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Abstract. The Brownian excursion measure is a conformally invariant infinite
measure on curves. It figured prominently in one of first major applications of SLE,
namely the explicit calculations of the planar Brownian intersection exponents by
Lawler, Schramm, and Werner (2001) from which the Hausdorff dimension of the
frontier of the Brownian path could be computed. In this paper we define the simple
random walk excursion measure and show that for any bounded, simply connected
Jordan domain D, the simple random walk excursion measure on D converges in
the scaling limit to the Brownian excursion measure on D.

1. Introduction

A number of mathematically simplistic lattice models, including the self-avoiding
random walk, have been introduced in an attempt to better understand critical phe-
nomena in two-dimensional statistical physics. (For example, Flory (1949) describes
the “random flight” approximation to the spatial configuration of randomly coiled
chain polymers.) While these models have been studied for several decades, little
progress had been made until recently. The introduction of the Schramm-Loewner
evolution, a new family of conformally invariant distributions on random curves,
has led to a plethora of exciting results about the scaling limits of these models
at criticality. The scaling limits of loop-erased random walk (Lawler et al. (2004);
Zhan (2004)), uniform spanning trees (Lawler et al. (2004)), and site percolation
on the triangular lattice (Smirnov (2001); Camia and Newman (2006)) can now be
described using SLE.

Received by the editors November 30, 2005; accepted April 25, 2006.

2000 Mathematics Subject Classification. 60F05, 60G50, 60J45, 60J65.
Key words and phrases. Brownian excursion measure, Brownian motion, simple random walk

excursion measure, excursion Poisson kernel, strong approximation, scaling limit.
Research supported in part by a Discovery Grant from the Natural Sciences and Engineering

Research Council (NSERC) of Canada.

125



126 Michael J. Kozdron

One of the first successes, however, of the SLE program was the determination of
the intersection exponents for random walk and Brownian motion, and the estab-
lishment of Mandelbrot’s conjecture that the Hausdorff dimension of the frontier
of the planar Brownian path is 4/3. (See Lawler et al. (2001) for a survey of this
work.) The Brownian excursion measure, a conformally invariant infinite measure
on curves which had been introduced in previous work by Lawler and Werner (2000),
figured prominently in the explicit calculations of the intersection exponents.

The goal of this present paper is to construct a discrete object, the simple random
walk excursion measure, which has the Brownian excursion measure as its scaling
limit. Of course, the convergence of simple random walk on Z2 to Brownian motion
in C has been known since Donsker’s theorem of 1951. However, what had not been
established was a strong version of this result which holds for random walk and
Brownian motion on any simply connected domain where the errors do not depend
on the smoothness of the boundary. By proving in the present paper that for any
bounded, simply connected Jordan domain, the scaling limit of discrete excursion
measure is Brownian excursion measure, we establish such a result.

1.1. Main results. We begin with a discussion of the main results, leaving some
of the precise statements to later sections. Our concern will be exclusively two
dimensional, so we will identify C ∼= R2 in the usual way, and write any of w, x,
y, or z for points in C. A domain D ⊂ C is an open and connected set; write
D := {z ∈ C : |z| < 1} for the open unit disk, and H := {z ∈ C : Im(z) > 0} for
the upper half plane. A standard complex Brownian motion will be denoted Bt,
t ≥ 0, and Sn, n = 0, 1, . . ., will denote two-dimensional simple random walk, both
started at the origin unless otherwise noted. We will generally use T for stopping
times for Brownian motion and τ for stopping times for random walk, and write Ex

and Px for expectations and probabilities, respectively, assuming B0 = x or S0 = x.
A subset A ⊂ Z2 is said to be simply connected if both A and Z2\A are non-empty

and connected. Write the (outer) boundary of A as ∂A := {z ∈ Z2 \A : dist(z, A) =
1}. An excursion in A is a path ω := [ω0, ω1, . . . , ωk] with |ωj − ωj−1| = 1 for all
j; ω0, ωk ∈ ∂A; and w1, . . . , ωk−1 ∈ A. It is implicit that 2 ≤ k < ∞; the length of
ω is |ω| := k. We can view excursions of length k as curves ω : [0, k] → C by linear
interpolation. Write KA for the set of excursions in A, and define the simple random
walk excursion measure as the measure on KA which assigns measure 4−k to each
length k excursion in A. That is, the excursion measure of ω = [ω0, ω1, . . . , ωk] is the
probability that the first k steps of a simple random walk starting at ω0 are the same
as ω. Let D ⊂ C be a bounded simply connected domain containing the origin, and
for each N < ∞, let DN denote the connected domain containing the origin of the
set of z = u + iv ∈ 1

N Z2 such that {u′ + iv′ : |u− u′| ≤ (2N)−1, |v − v′| ≤ (2N)−1}
is contained in D. For each N , we get a measure on paths denoted µrw

∂DN
by

considering the random walk excursion measure on DN , and scaling the excursions
by Brownian scaling: ω(N)(t) := N−1/2ω(2Nt). As N → ∞, these measures
converge to µ∂D, excursion measure on D, which is an infinite measure on paths.
Since Brownian motion in C is conformally invariant (up to a time-change), µ∂D is
also conformally invariant. (See Proposition 3.31.) If Γ, Υ are disjoint arcs in ∂D,
then conditioning the excursion measure to have endpoints z ∈ Γ, w ∈ Υ, gives a
probability measure on excursions from Γ to Υ in D.
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The primary result of this paper is that for any bounded, simply connected
Jordan domain D, simple random walk excursion measure converges to Brownian
excursion measure on D.

Theorem 1.1. If D is a bounded, simply connected domain containing the origin
with inrad(D) = 1, ∂D is Jordan, and DN is the 1/N -scale discrete approximation
to D, then

℘( 4 µrw

∂DN
, µ∂D ) → 0

where ℘ denotes the Prohorov metric.

As we are discussing the convergence of infinite measures, we need to be a little
careful about how we define convergence in the Prohorov metric (which is usually
defined only for finite measures). As the restriction of excursion measure to disjoint
boundary arcs gives a finite measure, Theorem 1.1 is to be interpreted as meaning
that for any pair of disjoint boundary arcs Γ, Υ ⊂ D,

℘(4µrw

∂DN
(ΓN , ΥN ), µ∂D(Γ, Υ)) → 0

where Γn, ΥN are the “associated (discrete) boundary arcs in DN .” In Section 4.5
we prove the precise formulation of Theorem 1.1.

Since a Brownian (resp., random walk) excursion can be viewed as consisting of
a Brownian motion (resp., random walk) plus tails, the proof of convergence has
two distinct parts—a “global part” plus a “local part.” The strong approximation
of Komlós, Major, and Tusnády (1975, 1976) is used to couple random walk and
Brownian motion in the interior of the domain away from the boundary. This
global part does not depend on the smoothness of the boundary. The local part
concerns the tails whose behaviour can be controlled using the Beurling estimates;
here the structure of the boundary does come into play. The proof of convergence
also employs an estimation of the discrete excursion Poisson kernel in terms of the
excursion Poisson kernel derived in Kozdron and Lawler (2005) which was used in
that paper to prove a conjecture of Fomin (2001). (See Kozdron and Lawler (2006)
for a direct derivation of the scaling limit of Fomin’s identity in the case of two
paths.) Hence, by proving the weak convergence of excursion measures, we are
extending the “central limit theorem” for the endpoints of the excursions proved
in Kozdron and Lawler (2005).

Technically, since µrw

∂DN
is supported on continuous curves, we must associate to

DN a domain D̃N ⊂ C by identifying each point in DN with the square of side length
1/N centred at that point. It is important that these so-called “union of squares”

domains D̃N converge to the original domain D. However, the convergence is not in
the usual topological sense, but rather in the Carathéodory sense. This is captured
by the following theorem which is carefully stated and proved in Section 4.3.

Theorem 1.2. If fN , f are conformal transformations of the unit disk D onto
D̃N , D, respectively, with fN (0) = f(0) = 0 and f ′

N (0), f ′(0) > 0, then fN → f

uniformly on compact subsets of D. In other words, D̃N
cara→ D.

1.2. Outline of the paper. In Section 2, we establish some notation, and recall some
facts from complex analysis about conformal transformations. We also review the
definitions and basic facts about Green’s functions on both C and Z2. Section 3 is
devoted to a discussion of excursions and excursion measures. Included are some
fundamental ideas about spaces of curves and measures on metric spaces. We also
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review the Prohorov topology, and prove several easy lemmas about the Prohorov
metric which are needed in the sequel. The Poisson kernel and excursion Poisson
kernel are then reviewed, with an emphasis on their conformal covariance proper-
ties, and a construction of excursion measure on D, differing from that in Lawler
(2005), is carried out. The final section, Section 4, is devoted to the proofs of
Theorem 1.1 and Theorem 1.2. The material in Section 4.4 relies on the results
obtained in Kozdron and Lawler (2005). Instead of simply recopying those results
as originally proved, we have translated them to statements in terms of DN , the
1/N -scale discrete approximation to D. A review of some recent strong approxi-
mation results is included in Section 4.5.1 because of their necessity in the proof of
Theorem 1.1.

2. Background and notation

2.1. Simply connected subsets of C and Z2. A function f : D → D′ is a conformal
transformation if f is an analytic, univalent (i.e., one-to-one) function that is onto
D′. It follows that f ′(z) 6= 0 for z ∈ D, and f−1 : D′ → D is also a conformal
transformation. If D is a domain in C, then a connected Γ ⊂ ∂D is an (open)
analytic arc of ∂D if there is a domain E ⊂ C that is symmetric about the real
axis and a conformal transformation f : E → f(E) such that f(E ∩ R) = Γ and
f(E ∩ H) = f(E) ∩ D. We say that ∂D is locally analytic at x ∈ ∂D if there exists
an analytic arc of ∂D containing x. For D ⊂ C with 0 ∈ D, define the radius (with
respect to the origin) of D to be rad(D) := sup{|z| : z ∈ ∂D}, and the inradius
(with respect to the origin) of D to be inrad(D) := dist(0, ∂D) := inf{|z| : z ∈ ∂D}.
The diameter of D is diam(D) := sup{|x−y| : x, y ∈ D}. Call a bounded domain D
a Jordan domain if ∂D is a Jordan curve (i.e., homeomorphic to a circle). A Jordan
domain is nice if the Jordan curve ∂D can be expressed as a finite union of analytic
curves. Note that Jordan domains are necessarily simply connected. For each r > 0,
let Dr be the set of nice Jordan domains containing the origin of inradius r, and
write D :=

⋃

r>0 Dr. We also define D∗ to be the set of Jordan domains containing
the origin, and note that D ( D∗. If D, D′ ∈ D∗, let T (D, D′) be the set of all
conformal transformations of D onto D′. The Riemann mapping theorem implies
that T (D, D′) 6= ∅, and since ∂D, ∂D′ are Jordan, the Carathéodory extension
theorem tells us that f ∈ T (D, D′) can be extended to a homeomorphism of D
onto D′. The statements and details of these two theorems may be found in § 1.5
of Duren (1983).

Three standard ways to define the boundary of a proper subset A of Z2 are as
follows:

• (outer) boundary: ∂A := {y ∈ Z2 \ A : |y − x| = 1 for some x ∈ A};
• inner boundary: ∂iA := {x ∈ A : |y − x| = 1 for some y ∈ Z2 \ A};
• edge boundary: ∂eA := {(x, y) : x ∈ A, y ∈ Z2 \ A, |x − y| = 1}.

To each finite, connected A ⊂ Z2 we associate a domain Ã ⊂ C in the following
way. For each edge (x, y) ∈ ∂eA, considered as a line segment of length one, let `x,y

be the perpendicular line segment of length one intersecting (x, y) in the midpoint.

Let ∂Ã denote the union of the line segments `x,y, and let Ã denote the domain

with boundary ∂Ã containing A. Observe that

Ã ∪ ∂Ã =
⋃

x∈A

Sx where Sx := x + ( [−1/2, 1/2]× [−1/2, 1/2] ) .
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That is, Sx is the closed square of side length one centred at x whose sides are
parallel to the coordinate axes. Also, note that Ã is a simply connected domain
if and only if A is a simply connected subset of Z2. We say Ã is the “union of
squares” domain associated to A.

Let A denote the set of all finite simply connected subsets of Z2 containing the
origin. If A ∈ A, let inrad(A) := min{|z| : z ∈ Z2 \A} and rad(A) := max{|z| : z ∈
A} denote the inradius and radius (with respect to the origin), respectively, of A,
and define An to be the set of A ∈ A with n ≤ inrad(A) ≤ 2n; thus A :=

⋃

n>0 An.
If A ∈ A, 0 6= x1 ∈ ∂iA, and [x1, x2, . . . , xj ] is a nearest neighbour path in A \ {0},
then the connected component of A \ {x1, . . . , xj} containing the origin is simply
connected.

Finally, if A ∈ A with associated domain Ã ⊂ C, then we write fA := fÃ for the

conformal transformation of Ã onto the unit disk D with fA(0) = 0, f ′
A(0) > 0.

