness.

Lemma 2.6. Let a ∈ [0, 2), b ∈ Z and set m := ba lnnc + b. Let (Qn)n≥1 be integer valued
random variables such that the limiting law of Qn−2 lnn√

2 lnn
is a standard Gaussian distribution. Let

N be a standard Gaussian variable and let Ĥn have the law1 of a Bin(Qn −m, 1/2) conditional on
|Qn| ≥ m. Then,

Ĥn − (1− a/2) lnn√
(1− a/4) lnn

L−→ N.

Proof : Write Q̂n for the law of Qn −m conditionally given that Qn ≥ m. Since a < 2, we have
that P (Qn ≥ m) → 1 as n → ∞ and so the limiting law of Q̂n−(2−a) lnn√

2 lnn
is a standard Gaussian

1Abusing notation we let Bin(0, p) ≡ 0.
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distribution. Let (I
(n)
1 , . . . , I

(n)
n )n≥1 be i.i.d. Bernoulli random variables with mean 1/2 independent

of (Q̂n)n≥1 and let (Xn, Yn)n≥1 be defined as

Xn :=
2
∑n

j=1 I
(n)
j − n

√
n

and Yn :=
Q̂n − (2− a) lnn√

2 lnn
;

by the independence assumption we have that (Xn, Yn)
L−→ (N1, N2) where N1 and N2 are inde-

pendent standard Gaussian variables. By the Skorohod embedding theorem (e.g., see Billings-
ley (1999, Theorem 6.7)), we may couple (Q̂n)n≥1 and (I

(n)
1 , . . . , I

(n)
n )n≥1 in such a way that

(Xn, Yn)→ (N1, N2) almost surely.
Let Ĥn =

∑Q̂n
j=1 I

(Q̂n)
j and let F (x) be the cumulative distribution function of Ĥn−(1−a/2) lnn√

(1−a/4) lnn
. We

have Q̂n/ lnn→ 2− a and, in particular, Q̂n →∞, then for x ∈ R we have

F (x) =P

2

Q̂n∑
j=1

I
(Q̂n)
j ≤ x

√
(4− a) lnn+ (2− a) lnn


=P

2
∑Q̂n

j=1 I
(Q̂n)
j − Q̂n√
Q̂n

√
Q̂n

(4− a) lnn
+
Q̂n − (2− a) lnn√

2 lnn

√
2

(4− a)
≤ x


→P

(√
2− a
4− a

N1 +

√
2

4− a
N2 ≤ x

)
= Φ(x);

from which the desired convergence is established. �

We will see in Section 3 that conditional on dn(v) ≥ m, we have hn(v)
L
= Bin(Sn(v) −m, 1/2),

which together with Lemma 2.6, yields the convergence in law of hn(v) conditional on dn(v) ≥ m
(assuming 2 lnn−m→∞); for the details see (3.1) and the discussion thereafter. Briefly sketched,
this is the case k = 1 of Theorem 2.1.

For the general case, we have to deal with the correlations between the selection sets of finitely
many vertices. For example, let v and w be distinct vertices in T ′n and let λv,w := max{1 < ` ≤ n :
` ∈ Sn(v) ∩ Sn(w)}; that is, in Fλv,w , vertices v and w belong to distinct trees that are merged in
Fλv,w−1. The correlation between (hi,v)2≤i≤n and (hi,w)2≤i≤n is evident since hv,λv,w = 1− hw,λv,w
while hi,v = hi,w for i < λv,w. In words, exactly one of v or w increases its depth in Fλv,w−1 and,
from then on, their depths increase simultaneously for the remainder of the process.

To circumvent this problem, we analyse the coalescent at Fbln2 nc where, for finitely many vertices,
their selection sets –and so their depths– are asymptotically independent (see Lemma 2.7) and the
main contribution to their depths in T ′n is already established (see Lemma 2.8).

For each v ∈ [n], define2

hn,1(v) := hFbln2 nc
(v) =

∑
j∈Sn,1(v)

hj,v and hn,2(v) := hn(v)− hn,1(v). (2.12)

Lemma 2.7. Let k ∈ Z+. Let (Ni)i∈[k] be i.i.d. standard Gaussian variables. For every
(a1, . . . , ak) ∈ [0, 2)k and (b1, . . . , bk) ∈ Zk, the conditional law of(

hn,1(i)− (1− ai/2) lnn√
(1− ai/4) lnn

, i ∈ [k]

)
,

2If we were to define hn,1(i) = hFj (i) with j = o(
√
lnn), then the statement of Lemma 2.8 would hold immediately;

however, establishing Lemma 2.7 would become a much more delicate task.
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given that dn(i) ≥ bai lnnc+ bi for all i ∈ [k], converges to the law of (Ni)i∈[k].

