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Abstract. We investigate the asymptotic standard deviation of the Longest Com-
mon Subsequence (LCS) of two i.i.d. sequences of length n which are independent
of each other. The first sequence is drawn from a three letter alphabet {0, 1, a},
whilst the second sequence is binary. The main result of this article is that in this
asymmetric case, the standard deviation of the length of the LCS is of order Θ(

√
n).

This confirms Waterman’s conjecture Waterman (1994) for this special case. This
is very interesting considering that it is believed that for equal probability of 0 and
1 the order is o(n1/3); (see the Sankoff-Chvàtal conjecture in Chvàtal and Sankoff
(1975)).
The order of the fluctuation of the LCS of two i.i.d. binary sequences is a long
open standing question. In a subsequent paper, we use the techniques developped
in this article to solve this problem when the two sequences are binary, but 0 and
1 have sufficiently different probabilities.
The LCS problems can also be viewed as First Passage Problems (FPP) on a graph
with correlated weights. For standard FPP the order of the fluctuations has been
an open question for decades.

1. Introduction

For a sequence an, we say that an has order Θ(n), if there exists k, K > 0 not
depending on n, such that kn ≤ an ≤ Kn for all n ∈ N.
In computational genetics and computational linguistics one of the basic problem
is to find an optimal alignment between two given sequences X := X1 . . . Xn and
Y := Y1 . . . Yn. This requires a scoring system which can rank the alignments.
Typically a substitution matrix gives the score for each possible pair of letters. The
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total score of an alignment is the sum of terms for each aligned pair of residues,
plus a usually negative term for each gap (gap penalty).

Let us look at an example. Take the sequences X and Y to be binary sequences. Let the
substitution matrix be equal to:

0 1

0 2 1
1 1 3

With the above matrix we get the following scores for pairs of letter:

s(0, 0) = 2, s(0, 1) = s(1, 0) = 1, s(1, 1) = 3.

(Here, s(a, b) designates the score when we align letter a with letter b.) Take X = 0101 and
Y = 1100 with the above substitution matrix and a zero gap penalty. The optimal alignment is:

0 1 0 1
1 1 0 0

The above alignment gives the score s(1, 1) + s(1, 1) = 3 + 3 = 6. This is the alignment with

maximal score.

Throughout this paper the substitution matrix is equal to the identity and there
is no gap penalty. In this case, the optimal score is equal to the length of the
Longest Common Subsequence (LCS) of X and Y . (A common subsequence of X
and Y is a sequence which is a subsequence of X as well as of Y .)

LCS and optimal alignments are one of the main tools in computational linguistics. An example
of an important application is the creation of large dictionaries for rare languages. Building the
dictionary manually would necessitate years of work with a large stuff. Hence, one wishes the
computer to build the dictionaries. For this one gives translated texts to the computer. An
algorithm is then asked to identify corresponding words.

Let us next show how LCS’s are used two identify pairs of corresponding words. Take as
example two versions of the the first name “henry”. Consider the Swiss version “heini” and the
spanish version “enrique”. When we align the two versions and compare letter by letter

h e i n i

e n r i q u e

the similarity is not obvious: there are zero coinciding letters in the same position. It follows that
the computer is not able to recognize the great similarity of the two strings “heini” and “enrique”,

when comparing position by position.

Another method is needed to detect the similarity. One useful approach is based on the LCS.

The LCS in this case is eni. The string eni can be obtained from both strings by only deleting

letters. The relatively long common subsequence “eni” indicates that the two strings are related.

Let Ln designate the length of the LCS of two independent i.i.d. sequences of
length n. Using a sub-additivity argument, Chvàtal and Sankoff (1975) prove that
the limit

γ := lim
n→∞

E[Ln]

n
exists. They consider two binary sequences. (This is the standard setting for this
problem). The constant γ is called the Chvàtal-Sankoff constant and its value is
unknown. Neither is the exact order of the fluctuation of the LCS length known.
Steele (1986) proved that VAR[Ln] ≤ n.

The determination of the Chvàtal-Sankoff constant and the order of fluctuations
for the LCS problem are long standing open problems. Montecarlo simulations
lead Chvàtal and Sankoff to conjecture that VAR[Ln] = o(n

2

3 ). This order of
magnitude is similar to the order for the longest increasing subsequence (LIS) of
random permutations. (See Baik et al., 1999 and also Aldous and Diaconis, 1999).
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This similarity of the order of magnitudes is not a complete surprise. As a
matter of fact, the LCS can be formulated as an oriented First Passage Percolation
(FPP) problem with correlated weights. On the other hand, the LIS problem is
asymptotically equal to a Poisson-based oriented FPP model. For standard FPP
the order of magnitude of the fluctuation has been open for decades despite FPP
being one of the central research areas in discrete probability.

