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Abstract. We survey some probabilistic aspects of reflection groups, Weyl cham-
bers, symmetric spaces and the Riemann zeta function, and make new observations
on the inter-relationships between these topics. We first consider Brownian motion
in the fundamental chamber of a finite reflection group and remark on an inter-
esting feature of this process, namely, that as far as the one-dimensional marginal
distributions are concerned, the drift and initial position are interchangeable. We
also observe that, when the finite reflection group is a Weyl group, Brownian mo-
tion with a particular choice of drift, conditioned to remain in the corresponding
Weyl chamber at, has the same distribution as the radial part of Brownian motion
on an associated symmetric space. In the type A case, these observations enable us
to establish algebraic as well as new probabilistic interpretations for a combinato-
rial model recently put forward by Johansson (2004) as a means of constructing a
point process that emulates the number variance saturation behaviour of the Rie-
mann zeta zeroes. In order to make this account accessible to a wide audience,
where appropriate, we discuss known results and outline the relevant background
material.

Introduction

It is well established that Brownian motion in a Weyl chamber started at the
origin may be interpreted as the radial part of standard Brownian motion on a
“flat” symmetric space of Euclidean type (Bougerol and Jeulin (2002); Grabiner
(1999)). The purpose of this paper is to highlight the existence of an analogous
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relationship between Brownian motion with drift in a Weyl chamber and the radial
part of Brownian motion on a non-compact symmetric space of negative curvature.
Our objective is then to use this relationship to give an alternative description
of a random matrix model recently employed by Johansson to construct a process
which demonstrates number variance saturation behaviour (Johansson (2004)). We
present a survey of related material along the way.

Various descriptions of n-dimensional Brownian motion conditioned for its com-
ponents to never collide and more generally of Brownian motion in a fundamental
(Weyl) chamber, have been studied in recent times, see for example Grabiner (1999);
O’Connell (2003b); Biane et al. (2005) and references therein. Some such processes
have been successfully constructed using purely probablistic concepts and combi-
natorial methods e.g. Mehta (2004); O’Connell and Yor (2002). However, recent
work of Bougerol and Jeulin (2002); Biane et al. (2005) has focused on develop-
ing the more general algebraic methods for constructing these processes. In these
papers, a path-transformation is introduced which has a representation-theoretic
interpretation in the context of complex semisimple Lie algebras and which, when
applied to an appropriate Euclidean Brownian motion, yields Brownian motion in
a Weyl chamber started at the origin.

In a seemingly separate area of random matrix theory, systems of one-dimen-
sional, non-colliding Brownian motions started from equidistant points on the real
line have been considered as models for the spectral fluctuations of quantum systems
of mixed type (Forrester (1996); Guhr and Papenbrock (1999)). Johansson (2004)
was recently able to exploit such a construction to create a point process with
determinantal structure, possessing the additional property that the variance of
the number of points in an interval of length L converges to a limiting value as
L — oo. This is a property shared by the Riemann zeta zeroes but not exhibited
by previous random matrix models for the zeroes. These constructions, have, until
now, been described in combinatorial terms.

Here we explain connections between the aforementioned symmetric space inter-
pretations, path transformations and random matrices. In doing so, we are able to
deduce a Gaussian random matrix interpretation for the eigenvalues of Brownian
motion on the space of positive-definite Hermitian matrices. This provides a way
of viewing Johansson’s model from an algebraic perspective and also addresses a
question recently put forth in Katori and Tanemura (2004) concerning the exis-
tence of such an interpretation for the closely related Brownian motion of ellipsoids
(Norris et al. (1986)).

The paper is organised as follows. In the first section, we recall known facts
relating to standard Brownian motion in the fundamental chamber of a finite re-
flection group. We give a brief introduction to the relevant reflection group concepts
before presenting a description of this process in terms of Doob’s conditioning. We
illustrate the description with three “classical” examples.

In the second section we describe how Brownian motion with drift may be con-
ditioned to remain in a fundamental chamber by adjusting the approach described
in the first section. Proposition 1, states that interchangeing the drift and initial
position has no effect on the one-dimensional marginal distributions of this process.
This observation allows us to relate the algebraic descriptions of the conditioned
process started at the origin, to the corresponding process started from differing
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points along the real line, thus giving an alternative interpretation of Johansson’s
number variance saturation model.

In the third section we consider a special instance of Brownian motion with a
very specific drift, conditioned to remain in a Weyl chamber, and describe how
this is associated with the radial part of Brownian motion on the corresponding
non-compact symmetric space. Proposition 2 makes this connection precise with
reference to the general framework of non-compact symmetric spaces associated
with complex semisimple Lie algebras. We proceed by carefully examining the
implications of this result for the type A case.

In the fourth and final section we review the background and motivation behind
Johansson’s model and outline some of the results of Johansson (2004). We conclude
by clarifying how all the different elements considered in the paper are connected.

Acknowledgements: The first author’s research is funded by the EPSRC via the
Doctoral Training Account scheme. The second author’s research was supported in
part by Science Foundation Ireland, Grant No. SFI04/RP1/1512.

1. Brownian motion in the fundamental chamber of a finite reflection
group

For the reader’s convenience we start with an outline of definitions and known
facts relating to Brownian motion in the fundamental chamber of a finite reflection

group.

1.1. Background on reflection groups. We begin by setting the scene and explain
what is meant by “the fundamental chamber of a finite reflection group”. We shall
be working with a finite dimensional Euclidean space V with inner product denoted
<-, > Our aim in this section will be to use the geometric structures associated
with reflections in V to give elegant descriptions of Brownian motion conditioned
to behave in particular ways.

Formally, a reflection is a linear operator

S V. =2V
S = T — M ! (1.1)
(2,0)
It is readily seen that this definition agrees with our everyday notion of reflection in
that s, transforms a € V', a # 0 into a negative copy of itself but leaves all points
of the reflecting hyperplane H, := {z : <m, a> = 0}, orthogonal to «, unchanged.
A finite reflection group, denoted W, is, as the name might suggest, a finite
group generated by reflections. Note that since the reflection operator s, preserves
the inner product, reflection groups acting on V can be thought of as specific
subgroups of O(V) := {f : V = V linear and (f(a), f(v)) = {a,v)}, the group
of all orthogonal transformations of V. In particular, the inner product on V is
invariant under the action of the group W, that is, (w(a),w(¥)) = {a,v) for all
weWw.
The structures of different reflection groups are conveniently described by certain
finite sets of non-zero vectors called root systems. In the reflection group context
elements of a root system ® are vectors in V that satisfy the following two axioms

R1 Ifa € ®, then \a e @ iff A =+1.
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R2 Ifa,ve ®then spv € ®

Any such root system can be used to construct a finite reflection group W (®)
defined as the group generated by the reflections {s, : @ € ®}. W(®) is determined
completely by its associated root system though different root systems may give
rise to the same reflection group.