Lemma 2.8. Fix k ∈ Z+ and c ∈ (0, 2). Let mi = mi(n) < c lnn for all i ∈ [k]. For each ε > 0
and any j ∈ [k],

P
(
hn,2(j) ≥ ε

√
lnn | dn(i) ≥ mi, i ∈ [k]

)
→ 0.

Theorem 2.1 follows directly from Lemmas 2.7 and 2.8 (e.g., see Billingsley (1999, Theorem 3.1)).

3. Depths and degrees via truncated selection sets

We briefly analyse the case of a single vertex. Write Sn(1) = {j1, . . . , jSn(1)} with j1 > j2 >
· · · > jSn(1). Throughout the coalescent process, both the degree and depth of 1 are determined
by the variables (h1,j`)j`∈Sn(1) as follows. Vertex 1 is the root of Tn(1) in Fn. For j /∈ Sn(1),
we have Tj(1) = Tj−1(1). For j ∈ Sn(1), if h1,j = 0 then the root of Tj(1) increases its degree
by one; otherwise, every vertex in Tj(1) increases its depth by one. In particular, the degree of
1 in Fj corresponds to the first streak of values 0 in (hv,j`)j`>j . More precisely, for 1 ≤ j < n,
degFj (1) = max{d ∈ [n] : jd > j, h1,j1 = h1,j2 = · · · = h1,jd = 0} and

hFj (1) =

Sn(1)\[j]∑
`=1

h1,j` . (3.1)

Recall that dn(1) = degF1
(1) and hn(1) = hF1(1). Let m ∈ Z+. The event dn(1) ≥ m may

occur only if Sn(1) ≥ m and, since (h1,j`)j`∈Sn(1) are i.i.d. Bernoulli variables with mean 1/2,
we have that P (dn(1) ≥ m|Sn(1) ≥ m) = 2−m. In addition, conditional on dn(1) ≥ m we have
hn(1)

L
= Bin(Sn(1) − m, 1/2); this is well-defined since dn(1) ≥ m implies Sn(1) ≥ m. Together

with Lemma 2.6, the distributional equivalence establishes the case k = 1 of Theorem 2.1.
The proof of Lemma 2.7 adapts this argument to obtain the asymptotic limit of the variables

(hn,1(i), i ∈ [k]); that is, the depths of k distinct vertices in Fbln2 nc. Recall the definition of Sn,1(v)

in (2.9) and that Sn,1(v) = |Sn,1(v)|. Let
Ω1 := {J : J ⊂ {bln2 nc+ 1, . . . , n}}; (3.2)

we use a superscript bar to denote vectors indexed by [k]; for example, we write S̄n,1 :=

(Sn,1(1), . . . ,Sn,1(k)) ∈ Ωk
1.

For m̄ = (m1, . . . ,mk) ∈ Zk+ and δ ∈ (0, 2). Let

Am̄ := {J̄ ∈ Ωk
1 : P

(
S̄n,1 = J̄ , dn(i) ≥ mi, i ∈ [k]

)
> 0} (3.3)

contain the outcomes of the first k truncated sets S̄n,1 on the event {dn(i) ≥ mi, i ∈ [k]} and let

Bδ := {J̄ ∈ Ωk
1 : (J1, . . . , Jk) are pairwise disjoint, ||Ji| − 2 lnn| ≤ δ lnn, i ∈ [k]}. (3.4)

The following lemma gathers two observations about events conditional on S̄n−1 = J̄ and a
sufficient condition on m̄ for Bδ ⊂ Am̄ to hold.

Lemma 3.1. Let k ≥ 1 and m̄, ¯̀ ∈ Zk≥0. If J̄ ∈ Ωk
1 has pairwise disjoint sets and |Ji| ≥ mi for

i ∈ [k], then

P
(
hn,1(i) ≤ `i, dn(i) ≥ mi; i ∈ [k] | S̄n,1 = J̄

)
=

k∏
i=1

P (hn,1(i) ≤ `i, dn(i) ≥ mi | Sn,1(i) = Ji) ; (3.5)

if J̄ ∈ Am̄ then

P
(
dn(i) ≥ mi; i ∈ [k] | S̄n,1 = J̄

)
= 2−

∑
imi . (3.6)
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Finally, if δ ∈ (0, 2) satisfies mi < (2− δ) lnn for i ∈ [k], then Bδ ⊂ Am̄.