2.2. Green’s functions on C and Z2. Let D be a domain whose boundary contains
a curve, and write gD(x, y) for the Green’s function for Brownian motion on D. If
x ∈ D, we can define gD(x, ·) as the unique harmonic function on D\{x}, vanishing
on ∂D, with gD(x, y) = − log |x−y|+O(1) as |x−y| → 0. Equivalently, if D ∈ D∗,
then for distinct points x, y ∈ D, gD(x, y) = Ex[log |BTD

− y|] − log |x − y| where
TD := inf{t : Bt 6∈ D}. In particular, if 0 ∈ D, then gD(x) = Ex[log |BTD

|]− log |x|
for x ∈ D where gD(x) := gD(0, x). For further details, consult Chapter 2 of Lawler
(2005). Since the Green’s function is a well-known example of a conformal invariant
(see, e.g., § 1.8 of Duren (1983)), in order to determine gD for arbitrary D ∈ D∗,
it is enough to find fD ∈ T (D, D). Conversely, suppose that D ⊂ C is a simply
connected domain containing the origin with Green’s function gD. The unique
conformal transformation of D onto D with fD(0) = 0, f ′

D(0) > 0 can be written as

fD(x) = exp{−gD(x) + iθD(x)}. (2.1)

Note that −gD + iθD is analytic in D \ {0}. Suppose that A ∈ A, and that
gA(x, y) := gÃ(x, y). As explained in Kozdron and Lawler (2005), the exact form
of the Green’s function gives

gA(x, y) = log

∣

∣

∣

∣

∣

fA(y)fA(x) − 1

fA(y) − fA(x)

∣

∣

∣

∣

∣

.

If we write θA := θÃ, then (2.1) implies fA(x) = exp{−gA(x) + iθA(x)}.
Let Sn be a simple random walk on Z2, and let A ( Z2. If τA := min{j ≥ 0 :

Sj 6∈ A}, then we let

GA(x, y) :=

∞
∑

j=0

Px{Sj = y, τA > j}

denote the Green’s function for random walk on A, and set GA(x) := GA(x, 0) =
GA(0, x). Write a for the potential kernel for simple random walk defined by

a(x) :=

∞
∑

j=0

[

P0{Sj = 0} − Px{Sj = 0}
]

.

It is known from Theorem 1.6.2 of Lawler (1991) that as |x| → ∞,

a(x) =
2

π
log |x| + k0 + o(|x|−3/2) (2.2)
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where k0 := (2ς+3 ln2)/π and ς is Euler’s constant, and that GA(x) = Ex[a(SτA
)]−

a(x) for x ∈ A. The error in (2.2) will suffice for our purposes even though stronger
results are known; see Fukai and Uchiyama (1996). We also recall a uniform esti-
mate for GA(x), and a relationship between the Green’s functions GA and gA which
is proved in Theorem 1.2 of Kozdron and Lawler (2005).

Theorem 2.1. If A ∈ An, then GA(0) = − 2
π log f ′

A(0) + k0 + O(n−1/3 log n).
Furthermore, if x 6= 0, then

GA(x) =
2

π
gA(x) + kx + O(n−1/3 log n).

where

kx := k0 +
2

π
log |x| − a(x). (2.3)

We conclude by defining what it means for two boundary arcs to be separated.
Note that separation is always defined in terms of distance in the unit circle.

Definition 2.2. Suppose that A ∈ A and D ∈ D∗. Let Γ1, Υ1 ⊂ ∂iA with
Γ1 ∩ Υ1 = ∅, let Γ2, Υ2 ⊂ ∂D with Γ2 ∩ Υ2 = ∅, and write θ1 = θA, θ2 = θD. The
separation of Γj and Υj, j = 1, 2, written sep(Γj , Υj), is defined to be

sep(Γj , Υj) := inf{|θj(x) − θj(y)| : x ∈ Γj , y ∈ Υj}, (2.4)

and the spread of Γj and Υj, written spr(Γj , Υj), is defined to be

spr(Γj , Υj) := sup{|θj(x) − θj(y)| : x ∈ Γj , y ∈ Υj}. (2.5)

If Γ1, Υ1 ⊂ ∂A instead, then (2.4) and (2.5) hold with θA extended to ∂A in the
natural way.

3. Excursions and excursion measure

Much of this material may be found in Kozdron and Lawler (2005) and in the
recent book Lawler (2005). We repeat the relevant material here without proof in
order to standardize our notation, and to remind the reader of the most important
facts. We do, however, prove a number of useful lemmas about the Prohorov metric
in Section 3.2.

3.1. Metric spaces of curves. A curve γ : I → C shall always mean a continuous
mapping of an interval I ⊆ [0,∞) into C. Let K denote the set of curves γ : [0, tγ ] →
C where 0 < tγ < ∞, and write γ[0, tγ] := {z ∈ C : γ(t) = z for some 0 ≤ t ≤ tγ}
and similarly for γ(0, tγ). There are three natural metrics that we will consider on
K. Following Lawler and Werner (2000), define the metric

d∗K(γ, γ′) := inf
ϕ

[

sup
0≤s≤tγ

| γ(s) − γ′(ϕ(s)) |
]

where the infimum is over all increasing homeomorphisms ϕ : [0, tγ ] → [0, tγ′ ]. Call
γ̃ a reparameterization of γ ∈ K with parameterization ϕ if ϕ : [0, tγ ] → [0, tγ̃ ] is
an increasing homeomorphism such that γ(t) = γ̃(ϕ(t)) for each 0 ≤ t ≤ tγ . If
γ̃ is a reparameterization of γ under ϕ, then γ is a reparameterization of γ̃ under

ϕ−1, and we write γ
par∼ γ̃. Finally, let K∗ be the set of equivalence classes of curves

γ ∈ K under the relation
par∼ , so that the metric d∗

K identifies curves which are equal
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modulo time reparameterization. In fact, Lemma 2.1 of Aizenman and Burchard
(1999) shows that (K∗, d∗K) is a complete metric space.

In order to account for the time parameterization, however, we let

dK(γ, γ′) := inf
ϕ

[

sup
0≤s≤tγ

{ | γ(s) − γ′(ϕ(s)) | + |s − ϕ(s)| }
]

where again the infimum is over all increasing homeomorphisms ϕ : [0, tγ ] → [0, tγ′ ].
The metric dK does not identify curves which are equal modulo time reparameter-
ization. A convenient choice of parameterization is ϕ(s) = tγ′s/tγ . Define

�
(γ, γ′) := sup

0≤s≤1
| γ(tγs) − γ′(tγ′s) | + |tγ − tγ′ |

and note that it is straightforward to verify
�

is also a metric on K. Neither (K, dK)
nor (K,

�
) is complete as Example 3.2 combined with the next lemma will show.

For the proof of this lemma, consult Lemma 5.1 of Lawler (2005).

Lemma 3.1. If γ1, γ2 ∈ K, and osc(γ, δ) := sup{|γ(t)−γ(s)| : |t− s| ≤ δ} denotes
the modulus of continuity of γ, then

dK(γ1, γ2) ≤
�
(γ1, γ2) ≤ dK(γ1, γ2) + osc(γ2, 2dK(γ1, γ2)).

To account for the incompleteness of (K,
�
), we consider a larger complete space

X , and identify subspaces of (K,
�
) with closed subspaces of X . Let C[0, 1] de-

note the space of continuous complex-valued functions on [0, 1] under the met-
ric d∞(γ∗

1 , γ∗
2) := sup0≤r≤1 |γ∗

1 (r) − γ∗
2 (r)|, and denote the usual metric on R by

abs. Consider the separable Banach space X := C[0, 1] × R with metric dX :=
d∞ + abs. Thus, elements of X are pairs (γ∗, t) where γ∗ ∈ C[0, 1], t ∈ R, and
dX ((γ∗

1 , s), (γ∗
2 , t)) = sup0≤r≤1 |γ∗

1 (r) − γ∗
2 (r)| + |s − t|. We can embed K into X

via ι : K ↪→ X , γ 7→ (γ∗, tγ), where γ∗(r) := γ(tγr), 0 ≤ r ≤ 1. However,
ι(K) = {(γ∗, t) ∈ X : t > 0} =: X+ is not a closed subspace of X . The metric
spaces (X+, dX ) and (K, dX ,K) are isomorphic, where dX ,K is the induced metric in
K associated to the metric dX in X . That is, if γ1, γ2 ∈ K, then ι(γi) = (γ∗

i , tγi
),

i = 1, 2, so that dX ,K(γ1, γ2) = dX ((γ∗
1 , tγ1

), (γ∗
2 , tγ2

)). It follows that dX ,K =
�

and (K,
�
) ∼= (X+, dX ) since

dX ((γ∗
1 , tγ1

), (γ∗
2 , tγ2

)) = sup
0≤r≤1

|γ1(tγ1
r) − γ2(tγ2

r)| + |tγ1
− tγ2

| =
�
(γ1, γ2)

Example 3.2. Suppose γ ∈ K is given by γ(r) = r + ir, 0 ≤ r ≤ 1, and for
n = 1, 2, . . ., let γn(r) = nr + inr, 0 ≤ r ≤ 1/n. Notice that γ∗

n = γ∗ = γ.
Thus, ι(γn) = (γ∗

n, tγn
) = (γ∗, 1/n) so clearly {(γ∗

n, tγn
)} is a Cauchy sequence in

X , and {γn} is a Cauchy sequence in (K,
�
). Since X is complete, it has a limit,

namely (γ∗, 0) ∈ X . However, (γ∗, 0) 6∈ X+ = ι(K) so that (γ∗, 0) does not have a
counterpart in K. This shows that (K,

�
) is not complete, and illustrates the reason

for considering X .

However, if the limit does have a counterpart in K (i.e., if (γ∗, t) ∈ X+ so that
ι−1(γ∗, t) ∈ K), then we have the following result. See Lemma 5.2 of Lawler (2005)
for the proof.

Lemma 3.3. Let (γ∗
n, tn) ∈ X+ for n = 1, 2, . . ., so that γn := ι−1(γ∗

n, tn) ∈ K.
Suppose that for some (γ∗, t) ∈ X , dX ((γ∗

n, tn), (γ∗, t)) → 0. If t > 0 so that
(γ∗, t) ∈ X+, then γ := ι−1(γ∗, t) ∈ K, and dX ((γ∗

n, tn), (γ∗, t)) → 0 if and only if
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dK(γn, γ) → 0 as n → ∞, or equivalently,
�
(γn, γ) → 0 if and only if dK(γn, γ) → 0

as n → ∞.

Consequently, dK and
�

generate the same topology on K. Thus, when we need
to discuss convergence or continuity in K, it can be with respect to whichever metric
is more convenient for the given problem.

If a > 0, let Ka := {γ ∈ K : tγ ≥ a}, and set ι(Ka) = {(γ∗, t) ∈ X : t ≥ a} =: Xa.
Note that Xa is a closed subspace of X so that (Xa, dX ) ∼= (Ka,

�
) is complete.

However, Ka is not complete under dK. As an example, consider γn(r) = rn,
0 ≤ r ≤ 1, which is a Cauchy sequence in (K1, dK) that has no limit. By Lemma 3.1,
if {γn} is a Cauchy sequence in (Ka, dK) that is equicontinuous, then it is a Cauchy
sequence in (Ka,

�
) and therefore has a limit. In what follows, we will refer to spaces

of curves which are primarily subspaces of K. Since such spaces are isomorphic to
subspaces of X , we prefer to work with (K,

�
) rather than (X , dX ) unless it is

necessary to explicitly mention this isomorphism.
If D is a simply connected proper subset of C, and γ ∈ K, then we say that γ

is in D if γ(0, tγ) ⊂ D. This does not require that either γ(0) ∈ D or γ(tγ) ∈ D.

We define the space K(D) as K(D) := {γ ∈ K : γ is in D}. For z, w ∈ D, let
Kz(D) be the set of γ ∈ K(D) with γ(0) = z, let Kw(D) be the set of γ ∈ K(D)
with γ(tγ) = w, and define Kw

z (D) := Kz(D) ∩ Kw(D). Finally, if Γ, Υ ⊂ ∂D with

Γ ∩ Υ = ∅, write KΥ
Γ (D) :=

⋃

z∈Γ,w∈Υ Kw
z (D).

Definition 3.4. Suppose γ ∈ K(D). We say γ is an excursion in D if γ(0) ∈ ∂D
and γ(tγ) ∈ ∂D, and we say γ is an excursion from z to w in D if γ(0) = z ∈ ∂D
and γ(tγ) = w ∈ ∂D, i.e., if γ ∈ Kw

z (D) with z, w ∈ ∂D. If Γ, Υ ⊂ ∂D with

Γ ∩ Υ = ∅, then we say γ is a (Γ, Υ)-excursion in D if γ(0) ∈ Γ and γ(tγ) ∈ Υ,
i.e., if γ ∈ KΥ

Γ (D).

Suppose that both D and D′ are simply connected domains in C, and f : D → D′

is a conformal transformation. For γ ∈ K(D), let

As = As,f,γ :=

∫ s

0

|f ′(γ(r))|2 dr and σt = σt,f,γ := inf{s : As ≥ t}.

If γ ∈ K(D) with Atγ
< ∞, and if f extends to the endpoints of γ, then we

define the image of γ under f , denoted f ◦ γ ∈ K(D′), by setting tf◦γ := Atγ
and

f ◦ γ(t) := f(γ(σt)) for 0 ≤ t ≤ Atγ
. Since s 7→ As,f,γ is non-negative, continuous,

and strictly increasing, it follows that t 7→ σt,f,γ is well-defined. The following is a
special case.

Example 3.5. Let D be a simply connected proper subset of C, and for a ∈ C\{0},
let fa(z) = az. If γ ∈ K(D), then we define the Brownian scaling map Ψa : K(D) →
K(fa(D)) by setting tΨaγ := |a|2tγ and Ψaγ(t) := a γ

(

|a|−2t
)

for 0 ≤ t ≤ tΨaγ .