It turns out that the root system ® is superfluous to our needs. A “simpler”
subset of ® will be sufficient to reconstruct ® and hence W(®) when required. A
subset ¥ C ® serves this purpose and is called a fundamental (simple) system if

(1) ¥ is linearly independent.
(2) Every element of ® can be written as a linear combination of the elements
of ¥ with coefficients all of the same sign.

The fundamental (Weyl) chambers of W (®) are simply the geometric configura-
tions determined by the way the hyperplanes of reflection associated with the root
system are arranged in V. More precisely they are the connected components of
V\ (Uaco Ha)- It emerges that there is a one-to-one correspondence between the
chambers of W(®) and the fundamental systems of ®. The fundamental chamber
corresponding to a given fundamental system ¥ is defined as

Cy:={z€V:{(z,a) >0 Vae X} (1.2)

This is the component with “walls” {H, : o € £}. It is easy to see from the
bilinearity of the inner product that Cy is a convex cone in V. Replacing ¥ by
wX, w € W(®) changes Cx, to wCy, - the chamber is a fundamental domain for the
action of W(®) on V.

Each fundamental chamber (or ¥) determines an unique partition of & with
roots categorised as positive or negative depending on which side of the chamber
they lie, i.e.

ot :={red®:(rv,z) >0} and & :={ved:(v,2)<0}

where z € Cyx, is an arbitrary vector in the chamber.

Further background on reflection groups and proofs of statements made here can
be found in, for example, Kane (2001); Humphreys (1990). Specific examples will
be introduced in due course.

1.2. Brownian motion in Cx.. Suppose that we have chosen a root system &, fixed a
set of fundamental roots ¥ and hence determined a fundamental chamber Cx, with
which to work. We are now able to consider Brownian motion in this domain. Let
(By,t > 0) be a standard Brownian motion in V and denote the law of B started at
z € V by P,. Recall that the transition density of Brownian motion in V is given
by

1 Yy—z,Yy—=x
pi(w,y) = Z exp <— %) z,y €V (1.3)

where Z; is a normalisation constant. Note that p; is W-invariant, that is, p;(wz,
wy) = pe(x,y) for all w e W.

Let Tey, :=inf{t > 0: By ¢ Cx} be the first exit time of B from C5. and write
Ppe(z,y) for the transition density of Brownian motion in Cy;, killed on reaching the
boundary Cx = Cx \ Cx. Recall that p; is the heat kernel on Cy with Dirichlet
conditions on the boundary. A generalisation of the classical reflection principle
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states that (see, for example, Biane (1992); Gessel and Zeilberger (1992); Grabiner
(1999); Karlin and McGregor (1959))

ﬁt(may) = Z E(HJ) pt(xaw:y)i (14)
weW (®)
for z,y € Cx, where
B |1 ifw=s54,545---5q, and k is even.
e(w) = det(w) = { -1 if w=54,80,---Sa, and k is odd.

We include a proof here for completeness which is valid for all root systems. Fix a
Borel subset A of C'y;. Since

[ @)ty = PulBr € AiTey > 1),
it suffices to show that
Po(Bi € A4Toy >t)= Y e(w)Py(B; € wA)
weW (®)
or, equivalently,
Z e(w)P (B € wA;Tey, <t)=0.
weW (®)
For o € X, set T, =inf{t > 0: <Bt,a> = 0}. Then T¢,, = mingex T, and
> e(w)Pu(B € wA; Toy, < t)

weW (®)
=Y > e(w)Py(Bi € wA;Te, =Ty < t).
a€X weW(®)
It therefore suffices to show that, for each a € %,
Z e(w)P,(By € wA; Toy, =T, <t) =0.
weW (®)
Fix a, and define B, = By,ly<t, + 850 Byly>1,. By the strong Markov property
and W-invariance of p;, B has the same law as B. It follows that
Po(B; € wA;To, =Ty <t) = Pu(By € sqwA;To, =Ty

t)
= P (Bt € Sa’UJA TCz =T, <t

);

IAIA

and so
> e(w)Po(By € wA; Tey, = To < 1)
weEW (®)
= Y e(W)Py(Bs € sawA;Toy =Ta < t)

weW ()
= — Z €(8qw)P4 (Bt € sqwA; Toy =Ty < 1)
weEW (®)
= — ) e(w)Py(B € wA; Tey, =Ty < 1),
weW(®)

as required.
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Brownian motion killed at the boundary of the chamber can be conditioned
to remain in Cy by use of a Doob h-transform. An introductory account of h-
transforms is given in Rogers and Williams (2000). Broadly speaking, a h-transform
is a tool that may be used to condition a process to converge to a specific point.
In the case we consider here, the theory is applied to ensure that the space-time
Brownian motion (By,t) exits the domain Cy at t = oo i.e. it remains alive. The
appropriate function for this transformation (see Biane (1994)) is the unique, up to
a scaling factor, positive p-harmonic function h on C's which (crucially) vanishes
on the boundary of the chamber. This function is given by

h(z) := H (a,z2) z€V (1.5)
acdt

This product is sometimes called the alternating polynomial or discriminant asso-
ciated with ® (see Dunkl and Xu (2001); Humphreys (1990)).

Now a Brownian motion started at € Cyx, conditioned to stay in Cy, is, by
definition, the corresponding h-process with law denoted Q, and transition density

given by
wle) = ;Do) aeCs (16

We can interpret Zggg as % which aligns (1.6) with what we would intu-
o[Tog=

itively expect. In fact it has been shown, at varying levels of generality (refer to
e.g. Grabiner (1999); Konig and O’Connell (2001); Doumerc and O’Connell (2005))
that Py [Toy > t] ~ h(z)fras t — oo where c is a constant and m = |®F].

Note that the above density (1.6) is defined for starting points actually in the
chamber not in its closure. Thus in order to consider Brownian motion conditioned
to remain in Cx but started from a point on the boundary we would need to
take an appropriate limit, which is possible for all points on the boundary dCyx by
continuity.

It can be shown directly or by use of the operateur carré du champ (see later)
that the generator of the transformed process is

Zh = %A +(Vlogh,V) (1.7)

This operator also arises naturally (see, for example, Gallardo and Yor (2005)) in
the context of W (®)-radial Dunkl processes.

1.3. Ezamples. We present three examples of root systems whose fundamental
chambers have natural interpretations in terms of the coordinates of n-dimensional
Brownian motion. Here we set V = R™ and let {1, €a,...,€,} denote the standard
orthonormal basis of R™. It is easily checked that the given values satisfy the nec-
essary requirements.

Example 1: “Type A”
We have
& = {e—¢li#j}
ot = {Ci—6j|i<j}
Y = {e,-—e,-+1|i<n—1}
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The effect of s.,_; on z € R" is to interchange the i’th and j’th coordinates.
Since the symmetric group S,,, which acts on € R" by permuting coordinates, is
generated by transpositions, we can write

W(®) =S,
The corresponding fundamental chamber is
Ce={zeR":z1 >z2>---> 2}

Therefore, an n-dimensional Brownian motion conditioned to stay in Cy is condi-
tioned for its coordinates, the n one dimensional Brownian motions, to never coin-
cide. In other words, this provides a description of a system of n one-dimensional
Brownian particles conditioned to never collide. The alternating polynomial is

h(z) = H x; —
1<i<j<n

which is otherwise known as Vandermonde’s determinant.