Proof : Let k ≥ 1, m̄ ∈ Zk≥0 and let J̄ ∈ Ωk
1 satisfy |Ji| ≥ mi for i ∈ [k]. For each i ∈ [k], write

Ji = {ji,1, ji,2, . . . , ji,|Ji|} with ji,1 > ji,2 > · · · > ji,|Ji| and let Di = {ji,1, ji,2, . . . , ji,mi}.
On the event that ¯Sn,1 = J̄ , for each i ∈ [k],

hn,1(i) =

|Ji|∑
`=1

hi,j` ,

and dn(i) ≥ mi if and only if hi,j` = 0 for all j` ∈ Di. Consequently, for ¯̀ ∈ Zk≥0, the event
{hn,1(i) ≤ `i, dn(i) ≥ mi, i ∈ [k]} depends solely on the variables (hi,ji,`)ji,`∈Di for i ∈ [k]. If J̄ has
pairwise disjoint sets, then so has D̄ pairwise disjoint sets and (3.5) follows.

Now, at each step of the coalescent process, exactly one vertex increases its degree. Observe
that if J̄ ∈ Am̄ then P

(
dn(i) ≥ mi, i ∈ [k] | S̄n,1 = J̄

)
> 0 and the indices in ∪i∈[k]Di corresponds

to steps at which precisely one of the vertices in [k] increases its degree. It follows that D̄ must
have pairwise disjoint sets and so, conditional on S̄n,1 = J̄ , the variables (hi,ji,`)j`∈Di , i ∈ [k] are
independent Bernoulli variables with mean 1/2; establishing (3.6).

Finally, if δ ∈ (0, 2) satisfies mi < (2 − δ) lnn for i ∈ [k], then J̄ ∈ Bδ has pairwise disjoint
sets and |Ji| ≥ mi for each i ∈ [k]. Hence, P (dn(i) ≥ mi | Sn,1(i) = Ji) > 0, and deterministically
hn(i) ≤ n for all i ∈ [k]; we then infer from (3.5) with ¯̀= (n, . . . , n) that J̄ ∈ Am̄. �

The next lemma states that the distribution of S̄n,1 is asymptotically approximated by k copies
of independent truncated selection sets; we delay its proof to Section 3.3.

Lemma 3.2. Let k ≥ 2. Let R̄n := (Rn(i), i ∈ [k]) be k independent copies of Sn,1(1). For any
δ ∈ (0, 2), we have

P
(
S̄n,1 ∈ Bδ

)
= 1 +O(ln−2 n), (3.7)

and, uniformly for J̄ ∈ Bδ,

P
(
S̄n,1 = J̄

)
= (1 +O(ln−1 n))P

(
R̄n = J̄

)
. (3.8)

Before proceeding to the proofs of Lemmas 2.7, 2.8 and 3.2 we recall a result from Addario-Berry
and Eslava (2018) which establishes asymptotic independence of the degrees of any finite number
of vertices in T ′n.

Proposition 3.3 (Proposition 4.2 in Addario-Berry and Eslava (2018)). Fix c ∈ (0, 2) and k ∈ Z+.
There exists β = β(c, k) > 0 such that uniformly over positive integers m1, . . . ,mk < c lnn,

P (dn(i) ≥ mi, i ∈ [k]) = 2−
∑
imi(1 + o(n−β)).

3.1. Proof of Lemma 2.7. Fix k ∈ Z+, ā ∈ [0, 2)k and b̄ ∈ Zk. Let x̄ ∈ Rk, mi := bai lnnc+ bi and
`i := (1 − ai/2) lnn + xi

√
(1− ai/4) lnn; let c ∈ (0, 2) satisfy mi < c lnn for all i ∈ [k] and n be

large enough.
Let us write m = m1. We infer from (3.1) that, conditional on {dn(1) ≥ m,Sn,1(1) ≥ m}, we

have hn,1(1)
L
= Bin(Ŝn, 1/2); where Ŝn has the law of Sn,1(1) −m conditional on Sn,1(1) ≥ m. In

particular,

P (hn,1(1) ≤ `1 | dn(1) ≥ m,Sn,1(1) ≥ m)

=P (Bin(Sn,1(1)−m, 1/2) ≤ `1 |Sn,1(1) ≥ m) ;
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from which we obtain

P (hn,1(1) ≤ `1, dn(1) ≥ m)

=P (Bin(Sn,1(1)−m, 1/2) ≤ `1 |Sn,1(1) ≥ m)P (dn(1) ≥ m, Sn,1(1) ≥ m)

+ P (hn,1(1) ≤ `1, dn(1) ≥ m, Sn,1(1) < m) .