In particular, if D, D′ ∈ D, γ is an excursion in D, and f ∈ T (D, D′) so that f
does extend to the endpoints of γ, then f ◦ γ =: γ ′ ∈ K(D′) is an excursion in D′.
Note that tγ′ = Atγ

(i.e., σtγ′ = tγ) and γ′(t) = f(γ(σt)) for 0 ≤ t ≤ tγ′ .

Example 3.6. As an application of Brownian scaling, suppose that f(z) = (1+ε)z
for z ∈ D, 0 < ε < 1, and let γ be an excursion from x to y in D. Then γ ′ := f ◦ γ
is an excursion from (1 + ε)x to (1 + ε)y in (1 + ε)D given explicitly by γ ′(t) =
(1 + ε) γ

(

(1 + ε)−2t
)

for 0 ≤ t ≤ tγ′ = (1 + ε)2tγ. Furthermore, it is not very
difficult to verify that there exists a constant C = C(γ) such that

�
(γ, γ ′) ≤ Cε.
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If E is a domain containing D and f is a conformal mapping of E, then it follows
from the Koebe growth and distortion theorems (see Duren (1983) for statements
of these theorems) that |f ′|, |f ′′|, and 1/|f ′| are uniformly bounded on D, and the
function γ 7→ f ◦ γ from K(D) to K(f(D)) is continuous. If D ∈ D, then since
∂D is piecewise analytic, ∂D =

⋃n
i=1 Γi for some finite union of analytic curves Γi.

Hence, any conformal mapping f of D can be analytically continued across each Γi

so γ 7→ f ◦ γ : K(D) → K(f(D)) is continuous; we denote this induced map by f .

Definition 3.7. If γ1, γ2 ∈ K with γ1(tγ1
) = γ2(0), then we define the concatena-

tion of γ1 and γ2, denoted γ1 ⊕ γ2, by setting tγ1⊕γ2
:= tγ1

+ tγ2
, and

γ1 ⊕ γ2(t) :=

{

γ1(t), if 0 ≤ t ≤ tγ1
,

γ2(t − tγ1
), if tγ1

≤ t ≤ tγ1⊕γ2
.

Note that (γ1, γ2) 7→ γ1 ⊕ γ2 is a continuous map from Kw ×Kw to K for every
w ∈ C.

Definition 3.8. If 0 ≤ r < s ≤ tγ, then we define the truncation operator Θs
r :

K → K by setting tΘs
rγ := s − r and Θs

rγ(t) := γ(r + t) for 0 ≤ t ≤ tΘs
rγ .

Observe that Θs
rγ[0, tΘs

rγ ] = γ[r, s], and that by definition, truncation undoes

concatenation. If γ1, γ2 ∈ K with γ1(tγ1
) = γ2(0), then Θ

tγ1

0 γ1 ⊕ γ2(t) = γ1(t),

0 ≤ t ≤ tγ1
, and Θ

tγ1⊕γ2

tγ1

γ1 ⊕ γ2(t) = γ2(t), 0 ≤ t ≤ tγ2
. It is easily seen that

dK(Θs
rγ, γ) ≤ r + (tγ − s) + diam(γ[0, r]) + diam(γ[s, tγ ]).

Therefore, if rn → 0+ and sn → tγ−, then by Lemma 3.3,
�
(Θsn

rn
γ, γ) → 0.

3.2. General facts about measures on metric spaces. Throughout this section, sup-
pose that (Ξ, ρ) is a metric space. Let Bρ := Bρ(Ξ) denote the Borel σ-algebra
associated to the topology induced by ρ, so that (Ξ,Bρ) is a measurable space. A
measure m on (Ξ, ρ) will always be a σ-finite measure on (Ξ,Bρ). Denote the total
mass of m by |m| := m(Ξ). If |m| < ∞, then m is a finite measure; otherwise it is an
infinite measure. Denote the space of finite (resp., probability) measures on (Ξ,Bρ)
by M(Ξ) (resp., PM(Ξ)). If m ∈ M(Ξ) with |m| > 0, we write m# := m/|m| so
that m# ∈ PM(Ξ). Recall (see Billingsley (1968)) that every finite measure m on
(Ξ,Bρ) is regular ; i.e., if V ∈ Bρ and ε > 0, then there exist a closed set F and an
open set G such that F ⊆ V ⊆ G and m(G \ F ) < ε. If V ∈ Bρ, then we say that
m is concentrated on V if m(Ξ \ V ) = 0. Observe that V need not be closed.

Definition 3.9. If m1, m2 ∈ M = M(Ξ), let ℘ : M×M → [0,∞) be the Prohorov
metric given by ℘(m1, m2) := inf{ε > 0 : m1(F ) ≤ m2(F

(ε)) + ε, m2(F ) ≤
m1(F

(ε)) + ε ∀ F ∈ Bρ} where F (ε) := {x ∈ Ξ : ρ(x, y) < ε, some y ∈ F}.

It is easily checked that (M(Ξ), ℘) is itself a metric space. Observe that F (ε)

is Borel, and that symmetry follows since ((F (ε))c)(ε) ⊆ F c. If m1, m2 ∈ PM(Ξ),
then an equivalent definition of ℘ is given by ℘(m1, m2) = inf{ε > 0 : m1(F ) ≤
m2(F

(ε)) + ε for every closed F ∈ Bρ}. It is known (see Theorem 2.4.2 of Borkar
(1995)) that both metrics on PM(Ξ) are equivalent and consistent with the Pro-
horov topology. Also note that | |m1|− |m2| | ≤ ℘(m1, m2) ≤ max{|m1|, |m2|}. The
following two theorems are standard.
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Theorem 3.10. Suppose that f is a continuous mapping of the metric space (Ξ, ρ)
into the metric space (Ξ′, ρ′). Then a measure m on (Ξ,Bρ) determines a measure
m′ on (Ξ′,Bρ′) such that f ◦ m(V ′) = m′(V ′) = m(f−1(V ′)) for any V ′ ∈ Bρ′ .
That is, f ◦m ∈ M(Ξ′) is given explicitly by f ◦ m(V ′) := m({x ∈ Ξ : f(x) ∈ V ′})
for any V ′ ∈ Bρ′ . Furthermore,

∫

Ξ′

h(x′) m′(dx′) =

∫

Ξ

h(f(x)) m(dx)

for any bounded, continuous function h : Ξ′ → R.

Theorem 3.11. If (Ξ, ρ) is a complete, separable metric space, then the metric
space (PM(Ξ), ℘) is also complete and separable, where ℘ is the Prohorov metric as
in Definition 3.9. Furthermore, if mn, m ∈ PM(Ξ), then as n → ∞, ℘(mn, m) →
0 if and only if mn ⇒ m weakly.

Important Remark 3.12. Whenever we say a sequence of measures converges,
it will be with respect to the Prohorov metric.

As noted by Borkar (1995), Strassen proved another equivalent definition of ℘
consistent with the Prohorov topology is given by

℘(m1, m2) = inf
M

[ inf{ε > 0 : P{ρ(X1, X2) ≥ ε} ≤ ε} ] ,

where M is the set of all Ξ×Ξ-valued random variables (X1, X2) with L(X1) = m1

and L(X2) = m2 where L denotes law. In fact, an easy calculation shows that if Xi

are (Ξ, ρ)-valued random variables with L(Xi) = mi, i = 1, 2, and if P{ρ(X1, X2) ≥
ε} ≤ ε, then ℘(m1, m2) ≤ ε. If (Ξ, ρ) is a complete and separable metric space,
then to show a sequence of non-zero finite measures mn ∈ M(Ξ) converges to
m ∈ M(Ξ), it suffices to show that both |mn| → |m| and ℘(m#

n , m#) → 0 as
n → ∞. In particular, we record the following version of these remarks.

Proposition 3.13. Let γ, γ ′ be K-valued random variables with L(γ) = µ and
L(γ′) = µ′, respectively. If P{ �

(γ, γ ′) ≥ ε} ≤ ε, then ℘(µ, µ′) ≤ ε.

Lemma 3.14. Suppose that (Ξ, ρ) is a complete, separable metric space, and that
m1, m2 ∈ M(Ξ). If C > 0, then ℘(Cm1, Cm2) ≤ (C ∨ 1) ℘(m1, m2).

Proof . Suppose that ℘(m1, m2) = ε. To begin, let C > 1. Then since m1(F ) ≤
m2(F

(ε))+ε for every F Borel, we have Cm1(F ) ≤ Cm2(F
(ε))+Cε. Since Cε > ε,

we have F (ε) ⊂ F (Cε). Hence, Cm1(F ) ≤ Cm2(F
(Cε))+Cε. Interchanging m1 and

m2 gives ℘(Cm1, Cm2) ≤ Cε. Suppose instead that C < 1. Then since m1(F ) ≤
m2(F

(ε))+ε, and Cε < ε, we have m1(F ) ≤ m2(F
(ε))+ε/C. Multiplying by C gives

Cm1(F ) ≤ Cm2(F
(ε)) + ε. Interchanging m1 and m2 yields ℘(Cm1, Cm2) ≤ ε.

Thus, the conclusion follows. �

Lemma 3.15. If f : (Ξ, ρ) → (Ξ′, ρ′) is continuous, m ∈ M(Ξ), and C is a
constant, then

f ◦ (Cm) = C(f ◦ m). (3.1)

Proof . Since f ◦ (Cm)(V ′) = (Cm)(f−1(V ′)) = C
[

m(f−1(V ′))
]

= C [f ◦ m(V ′)]
for any V ′ ∈ Bρ′(Ξ′) the result follows. �

Lemma 3.16. Suppose that (Ξ, ρ) is a complete, separable metric space, and let
m ∈ M(Ξ). If fn, f : (Ξ, ρ) → (Ξ, ρ) are continuous, and fn → f uniformly, then
℘(fn ◦ m, f ◦ m) → 0.
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Proof . Assume first that m ∈ PM(Ξ). If µn := fn ◦ m and µ := f ◦ m, then by
Theorem 3.11, it suffices to show that µn ⇒ µ weakly. Suppose that h : Ξ → R is
a bounded, continuous function. Hence, by Theorem 3.10, we conclude that

∫

Ξ

h(x) µn(dx) =

∫

Ξ

h ◦ fn(x) m(dx) →
∫

Ξ

h ◦ f(x) m(dx) =

∫

Ξ

h(x) µ(dx)

since fn → f uniformly. We next consider m ∈ M(Ξ). If m is the zero measure,
the result is trivial. If |m| > 0, then by (3.1) and Lemma 3.14, ℘(fn ◦ m, f ◦ m) =
℘(|m| (fn ◦ m#), |m| (f ◦ m#)) = (|m| ∨ 1) ℘(fn ◦ m#, f ◦ m#) → 0. �

Lemma 3.17. Under the same assumptions as Lemma 3.16, if m2 ∈ M(Ξ), and
℘(fn ◦ m1, f ◦ m1) → 0 as n → ∞, then ℘(fn ◦ m1, m2) → ℘(f ◦ m1, m2).

Proof . Since ℘(·, ·) is a metric, we have by the triangle inequality ℘(fn◦m1, m2) ≤
℘(fn ◦ m1, f ◦ m1) + ℘(f ◦ m1, m2), so that

lim sup
n→∞

℘(fn ◦ m1, m2) ≤ ℘(f ◦ m1, m2). (3.2)

However, the reverse inequality tells us that ℘(f ◦ m1, m2) ≤ ℘(f ◦ m1, fn ◦ m1) +
℘(fn ◦ m1, m2), so that

lim inf
n→∞

℘(fn ◦ m1, m2) ≥ ℘(f ◦ m1, m2). (3.3)

By combining (3.2) and (3.3), the result follows. �

We conclude this section by reviewing how to define a measure by Riemann
integration. Let Λ ⊂ C be an analytic arc that is parameterized by ξ : [0, tξ] → C
with tξ < ∞. Consider the measures {µ(z, ·) : z ∈ Λ} ⊂ M(Ξ), and let ∆n :=
{ξ(0) = z0, z1, . . . , zn = ξ(tξ)} partition Λ. Let z∗

i ∈ [zi−1, zi], |∆zi| = |zi − zi−1|,
i = 1, . . . , n, and set

µn(·) :=

n
∑

i=1

µ(z∗i , ·) |∆zi|.

Let ||∆n|| = max{|zi − zi−1|, i = 1, . . . , n} denote the mesh of the partition, and
note that µn(·) ∈ M(Ξ) for each n. If lim||∆n||→0 µn(·) exists in M(Ξ), then we
define the Riemann integral of the measure-valued function z ∈ Λ 7→ µ(z, ·) ∈ M(Ξ)
to be this limiting value; that is,

µ(·) :=

∫

Λ

µ(z, ·) |dz| := lim
||∆n||→0

µn(·). (3.4)

Several conditions guarantee the existence of the Riemann integral. For instance, if
z 7→ µ(z, ·) is continuous at z0 for all z0 ∈ Λ, or if (Ξ, ρ) is a complete and separable
metric space and {µn(·)} is a Cauchy sequence, then (3.4) exists in M(Ξ).