(From (1.7) we see that an n-dimensional Brownian motion conditioned to stay
in the fundamental chamber corresponding to the type A root system, gives rise to
the diffusion

) =B+ T
J#z

/\(]) dt i=1,...,n. (1.8)

where (B, > 0) is a standard Brownian motion in R".
Recall that a possible construction of an n x n GUE matrix M is to let

mi; = M J=1,.
mjr = 77](2)4-2’)7() 1<j5<k
mjr, = Mg; k<j<n with a+ib=a—1ib

where
nj; ~ Normal(0,1) and 77](2),77](,2 ~ Normal(0,1/2)

are independent random variables. The process version is obtained by replacing
the normal random variables with suitably scaled Brownian motions.

In Dyson (1962) Dyson observes that the SDE (1.8), with initial condition Ag =
(0,...,0), is satisfied by the eigenvalues of the process version of GUE (see also
Mehta (2004)). For this reason the above diffusion is often referred to as Dyson’s
Brownian motion. We have (see Konig and O’Connell (2001))

. 1 2
z_mh:l;lecz at(z,y) = mh(y) p:(0,y) (1.9)

which for ¢ = 1 corresponds to the joint density of the eigenvalues of an n x n GUE
matrix.
Example 2: “Type B”
In this case
® = {e—e€ili#jU{vi;=sign(j —i)(ei +€5) i # j}U{£e}
T = {e—¢€,€+eli<jitU{e:1<i<n}
Y = {Gi—€i+1|i <7’L—1}U{€n}
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Now s¢;_¢; (as before) switches the i’th and j’th coordinates, s, ; switches the signs
of the i’th and j’th coordinates and s, changes the sign of the i’th coordinate. W (®)
is the symmetry group of the hyperoctahedron. The corresponding fundamental
chamber is
Cy={zeR" 121 >x2>--->1, >0}

An n-dimensional Brownian motion in this chamber is interpreted as a system of
n one-dimensional Brownian motions conditioned to never collide and to remain
positive. The alternating polynomial is

h(x)zl_n[;vi H T — 5
i=1

i= 1<i<ji<n

Example 3: “Type D”

This root system is a subset of the “type B” root system. In this case

® = {e—¢;liFjIU{v; =sign(j—i)(e +e€)|iF#j}
3t = {Gi—ej,€i+€j|i<j}
Y = {ei—ei+1|i<n—1}U{en71 +6n}

This gives the fundamental chamber
Ce={zeR" : 21 >22> > 2p_1 > |zp|}

Brownian motion conditioned to stay in this chamber can be thought of, if we ignore
the sign of the last coordinate, as a system of n one-dimensional reflected Brownian
motions conditioned never to collide. The alternating polynomial is given by

h(z) = H z? —m?

1<i<j<n

These three root system examples are “classical” in the sense that they are
associated with classical semisimple Lie algebras. A root system ® qualifies as a
root system in the Lie theory sense if, in addition to the axioms R1 and R2 stated
at the beginning of this section, ® spans V (said to be essential) and we have

2<<""">> € ZVY a,v € ® (it is crystallographic). W(®) is then a Weyl group and

its fundamental chambers are Weyl chambers. It transpires that such root systems
are enough to completely determine their associated Lie algebras. This will be
discussed further in the third section. Additional examples and explanation may
be found in, for example, Kane (2001); Humphreys (1990, 1978).

2. Adding a drift

2.1. Other processes in Cx.. The presentation has so far been concentrated on Brow-
nian motion but these constructions are valid for a slightly more general class of
processes. The argument justifying the form of the transition probability (1.4) is
applicable to other Markov processes that are “reflectable” in the sense that their
state spaces and their laws are invariant under the action of the reflection group.
In these cases the transition density would easily be adapted by substituting in the
relevant density for p;. There is a fuller discussion of this in Grabiner (1999).
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Clearly the h-transform (1.5) will not have the same effect for all processes.
The function used for the h-transformation needs to be harmonic with respect to
the process being conditioned. If the original process has generator .£ we require
Zh =0 on Cx. Examples of processes for which the alternating polynomial is still
applicable in this context are provided in K6nig and O’Connell (2001) for the “type
A” root system.

2.2. Brownian motion with drift in Cx. We now turn our attention to Brownian
motion with drift. Recall that the transition density of a Brownian motion in V
with drift p is given by

1 y—x—put,y —x — ut
P (z,y) = 7, &P [—< 5 >]

We will be particularly interested in cases for which the drift coordinates are not
equal but remain the same over time. In general, Brownian motion with drift is
“reflectable” only when the coordinates of u are equal. However, as is well known,
the law P# (on the canonical space) of Brownian motion with drift p, started at
z and the law P, of standard Brownian motion started at x are equivalent on the
natural filtration {2} with respect to the Radon-Nikodym derivative

= exp [ty - 5]

z,y,nEV (2.1)

AP
dP,

F?

We can therefore deduce that the transition probability of a Brownian motion with
drift p € V, started at x € Cy, killed at the boundary of Cy is

Py (z,y)dy = PL[B; €dy; Toy >t
 ut
= Pu[Byedy; Toy, > t] exp [(y — ) — w]
, ut
= ) e(w)pi(x, wy)exp [(y —z,1) — w] dy (22)
weW (P)

We will now focus on the cases with drift vector u € Cy. We present a slightly
modified approach to that discussed in the last section, which allows us to condition
a Brownian motion with drift 4 € Cx, to remain in a fundamental chamber. Let Q¥
be the law under which a Brownian motion with drift y € Cx started at x € Cx
stays in Cx. Analogously to the non-drifting case, we would expect

Pl Tey = o]

B = P¥[B 3 T B
@g[ tedy] :c[ tedyy CE>t]]P’§[TCE=oo]

(2.3)

We need to ensure that this makes sense.

Lemma 2.1. The probability that a Brownian motion with drift u € Cx, started at
x € Cs. never exits the chamber is given by

Ph[Tey = 00] = tlif?o Ph[Tey > 1]

= Y e expl(pws - 2)]

weW (®)
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Henceforth, we shall denote this function by

hu(z) == z e(w) exp[{p, wz — z)] (2.4)

weEW(®)

Proof. As laid out in Biane et al. (2005), the exit time distribution is given by

PElTes >t = / PL[B; € dy; Tey > t]dy
Cs
, it
= / > e(w)pi(x, wy) exp [(u,y —z) — w] dy
Cs yew(e)
Since p; is invariant under the action of w € W(®) we have
pe(z,wy) = pe(0,y — wa)
s0
 ut
Pilloy >4 = Y ) / pu(0,y —wa)exp [(u,y — ) - w] dy
c
weEW (®) =
Now observe that
, ut
/ pe(0,y — ) exp [(u,y —z) = w] dy=1
v
However, since 1 € Cx; we have that as ¢ — oo
 ut
/ exp[(u,y—x)—w]dyﬁo
V\Cs
Hence
, ut
/ pe(0,y — wz) exp [(u,y — T 4wz — wz) — M] dy
Cs 2
- (s pit)
= exp[(p, wz — z)] . 0y —wz)exp [(u, y —wz) - T] dy
P

= exp[(p, wz — z)] as t — oo.