Now, recall that dn(1) ≥ m only if Sn(1) ≥ m and observe that the event {dn(1) ≥ m} implies
that throughout the complete coalescent process there are at least m fair, independent coin flips
that land heads which are also independent from the selection sets. Since both Sn(1) and Sn,1(1)
concentrate around 2 lnn we have

lim
n→∞

P (dn(1) ≥ m, Sn,1(1) ≥ m)

P (dn(1) ≥ m)
= lim

n→∞

2−mP (Sn,1(1) ≥ m)

2−mP (Sn(1) ≥ m)
= 1,

and

lim
n→∞

P (dn(1) ≥ m, Sn,1(1) < m)

P (dn(1) ≥ m)
≤ lim

n→∞

2−mP (Sn,1(1) < m)

2−mP (Sn(1) ≥ m)
= 0.

Putting together all the estimates above, we obtain as n→∞

P (hn,1(1) ≤ `1 | dn(1) ≥ m)→ P (Bin(Sn,1(1)−m, 1/2) ≤ `1 |Sn,1(1) ≥ m) ; (3.9)

which establishes, by Lemma 2.6, the desired convergence if k = 1 and more generally, by the
exchangeability of the vertices, for any i ∈ [k],

lim
n→∞

P (hn,1(i) ≤ `i | dn(i) ≥ mi) = Φ(xi). (3.10)

For k ≥ 2, assume that

P (hn,1(i) ≤ `i, dn(i) ≥ mi, i ∈ [k])

=

k∏
i=1

P (hn,1(i) ≤ `i, dn(i) ≥ mi) + o
(

2−
∑
imi
)
. (3.11)

By Proposition 3.3, we have

k∏
i=1

P (dn(i) ≥ mi) = (1 + o(1))2−
∑
imi = P (dn(i) ≥ mi, i ∈ [k]) . (3.12)

Putting together (3.10)–(3.12) implies, for arbitrary x̄ ∈ Rk,

P (hn,1(i) ≤ `i, dn(i) ≥ mi, i ∈ [k])

=(1 + o(1))P (dn(i) ≥ mi, i ∈ [k])

k∏
i=1

P (hn,1(i) ≤ `i | dn(i) ≥ mi)

=(1 + o(1))P (dn(i) ≥ mi, i ∈ [k])

k∏
i=1

Φ(xi);

this yields the desired convergence in law for k ≥ 2.
It then remains to prove (3.11). Lemma 3.1 and the choice of c gives B2−c ⊂ Am̄, together with

Lemma 3.2 we have

P
(
S̄n,1 ∈ Am̄ \ Bn,2−c

)
≤ P

(
S̄n,1 ∈ Ωk

1 \ Bn,2−c
)

= o(1). (3.13)
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Now, we decompose the event in the left-hand side of (3.11) and use (3.5), (3.6) and (3.13) to
neglect the contribution of J̄ /∈ B2−c,

P (hn,1(i) ≤ `i, dn(i) ≥ mi, i ∈ [k])

=
∑

J̄∈Bn,2−c

P
(
hn,1(i) ≤ `i, dn(i) ≥ mi, i ∈ [k] | S̄n,1 = J̄

)
P
(
S̄n,1 = J̄

)
+ o

(
2−

∑
imi
)

=
∑

J̄∈Bn,2−c

k∏
i=1

P
(
hn,1(i) ≤ `i, dn(i) ≥ mi | S̄n,1 = J̄

)
P
(
S̄n,1 = J̄

)
+ o

(
2−

∑
imi
)

=
∑
J̄∈Ωk1

k∏
i=1

P
(
hn,1(i) ≤ `i, dn(i) ≥ mi | S̄n,1 = J̄

)
P
(
S̄n,1 = J̄

)
+ o

(
2−

∑
imi
)

;

establishing (3.11).

3.2. Proof of Lemma 2.8. Let k ≥ 2, c ∈ (0, 2) and ε > 0. Let mi = mi(n) < c lnn for all i ∈ [k].
By Proposition 3.3 and the exchangeability of the vertices, it suffices to show that

P
(
hn,2(1) ≥ ε

√
lnn, dn(i) ≥ mi, i ∈ [k]

)
= o

(
2−

∑
imi
)
.