3.3. Excursion Poisson kernel. We now briefly review several results about the
Poisson kernel and the excursion Poisson kernel. Further details including proofs
can be found in Kozdron and Lawler (2005). Let D be a domain, and write nx :=
nx,D for the unit normal at x pointing into D. If x ∈ D and ∂D is locally analytic
at y ∈ ∂D, then both harmonic measure and its density with respect to arc length,
the Poisson kernel HD(x, y), are well-defined. The behaviour of the Poisson kernel
under a conformal transformation can be easily deduced from the Riemann mapping
theorem and Lévy’s theorem on the conformal invariance of Brownian motion as
in Bass (1995). See also Proposition 2.10 of Kozdron and Lawler (2005).
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Proposition 3.18. If f : D → D′ is a conformal transformation, x ∈ D, ∂D is
locally analytic at y ∈ ∂D, and ∂D′ is locally analytic at f(y), then

HD(x, y) = |f ′(y)|HD′(f(x), f(y)). (3.5)

Furthermore, if Γ ⊂ ∂D and f ◦ Γ ⊂ ∂D′ are analytic, then

HD(x, Γ) :=

∫

Γ

HD(x, y) |dy| = HD′(f(x), f ◦ Γ). (3.6)

Definition 3.19. For x, y ∈ ∂D, x 6= y, the excursion Poisson kernel H∂D(x, y)
is given by

H∂D(x, y) := lim
ε→0+

1

ε
HD(x + εnx, y) = lim

ε→0+

1

ε
HD(y + εny, x).

For a proof of the next proposition, see Proposition 2.11 of Kozdron and Lawler
(2005).

Proposition 3.20. Suppose f : D → D′ is a conformal transformation and x, y
are distinct points on ∂D. Suppose that ∂D is locally analytic at x, y, and ∂D′ is
locally analytic at f(x), f(y). Then H∂D(x, y) = |f ′(x)| |f ′(y)|H∂D′(f(x), f(y)).

Corollary 3.21. If x, y ∈ ∂D, x 6= y, and f ∈ T (D, D) with f(x) = x and
f(y) = y, then |f ′(x)| |f ′(y)| = 1.

Proof . If f(x) = x and f(y) = y, then we obtain from Proposition 3.20 that
H∂D(x, y) = |f ′(x)| |f ′(y)|H∂D(f(x), f(y)) = |f ′(x)| |f ′(y)|H∂D(x, y). �

3.4. Brownian excursion measures on (K,
�
). We now remind the reader of several

Brownian measures on (K,
�
), and outline the construction of the Brownian excur-

sion measure on D. The exposition follows Lawler (2005), although there are some
noticeable differences. We begin with a general definition.

Definition 3.22. A measure µ on K is defined to be a σ-finite measure on the
measurable space (X ,BdX

) concentrated on X+.

Suppose Bt is a Brownian motion with B0 = z, and let TD := inf{t : Bt 6∈ D}
be its exit time from D. The process XD

t := Bt∧TD
, t ≥ 0, is Brownian motion

killed on exiting D. Let D ∈ D and suppose w ∈ ∂D so that the Poisson kernel
HD(z, w) is well-defined. Define the continuous, positive martingale M by MD

t :=

HD(XD
t , w)/HD(z, w), and the probability µ#

D(z, w) by µ#
D(z, w)(A) := Ez[MD

t ; A]

for A ∈ Ft. As noted in Bass (1995), the law of the process XD
t under µ#

D(z, w) is
that of Brownian motion conditioned to exit D at w.

Definition 3.23. Suppose that D ∈ D. The interior-to-boundary excursion mea-
sure from z to w in D, written µD(z, w), is defined to be

µD(z, w) := HD(z, w) · µ#
D(z, w), (3.7)

and the interior-to-boundary excursion measure from z in D, written µD(z), is
defined by

µD(z) :=

∫

∂D

µD(z, w) |dw|. (3.8)
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Translation invariance and Brownian scaling imply w 7→ µD(z, w) is continuous
so that (3.8) is well-defined as in (3.4). The measure on paths µD(z) is what is
generally called Wiener measure. Observe that µD(z) is a measure on K concen-
trated on Kz(D), and that by definition, µD(z, w) is a finite measure with mass
|µD(z, w)| = HD(z, w).

It is well-known that two-dimensional Brownian motion is conformally invariant,
and consequently so too is Wiener measure. We express this as follows. If D,
D′ ∈ D, z ∈ D, and f ∈ T (D, D′), then f ◦ µD(z) = µD′(f(z)). This definition
is independent of the choice of f ∈ T (D, D′); indeed, if f1, f2 ∈ T (D, D′) with
f1(z) = f2(z) = z′, then f1 ◦ µD(z) = µD′(f1(z)) = µD′(z′) = µD′(f2(z)) =
f2 ◦ µD(z). The first part of the next proposition follows from a quick change-of-
variables, while the second follows immediately from the first as a result of (3.5).
See also Proposition 5.5 of Lawler (2005).

Proposition 3.24. Suppose that D, D′ ∈ D, and z ∈ D, w ∈ ∂D with ∂D
locally analytic at w. If f ∈ T (D, D′), and ∂D′ is locally analytic at f(w), then

f ◦ µD(z, w) = |f ′(w)|µD′ (f(z), f(w)) and f ◦ µ#
D(z, w) = µ#

D′(f(z), f(w)).

Using the interior-to-boundary excursion measure, we now define boundary-to-
boundary excursion measure in D, and show that it exists by an explicit calculation.
It is then a simple matter to define excursion measure for other simply connected
D, and to derive the important conformal invariance formula.

Definition 3.25. If x, y ∈ ∂D, x 6= y, then normalized excursion measure on
excursions from x to y in D is the measure on K, concentrated on Ky

x(D), defined
by

lim
ε→0+

µ#
D

((1 − ε)x, y) =: µ#
∂D

(x, y), (3.9)

where µ#
D

(z, y) for z ∈ D, y ∈ ∂D is as in (3.7).

Lemma 3.26. The limit in (3.9) exists.

Proof . Let γ ∈ K(D) with γ(0) = 0, γ(tγ) = 1. Let fα(z) = z−α
1−αz for α ∈ (−1, 1)

so that fα ∈ T (D, D), fα(0) = −α, and both 1 and −1 are fixed points of fα. Using
the exact form of the Möbius transformation fα, a straightforward computation
shows that limα→1 fα ◦γ exists in the metric space (K,

�
) where fα ◦γ is defined as

on page 8. In particular, this shows limε→0+ µ#
D

(−(1 − ε), 1) =: µ#
∂D

(−1, 1) exists.
For other x and y, simply use a composition of Möbius transformations. �

Definition 3.27. We define excursion measure on excursions from x to y in D to
be the measure on K, concentrated on Ky

x(D), defined by µ∂D(x, y) := H∂D(x, y) ·
µ#

∂D
(x, y) where H∂D denotes the excursion Poisson kernel.

Observe that by definition, µ∂D(x, y) is a finite measure with mass H∂D(x, y).

Definition 3.28. Suppose that D ∈ D, and z, w ∈ ∂D with ∂D locally analytic at
both z and w. Let h ∈ T (D, D). Excursion measure from z to w in D is defined by

µ∂D(z, w) :=
1

|h′(h−1(z))| |h′(h−1(w))| h ◦ µ∂D(h−1(z), h−1(w)). (3.10)

A straightforward exercise in the chain rule shows that the definition of µ∂D(z, w)
given by (3.10) does not depend on the choice of h ∈ T (D, D).
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Proposition 3.29. Let D, D′ ∈ D, and let z, w ∈ ∂D with ∂D locally analytic at
both z, w. If f ∈ T (D, D′), and ∂D′ is locally analytic at both f(z), f(w), then

f ◦ µ∂D(z, w) = |f ′(z)| |f ′(w)|µ∂D′ (f(z), f(w)) (3.11)

and
f ◦ µ#

∂D(z, w) = µ#
∂D(f(z), f(w)). (3.12)

If f1, f2 ∈ T (D, D′), then f1 ◦ µ∂D(z, w) = f2 ◦ µ∂D(z, w) so (3.11) and (3.12) are
independent of the choice of map. In particular,

µ∂D(z, w) = lim
ε→0+

1

ε
µD(z + εnz, w).

Definition 3.30. Suppose that D ∈ D. Excursion measure in D is defined by

µ∂D :=

∫

∂D

∫

∂D

µ∂D(z, w) |dw| |dz|.

The conformal invariance of excursion measure is immediate; see also Proposi-
tion 5.8 of Lawler (2005).

Proposition 3.31 (Conformal Invariance). If D, D′ ∈ D and f ∈ T (D, D′), then
f ◦ µ∂D = µ∂D′ .

Recall that D is the set of Jordan domains whose boundaries are piecewise ana-
lytic, and that D∗ is the set of all Jordan domains. By restricting to D ∈ D, we are
able to define the excursion measure µ∂D in Definition 3.30 as a Riemann integral of
the boundary-to-boundary excursion measure µ∂D(z, w); the key to the construc-
tion was the explicit calculation in Lemma 3.26, and Proposition 3.31 represents
the culmination of these efforts.

However, for simply connected domains whose boundaries are not piecewise an-
alytic, it is not possible to represent µ∂D as a Riemann integral. In Definition 3.32
below, we therefore define µ∂D directly by conformal invariance. Although we could
define excursion measure µ∂D for any simply connected subset D of C, we restrict
our consideration to those Jordan domains D ∈ D∗ since excursions γ ∈ K(D) will
necessarily have tγ < ∞. (We will not be concerned with excursions with tγ = ∞
in this paper.)

Definition 3.32. Suppose that D ∈ D∗ and f ∈ T (D, D). Excursion measure in
D is defined by µ∂D := f ◦ µ∂D. Furthermore, if Γ, Υ ⊂ ∂D with Γ∩Υ 6= ∅, define
µ∂D(Γ, Υ) to be the measure µ∂D restricted to those excursions γ ∈ KΥ

Γ (D), and
define the excursion Poisson kernel H∂D(Γ, Υ) to be its mass; that is, H∂D(Γ, Υ) :=
|µ∂D(Γ, Υ)|.

An immediate consequence of Definition 3.32 is the following.

Proposition 3.33 (Conformal Invariance). If D, D′ ∈ D∗; f ∈ T (D, D′); Γ,
Υ ⊂ ∂D with Γ ∩ Υ 6= ∅; and Γ′, Υ′ are the images under f of Γ, Υ, respectively,
then f ◦ µ∂D(Γ, Υ) = µ∂D′(Γ′, Υ′) and H∂D(Γ, Υ) = H∂D′(Γ′, Υ′).

3.5. Discrete excursions and discrete excursion measure. Throughout this section,
suppose that A ∈ A; w, z ∈ A; x, y ∈ ∂A; and Γ, Υ ⊂ ∂A with Γ∩Υ = ∅. Our goal
is to define a discrete excursion and formulate the discrete analogues of the previous
sections. If Sj is a simple random walk with S0 = w, denote the one-step transition
probability p(w, z) := Pw{S1 = z}, and define the discrete Poisson kernel to be
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hA(w, y) := Pw{SτA
= y} where τA := min{j > 0 : Sj 6∈ A}. As in § 3.1 of Durrett

(1984),

q(w, z; y) := Pw{S1 = z|SτA
= y} = p(w, z)

hA(z, y)

hA(w, y)
(3.13)

defines the one-step transition probabilities of simple random walk conditioned to
exit A at y. Note that hA is discrete harmonic, and that (3.13) an example of a
discrete h-transform.

Definition 3.34. A discrete excursion in A is a path ω := [ω0, ω1, . . . , ωk] where
ω0 ∈ ∂A, ωk ∈ ∂A, |ωi −ωi−1| = 1 for i = 1, . . . , k, and ωi ∈ A for i = 1, . . . , k−1,
where 2 ≤ k < ∞. If ω = [ω0, ω1, . . . , ωk], define the length of ω, written |ω|, to
be k. If ω is a discrete excursion in A with ω0 ∈ Γ and ωk ∈ Υ, then w is called
a (Γ, Υ)-discrete excursion in A. In particular, if ω0 = x and ωk = y, then ω is
called a discrete excursion from x to y in A.

Discrete excursions can be generated by starting a simple random walk at x ∈
∂A, conditioning it to take its first step into A, and stopping it at τA. Let the
discrete excursion Poisson kernel h∂A(x, y) be given by h∂A(x, y) := Px{SτA

=
y, S1 ∈ A}, and define discrete excursion measure to be the measure that assigns
weight 4−|ω| to each discrete excursion ω. Denote this measure by µrw

∂A(·) so that

µrw

∂A(ω) := 4−|ω|. Write µrw

∂A(x, y) to denote the measure on discrete excursions
from x to y in A, and µrw

∂A(Γ, Υ) :=
∑

x∈Γ

∑

y∈Υ µrw

∂A(x, y) to denote the measure

on (Γ, Υ)-discrete excursions in A. (Note that Lawler and Werner (2000) defined
µrw

∂A(ω) := (2π 4|ω|)−1; this difference only affects things up to a constant.)
We want both discrete excursion measure and Brownian excursion measure to

be measures on the metric space (K,
�
). Consequently, we need to associate to each

discrete excursion ω a curve ω̃ ∈ K. Suppose that ω is a discrete excursion in A,

and let cl(A) := A ∪ ∂A with associated domain c̃l(A) ⊂ C. We associate to ω a

curve ω̃ ∈ K
(

c̃l(A)
)

by setting tω̃ := 2|ω|, and

ω̃(t) := ωbt/2c +
1

2
(t − btc)(ωbt/2c+1 − ωbt/2c), 0 ≤ t ≤ tω̃. (3.14)

In other words, we join the lattice points in order with line segments parallel to
the coordinate axes in Z2, with each segment taking time 2 to traverse. Note that
ω̃(0) = ω0 and ω̃(tω̃) = ω|ω|. Using this identification, if ω is an excursion from

x to y in A, then µrw

∂A(x, y) ∈ M(K) and µrw

∂A(x, y)(ω̃) = 4−tω̃ . In order to prove
discrete excursion measure converges to Brownian excursion measure in the scaling
limit, we will consider scaling excursions as the mesh of the lattice becomes finer.
See (4.4) in Section 4.4.