Substituting this limit into the above expression for the exit time distribution gives
(2.4). d

Note that

Epu[hy(Bt)] = Z e(w)Ep, [exp [(N,wBt —z)— <N;Mt>H

2
weW (P)

Since standard Brownian motion is invariant under orthogonal transformations (i.e.
wBy is still a Brownian motion under P,) it follows that h,(B;) is an (F7,P¥) -
continuous martingale for each z.

Now Girsanov’s theorem and the fact that Tcy, is an { %} } - stopping time gives
us the result that for every x and ¢ > 0 we can define a measure Q¥ equivalent to
P# on Z? with respect to the Radon-Nikodym derivative

d@s |  _ hu(Biarey,)

= 2.5
dP% | 5o h, () (25)
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Consequently, we can write

hy (y)
hy (z)

Q¥[B; € dy] =PE[B; € dy ; Tcy, > ] (2.6)
which agrees with our “heuristic” (2.3). The corresponding transition density, the
transition density for a Brownian motion with drift © € Cyx started at 2 € Cx,
killed at the boundary of the chamber, conditioned on {T¢y, = o0}, is given by

@) = 1 .0) 245 (2.7

Lemma 2.2. The conditioned process with transition density ¢t (z,y) is a diffusion
in Cy, with (extended) infinitesimal generator equal to

1
P — §A +{p, V) +(Vlogh,, V) (2.8)

on C?.

Proof. Our construction fits the framework (as described in Revuz and Yor (1999))
of the operateur carré du champ method of obtaining the generator of a transformed
process from that of the original. The operateur carré du champ is given by

O(f,9):=2L(fg9) —fZLg—9Zf (2.9)

for f,g € C?. Let . be the (extended) generator of a diffusion process X with law
P, and define

t
Dy = exp [F(X) = /(X0) = | F(X) s

If D; is a Fw—continuous martingale then the extended generator of the process
corresponding to X under the law Q¢ := Dy - P, is equal to

$+®(f7)

on C?. In this particular case we have

2 = A+ (V)

f = logh,
F =0 (2.10)
The result now follows from a straightforward computation. O

Note that alternatively, we can write the generator (2.8) as
1
Lhe = §A +{(Vlogp,, V) (2.11)

where

ou(z) == Z e(w) exp [(u,wx)]

weW (®)

Proposition 2.3. We claim that
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a) The transition densities extend by continuity to the boundary of Cx. For
the process started at the origin we specifically have

¢ (0,y) = lim g¢/(z,y)

zeCys
h(v) %mo,y) (2.12)

b) Further, for t = 1, the transition densities of
i) a Brownian motion with drift p € Cx, started at © € Cx, conditioned
to remain in the chamber
and
ii) a Brownian motion with drift x € Cx,, started at u € Cyx, conditioned
to remain in the chamber

are the same.
That is
¢ (z,y) = qf (1,) (2.13)

On combining statements a) and b) we get

h(y)

a1(p,y) = 41 (0,y) = hu(y) o ? (1, 9) (2.14)
Proof. ;From (2.7) we know
gt (x,y) = Z:EZ"; Pe(,y) exp [(y —z,p) — w] (2.15)
Now
ﬁt(may)
1 (wy — =, wy — z)
= 7z we;@)e(w) exp [— o ]

| _ <wy-—-y,wy+y>
— <y—z,y—z>/2t <w(y/t)—(y/t) ,z> [ >
= Zte E e(w)e exp o7

wEW (P)

= pi(z,y)ha(y/?)

where for the last step we have used the fact that w preserves the inner product.
By putting this expression for p; back into (2.15) we get

hu(y)
B = 2 b (y/t)pl 2.16
Since h,, involves summation over the whole of W(®) and the inner product is
symmetric we have h,(z) = h,(u). Finally we note that

hy(y/t) N h(y/t)

as (the drift) z = 0
he(n) A ( )
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Thus
g (0,y) = limg/(z,y)

PO o)

(
;' (0,9)

= lim J(y)

h(y/t
h(zx)

hz
)

= hu(y)

as required.

If we now write (2.16) with ¢ = 1 and again use the interchangeability of h,(z) and
he(p) we find

3. A Special Drift Vector

We will now consider the special case of when the drift vector of our Brownian

motion is given by
p=p:= Z Qa (3.1)
acdt
where ®1 denotes the set of positive roots determined by our chosen set of funda-
mental roots X. We have p € Cy, since {(p,a;) >0 Va; € E. This can be seen by
noting that the effect of s, , @; € X is to permute the elements of % \ {a;} and
to send «; to its negative. Thus s,,p = p — 2a; which implies

9 <aiap>
<a’i7 ai>
In the language of representation theory this makes p a dominant weight. Refer to
Humphreys (1978) for further details.
{From Weyl’s denominator identity (see e.g. Kane (2001); Hall (2003)) it follows
that

=2

oa) = Y clwpesne
weEW (@)
— II e<am>__ef<am>
aedt+
= H 2 sinh (o, z) (3.2)
acdt

(From (2.11) we have that the generator of a Brownian motion with drift p condi-
tioned to remain in Cfy; is

1
ZLhe = §A + (Vlog,, V) (3.3)
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We remark that if W (®) is a Weyl group, this operator, multiplied by two (as is
conventional in differential geometry) and written as

A +2(Vlogd,V) (3.4)
where
d(z) = H sinh” (o, z) (3.5)
acdt

arises in the context of symmetric spaces associated with complex semisimple Lie
groups (Helgason (1984) I1.3). In order to clarify what we mean by this statement
we will need to refer to the following framework. Further details and definitions of
the terminology used but not defined here, can be found in e.g Hall (2003); Helgason
(1978) .

3.1. The symmetric space setting. We will consider a non-compact symmetric space
P of the form G/K. G will be a complex semisimple non-compact connected Lie
group with finite centre and Lie algebra g and K a maximal compact subgroup of
G with Lie algebra [. We let
g=1®p

denote the Cartan decomposition of g and let a be a maximal Abelian subspace of
p. We use the Killing form on g restricted to a to identify elements of a with linear
functionals « : @ = C in its dual space a*. We then let

9o ={z€g:[z,H =a(H)x HE€a}

where [, ] denotes the Lie bracket. This enables us to decompose g as

o= P s (3.6)

aca*

This decomposition can be refined to give the root space decomposition

1=000Poa=10a® P 0

acd aedt

This & C a* is called the root system of (g,a). We can find an Euclidean space
V of the same dimension as a* such that ® C V C a* and then ® is an essential,
crystallographic root system in the same sense as in previous sections. Now we
have similar notions of positive roots ®* and fundamental roots ¥ as before. We
define the Weyl chamber

at:={He€a:q(H) >0V X} (3.7)

and note that though at is not the same as Cx; there is a natural correspondence be-
tween them. Since there is a one-to-one relation between essential, crystalographic
root systems and complex semisimple Lie algebras we can actually start with a
given root system or Weyl chamber and work backwards to identify the associated
symmetric space.