Let us assume that uniformly over J̄ ∈ Bn,2−c,

P
(
hn,2(1) ≥ ε

√
lnn, dn(i) ≥ mi, i ∈ [k] | S̄n,1 = J̄

)
= o

(
2−

∑
imi
)
. (3.14)

Then using (3.14), (3.6) and (3.7), we get

P
(
hn,2(1) ≥ ε

√
lnn, dn(i) ≥ mi, i ∈ [k]

)
=
∑
J̄∈Am̄

P
(
hn,2(1) ≥ ε

√
lnn, dn(i) ≥ mi, i ∈ [k] | S̄n,1 = J̄

)
P
(
S̄n,1 = J̄

)
≤P
(
S̄n,1 ∈ B2−c

)
o
(

2−
∑
imi
)

+ 2−
∑
imiP

(
S̄n,1 ∈ Am̄ \ B2−c

)
) = o

(
2−

∑
imi
)
.

Now, to prove (3.14), let J̄ ∈ B2−c and simplifying notation write [ln2 n] = [bln2 nc]. Observe
that |Ji| ≥ mi for i ∈ [k] and so the selection times Sn(1) ∩ [ln2 n] are independent of the event
{dn(i) ≥ mi, i ∈ [k]} ∩ {S̄n,1 = J̄}. Moreover, |Sn(1) ∩ [ln2 n]| L= Sbln2 nc+1 which has mean
(1 + o(1))2 ln lnn. Using Berstein’s inequalities (e.g., see Boucheron et al. (2013, Theorem 2.10))
we get

P
(
|Sn(1) ∩ [ln2 n]| ≥ ε

√
lnn

∣∣∣ dn(i) ≥ mi, i ∈ [k], S̄n,1 = J̄
)

=P
(
Sbln2 nc+1(1) ≥ ε

√
lnn

)
= o(1).

It is straightforward that hn,2(1) is stochastically dominated by |Sn(1) ∩ [ln2 n]|, so the estimate
above together with (3.6) (recall that B2−c ⊂ Am̄) establishes (3.14).

3.3. Proof of Lemma 3.2. Let k ≥ 2 and

τk := max{1 < j ≤ n : sj,i = sj,i′ = 1 for distinct i, i′ ∈ [k]}.
Then,

P ((Sn,1(i), i ∈ [k]) are pairwise disjoint) = P
(
τk ≤ ln2 n

)
≥ 1− 2k2 ln−2 n; (3.15)
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the equality holds by definition of τk and the condition on S̄n,1 having pairwise disjoint sets, while
the inequality follows from Addario-Berry and Eslava (2018, Lemma 4.6).

Let δ ∈ (0, 2), by Berstein’s inequality (e.g., see Boucheron et al. (2013, Theorem 2.10)) there is
β = β(δ) > 0 such that for any i ∈ [k]

P (|Sn,1(i)− 2 lnn| ≥ δ lnn) = o(n−β); (3.16)

it follows that a union bound, together with (3.15) and (3.16) yields (3.7).
For the proof of (3.8) we will use the following factors. For ln2 n < m ≤ n let

pm,0 :=
(m− k)(m− k − 1)

m(m− 1)
, qm,0 :=

(
1− 2

m

)k
, (3.17)

pm,1 :=
2(m− k)

m(m− 1)
, qm,1 :=

2

m

(
1− 2

m

)k−1

. (3.18)

There exists a constant C = C(k) > 0 such that for m large enough, we have for σ ∈ {0, 1},(
1− C

m2
1[σ=0]

)
qm,σ < pm,σ < qm,σ

(
1 +

C

m
1[σ=1]

)
. (3.19)

Indeed, write qm,0 = 1− 2k
m+ 2k(k−1)

m2 +cm−3 and qm,1 = 2
m

(
1− 2(k−1)

m + c′m−2
)
, it is straightforward

that max{|c|, |c′|} ≤ 2k. We then have

qm,0 − pm,0 =
k(k − 1)(m− 2)

m2(m− 1)
+ cm−3,

pm,1 − qm,1 =
2

m

(
(k − 1)(m− 2)

m(m− 1)
− c′m−2

)
;

which implies that qm,0−pm,0 = Θ(m−2) and qm,1−pm,1 = Θ(m−2). Similarly, since limm→∞ qm,0 =
1 and limm→∞mqm,1 = 2, there is C = C(k) > 0 such that for m large enough, 0 < qm,0 − pm,0 ≤
Cqm,0m