In Waterman (1994), Waterman conjectured that in many cases the variance of
Ln grows linearly.

We believe that there are different possible order of magnitudes depending on
the distribution of the strings X and Y .

In the present article, we consider the asymmetric case where X contains one
symbol less than Y . For this case, we prove the variance VAR[Ln] to be of order
Θ(n).

The same order is proved by Lember and Matzinger (2006) in the case that one
sequence is not random but periodic. In a subsequent paper, we use the methods
of this article to prove the same order in yet another case. This case is When we
have two i.i.d. binary sequences where 0 and 1 have strongly different probabilities.

As mentioned, the exact value of γ remains unknown. Chvàtal and Sankoff
(1975) derive upper and lower bounds for γ, and similar upper bounds were found
by Baeza-Yates, Gavalda, Navarro and Scheihing (1999) using an entropy argument.
These bounds have been improved by Deken (1979), and subsequently by Danč́ık
and Paterson (1995); Paterson and Danč́ık (1994). Hauser, Martinez and Matzinger
developed in Hauser et al. (2006) a Monte Carlo and large deviation-based method
which allows to further improve the upper bounds on γ. Their approach can be
seen as a generalization of the method of Dancik-Paterson.

For sequence with many letters, Kiwi et al. (2005) have the following interesting
result:

When both sequences X and Y are drawn from the alphabet {1, 2, . . . , k} and

the letters are equiprobable, then γ → 2/
√

k as k → ∞.
Arratia and Waterman (1994) derive a law of large deviation for Ln for fluc-

tuations on scales larger than
√

n. In their ground breaking article Arratia and
Waterman (1994), they show the existence of a critical phenomena.

Using first passage percolation methods, Alexander (1994) proves that E[Ln]/n

converges at a rate of order at least
√

log n/n. In Waterman (1994), Waterman
studies the statistical significance of the results produced by sequence alignment
methods.

Another problem related to the LCS-problem is that of comparing sequences X
and Y by looking for longest common words that appear both in X and Y , and
generalizations of this problem where the words do not need to appear in exactly
the same form in the two sequences. (This means that the words are more than
common substrings. They need to appear in a continuous string without additional
letters in-between.) The distributions that appear in this context have been studied
by Arratia et al. (1989) and Neuhauser (1994). A crucial role is played by the Chen-
Stein Method for the Poisson-Approximation. Arratia et al. (1990); Arratia and
Waterman (1989) shed some light on the relation between the Erdös-Rényi law for
random coin tossing and the above mentioned problem. In Arratia et al. (1986) the
same authors also developed an extreme value theory for this problem.
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For a general discussion of the relevance of string comparison for biology and of
other similar problem in computational biology the reader can refer to the standard
texts Pevzner (2000) and Clote and Backofen (2000).

The reader might wonder why the case considered in the present article is rele-
vant. Three letters in one sequence and two in the other might seem an unrealistic
example. Our motivation is the following: in any i.i.d. sequence there are finite
patterns (i.e. finite words) which tend to have below-average expected matching
scores. The number of times any given finite pattern occurs in X = X1 . . .Xn is
roughly a binomial variable with variance proportional to n. Hence, the number
of times we observe a given pattern in Y behaves roughly like the number of a’s
in Y . The number of a’s in Y , decrease the optimal score linearly. For a given
finite pattern with low average matching score we hope that the same holds be
true. (And we prove it in a subsequent article, when 0 and 1 have very different
probabilities.)

2. Main result

Throughout this paper {Xi}i∈N and {Yi}i∈N are two i.i.d. sequences which are
independent of each other and which satisfy all of the following three conditions:

(1) The variables Xi, i ∈ N, have state space {0, 1, a}.
(2) There exists p, 0 < p < 1 such that

P (X1 = a) = p, P (X1 = 0) = P (X1 = 1) =
1 − p

2
. (2.1)

(3) The variables Yi, i ∈ N, are Bernoulli variables with parameter 1/2.

Throughout this paper X designates the text made up by the first n letters of
{Xi}i∈N, hence X := X1X2 . . .Xn. Similarly, let Y be the text Y := Y1Y2 . . . Yn.

Let x := x1x2 . . . xn and y := y1y2 . . . yn be two texts (finite sequences) of length
n. Let z := z1z2 . . . zk be a finite text of length k. We say that z is a common
subsequence of x and y if k ≤ n and if there exist two strictly increasing maps

π : [1, k] → [1, n] , ν : [1, k] → [1, n]

so that

xπ(i) = yν(i)

for all i ≤ k.
A common subsequence of x and y of maximal length is called a Longest Common

Subsequence (LCS) of x and y.
The length of (all) the LCS of X and Y will be designated throughout by Ln.