We will be paying close attention to the polar decomposition on P as defined in
Helgason (1978) Ch IX Corollary 1.2. For any x € P we have

z=K(z)expI'(z) -0 (3.8)

where K(z) € K and o is the identity coset or the origin in P. I'(x), referred to as
the generalised radial component, is an element of at and is uniquely determined.
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Brownian motion B on the symmetric space P is defined as the Markov process
with generator equal to A2—P where Ap is the Laplace-Beltrami operator on P. An
introduction to this topic may be found in Gangolli (1965), Applebaum (2000) and
Taylor (1988). The Laplace-Beltrami operator on P can be expressed as a sum of
two elliptic operators corresponding to the so-called radial and angular parts associ-
ated with the polar decomposition on P. Refer to Helgason (1984) Ch IT Theorem
5.24 and Theorem 3.7 for the relevant general statements and Taylor (1991) for
further details in this specific context. Incidentally, this is a specific example of a
skew-product decomposition as discussed in Pauwels and Rogers (1988).

Here, we are interested in the radial part of Ap viewed as an operator on f €

C*(at) and given by
Rad(Ap) = Ag +2(V,logd2,V,) (3.9)

Note that this is equal to the operator (3.4) when A and V are regarded as the
Laplacian and gradient operators on a.

As explained in the appendix of Taylor (1991), Brownian motion will almost
surely only visit the regular points of P, those points that are decomposed in
terms of a* (rather than a* \ a'), since the non-regular points have capacity zero.
Consequently, the radial component F(é) of B on P started at o = {K} remains in
at for all time and has generator $Rad(Ap) (see Orihara (1970), Taylor (1991)).

We suppose that we give a an Euclidean structure using, for example, the Killing
form as an inner product. The following observation now follows from the above
discussion.

Proposition 3.1. Euclidean Brownian motion on a with drift p := ) 4+ @,
started at the origin and conditioned to remain in the Weyl chamber at, has the

same distribution as T'(B) the radial part of the Brownian motion B on the corre-
sponding (as formulated above) symmetric space G/ K.

Discussion of other radial parts associated with standard driftless Brownian mo-
tion in a Weyl chamber can be found in Anker et al. (2002) and Bougerol and Jeulin
(2002). The second of these papers utilises the above framework to provide generali-
sations of and geometric interpretations for certain path transformations associated
with random matrix theory. Specifically, they show that if X is an Euclidean Brow-
nian motion on p and B is a standard Euclidean Brownian motion on a then the
radial component rad(X) (the counterpart of I' on the algebra level), has the same
distribution as B conditioned to remain in the Weyl chamber a™. For certain cases
they prove that rad(X) can be realised as a continuous path transformation of B
and conjecture that such a result holds more generally. This was recently confirmed
in Biane et al. (2005). Since the radial part of standard Brownian motion is well
known to be the Bessel process, they refer to the radial process rad(X) as a gener-
alised Bessel process. This is also discussed in Grabiner (1999). The observation of
Proposition 3.1 can be viewed as an analogous relationship between the Brownian
motion on the non-compact symmetric space and the Euclidean Brownian motion
on a with this special drift.

3.2. The interpretation for the type A case. In order to illustrate what the above
technical description means in practice, we consider a specific example. An el-
ementary account of Brownian motion on the symmetric space SL(2;R)/SO(2),
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explained with minimal reference to differential geometry, can be found in Rogers
and Williams (1987) V.36. This is a simplification of an account of the related topic
of Brownian motions of ellipsoids, i.e. Brownian motion on the space of positive
definite symmetric matrices, given in Norris et al. (1986). Of course, as we have
specified we are concerned with the non-compact symmetric spaces associated with
the complex rather than real semisimple Lie groups. Nevertheless, as we will see,
the arguments and outcomes presented in these references are very similar to the
complex analogues that we consider here and consequently our exposition, will, in
parts, have much in common with theirs.

We will look in detail at the “type A” case. This will be of further interest in
the final part of this work. With notation as above, the complex semisimple Lie
algebra associated with the “type A” root system (see Helgason (1978) Ch III) is

g = sl(n; C) := {n x ncomplex matrices with zero trace}

This is the Lie algebra of the complex, semisimple, non-compact, connected Lie
group

G = SL(n; C) := {n x ncomplex invertible matrices with determinant one}
The maximal compact subgroup of G = SL(n;C) is

K = SU(n) := {n x nunitary matrices with determinant one}
Therefore, the symmetric space associated with the “type A” root system is
P:=G/K = SL(n;C)/SU(n)

It can be checked by considering the cosets of SU(n) in SL(n;C) that P is identified
with the space of n x n positive definite Hermitian matrices of determinant one.
Now K = SU(n) has Lie algebra

[ = su(n) := {n x nskew Hermitian matrices}
and the corresponding Cartan decomposition is given by
sl(n; C) = su(n) ®p
where
p := {n x n Hermitian matrices with zero trace }
We have
a:= {diag(y", 7@, ..., 4™) : 40 4. 44 =0}
as a maximal Abelian subspace of p. The linear functionals on H € a given by
a(H) = ~10 40 i#j 4,j€{l,...,n}
ai(H) = 4O -y i=1,...,n—1.

correspond to the roots and fundamental roots respectively. Thus

at = {diag('y(i)) . ,y(l) > 7(2) > 0> 7(n) ) 7(1) RS 7(") =0}
AT :=expat = {diag(ew(i)) : 67(1) > 67(2) > > ew(n)and determinant is 1}
A:=expa

We will denote the closure of AT in G = SL(n;C) by At.
We now consider a Brownian motion on P = SL(n;C)/SU(n). We start with a
right invariant Brownian motion G on SL(n;C). This means that for each u > 0,
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the process {ét+ué; 1.t > 0} is identical in law to G and is independent of
the process {G, : r < u}. Thus G is defined multiplicatively rather than in the
additive fashion of the usual Euclidean Brownian motion. This Brownian motion
is obtained as a solution to the Stratonovich SDE

8G = (OW)G Gy € SL(n;C)

where W is an additive Brownian motion on the Lie algebra sl(n; C). By definition

trace(W) = 0. Hence, we let  be an n xn matrix with independent BM (C) entries
and then we take

~ 1 ~
Wi =B — Etrace(,b’t)f
We define
Y =G*G (3.10)

Y is in fact a Brownian motion on P. It has the important property that it is
invariant under the mapping {V;} — {U;Y;U:}, U; € SL(n;C).