−2 and 0 < pm,1 − qm,1 ≤ Cqm,1m−1.
In what follows fix J̄ ∈ Bδ and let R̄n be k i.i.d. copies of Sn,1(1). Set rm,i = 1[m∈Rn(i)] and

jm,i = 1[m∈Ji] for ln2 n < m ≤ n and i ∈ [k]. Let σm =
∑

i∈[k] jm,i and observe that σm ∈ {0, 1}.
Recall that Sn,1(i) = {ln2 n < m ≤ n : sm,i = 1} for i ∈ [k] and let Am := {sm,i = jm,i, i ∈ [k]} for
ln2 n < m ≤ n. Then

P
(
S̄n,1 = J̄

)
= P (An)

n−1∏
m=bln2 nc+1

P (Am |Al, m < l ≤ n) =

n∏
m=bln2c+1n

pm,σm ;

to see this,use that J̄ has pairwise disjoint sets to infer that #{Tm(i); i ∈ [k]} = k for all m > ln2 n;
that is, at no point we have two trees Tm(i) and Tm(i′) selected to be merged with i, i′ ∈ [k] and
m > ln2 n. Then, for σ ∈ {0, 1}, pm,σ is the probability of selecting σ trees from {Tm(i); i ∈ [k]}
when selecting two distinct trees uniformly at random from the forest Fm.

Next, observe that, for n large enough,
n∏

m=bln2 nc+1

(
1− C

m2

)
> 1−

n∑
m=bln2 nc+1

2C

m2
> 1− 2C

∫ ∞
ln2 n

x−2dx = 1− 2C ln−2 n.

On the other hand, we have that
∑
σm =

∑
i∈[k] |Ji| ≤ (2 + δ)k lnn and, for n large enough,∏

m:σm=1

(
1 +

C

m

)
≤ exp

(
(2 + δ)Ck lnn

ln2 n

)
< 1 +

(2 + δ)2Ck

lnn
;
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putting together these estimates we obtain

n∏
m=bln2 nc+1

pm,σm = (1 +O(ln−1 n))
n∏

m=bln2 nc+1

qm,σm .

The independence of the sets in R̄n gives P
(
R̄n = J̄

)
=
∏n
m=bln2 nc+1 qm,σm and so P

(
S̄n,1 = J̄

)
=

(1 +O(ln−1 n))P
(
R̄n = J̄

)
; establishing (3.8).

4. Proof of Proposition 2.2

Recall that we write dn(v) = degT ′n(v) and hn(v) = hT ′n(v) and, from (2.2), µn = (1−(log e)/2) lnn

and σn = (1− (log e)/4) lnn. A simpler version of the next lemma appeared in Addario-Berry and
Eslava (2018, Lemma 5.1).

Lemma 4.1. Let k ∈ Z+. Let (ci)i∈[k] be a non-decreasing sequence of integers and let (Bi)i∈[k] be
sets in BR such that Bi ∩ Bj = ∅ whenever ci = cj and i 6= j. Set k′ = min{i ≥ 0 : ci+1 = ck} and
mi := blog nc+ ci for i ∈ [k], and

Dm̄ := {dn(i) = mi, dn(j) ≥ mj 1 ≤ i ≤ k′ < j ≤ k},

HB̄ :=

{
hn(i)− µn lnn√

σ2
n lnn

∈ Bi, i ∈ [k]

}
.

Then

P (Dm̄, HB̄) = (1 + o(1))2−k
′−

∑
imi

k∏
i=1

Φ(Bi).

Proof : By the inclusion-exclusion principle,

P
(
dn(i) = mi, i ∈ [k′]

)
=

k′∑
`=0

∑
S⊂[k′]
|S|=`

(−1)`P
(
dn(i) ≥ mi + 1[i∈S], i ∈ [k′]

)
. (4.1)

By intersecting the event HB̄ ∩ {dn(j) ≥ mj , k
′ < j ≤ k} with {dn(i) = mi, i ∈ [k′]} and each of

the events {dn(i) ≥ mi + 1[i∈S], i ∈ [k′]} from (4.1) we obtain

P (Dm̄, HB̄) =
k′∑
`=0

∑
S⊂[k′]
|S|=`

(−1)`P
(
HB̄, dn(i) ≥ mi + 1[i∈S], i ∈ [k]

)
. (4.2)

By Proposition 3.3, for each S ⊂ [k′] with |S| = ` we have

P
(
dn(i) ≥ mi + 1[i∈S], i ∈ [k]

)
= 2−`−

∑
imi(1 + o(1)).