As a consequence of the so-called KMT approximation (see Section 4.5.1), it
follows that |Bt − S2t| = O(log t). Complete details may be found in Kozdron and
Lawler (2005) and Lawler and Trujillo Ferreras (2004). Thus, it is simply a matter
of æsthetics that a random walk path of |ω| steps take time 2|ω| to traverse: if γ is
Brownian curve and ω̃ is as above with γ(0) = ω̃(0), then |γ(t) − ω̃(t)| = O(log t).

Definition 3.35. Suppose that A ∈ A and x, y ∈ ∂A. Discrete excursion measure
µrw

∂A(x, y) is defined to be the measure on (K,
�
), concentrated on V = V (x, y; A) :=

{γ ∈ K :
�
(γ, ω̃) = 0 for some discrete excursion ω from x to y in A} given by

µrw

∂A(x, y)(γ) := 4−tγ for γ ∈ V . Note that µrw

∂A(x, y)(V ) = h∂A(x, y).
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4. The main convergence arguments

4.1. Carathéodory convergence.

Definition 4.1. Fix r > 0. Suppose that Dn is a sequence of domains with Dn ∈ Dr

for each n. The kernel of Dn, written ker({Dn}), is the largest domain D containing
the origin and having the property that each compact subset of D lies in all but a
finite number of the domains Dn. Suppose that ker({Dn}) = D. The sequence Dn

converges in the Carathéodory sense to D, written Dn
cara→ D, if every subsequence

Dnj
of Dn has ker({Dnj

}) = D.

Recall that a sequence of functions fn on a domain D converges to a function
f uniformly on compacta of D if for each compact K ⊂ D, fn → f uniformly on
K. The following theorem, roughly stated, is that convergence of domains in the
Carathéodory sense is equivalent to the uniform convergence on compacta of the
appropriate Riemann maps. A proof may be found in Theorem 3.1 of Duren (1983).

Theorem 4.2 (Carathéodory Convergence). Suppose that Dn is a sequence of
domains with Dn ∈ D∗ for each n, and let fn ∈ T (D, Dn) with fn(0) = 0, f ′

n(0) > 0.
Suppose further that D ∈ D and f ∈ T (D, D) with f(0) = 0, f ′(0) > 0. Then

fn → f uniformly on compacta of D if and only if Dn
cara→ D.

Corollary 4.3. Suppose that Dn
cara→ D with Dn, D ∈ D∗. Suppose further that

there exists an E ∈ D∗ with Dn ⊂ E for all n, and D ⊆ E. If F : E → D is the

conformal transformation with F (0) = 0, F ′(0) > 0, then F (Dn)
cara→ F (D).

Proof . Let fn : D → Dn and let f : D → D be conformal transformations mapping
0 to 0 with positive derivative at the origin. By Theorem 4.2, the convergence of
Dn to D is equivalent to the uniform convergence of fn to f on compacta of D. Set
hn := F ◦ fn and h := F ◦ f , and let K be a compact subset of D. If z ∈ K, then
|hn(z) − h(z)| = |F (fn(z)) − F (f(z))| → 0 uniformly as n → ∞. �

Proposition 4.4. Suppose that Fn, F are conformal mappings of D. Let D :=
F (D). If Fn → F uniformly on compacta of D, then Fn ◦ F−1 → I uniformly on
compacta of D, where I : D → D is the identity map I(z) = z.

Proof . Let K ′ ⊂ D be compact. Let ε > 0 be given. Let K := F−1(K ′) ⊂ D
which is clearly compact. By uniform convergence, there exists N := N(ε, K) such
that |Fn(x) − F (x)| < ε for all n > N , x ∈ K. If y ∈ K ′, then y = F (x) for some
x ∈ K. Hence, if n > N , then |Fn ◦ F−1(y) − I(y)| = |Fn(x) − F (x)| < ε, and the
proof is complete. �

Lemma 4.5. Suppose that Fn, F are conformal mappings of the unit disk D, and
that Fn → F uniformly on compacta of D. If γ ∈ K(D) with |γ(0)| < 1 and
|γ(tγ)| < 1, then

�
(Fn ◦ γ, F ◦ γ) → 0 as n → ∞.

Proof . Suppose that γ ∈ K(D) with |γ(0)| < 1 and |γ(tγ)| < 1. Note that γ is
not an excursion in D. Therefore, there necessarily exists a compact set K ⊂ D
such that γ ∈ K(K). Consider tFn◦γ = An

tγ
=
∫ tγ

0
|F ′

n(γ(r))|2 dr and tF◦γ = Atγ
=

∫ tγ

0
|F ′(γ(r))|2 dr. Since Fn → F uniformly on compacta of D, we necessarily have
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that Fn → F uniformly on K. Hence, it follows that tFn◦γ → tF◦γ . Furthermore,

sup
0≤s≤1

|F ◦ γ(tF◦γs) − Fn ◦ γ(tFn◦γs)|

≤ sup
0≤s≤1

|F ◦ γ(tF◦γs) − F ◦ γ(tFn◦γs)| + |F ◦ γ(tFn◦γs) − Fn ◦ γ(tFn◦γs)| → 0.

Taken together, these imply the result. �

4.2. Construction of approximate domains D̃N . If D ∈ D∗ with inrad(D) = 1, then
let

D′′
N :=

{

x ∈ 1

N
Z2 ∩ D :

1

N
Sx ⊂ D

}

,

where Sx := x + ( [−1/2, 1/2]× [−1/2, 1/2] ) is the unit square about x. Let D′
N

be the connected component of D′′
N containing the origin, and set DN to be the

connected component of D′
N \ ∂iD

′
N containing the origin. Take D̃N ⊂ C to be

the interior of the union of the scaled squares centred at those x ∈ DN . We call
DN the 1/N -scale discrete approximation to D (with respect to the origin), and we

informally refer to D̃N as the associated “union of squares” domain; that is,

D̃N = int

(

⋃

x∈DN

1

N
Sx

)

and cl(D̃N ) := D̃N ∪ ∂D̃N =
⋃

x∈DN

1

N
Sx. (4.1)

Let f ∈ T (D, D) with f(0) = 0, f ′(0) > 0. Let ΓD, ΥD ⊂ ∂D be (open) boundary
arcs with ΓD ∩ΥD = ∅; that is, ΓD := {eiθ : θ1 < θ < θ2} and ΥD := {eiθ : θ3 < θ <
θ4} for some 0 ≤ θ1 < θ2 < θ3 < θ4 < θ1+2π. Define Γ ⊂ ∂D to be the image of ΓD

under f , and similarly, let Υ ⊂ ∂D be the image of ΥD under f . Let s := sep(Γ, Υ)

as in Definition 2.2, and let N be sufficiently large so that s ≥ εn := n−1/48 log2/3 n
if n ≥ N . If fN ∈ T (D, D̃N ) with fN (0) = 0, f ′

N(0) > 0, then define Γ̃N to be

the image of ΓD under fN , with Υ̃N defined similarly. In Theorem 4.9, we prove

fN → f uniformly on compacta of D showing D̃N
cara→ D.

We now define our approximating discrete boundary arcs. If Γ̃N ⊂ ∂D̃N , then
associate to Γ̃N the set ΓN ⊂ ∂DN as follows. Let Γ′

N := {x ∈ ∂iDN : 1
N Sx∩ Γ̃N 6=

∅}, and then take

ΓN :=

{

y ∈ ∂DN : (x, y) ∈ ∂eDN with x ∈ Γ′
N and

1

N
`x,y ⊂ Γ̃N

}

.

Similarly, let ΥN be the discrete boundary arc associated to Υ̃N . Our notation is
summarized in the following table.

D ⊂ C D ⊂ C, D ∈ D∗ D̃N ⊂ C, D̃N ∈ D DN ⊂ 1
N Z2, 2NDN ∈ AN

ΓD, ΥD ⊂ ∂D Γ, Υ ⊂ ∂D Γ̃N , Υ̃N ⊂ ∂D̃N ΓN , ΥN ⊂ ∂DN

Note that by conformal invariance, it is equivalent to specify either Γ, Υ ⊂ ∂D,
or ΓD, ΥD ⊂ ∂D. We have (arbitrarily) chosen the latter.

4.3. Convergence of domains D̃N to D. Suppose that D ∈ D∗ with inrad(D) = 1,
and let DN be the 1/N -scale discrete approximation to D with associated “union

of squares” domain D̃N as in Section 4.2. The following lemmas are an immediate
consequence of those definitions.
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Lemma 4.6. For each N , D̃N ∈ D with cl(D̃N ) ⊂ D. That is, D̃N is a simply
connected proper subset of D with piecewise analytic boundary. Furthermore, the
lattice cl(DN ) := DN ∪ ∂DN ⊂ D.

Lemma 4.7. Suppose that x ∈ ∂iDN , y ∈ ∂DN , and z ∈ ∂D̃N . Then dist(x, ∂D) ≤
c1 N−1, dist(y, ∂D) ≤ c2 N−1, and dist(z, ∂D) ≤ c3 N−1 where c1 = 2

√
2 + 1/

√
2,

c2 =
√

2 + 1/
√

2, and c3 = 2
√

2.

The next proposition follows from the Beurling estimate; see Proposition 3.79
of Lawler (2005).

Proposition 4.8. If x ∈ ∂iDN and f ∈ T (D, D) with f(0) = 0, f ′(0) > 0, then

there exists a constant C such that dist(f(x), ∂D) ≤ CN−1/2 and f(D̃N) ⊇ {|z| ≤
1 − CN−1/2}.

We will now establish Theorem 1.2 with the proof of the following result. In
Appendix A, an alternative proof is presented in which the uniform convergence on
compacta of the appropriate Riemann maps is proved directly.

Theorem 4.9. The sets D̃N as defined by (4.1) converge to D in the Carathéodory
sense.

Proof . Suppose that z ∈ D, and let γ be a curve from 0 to z in D; that is,
γ : [0, 1] → C has γ(0) = 0, γ(1) = z, and satisfies γ(0, 1) ⊂ D. It then follows that
since D ∈ D∗, the distance δ between γ and ∂D is strictly positive. By Lemma 4.7,
if N > c1/δ, then γ contains no point of ∂D̃N . From Lemma 4.6, we know that D̃N

is a simply connected proper subset of D with cl(D̃N ) ⊂ D, and so since 0 ∈ D̃N ,

it must be the case that z ∈ D̃N as well. In other words, any point of D is in
ker({D̃N}), and so D = ker({D̃N}). This obviously holds for any subsequence

{D̃Nj
} as well, so by Definition 4.1, we conclude D̃N

cara→ D. �

Corollary 4.10. If F ∈ T (D, D) with F (0) = 0, F ′(0) > 0, then F (D̃N )
cara→ D.

Proof . By Lemma 4.6, D̃N ⊂ D, so Corollary 4.3 yields the result. �

4.4. Applying results for A ∈ AN to DN . Suppose that D ∈ D∗ with inrad(D) = 1.
In this section, we combine our construction of DN with Theorem 1.1 of Kozdron
and Lawler (2005) and Theorem 2.1 to restate those results for random walk on
DN . The most difficult part of this section is keeping track of the notation.

We begin by mentioning several scaling relationships that will be needed through-
out. If Sn is a random walk on Z2, then for any r > 0 there is an associated random
walk (which we will also denote by Sn) on the lattice rZ2. In other words, there is a
one-to-one correspondence between paths from x to y in A on Z2, and paths from rx
to ry in rA on rZ2. Hence if A ⊂ Z2 and r > 0, then GrA(rx, ry) = GA(x, y), where
the Green’s function on the left side is for random walk on the lattice rZ2, and the
Green’s function on the right side is for random walk on Z2. Similarly, we have
hrA(rx, ry) = hA(x, y) for the discrete Poisson kernel, and h∂rA(rx, ry) = h∂A(x, y)
for the discrete excursion Poisson kernel.

The conformal invariance of the Green’s function for Brownian motion implies
that if D ∈ D∗ and r > 0, then grD(rx, ry) = gD(x, y). However, from the
conformal covariance of the Poisson kernel (Proposition 3.18) and the excursion
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Poisson kernel (Proposition 3.20), it follows that rHrD(rx, ry) = HD(x, y) and
r2H∂rD(rx, ry) = H∂D(x, y).