Now by the Cartan decomposition theorem for a connected semisimple Lie group
(see Helgason (1978) IX Thm 1.1) we can write G = K AT K, that is, each g € G can

be written as g = kjaks where k1,ks € K and a € A*. Thus for any g € SL(n;C)
we have

9'9 = (kiak2)*(ki1akz)
kya*aks since k1 € SU(n)
= kia’ks (3.11)
We can rewrite (3.11) for the Brownian motion Y on P
Vi = K (V)" [ AT (Y)RK (%) (3.12)

and since a € A% implies that a®> € AY, this has the same form as the polar

decomposition that we are interested in, as introduced in (3.8). Since Y is restricted
to the regular points of P, the a € AT in the decomposition must be an element of
AT and is unique. Thus, as Y; is self-adjoint, it follows from the spectral theorem
for Hermitian matrices that the matrix denoted by [ A1 (Y;)]? € AT in (3.12) is in
fact the diagonal matrix with entries equal to the eigenvalues of Y; = C:*;‘ G;.

Collecting everything together we conclude that the radial part T'(Y;) of our
Brownian motion on the symmetric space P = SL(n;C)/SU(n) satisfies

expl'(V;) = diag(ezggl),ezggm, e ,e2§£")) €At

where /\gi) = 2" corresponds to the i’th largest eigenvalue of Y at time ¢ with
P §t(’) =0 Vt. Now setting %U) = 2§§’) for i = 1,...,n. and rearranging we
find

%@ =log )\gi) (3.13)
and thus, we have
I(Y:) = diag(% ", 7>, ...,7™) € a* (3.14)

As previously stated, it is known that T'(Y;) is in a™ for all time and has generator
given by the “type A” version of (3.9). We can give a an Euclidean structure by
equipping it with the Hilbert-Schmidt inner product which is equivalent to 1/2n
times the Killing form in this case. Thus we identify a with vectors in R having
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components that add up to zero. We can now state the following Corollary to
Propostition 3.1.

Corollary 3.2. Euclidean Brownian motion in a (equivalently Brownian motion in
R™ conditioned for its components to add to zero) with drift p =3, ;€i—€; = (n—
1,n-3,...,1—n), started at the origin and conditioned for its components to never
collide, evolves like T'(Y;), the process of log-transformed eigenvalues of Brownian
motion on the space of positive definite Hermitian matrices of determinant 1. With
appropriate initial conditions these processes are diffusions satisfying the SDE

Ay = a8 + 3 coth(n? — 1)t (3.15)
i

where 3 is a standard Euclidean Brownian motion in R™ conditioned so that Y ;. |
(4)
=0 Vt.
¢

Note that the above SDE may be deduced from (3.3) by recalling coth(z) =
L log(e® —e™?).

Norris, Rogers and Williams (Norris et al. (1986)) deduce similar results for
Brownian motion on the space of all positive definite symmetric matrices. They do
not have a volume constraint on the ellipsoids. In other words, the restrictions on
the determinants and traces are not applied as they are able to consider Brownian
motion on GL(n;R)/O(n) using a “bare hands” approach.

Similarly to the above, we may construct a Brownian motion Y% on P™¢% :=
GL(n;C)/U(n), which is identified with the space of all positive definite Hermitian
matrices, by taking

Y;new — (é?ew)*é?ew (316)

In this case GP is a right-invariant Brownian motion on GL(n;C), driven by the
Brownian motion 3 (as before) on the Lie algebra gl(n; C).

Unfortunately, the space GL(n; C)/U(n) doesn’t fit directly into the framework
described above. However, as noted in Taylor (1991) we can factor out the deter-
minant, which must be real (from the Hermitian property) and positive (from the
positive-definite property) and thus view GL(n;C)/U(n) as (SL(n;C)/SU(n)) x
Ry . Given this isomorphism we can decompose a Brownian motion Y;*** on P™*%
in terms of a Brownian motion on P := SL(n;C)/SU(n) and an independent
multiplicative Brownian motion ( det(Y;**%)'/ ) on R,. We then see that the
eigenvalues of Y may be written in the form

APEY = A, x det(Y;mew)/n (3.17)
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and so take values in the space A x Ry . Let
v = log APV
= 7 +log (det(Y;"ew)'/n)
n
= %+10g((H)\?6“’(3))1/")

Jj=1

1 ;
— = log A€W ()
7+ " ;Zl 08 Ay

1 — ;
fd ryt + E Z’Ytnew (])
j=1
then we have
v eadR(,1,1,...,1,1)~R"” (3.18)
~————
n times

Now observe that the fact that
- new (j l/n 1 ” new (j
(H bY (J)) = exp (ﬁ Z% (]))
j=1 j=1
n new (j)

is a multiplicative Brownian motion on R} implies that % > =1Vt is an ad-
ditive Brownian motion in R. It follows that the generator of vj*¢* is given by (c.f.

(3.3))
%ARn +(Vlogés,V)

Thus we conclude

Corollary 3.3. Euclidean Brownian motion in R™ with drift p =}, €~ € =
(n—1,n—3,...,1—n), started at the origin and conditioned to remain in the Weyl
chamber Cx := {x € R* : 21 > x3 > -+ > x,}, evolves like v]**™, the process

of log-transformed eigenvalues of Brownian motion on the space of positive-definite
Hermitian matrices. With appropriate initial conditions these processes satisfy the
SDE

e = a0 + 3 cothiaf ) — s (3.19)
J#i

where By is a standard Fuclidean Brownian motion in R™.

3.3. Interpretation for types B and D. Here we summarise how the type B and D
cases are interpreted in the symmetric space setting. Further details may be found
in Helgason (1978).

For the type D root system:

g = s50(2n;C) := {2n x 2n skew symmetric matrices with complex entries}
G = S0(2n;C) := {2n x 2n complex orthogonal matrices with det = 1}
K = S0(2n):={2n x 2nreal orthogonal matrices with det =1 }

[ = s0(2n) = {2n x 2n skew symmetric matrices with real entires}
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We have
$50(2n;C) =s0(2n) @ p (3.20)
where
p = {2n x 2n skew symmetric Hermitian matrices}
Then

P = 80(2n;C)/SO(2n) (3.21)

which may be identified with the space of 2n x 2n self-adjoint, orthogonal matrices
of determinant one. a is the space of 2n x 2n matrices with k’th 2 x 2 block diagonal

entry
0 ag
—ag 0

ar €Rfor k=1,...,n and zeroes elsewhere. AT may be found by first diagonal-
ising a*. The roots are given by {*ay + a;}, the fundamental roots are equal to
{a; —a;p1}U{asn_1+asn} fori=1,...2n—1 and p; = 2(2n — i). Again we may
use the Hilbert-Schmidt inner product ( which is 1/(2n — 2) times the Killing form
restricted to p) to give a Euclidean structure.