Conditioning on {dn(i) ≥ mi+1[i∈S], i ∈ [k]}, by Theorem 2.1 (with ai = log e and bi = ci+1[i∈S]),
we get

P
(
HB̄, dn(i) ≥ mi + 1[i∈S], i ∈ [k]

)
=(1 + o(1))2−`−

∑
imi

k∏
i=1

Φ(Bi).
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Finally, we use the above estimate for each of the summands of the right-hand side of (4.2) to obtain
the desired expression; namely,

P (Dm̄, HB̄) =(1 + o(1))2−
∑
imi

k∏
i=1

Φ(Bi)
k′∑
`=0

∑
S⊂[k′]
|S|=`

(−1)`2−`

=(1 + o(1))2−k
′−

∑
imi

k∏
i=1

Φ(Bi).
�

Proof of Proposition 2.2: Fix c ∈ (0, 2) andK,M ∈ Z+. Let (ak)k∈[K] be non-negative integers such
that

∑
k∈[K] ak = M . Let (jk)k∈[K] be a non-decreasing sequence of integers with K ′ = min{k ≥ 0 :

jk+1 = jK} such that 0 ≤ j1 + log n and jK + log n < c lnn. Let (Bk)k∈[K] be sets in BR satisfying
Bk ∩B` = ∅ whenever jk = j` and k 6= `.

We define mi ∈ Z+ and Ai ⊂ R as follows. For each k ∈ [K], if
∑k−1

`=1 a` < i ≤
∑k

`=1 a` then
set mi = blog nc + jk and let Ai = Bjk . Let M ′ =

∑
k∈[K′] ak. With foresight, we verify that∏M

i=1 Φ(Ai) =
∏K
k=1 Φ(Bk)

ak and similarly,

M log n−M ′ −
M∑
i=1

mi =
K′∑
k=1

(−jk − 1 + εn)ak +
K∑

k=K′+1

(−jK + εn)ak.

Now, consider the sets

Dm̄ := {dn(i) = mi, dn(j) ≥ mj , 1 ≤ i ≤M ′ < j ≤M},

HĀ :=

{
hn(i)− µn lnn√

σ2
n lnn

∈ Ai, i ∈ [M ]

}
.

Recall that X(n)
i (B), X

(n)
≥i (B), i ∈ Z, B ∈ BR are sums of indicator functions; by the definition of

T ′n (as a relabelling of Tn) and the exchangeability of its vertex set, we have

E

[
K′∏
k=1

(
X

(n)
jk

(Bk)
)
ak

K∏
k=K′+1

(
X

(n)
≥j (Bk)

)
ak

]
= (n)MP (Dm̄, HĀ) .

Finally, using the above estimates and since (n)M = nM (1 + o(n−1)), Lemma 4.1 implies

E

[
K′∏
k=1

(
X

(n)
jk

(Bk)
)
ak

K∏
k=K′+1

(
X

(n)
≥jk(Bk)

)
ak

]

=(1 + o(1))
(

2M logn−M ′−
∑
imi
) M∏
i=1

Φ(Ai)

=(1 + o(1))

K′∏
k=1

(
2−jk−1+εnΦ(Bk)

)ak K∏
k=K′+1

(
2−j

′−εnΦ(Bk)
)ak

,

as desired. �

5. Proof of Theorem 1.2 and Corollary 1.3

Throughout the section we let ε ∈ [0, 1) and consider an increasing subsequence (n`)`≥1 with
log n` − blog n`c → ε as ` → ∞. Recall also that µn` = (1 − (log e)/2) lnn` and σ2

n`
= (1 −

(log e)/4) lnn` as in (2.2). To simplify notation, let λj := 2−j−1+ε for each j ∈ Z.
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Proof of Theorem 1.2: We will prove thatMP(n`) converges weakly toMPε, as `→∞, inM#
Z∗×R.

The weak convergence is equivalent to the statement in Theorem 1.2 since we may list the vertices
in Tn in decreasing order of degree as v(i) and let P = {Pi, i ≥ 1} as defined in (1.3); then

MPε =
∑
i≥1

δ(bPic+ε,ξPi )
, and MP(n) =

n∑
i=1

δ(degTn (v(i))−blognc,(h(v(i))−µn)/σn).

Consider the semiring of bounded sets that generates Z∗ × R defined by

A := {{i} × (a, b], i ∈ Z, a, b ∈ R} ∪ {[i,∞]× (a, b], i ∈ Z, a, b ∈ R}. (5.1)

It suffices to prove convergence of the counting measures of finite collections of disjoint sets in A;
see Daley and Vere-Jones (2003, Proposition 9.2.III and Theorem 11.1.VII).