Note that a random walk on DN is taking steps of size 1/N . Therefore, let

AN := 2NDN so that AN ∈ AN , and ÃN := ˜(2NDN ) = 2ND̃N ∈ D. Hence,
z′ ∈ AN if and only if z := z′/2N ∈ DN . Suppose x′ := 2Nx ∈ AN with x ∈ DN

and y′ := 2Ny ∈ AN with y ∈ DN . Thus, when the above scaling is applied to ÃN ,
we conclude that

gAN
(x′, y′) = g2NDN

(2Nx, 2Ny) = gDN
(x, y), (4.2)

where gDN
denotes the Green’s function for Brownian motion in D̃N . In partic-

ular, if fDN
∈ T (D̃N , D) with fDN

(0) = 0, f ′
DN

(0) > 0 and fAN
∈ T (ÃN , D)

with fAN
(0) = 0, f ′

AN
(0) > 0, then since fAN

(x′) = fDN
(x) and gAN

(x′) =
gDN

(x), and since we can write fAN
(x′) = exp{−gAN

(x′)+iθAN
(x′)} and fDN

(x) =
exp{−gDN

(x) + iθDN
(x)}, it follows that θAN

(x′) = θ2NDN
(2Nx) = θDN

(x). Fur-
ther, in the random walk case, GAN

(x′, y′) = G2NDN
(2Nx, 2Ny) = GDN

(x, y), and
for x′ := 2Nx ∈ ∂AN with x ∈ ∂DN , we have h∂AN

(x′, y′) = h∂2NDN
(2Nx, 2Ny) =

h∂DN
(x, y); similarly, hAN

(0, x′) = hDN
(0, x), and hAN

(0, y′) = hDN
(0, y).

For AN ∈ AN , let A∗
N := {x′ ∈ AN : gAN

(x′) ≥ N−1/16} which is consistent with
the usage in Kozdron and Lawler (2005). If x′ ∈ A∗

N , y′ ∈ AN , then Theorem 2.1
(in particular, its Corollary 3.5 of Kozdron and Lawler (2005)) implies that

GAN
(x′, y′) =

2

π
gAN

(x′, y′) + ky′−x′ + O(N−7/24 log N). (4.3)

With the above notation in hand, we are finally able to state the following corollary
to (4.3).

Corollary 4.11. Let x ∈ DN be such that x′ := 2Nx ∈ (2NDN)∗ = A∗
N , and let

y ∈ DN with y′ := 2Ny ∈ AN . Then,

GDN
(x, y) =

2

π
gDN

(x, y) + ky′−x′ + O(N−7/24 log N)

where kz is as in (2.3).

Note that ky′−x′ ≤ cN−3/2|x−y|−3/2. Thus, if |x−y| ≥ N−29/36, then ky′−x′ =

O(N−7/24), and we have a refined version of the previous corollary.

Corollary 4.12. If x ∈ DN with x′ := 2Nx ∈ A∗
N , y ∈ DN with y′ := 2Ny ∈ AN ,

and |x − y| ≥ N−29/36, then

GDN
(x, y) =

2

π
gDN

(x, y) + O(N−7/24 log N).

We also have the following corollary to Theorem 1.1 of Kozdron and Lawler
(2005).

Corollary 4.13. If D ∈ D∗ with inrad(D) = 1, DN is the 1/N -scale discrete

approximation to D, and x, y ∈ ∂DN with |θDN
(x) − θDN

(y)| ≥ N−1/16 log2 N ,
then

h∂DN
(x, y) =

(π/2) hDN
(0, x) hDN

(0, y)

1 − cos(θDN
(x) − θDN

(y))

[

1 + O

(

log N

N1/16|θDN
(x) − θDN

(y)|

)]

.
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We now make several observations regarding excursion measure. Suppose x,
y ∈ ∂D̃N so that x′ := 2Nx, y′ := 2Ny ∈ ∂ÃN as above. If f(z) = 2Nz, then

f ∈ T (D̃N , ÃN ) with f(0) = 0 and f ′(z) = 2N for all z. Since excursion mea-
sure is conformally covariant/invariant, we are able to conclude that µ∂D̃N

(x, y) =

4N2µ∂ÃN
(x′, y′) and µ∂D̃N

= µ∂ÃN
. We know from Donsker’s theorem that simple

random walk converges in the scaling limit to Brownian motion provided that space
and time are scaled appropriately. In order to prove Theorem 1.1, we will need to
apply a similar scaling. Recall from (3.14) that if ω is a discrete excursion then
we can associate to it a curve ω̃ ∈ K, and that the Brownian scaling map Ψa was
defined in Example 3.5. For N ∈ N, write ΦN := Ψ1/(2N) so that

ΦN ω̃(t) =
1

2N
ω̃(4N2t) for 0 ≤ t ≤ tΦN ω̃ =

tω̃
4N2

=
|ω|
2N2

. (4.4)

Lemma 4.14. If γ, γ′ ∈ K, then

1

4N2

�
(γ, γ′) ≤ �

(ΦNγ, ΦNγ′) ≤ 1

2N

�
(γ, γ′).

Proof . From the definitions of
�

and ΦN we conclude that
�
(ΦNγ, ΦNγ′) = sup

0≤s≤1
|ΦNγ(stΦN γ) − ΦNγ′(stΦN γ′)| + |tΦNγ − tΦN γ′ |

= sup
0≤s≤1

∣

∣

∣

∣

1

2N
γ(stγ) − 1

2N
γ′(stγ′)

∣

∣

∣

∣

+
1

4N2
|tγ − tγ′ |

so the result follows. �

Definition 4.15. Suppose that D ∈ D∗ with inrad(D) = 1, DN is the 1/N -scale
discrete approximation to D, and x, y ∈ ∂DN . The 1/N -scale discrete excursion
measure µrw

∂DN
(x, y) is defined to be the measure on (K,

�
), concentrated on VN =

VN (x, y; D) := {γ ∈ K :
�
(γ, ΦN ω̃) = 0 for some discrete excursion ω from 2Nx to

2Ny in 2NDN} given by µrw

∂DN
(x, y)(γ) := 4−4N2tγ = 4−|ω| for γ ∈ VN . Finally, if

ΓN , ΥN ⊂ ∂DN with ΓN ∩ ΥN = ∅, then

µrw

∂DN
(ΓN , ΥN) :=

∑

x∈ΓN

∑

y∈ΥN

µrw

∂DN
(x, y).

4.5. Proof of Theorem 1.1. In the present section, we establish the following theo-
rem which, as noted in the introduction, may be regarded as the precise formulation
of Theorem 1.1.

Theorem 4.16. Suppose D ∈ D∗ with inrad(D) = 1, and let Γ, Υ ⊂ ∂D be open
boundary arcs with Γ∩Υ = ∅. For every ε > 0, there exists an N0 such that for all
N > N0,

(a)

∣

∣

∣

∣

h∂DN
(ΓN , ΥN) − 1

4
H∂D(Γ, Υ)

∣

∣

∣

∣

≤ ε,

(b) ℘
(

µ#

∂D̃N
(Γ̃N , Υ̃N), µ#

∂D(Γ, Υ)
)

≤ ε, and

(c) ℘
(

µrw,#
∂DN

(ΓN , ΥN), µ#

∂D̃N
(Γ̃N , Υ̃N )

)

≤ ε,

where DN is the 1/N -scale discrete approximation to D, D̃N ∈ D is the “union
of squares” domain associated to DN , and ΓN , ΥN ⊂ DN are the corresponding
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discrete boundary arcs with associated boundary arcs Γ̃N , Υ̃N ⊂ ∂D̃N , respectively.
In particular, (a), (b), and (c) imply that

lim
N→∞

℘( 4 µrw

∂DN
(ΓN , ΥN), µ∂D(Γ, Υ) ) = 0.

Each of the three parts of Theorem 4.16 will be proved in a separate section:
in Section 4.5.2 we prove Theorem 4.23 establishing (a), in Section 4.5.3 we prove
Theorem 4.24 establishing (b), and finally in Section 4.5.4 we prove Theorem 4.27
establishing (c).

4.5.1. Review of strong approximation of Brownian motion and random walk. In
order to establish Theorem 4.16, it will be necessary to use a strong approximation
result which follows from the theorem of Komlós et al. (1975, 1976). Because of its
central rôle in the proof, we include the statement here for the convenience of the
reader. In what follows, St is defined for non-integer t by linear interpolation.

Theorem 4.17 (Komlós-Major-Tusnády). There exists c < ∞ and a probability
space (Ω,F , P) on which are defined a two-dimensional Brownian motion B and a
two-dimensional simple random walk S with B0 = S0, such that for all λ > 0 and
each n ∈ N,

P

{

max
0≤t≤n

∣

∣

∣

∣

1√
2

Bt − St

∣

∣

∣

∣

> c (λ + 1) log n

}

< c n−λ.

The proofs of the following two results may be found in Corollary 3.2 and Propo-
sition 3.3, respectively, of Kozdron and Lawler (2005).

Corollary 4.18. There exist C < ∞ and a probability space (Ω,F , P) on which
are defined a two-dimensional Brownian motion B and a two-dimensional simple
random walk S with B0 = S0 such that

P
{

max
0≤t≤σn

∣

∣

∣

∣

1√
2
Bt − St

∣

∣

∣

∣

> C log n

}

= O(n−10),

where σ1
n := inf{t : |St−S0| ≥ n8}, σ2

n := inf{t : |Bt−B0| ≥ n8}, and σn := σ1
n∨σ2

n.

Proposition 4.19 (Strong Approximation). There exists a constant c such that
for every n, a Brownian motion B and a simple random walk S can be defined on
the same probability space so that if A ∈ An, 1 < r ≤ n20, and x ∈ A with |x| ≤ n3,
then Px{|BTA

− SτA
| ≥ cr log n} ≤ cr−1/2.

By combining the strong approximation with Theorem 4.17, the following esti-
mate is easily deduced.

Proposition 4.20. If A ∈ An with associated “union of squares” domain Ã ∈ D,
and Γ, Υ ⊂ ∂A with Γ ∩ Υ = ∅ and associated boundary arcs Γ̃, Υ̃ ⊂ ∂Ã, then
hA(0, Γ) = HÃ(0, Γ̃) + O(n−7/8 log n), and hA(0, Υ) = HÃ(0, Υ̃) + O(n−7/8 log n).

Consequently, hA(0, Γ) hA(0, Υ) = HÃ(0, Γ̃) HÃ(0, Υ̃) + O(n−7/8 log n) where the
error term depends on both Γ, Υ.

Proof . If c is the constant in Proposition 4.19, and V is the set V := {x ∈
∂A : dist(x, Γ) ≤ cn1/8 log n}, then hA(0, Γ) = HÃ(0, Ṽ ) + O(n−1/16). However,

a simple gambler’s ruin estimate for Brownian motion shows that HÃ(0, Ṽ ) =

HÃ(0, Γ̃) + O(n−7/8 log n), so the result follows. �
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4.5.2. Convergence of 4h∂DN
(ΓN , ΥN) to H∂D(Γ, Υ). The goal of the present sec-

tion is to prove that if D ∈ D∗ with inrad(D) = 1, and Γ, Υ ⊂ ∂D are disjoint
open boundary arcs, then 4h∂DN

(ΓN , ΥN) → H∂D(Γ, Υ) using the notation from
Section 4.2, therefore establishing Theorem 4.16 (a).

It follows from the exact form of the excursion Poisson kernel in D that if D ∈ D
and x, y ∈ ∂D with ∂D locally analytic at x and y, then

H∂D(x, y) =
2π HD(0, x) HD(0, y)

1 − cos(θD(x) − θD(y))
. (4.5)

For further details, see Example 2.14 of Kozdron and Lawler (2005) or Example 5.6
of Lawler (2005).

Lemma 4.21. If D ∈ D∗ and Γ, Υ ⊂ ∂D with Γ ∩ Υ 6= ∅, then

2πHD(0, Γ) HD(0, Υ)

1 − cos(spr(Γ, Υ))
≤ H∂D(Γ, Υ) ≤ 2πHD(0, Γ) HD(0, Υ)

1 − cos(sep(Γ, Υ))

where H∂D(Γ, Υ) is as in Definition 3.32, and HD(0, Γ), HD(0, Υ) are as in (3.6).

Proof . Suppose first that D ∈ D, and that Γ, Υ are analytic open boundary arcs.
Then from (4.5), we conclude that for all x ∈ Γ and for all y ∈ Υ,

2πHD(0, x)HD(0, y)

1 − cos(spr(Γ, Υ))
≤ H∂D(x, y) ≤ 2πHD(0, x)HD(0, y)

1 − cos(sep(Γ, Υ))
.

Since D ∈ D, Proposition 3.20 implies that

2πHD(0, Γ) HD(0, Υ)

1 − cos(spr(Γ, Υ))
≤ H∂D(Γ, Υ) ≤ 2πHD(0, Γ) HD(0, Υ)

1 − cos(sep(Γ, Υ))
.

Now, suppose D′ ∈ D∗, and let f ∈ T (D, D′). Write Γ′, Υ′ for the images under
f of Γ, Υ, respectively. Conformal invariance yields HD(0, Γ) = HD′(0, Γ′) and
HD(0, Υ) = HD′(0, Υ′). (Indeed this holds for all domains D ∈ D∗ since ∂D is
regular.) From Proposition 3.20, it follows that H∂D(Γ, Υ) = H∂D′(Γ′, Υ′); whence
the proof is complete. �

Let f ∈ T (D, D) with f(0) = 0, f ′(0) > 0. Analogous to Section 4.2, by rotating1

if necessary, it is possible to find 0 ≤ θ1 < θ2 < θ3 < θ4 < 2π such that Γ, Υ are
the images under f of ΓD, ΥD, respectively, where ΓD := {eiθ : θ1 < θ < θ2} and

ΥD := {eiθ′

: θ3 < θ′ < θ4}. Define the length of Γ, written `Γ, to be length of ΓD

so that `Γ := θ2 − θ1. Similarly define `Υ := θ4 − θ3. Note that our notion of length
is simply harmonic measure so that while Γ may not even be rectifiable, `Γ always
exists. An easy estimate shows that if (θ3 − θ2), (θ4 − θ1) are fixed, then

1 − cos(θ3 − θ2)

1 − cos(θ4 − θ1)
= 1 + O(θ4 − θ3) + O(θ2 − θ1)

as (θ4 − θ3) → 0, (θ2 − θ1) → 0, and hence, as `Υ → 0, `Γ → 0,

1 − cos(sep(Γ, Υ))

1 − cos(spr(Γ, Υ))
= 1 + O(`Υ) + O(`Γ). (4.6)

Thus, we have proved the following lemma.