The complex semisimple Lie algebra associated with the type B root system is
s50(2n+1; C). Clearly the identities of the type D case may be adjusted accordingly
to take into account the change from even to odd order. The additional 1 x 1
diagonal entry of a is taken to be zero. The roots are the same with {+a;} as
additional roots.

To obtain Brownian motion on P = G/K it is sufficent to construct a Brownian
motion on the Lie group G (see Taylor (1988)) . Similarly to before, this Brownian
motion is obtained as the solution to the Stratonovich SDE driven by an additive
Brownian motion on the Lie algebra g. The radial part of Brownian motion on
P, equivalently Brownian motion in at started at 0 with drift p, may again be
identified with its eigenvalues.

4. Number variance, random matrices and an algebraic interpretation
for a model of Johansson’s

In what follows we will focus on the type A case of Brownian motion in R” with
drift p:=3, ;€i—€¢; =(n—1,n—3,n—5,...,3—n,1 —n), started at the origin
and conditioned to stay in the chamber Cx := {2 € R" : &y > z3 > -+ > z,}.
Recall from (2.14) that the law of this process at time one has density

47 (0,y)

= % hy(y) p1(p,y)

_ iVn(y) H (1_672(yi7yj)) H e*(yifpz')2/2 (4.1)

Z1 Val(p) 1<i<j<n 1<i<n
_ 1 Va(y) (yi—pi)?/2yn
= ZV.) det(e )i j=1 (4.2)
where Vi (z) := [],<;cj<n(zi — 2;) is the Vandermonde determinant and p; =

n—2i+1. (4.1) is specific to the drift p but (4.2) is valid for more general drift vectors
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in Cx. The determinant comes from the identity h,(z) = e~ </*>det(e® i)} ;_,
which is deduced from (2.4) given that W(®) = S, in this case.

As was emphasized earlier, a consequence of the time one interchangeability of
the drift and initial position is that the above density is equivalent to ¢ (p,y), the
density of the law at time one of a driftless Brownian motion started from p and
conditioned to remain in Cx. Such constructions of non-colliding Brownian motions
with equidistant starting positions are of particular interest in the fields of nuclear
and molecular physics. When considering the spectral fluctuations of a quantum
system it may be necessary to assume a “mixed type” model based on an n x n
matrix

H(r) := H'®G 4 rHOVP (4.3)

where HREC is a fixed matrix with equispaced real eigenvalues (u;)?_, and H%UE
is a matrix of the Gaussian Unitary Ensemble. If we let 7 = v/t and suppose ()
are the starting positions for a system of n non-colliding Brownian motions, then
at each time ¢, the distribution of the Brownian particles is equivalent to the distri-
bution of the eigenvalues of H (7). The transition parameter 7 dictates the relative
intensities of the chaotic behaviour modelled by HSVF and the regular character of
the harmonic oscillator type spectrum of HRFS, Models of this sort and some sta-
tistics related to them are discussed in Forrester (1996) and Guhr and Papenbrock
(1999). Related constructions with more general starting positions corresponding
to other distribution types for H®*¥S are considered in Pandey (1995); Johansson
(2001).

4.1. The number variance statistic. The number variance, a simple statistic com-
mon in random matrix theory, may be used to gauge the changing character of
such “crossover” models as the time parameter evolves or the starting positions
are altered. The number variance Var(L) of a point process on the real line is the
variance of the number of points that fall in a typical interval of length L. Applied
to the above model this translates into the variance of the number of eigenvalues of
H(7) (all real since HUE is Hermitian) in an interval or equivalently the number
of Brownian particles in an interval in space at the fixed time t. If the random pro-
cess of interest is spatially homogeneous then clearly it won’t matter which length
L interval is chosen. In other cases we might consider an appropriate average of
the number variance over different intervals of the same length. We illustrate the
definition with a few examples.

Example 1: A Poisson process on R of intensity 6
By definition, for an interval I C R we have Number[I] ~ Poisson(Length(I)#) so
Var(L) = L grows linearly with interval length.

Example 2: The eigenvalues of HGUE

This corresponds to the above model with HRFG = 0 and 7 = 1. As was alluded
to in the first section, the joint density of the eigenvalues is the same as the time
one distribution of Dyson’s Hermitian Brownian motion started from 0. It is usual
to rescale the eigenvalues, based on Wigner’s semicircle law, to have asymptotic
mean spacing one and then to let the matrix size n — 0o. The process of rescaled
eigenvalues, which we shall denote ();,i > 1) is spatially homogeneous and has de-
terminantal structure. This means that its correlation functions (also called joint
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intensities) R,, have the form
Rm(mlaer";xm) = det(K(xz,x]));”]:l (44)

R, (21,22, .., %m)de1des . .. d2,y, is interpreted as the probability of finding m of
the points/eigenvalues in the infinitesimal intervals around zi,zs,...%,. In this
case the correlation kernel K is given by

_ sinw(z; — x)

K(.’L‘i,flfj) = (45)

™ (.’L’z — ]‘)
The reader is referred to the expository account of determinantal point processes
given by Soshnikov (2000) for further details.

It is well known (an explicit calculation can be found in Mehta (2004)) that the
number variance of this process grows logarithmically as interval length is increased.
In fact

1 1
VarCVE(L) = p(log(%rL) + Youter + 1) + O(Z) (4.6)

Example 3: The zeroes of the Riemann zeta function.
Recall that the Riemann zeta function is given by

oo

1 1\-1
(= —= 1] (1 - 1?) (4.7)

n=1 pE{primes}
for Re(z) > 1 and by analytic continuation for other z. Riemann famously hypoth-
esised that all the non-trivial zeroes of ((z), those with non-zero imaginary part,
take the form

1

Connections between the statistical properties of the Riemann zeta function and
random matrix theory are well documented (see e.g Keating and Snaith (2003) for
a review). In this context, much attention has focused on the distribution of the
E,,, which from now on we shall refer to as “the zeroes”, on the so called critical
line Re(z) = 5. “Local” statistics of the unfolded zeroes

~ 1

E
E,=E,—log=" (4.9)

27 2

high up on the line and the corresponding statistics for the rescaled eigenvalues \;
of very large GUE matrices, actually agree. Local statistics are those such as the
distribution of spacings between neighbouring points. On the other hand, when
it comes to “global” statistics such as the number variance and the correlations
between the nearest neighbour spacings of distant points there is a greater discrep-
ancy.