Consider any non-decreasing sequence of integers (jk)k∈[K] with 0 ≤ K ′ = min{k : jk+1 = jK}
and let (Bk)k∈K with Bk = (ak, bk] satisfying Bk ∩ B` = ∅ whenever jk = j` and k 6= `. Observe
that the variables

(Pε({j1} ×B1), . . . ,Pε({jK′} ×BK′) and
Pε([jK′+1,∞]×BK′+1), . . . ,Pε([jK ,∞]×BK)), (5.2)

are independent with distributions

Pε({i}, B)
L
= Poi(2−i−1+εΦ(B)) and Pε([i,∞], B)

L
= Poi(2−i+εΦ(B)).

Recall that, if X L
= Poi(λ), then E [(X)a] = λa for all integers a ≥ 0. Setting c := 3/2, we infer

that for n large enough 0 ≤ j1 + log n < jK + log n < c lnn. It follows from Proposition 2.2 and the
method of moments (e.g., see Janson et al. (2000, Section 6.1)) that

(X
(n`)
j1

(B1), . . . , X
(n`)
jK′

(BK′), X
(n`)
≥jK′+1

(BK′+1), . . . , X
(n`)
≥jK (BK))

converge in distribution to the variables in (5.2); completing the proof of the weak convergence of
MP(n`) toMPε inM#

Z∗×R. �

Lemma 5.1. Let ε > 0. The random variable Mε from (1.4) is well defined.

Proof : Let ε > 0. For each m ∈ Z, let pm = (1− e−λm)e−λm . Observe that 2λm = λm−1 and so∑
m∈Z

pm =
∑
m∈Z

e−λm − e−λm−1 = lim
m→∞

e−λm − lim
m→−∞

e−λm−1 = 1.

Let (Ym, m ∈ Z) be a collection of independent random variables where each Ym has the distribution
of a Poisson random variable with mean λm conditioned to being positive. Let Lε be a random
variable, independent of (Ym, m ∈ Z) such that P (Lε = m) = pm, for m ∈ Z.

We will show that letting Mε = YLε recovers the probability mass function in (1.4). To see this,
observe that

P (Mε = k) =
∑
m∈Z

P (Lε = m)P (Ym = k) =
∑
m∈Z

(1− e−λm)e−λm · e−λmλkm
k!(1− e−λm)

,

from which the lemma follows. �

Proof of Corollary 1.3: Let k ≥ 1. Since P is independent of (Ni)i≥1 it follows from Theorem 1.2
that (

(hTn` (v
(i))− µn`)/σn` , i ∈ [k]

)
L−→ (Ni, i ∈ [k]) ;
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on the other hand, conditional on |Mn` | = k we have Mn` = {v(1), . . . , v(k)} and, Theorem 1.2
gives (

(hTn` (vi)− µn`)/σn`, vi ∈Mn`

)
L
=
(

(hTn` (v
(i))− µn`)/σn` , i ∈ [k]

)
.

So it suffices to prove3 that |Mn` |
L−→Mε to establish Corollary 1.3.

Let j ∈ Z. Define X(n)
j := X

(n)
j (R)

L
= Poi(λj) and X

(n)
≥j+1 := X

(n)
≥j+1(R)

L
= Poi(λj). For any

k ∈ Z+, as n` →∞,

P (∆n` = blog n`c+ j, |Mn` | = k) = P
(
X

(n)
j = k, X

(n)
≥j+1 = 0

)
→ P (Xj = k, X≥j+1 = 0) .

It follows from the independence of X(n)
j and X(n)

≥j+1 that

lim
J→∞

lim
n`→∞

J∑
j=−J

P (∆n` = blog n`c+ j, |Mn` | = k) =
∑
j∈Z

e−2λj
λkj
k!
. (5.3)

It remains to show that the tails are negligible. That is,

lim
J→∞

lim
n`→∞

P (∆n` < blog n`c − J) + P (∆n` > blog n`c+ J)

= lim
J→∞

lim
n`→∞

P
(
X

(n`)
≥J = 0

)
+ P

(
X

(n`)
≥J+1 > 1

)
= lim
J→∞

e−λ−J+1 + 1− e−λJ = 0. (5.4)

Indeed, lim infn`→∞ P (|Mn` | = k) is lower bounded by (5.3) and, similarly, the sum of (5.3) and
(5.4) is an upper bound for lim supn`→∞ P (|Mn` | = k), completing the proof. �
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