1Both the excursion Poisson kernel for D and excursion measure in D are rotationally invariant.
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Lemma 4.22. If D ∈ D∗, then for any η > 0 there exists a δ > 0 such that for
any open boundary arcs Γ, Υ ⊂ ∂D with Γ ∩ Υ = ∅ and `Γ ∨ `Υ < δ,

1 ≤ 1 − cos(spr(Γ, Υ))

1 − cos(sep(Γ, Υ))
≤ 1 + η.

Note that the lower bound holds automatically by the definitions of separation
and spread.

Theorem 4.23. For every D ∈ D∗ with inrad(D) = 1, and for every pair of open
boundary arcs Γ, Υ ⊂ ∂D with Γ ∩ Υ 6= ∅, if DN is the 1/N -scale discrete approx-
imation to D, and ΓN , ΥN are the discrete approximations to Γ, Υ, respectively,
as in Section 4.2, then 4h∂DN

(ΓN , ΥN) → H∂D(Γ, Υ).

Proof . Consider D ∈ D∗, and let Γ, Υ ⊂ ∂D be (open) boundary arcs with Γ∩Υ 6=
∅. Find M so that sep(Γ, Υ) ≥ εN := N−1/48 log2/3 N for N ≥ M . Throughout this
section, let N ≥ M . Let DN be the 1/N -scale discrete approximation to D with

associated “union of squares” domain D̃N , and let Γ̃N , Υ̃N ⊂ ∂D̃N with associated
discrete boundary arcs ΓN , ΥN ⊂ ∂DN . From the definitions of separation and
spread, and from Corollary 4.13, since Γ and Υ are fixed so that sep(Γ, Υ) = O(1),
it follows that

(π/2)hDN
(0, x)hDN

(0, y)

1− cos(spr(Γ, Υ))
[1 + O(ε3

N )] ≤ h∂DN
(x, y)

≤ (π/2)hDN
(0, x)hDN

(0, y)

1 − cos(sep(Γ, Υ))
[1 + O(ε3

N )].

Summing over all x ∈ ΓN and all y ∈ ΥN yields

hDN
(0, ΓN)hDN

(0, ΥN)

1 − cos(spr(Γ, Υ))
[1 + O(ε3

N )] ≤ 2

π
h∂DN

(ΓN , ΥN )

≤ hDN
(0, ΓN )hDN

(0, ΥN)

1 − cos(sep(Γ, Υ))
[1 + O(ε3

N )].

where we write h∂DN
(ΓN , ΥN) :=

∑

x∈ΓN

∑

y∈ΥN
h∂DN

(x, y) and similarly for

hDN
(0, ΓN ) and hDN

(0, ΥN). However, from Proposition 4.20,

hDN
(0, ΓN ) hDN

(0, ΥN) = HD̃N
(0, Γ̃N ) HD̃N

(0, Υ̃N) + O(N−7/8 log N),

so that we conclude
[

HD̃N
(0, Γ̃N ) HD̃N

(0, Υ̃N)

1 − cos(spr(Γ, Υ))
+ O(N−7/8 log N)

]

·[1 + O(ε3
N )] ≤ 2

π
h∂DN

(ΓN , ΥN)

≤
[

HD̃N
(0, Γ̃N ) HD̃N

(0, Υ̃N)

1 − cos(sep(Γ, Υ))
+ O(N−7/8 log N)

]

·[1 + O(ε3
N )].

Now, as we let N → ∞, it follows that

HD(0, Γ) HD(0, Υ)

1 − cos(spr(Γ, Υ))
≤ 2

π
lim inf
N→∞

h∂DN
(ΓN , ΥN )

≤ 2

π
lim sup
N→∞

h∂DN
(ΓN , ΥN) ≤ HD(0, Γ) HD(0, Υ)

1 − cos(sep(Γ, Υ))
.
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However, Lemma 4.21 implies that

1 − cos(sep(Γ, Υ))

1 − cos(spr(Γ, Υ))
H∂D(Γ, Υ) ≤ 4 lim inf

N→∞
h∂DN

(ΓN , ΥN )

≤ 4 lim sup
N→∞

h∂DN
(ΓN , ΥN) ≤ 1− cos(spr(Γ, Υ))

1 − cos(sep(Γ, Υ))
H∂D(Γ, Υ).

For any η > 0, let {Γi}, {Υj} be finite partitions of Γ, Υ, respectively, with

1 ≤ 1 − cos(spr(Γi, Υj))

1 − cos(sep(Γi, Υj))
≤ 1 + η.

Note that such a partitioning is possible by Lemma 4.22. Hence, the equation above
becomes

1 − cos(sep(Γi, Υj))

1 − cos(spr(Γi, Υj))
H∂D(Γi, Υj) ≤ 4 lim inf

N→∞
h∂DN

(ΓN,i, ΥN,j)

≤ 4 lim sup
N→∞

h∂DN
(ΓN,i, ΥN,j) ≤

1 − cos(spr(Γi, Υj))

1 − cos(sep(Γi, Υj))
H∂D(Γi, Υj).

Summing over i and j and noting that
∑

i

∑

j

H∂D(Γi, Υj) = H∂D(Γ, Υ) and
∑

i

∑

j

h∂DN
(ΓN,i, ΥN,j) = h∂DN

(ΓN , ΥN )

since {ΓN,i}, {ΥN,j} partition {ΓN}, {ΥN}, respectively, gives

(1 + η)−1H∂D(Γ, Υ) ≤ 4 lim inf
N→∞

h∂DN
(ΓN , ΥN )

≤ 4 lim sup
N→∞

h∂DN
(ΓN , ΥN ) ≤ (1 + η)H∂D(Γ, Υ).

Since η > 0 was arbitrary, we conclude that 4h∂DN
(ΓN , ΥN) → H∂D(Γ, Υ) as

N → ∞. �

4.5.3. Convergence of µ#

∂D̃N
(Γ̃N , Υ̃N) to µ#

∂D(Γ, Υ). We now prove Theorem 4.16

(b) via a result which basically says that an excursion in D can be thought of as

an excursion in D̃N with Brownian tails.

Theorem 4.24. For every D ∈ D∗ with inrad(D) = 1, and for every pair of open
boundary arcs Γ, Υ ⊂ ∂D with Γ ∩ Υ 6= ∅,

lim
N→∞

℘
(

µ#

∂D̃N
(Γ̃N , Υ̃N ), µ#

∂D(Γ, Υ)
)

= 0 (4.7)

where DN is the 1/N -scale discrete approximation to D with associated domain

D̃N ∈ D, and corresponding boundary arcs Γ̃N , Υ̃N ⊂ ∂D̃N as in Section 4.2.

By conformal invariance, we can define excursion measure µ#
∂D(Γ, Υ) to be either

the measure f ◦µ#
∂D

(ΓD, ΥD) for f ∈ T (D, D), or µ∂D restricted to those excursions

γ ∈ KΥ
Γ (D) (and normalized by H∂D(Γ, Υ)). Also using conformal invariance, we

have µ#

∂D̃N
(Γ̃N , Υ̃N) = fN ◦ µ#

∂D
(ΓD, ΥD) for fN ∈ T (D, D̃N ), so that we conclude

µ#

∂D̃N
(Γ̃N , Υ̃N ) = (fN ◦ f−1) ◦ µ#

∂D(Γ, Υ). (4.8)

In order to show the convergence of the masses h∂DN
(ΓN , ΥN) to H∂D(Γ, Υ), the

intermediate step of showing

lim
N→∞

H∂D̃N
(Γ̃N , Υ̃N ) = H∂D(Γ, Υ) (4.9)
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is unnecessary as a consequence of the conformal invariance of the excursion Pois-
son kernel: H∂D̃N

(Γ̃N , Υ̃N) = H∂D(Γ, Υ). However, in contrast to the excursion
Poisson kernel, it is not simply a matter of applying the conformal invariance of
excursion measure to conclude that (cf. Lemma 4.5)

℘
(

(fN ◦ f−1) ◦ µ#
∂D(Γ, Υ) , µ#

∂D(Γ, Υ)
)

→ 0. (4.10)

Suppose that D ∈ D∗ with inrad(D) = 1, and associated “union of squares”

domain D̃N . As mentioned in Lemma 4.7, if z ∈ ∂D̃N , then dist(z, ∂D) ≤ 2
√

2N−1.
It follows from the Beurling estimates (see Proposition 3.79 of Lawler (2005) and
Lemma 5.3 of Lawler and Trujillo Ferreras (2004)) that Brownian motion started
at z is likely to exit D quickly and nearby; that is,

Pz{diamB[0, TD] ≥ N−1/2} ≤ CN−1/4 and Pz{TD ≥ N−1/2} ≤ CN−3/8. (4.11)

Unfortunately, if z ∈ Γ̃N , it may be extremely unlikely that {BTD
∈ Γ}. This

will be the case, for example, if z and Γ are on opposite sides of a “channel”

(or “fjord”). However, since D̃N
cara→ D by Theorem 4.9, for fixed D ∈ D∗, fixed

disjoint open boundary arcs Γ, Υ, and for every ε > 0, there exists an N0 such
that max{dist(Γ̃N , Γ), dist(Υ̃N , Υ)} < ε for all N > N0. The following is then a
consequence of (4.11) and easy bounds on the Poisson kernel.

Lemma 4.25. For every ε > 0, there exists an N0 such that for all N > N0 and
for all z ∈ Γ̃N ,

Pz{TD ≥ ε or diamB[0, TD] ≥ ε or BTD
6∈ Γε} ≤ ε (4.12)

where Γε := {z ∈ ∂D : dist(z, Γ) ≤ ε}.

Proof of Theorem 4.24. Suppose that γ : [0, tγ ] → C is a (Γ̃N , Υ̃N )-excursion

in D̃N . Let b2 : [0, tb2 ] → C be a Brownian motion started at γ(tγ) and stopped
at tb2 := inf{t : b2(t) ∈ D}, its hitting time of ∂D. Let b′ : [0, tb′ ] → C be an
independent Brownian motion started at γ(0), stopped at tb′ := inf{t : b′(t) ∈ D},
and set b1(t) := b′(tb′ − t). If ζ := b1 ⊕ γ ⊕ b2, then by construction ζ : [0, tζ ] → C
has ζ(0) ∈ ∂D, ζ(tζ) ∈ ∂D, 0 < tζ < ∞, and ζ(0, tζ) ⊂ D. In other words, ζ
is an excursion in D. Unfortunately, ζ is not necessarily a (Γ, Υ)-excursion in D,
but with high probability is very close to one. Indeed, if we denote by ν∂D̃N

(Γ, Υ)

the probability measure on paths obtained by this (Γ̃N , Υ̃N)-excursion in D̃N plus
Brownian tails procedure, then it follows from (4.12) and Proposition 3.13 that for
every ε > 0 there exists an N0 such that for all N > N0,

P{ �
(ζ, γ) ≥ ε} ≤ ε and therefore ℘

(

ν∂D̃N
(Γ, Υ), µ#

∂D̃N
(Γ̃N , Υ̃N)

)

≤ ε.

The proof is completed by noting that ℘(ν∂D̃N
(Γ, Υ), µ#

∂D(Γ, Υ)) → 0 as a con-

sequence of Proposition 3.29: (Γ, Υ)-Brownian excursions in D are generated by
starting ε from Γ inside D and conditioning the Brownian motion to exit D at Υ. �

As in the discussion preceding Theorem 1.1, we can use (4.7) and (4.9) to define
the convergence of the infinite measures µ∂D̃N

to µ∂D.

Theorem 4.26. If D ∈ D∗ with inrad(D) = 1, then ℘( µ∂D̃N
, µ∂D) → 0 where DN

is the 1/N -scale discrete approximation to D with associated domain D̃N .
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It must be noted, however, that by Proposition 3.31 and Definition 3.32, we define
excursion measure µ∂D for D ∈ D∗ by conformal invariance. Let fN ∈ T (D, D̃N )
as above, and also suppose that f ∈ T (D, D). Hence, µ∂D̃N

:= fN ◦ µ∂D and

µ∂D := f ◦µ∂D so that µ∂D̃N
= (fN ◦ f−1) ◦µ∂D as in (4.8). Thus, we can rephrase

the conclusion of Theorem 4.26 as ℘( (fN ◦ f−1) ◦ µ∂D, µ∂D ) → 0; compare this
with (4.10).

4.5.4. Estimating ℘
(

µrw,#
∂DN

(ΓN , ΥN), µ#

∂D̃N
(Γ̃N , Υ̃N )

)

. In this section we establish

Theorem 4.16 (c) by proving the following result.