In Berry (1988) heuristic arguments are used to propose a formula for the number
variance of the Riemann zeta zeroes. He finds that for small (relative to the height
E of the zeroes considered) intevals with L < %, the number variance is in
agreement with Var(L)%UE as given above. However, as interval length is increased
past this level, another term in his formula gains importance, we see cancellation
of terms and the number variance saturates in the sense that rather than continue
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to grow logarithmically, it levels off and oscillates finitely around an average value
of approximately

1
— [log log(E/2m) + 1.4009] (4.10)
7r

4.2. A model of Kurt Johansson’s. The difference in the limiting behaviours of the
number variance statistics of the second and third examples led Johansson (2004) to
address the question of whether it is possible to construct a random matrix model
that demonstrates number variance saturation. One of the models he considers in
this quest is that of n Brownian particles started from equidistant points on the
real line, with spacing a, conditioned to never collide. This corresponds to the
model (4.3) with HREC assigned to have eigenvalues u; = Y +a(n—j) with T € R,
a € Ry and j = 1,...,n. Clearly our “special” starting vector p := ZK]. € — €j
corresponding to the type A root system on R" is a particular example of this
scheme with a = 2 and ¥ = 1 — n. The transition density for such a system of
Brownian motions takes the general form

lV()
Z; V, (u)

which corresponds to (1.6) given W(®) = S,, and as expected agrees with (4.2)
when u; = p; and t = 1.

In Johansson (2001) this transition density is derived using an entirely combina-
torial argument, starting with the formula of Karlin and McGregor (1959) which
is equivalent to the type A version of the density (1.4). He then makes use of a
theorem given in Tracy and Widom (1998) to derive the correlation kernel K¢ of

qt(uay) de t( _(yi_u]) /2t) i,7=1 (411)

the correlation functions Rg,’f ) for the configuration of particles in space formed by
the system of non-colliding Brownian motions at fixed time ¢ . This is given by

Ki(o,y) = ztze (wy=2)* /2t/ N | (E2%)ak @a2)
g — Wi

1=1,i#j]
where T : s - L +is. In Johansson (2004) this kernel is found to converge
uniformly as n — oo to a kernel with leading term

1 ssinm(z—y) dcosw(z+y)+ (y—z)sinw(y + z)
t = _
Kapprox(a’m’ (ly) - a ( 7r(.Z' _ y) W(dz + (y — x)2) )
where
27t
== (4.13)

Note that, in contrast to the GUE case, the density of the points of this limiting
determinantal process is given by
1 2
Kt (z,2)=- (1 + M) (4.14)
a

approx nd

and so it is clear that the process is not spatially homogeneous. If it were, it would
be of less interest here as it is known (see Soshnikov (2000)) that in such cases the
number variance does not saturate. Therefore, in this case, the number variance
for an interval [b,b + L] will depend on b as well as on L. Johansson is able to
derive an explicit formula for the number variance for such an interval by using the
leading part of the kernel denoted K (z,y) and then averaging over b € [0,a),

approx
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assuming the choice is uniform. Observe that this average is equivalent to taking
an average over T € [0,a). When L is small compared to d the number variance
has leading term

1
—5 (log(2rL/a) + Yiuer + 1) (4.15)

which would correspond to Var(L)SVE had we taken a scaling limit that resulted
in an asymptotic mean spacing of a (rather than 1) for the eigenvalues. If d is
held constant while we let L — oo, it is found that the averaged number variance
saturates to

1
— (10g(2md) + Yewer +1) (4.16)

Corollary 4.1. Consider a system of n non-colliding Brownian particles started
from the “special” initial position vector p. The configuration of particles in space
at time one, in the limit n — oo, gives rise to a determinantal process with averaged
number variance saturating to the level

1
F(log 7r2 + YEuler + 1) (4'17)

sFrom the preceding discussion this is equivalent to the number variance of the
process that would be obtained as the n — oo limit of either the configuration
of particles at time one of a system of non-colliding one-dimensional Brownian
motions with drift p all started at the origin or equivalently the eigenvalues of Y.

Now if we compare (4.17) and (4.15) (with @ = 2 in the latter for a direct
comparison) then it appears that adding a drift makes a significant difference as to
whether or not the number variance of the limiting process saturates.

Note that since cp € Cx for ¢ € Ry most of the observations made in this
section are valid for more general drift vectors - we just lose the symmetric space
interpretation.

4.3. A path transformation and the largest eigenvalue. Tt is shown in Biane et al.
(2005) that Brownian motion with drift u € Cx started at the origin and condi-
tioned to remain in Cx can be realised by applying a certain adapted functional
Puw, to the corresponding unconditioned Brownian motion with drift, which we
shall denote (B*(t),t > 0).

In the type A case, the definition of P,, is the same as that of the queuing
theory related transformation applied to a standard driftless Brownian motion in
O’Connell and Yor (2002) and to Brownian motion with drift in O’Connell (2003a).
If W(®) is a classical Weyl group (types A, B, C and D) then, as demonstrated
in Biane et al. (2005), Py, is equivalent to the transformation of Bougerol and
Jeulin (2002) which was mentioned briefly in the last section.

wog is the unique element of W(®) of maximal length. That is, if wy can be
written as a minimum of k reflections

Wo = Say Sas - - - Sap, a; €EX (4.18)

then all other elements of W(®) can be written as a combination of less than k
reflections. We have

Puwy = PayPas - - - Pay, (4.19)
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where
PoB*(t) := B*(t) — 2 iréfr‘ﬁ (a,B"‘(s)) (4.20)

In the type A case recall that W (®) ~ S,,. The maximal length element of S, is
written as the product of transpositions

wo = (12)(23)(34)...(n — 1n)(12)(23)(34)...(n —=2n—1)......... (12)(23)(12)
In this case, the first component of P,,B* at time ¢ is given by
su B (¢ .
0= t0<t1<p <tn_tz[ -]

The following proposition now brings together all the different elements of the
paper.

Proposition 4.2. Let (B*(t),t > 0) be a Brownian motion in R" started at the
origin with drift p= (n —1,n = 3,...,1 —mn). All the following random variables
have the same distribution.

e Py, B*(1)
e The coordinates at time one of n-dimensional Brownian motion with drift
p=(n-1,n-3,...,1—n) started from the origin, conditioned to remain

in the chamber Cy, = {z € R" : x1 > 2> ... > z,}.

e The coordinates at time one of n-dimensional driftless Brownian motion
started from p = (n — 1,n — 3,...,1 —n), conditioned to remain in the
chamber Cs = {z €R" : 1 > 22 > ... > z,}.

o The eigenvalues of Y"*, that is, the time one eigenvalues of Brownian
motion on the space of all positive-definite Hermitian matrices.

o The eigenvalues of the ensemble (4.3) with T =1 and u; = p;.

Corollary 4.3. In particular, the random variable

n

sup  SU[BI(t) — BY (i) (4.21)

O=to<t1<-- <tn—1Z 1

has the same distribution as the first component/largest eigenvalue of the regimes
listed in Proposition 4.2.

Corollary 4.3 should be compared with the observation of Gravner et al. (2001)
and Baryshnikov (2001) that the largest eigenvalue of a GUE random matrix has
the same distribution as

Z[B Bi(ti-1)] (4.22)

0= t0<t1< <tn—1

where (B(t),t > 0) is a standard driftless Brownian motion in R". Note that using
the fact p; =n — 2 + 1 we can re-write the expression (4.21) as

—n+ Z[t + Bi(t;) — Bi(ti_1)]. (4.23)

0=to <t1 < <t'n,71
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