Theorem 4.27. For every D ∈ D∗ with inrad(D) = 1, for every pair of open
boundary arcs Γ, Υ ⊂ ∂D with Γ ∩ Υ 6= ∅, and for every ε > 0, there exists an N0

such that for all N > N0,

℘
(

µrw,#
∂DN

(ΓN , ΥN ), µ#

∂D̃N
(Γ̃N , Υ̃N)

)

≤ ε (4.13)

where DN is the 1/N -scale discrete approximation to D with associated domain

D̃N ∈ D and corresponding boundary arcs ΓN , ΥN ⊂ ∂DN ; Γ̃N , Υ̃N ⊂ ∂D̃N as in
Section 4.2.

In order to prove (4.13), it will be necessary to use the strong approximation of
Proposition 4.19. Hence, let AN := 2NDN so that AN ∈ AN , and write ΓN,A :=
2NΓN , ΥN,A := 2NΥN ⊂ ∂AN for the corresponding boundary arcs. Suppose

further that N is chosen large enough so that dist(ΓN,A, ΥN,A) ≥ N15/16. Since
D ∈ D∗, it follows that AN is necessarily bounded so that rad(AN ) � inrad(AN ) �
N , and furthermore, |ΥN,A| � |ΓN,A| � N where all of the constants may depend
on D.

Proof of Theorem 4.27. Suppose that x ∈ A∗
N := {x ∈ AN : gAN

(x) ≥ N−1/16},
and let S be a simple random walk with S0 = x. As in the proof of Corol-
lary 3.5 of Kozdron and Lawler (2005), it follows from the Beurling estimate that
dist(x, ∂A) ≥ CN7/8. Hence, a straightforward gambler’s ruin estimate shows that
Px{Sτ ∈ ΥN,A} � N−1/16 where τ = τAN

:= min{j : Sj ∈ ∂A}. The cou-
pling of Brownian motion and random walk provided by Corollary 4.18 is so strong
that even conditioning on the rare event {Sτ ∈ ΥN,A} does not uncouple the pro-
cesses. Hence, there exists a Brownian motion B, a simple random walk S with
B0 = S0 = x, and a constant C such that

Px

{

sup
0≤t≤τ

∣

∣

∣

∣

1√
2

Bt − St

∣

∣

∣

∣

≥ C log N
∣

∣

∣Sτ ∈ ΥN,A

}

≤ CN−8. (4.14)

The strong approximation (Proposition 4.19) allows us to conclude that conditioned
on the event {Sτ ∈ ΥN,A}, Brownian motion and simple random walk starting N 7/8

away from the boundary still exit near each other; that is,

Px
{

|BT − Sτ | ≥ CN1/4 log N |Sτ ∈ ΥN,A

}

≤ CN−1/16 (4.15)

where T := TAN
:= inf{t : Bt ∈ ∂ÃN}. The time version of the Beurling esti-

mate, Lemma 5.3 of Lawler and Trujillo Ferreras (2004), says that Px{|T − τ | ≥
r2 dist(x, ∂Ã)2} ≤ Cr−1/2. Hence,

Px
{

|T − τ | ≥ CN1/2 log2 N |Sτ ∈ ΥN,A

}

≤ CN−1/16. (4.16)
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We can now use Proposition 3.13 to deduce statements about convergence in ℘
from statements about convergence in

�
. In particular, let γ : [0, tγ ] → C be given

by tγ := T , γ(t) := Bt, 0 ≤ t ≤ tγ , and associate to the random walk S the curve
ω̃ : [0, tω̃] → C as in (3.14), so that from (4.14), (4.15), and (4.16), we conclude

that P{ �
(γ, ω̃) ≥ CN1/2 log2 N} ≤ CN−1/16, and using Lemma 4.14, we can scale

our results to DN :

P
{

�
(ΦNγ, ΦN ω̃) ≥ CN−1/2 log2 N

}

≤ P
{

�
(γ, ω̃) ≥ CN1/2 log2 N

}

≤ CN−1/16

(4.17)
where ΦN := Ψ1/(2N) is the Brownian scaling map as in (4.4). Let VN,A be the

set VN,A := {x ∈ ∂AN : dist(x, ΥN,A) ≤ CN1/4 log N}, let ṼN,A be the associated

subset of ∂ÃN , and let ṼN := 1
2N ṼN,A. It then follows that L(ΦN ω̃) = µrw,#

DN
(x, ΥN )

and L(ΦNγ) = µ#

D̃N
(x, ṼN ) where L denotes law. Since N−1/2 log N � N−1/16,

Proposition 3.13 and (4.17) yield

℘
(

µrw,#
DN

(x, ΥN ), µ#

D̃N
(x, ṼN )

)

≤ CN−1/16. (4.18)

Furthermore, HD̃N
(x, ṼN ) = HD̃N

(x, Υ̃N )+O(N−3/4 log N) from Proposition 4.20,
so it follows that

℘
(

µ#

D̃N
(x, Υ̃N ), µ#

D̃N
(x, ṼN )

)

≤ CN−3/4 log N. (4.19)

Combining (4.18) and (4.19) then yields ℘(µrw,#
DN

(x, ΥN ), µ#

D̃N
(x, Υ̃N )) ≤ CN−1/16,

and, in particular, if y ∈ A∗
N with |x − y| ≤ C log N , then

℘
(

µrw,#
DN

(x, ΥN ), µ#

D̃N
(y, Υ̃N)

)

≤ CN−1/16. (4.20)

To complete the proof, suppose that S ′ is a simple random walk on the scaled
lattice 1

2N Z2, and let D∗
N := 1

2N A∗
N so that D∗

N = {z ∈ DN : gDN
(z) ≥ N−1/16}

by (4.2) where gDN
is the Green’s function for Brownian motion in D̃N . Also recall

from Theorem 4.9 that D̃N
cara→ D. Hence, if ηN := η(D, N) := min{j ≥ 0 : S′

j ∈
D∗

N ∪ Dc
N} and x ∈ DN \ D∗

N , then it follows from Lemma 3.11 of Kozdron and
Lawler (2005) that for every ε > 0, there exists an N such that

Px
{

ηN ≥ ε
∣

∣S′
ηN

∈ D∗
N

}

≤ ε. (4.21)

Furthermore, using Lemma 3.11 of Kozdron and Lawler (2005) again, we can find
constants C, α such that

Px

{

max
0≤j≤η−1

|fDN
(S′

j) − fDN
(x)| ≥ N−1/16 log N

}

≤ C N−α, (4.22)

and

Px
{

|fDN
(S′

η) − fDN
(x)| ≥ N−1/16 log N

∣

∣S′
η ∈ D∗

N

}

≤ C N−α. (4.23)

Suppose further that B̃ is a Brownian motion started at x ∈ DN \ D∗
N . As in

Lemma 4.25, if η̃N := η̃(D, N) := inf{t ≥ 0 : B̃t ∈ D̃∗
N ∪ D̃c

N}, then for every ε > 0,
there exists an N0 such that for all N > N0,

Px
{

η̃N ≥ ε or diam B[0, η̃N ] ≥ ε
∣

∣Bη̃N
∈ D̃∗

N

}

≤ ε. (4.24)

If we let γ̃ : [0, tγ̃ ] → C be given by tγ̃ := η̃N , γ̃(t) := B̃t, 0 ≤ t ≤ tγ̃ , and associate
to the (scaled) random walk S ′ the (scaled) curve ω̃′ : [0, tω̃′ ] → C as in (4.4)



152 Michael J. Kozdron

(i.e., Brownian scaled in both time and space), then letting γ
e

:= γ̃ ⊕ ΦNγ and

ω
e

:= ω̃′ ⊕ ΦN ω̃ we see that L(γ
e

) = µ#

∂D̃N
(Γ̃N , Υ̃N) and L(ω

e

) = µrw,#
∂DN

(ΓN , ΥN).

Hence, by combining (4.21), (4.22), (4.23), and (4.24) with (4.20), we conclude that
for every ε > 0, there exists an N0 such that for all N > N0,

℘
(

µrw,#
∂DN

(ΓN , ΥN), µ#

∂D̃N
(Γ̃N , Υ̃N)

)

≤ ε. �

Appendix A. Alternative proof of Theorem 4.9

In this appendix we give an alternative proof of Theorem 4.9 (which was used
to establish Theorem 1.2). Although this proof is significantly longer than the one
provided in Section 4.3, it has the advantage of establishing directly the uniform
convergence on compacta of the appropriate Riemann maps. We begin by recalling
the statement of the theorem.

Theorem 4.9. The sets D̃N as defined by (4.1) converge to D in the Carathéodory
sense.

The alternative proof of this theorem requires two lemmas. The first is a simple
power series estimate, while the second gives good bounds on the difference of the
image of a point under two different maps: the identity map from D to D, and a
map which is “almost the identity.”

Lemma A.1. If 0 ≤ |z| ≤ 1/2, then | log(1 + z) − z| ≤ |z|/2.

Proof . Since

log(1 + z) =

∞
∑

n=1

(−1)n−1 1

n
zn,

we have

| log(1 + z) − z| ≤
∞
∑

n=2

1

n
|z|n ≤ 1

2
|z|

∞
∑

n=1

|z|n ≤ 1

2
|z|

provided that 0 ≤ |z| ≤ 1/2. �

Lemma A.2. For N > 4C2, where C is the constant in Proposition 4.8, suppose
that EN is a domain with {|z| ≤ 1 − CN−1/2} ⊆ EN ⊆ {|z| ≤ 1 + CN−1/2}. Let
hN : D → EN be the conformal transformation with hN (0) = 0 and h′

N (0) > 0.

Then, there exists a constant C ′ such that |hN (z) − z| ≤ C ′N−1/2 log N for |z| ≤
1 − CN−1/2.

Proof . Without loss of generality, assume that hN may be extended to an an-
alytic function in a neighbourhood of D. For if this is not the case, we may
approximate hN by hN,r(z) := r−1hN (rz) and take the limit as r → 1−. From
the Schwarz lemma (see page 135 of Ahlfors (1979)), we can immediately see
that 1 − CN−1/2 ≤ h′

N (0) ≤ 1 + CN−1/2. Let κN (z) := log[hN (z)/z] so that

κN = uN + ivN is analytic on D with |uN(z)| ≤ (3/2)CN−1/2 for |z| = 1 using
the estimate from Lemma A.1. Thus, the maximum principle for harmonic func-
tions tells us that |uN(z)| ≤ (3/2)CN−1/2 for all |z| ≤ 1. We therefore conclude
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that the partial derivatives of uN at z are bounded by an absolute constant times
N−1/2 dist(z, ∂D)−1; whence |κ′

N (z)| ≤ C1N
−1/2(1 − |z|)−1. Writing

∣

∣

∣

∣

log

[

1 +
hN (z) − z

z

]∣

∣

∣

∣

= |κN(z)| =

∣

∣

∣

∣

κN(0) +

∫ z

0

κ′
N (w) dw

∣

∣

∣

∣

≤ C2√
N

[

1 + log
1

1− |z|

]

with C2 = max{C, C1}, we see that if ε > 0 is such that
∣

∣

∣

∣

hN (z) − z

z

∣

∣

∣

∣

≤ 1

2
for |z| ≤ ε, (A.1)

then
∣

∣

∣

∣

hN (z) − z

z

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

log

[

1 +
hN (z) − z

z

]∣

∣

∣

∣

≤ 2C2N
−1/2

[

1 + log
1

1 − |z|

]

. (A.2)

Since (A.1) holds for some ε > 0, we can iterate (A.2) to see that (A.2) must hold
for all |z| such that the right side of (A.2) is less than 1/2. For N sufficiently large,
this includes all |z| ≤ 1 − CN−1/2. �

Proof of Theorem 4.9. Suppose that f : D → D is the conformal transformation
with f(0) = 0, f ′(0) > 0, and let f̃N : f(D̃N ) → D be the conformal transformation

with f̃N (0) = 0, f̃ ′
N(0) > 0. Let FN : D → D̃N and F : D → D be the conformal

transformations with FN (0) = 0, F ′
N (0) > 0, and F (0) = 0, F ′(0) > 0, respectively,

which are defined by setting FN := (f̃N ◦ f)−1 and F := f−1 = (I ◦ f)−1 where

I(z) = z is the identity map from D to D. Finally, let z ∈ D, and let w := f̃−1
N (z)

so that FN (z) = F (w).

We prove that D̃N
cara→ D by applying Theorem 4.2 which states that it is suffi-

cient to show FN → F uniformly on each compact subset of D. Equivalently, we
will show that for each δ > 0 sufficiently small, FN → F uniformly for all |z| ≤ 1−δ.
Fix 0 < δ < 1/2 and choose M so that M > (3C ′δ−1)3 where C ′ is the constant in
Lemma A.2. Let N > M . Then by Lemma A.2, we have that for |z| ≤ 1 − δ,

|w − z| ≤ C ′ log N√
N

|z| ≤
(

C ′ log N√
N

· 1 − δ

δ

)

δ.

Our choice of M guarantees that C ′δ−1(1 − δ)N−1/2 log N < 1 for N > M . By
Corollary 3.25 of Lawler (2005), if for some 0 < r < 1, |w − z| ≤ r dist(z, ∂D), then

|F (w) − F (z)| ≤ 4 dist(F (z), ∂D)

1 − r2
|w − z|.

Hence, we conclude

|FN (z) − F (z)| = |F (w) − F (z)| ≤







4RC ′(1 − δ)

1 −
(

C′ log N√
N

· 1−δ
δ

)2






· log N√

N

where R := rad(D) so that FN → F uniformly; whence D̃N
cara→ D. �
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