Since X and Y are random variables, Ln is also a random variable.
The main result of this paper is:

Theorem 2.1. When all the three conditions 1), 2) and 3) above are satisfied, then
there exists k > 0 not depending on n, such that for all n ∈ N, we have

VAR[Ln] ≥ k · n. (2.2)

There is also an upper bound for the variance

VAR[Ln] ≤ K · n
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where K > 0 is a constant not depending on n. This upper bound follows directly
from the large deviation result for LCS of Arratia and Waterman (1994) or from
Theorem 7.2.1 in Talagrand (1995). Thus we have:

Lemma 2.1. Assume that we are in case I, then:
there exists a constant c > 0 (not depending on n and ∆) such that for all n

large enough and all ∆ > 0, we have that:

P (|Ln − E [Ln]| ≥ n∆) ≤ e−cn∆2

. (2.3)

Let Dn := (Ln − E[Ln])/
√

n denote the rescaled fluctuation of Ln. By taking
∆ = a/

√
n in (2.3), where a > 0, we obtain

P (|Dn| ≥ a) ≤ e−ca.

This implies that the tail of Dn is exponentially decaying and hence there exists
K > 0 such that for all n > 0 we have VAR[Dn] ≤ K. This in turns implies

VAR[Ln] ≤ K · n. (2.4)

Theorem 2.1 and Lemma 2.1, together imply that the typical size of Ln −E[Ln] is
θ(
√

n):

Theorem 2.2. The sequence {Dn} is tight. Moreover, the limit of any weakly
convergent subsequence of {Dn} is not a Dirac measure.

Theorem 2.2 is a rather direct consequence of theorem 2.1 and lemma 2.1. We
refer the reader to Lember and Matzinger (2006) for the proof .

3. Proof of main theorem

This section is devoted to the proof of Theorem 2.1. Let N a designate the num-
bers of a’s in the sequence X = X1X2 . . . Xn. Let X01 designate the subsequence of
X consisting of all the 0’s and 1’s contained in X . In other words, X01 is obtained
by removing the a’s from the finite sequence X . Thus, X01 is a finite sequence of
i.i.d. Bernoulli variables with parameter 1/2 with random length. The length of
the random binary string X01 is equal to (n − Na).

Let us illustrate this with a practical example. For n = 6, assume that X = 011a0a and

Y = 101011. In this case Na = 2 and X01 = 0110. Obviously the a’s from sequence X can not

be matched since Y does not contain any a’s. Hence, The length L6 of the LCS of X and Y is

equal to the length of the LCS between X01 and Y . The length of the LCS is L6 = 3. There are

actual three longest common subsequences: 011, 010 and 110.

The main idea why Ln fluctuates on the scale
√

n is the following: The binomial
variable Na has variance of order o(n). The variable Ln tends to decrease linearly
with an increase of Na (since the a’s are not matched and thus constitute losses).
Hence Ln should also fluctuate on the scale

√
n.

To prove this rigorously, we simulate the variable Ln in a special way. We first
simulate a random variable with same distribution as Na. (We can call it Na.)
Then we generate X01 by using a drop-scheme of random bits. Instead of flipping
a coin independently n − Na times in a row we generate a sequence Z1, Z2, . . . of
binary strings where Zk has length k. Zk+1 is obtained by adding to Zk a random
bit at a random location.
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For example, assume that we have the binary string Z6 = 00010. There are four possible
positions where the next bit could come:

position 1 position 2 position 3 position 4

0x0010 00x010 000x10 0001x0

where x designates the possible position of the next bit. We assign the same probability to each

of the four above possibilities and draw one of them at random. We flip a fair coin, and fill the

previously chosen position with the number obtained from the fair coin. If the position chosen is

the second one and the fair coin gives us a 1, then we obtain Z7 = 001010.

We apply this scheme recursively on k and obtain a sequence of random binary
strings Z1, Z2, . . . , Zn. Let Zk

i designate that i-th bit of the k-th string. With that
notation:

Zk = Zk
1 Zk

2 . . . Zk
k .

Hence, {Zk
i }i≤k≤n is a triangular array of Bernoulli variables. Let us next define the

Zk’s in a formal way: let Vk , k ∈ N be a sequence of i.i.d. Bernoulli variables with
parameter 1/2. Let Tk, k ∈ N be a sequence of independent integer variables, so that
{Vk}k∈N is independent of {Tk}k∈N. Furthermore, for k ∈ N, let the distribution of
Tk+1 be the uniform distribution on the set {2, . . . , k}, (i.e. for all s ∈ {1, . . . , k},
we have that P (Tk = s) = 1/(k − 1).) We define Zk recursively in k:

• Let Z2 := V1V2.
• Given the binary string Zk = Zk

1 Zk
2 . . . Zk

k , we define Zk+1:
– For all j < Tk+1, let

Zk+1
j := Zk

j .

– For j = Tk+1, let

Zk+1
j = Vk+1.

– For j, such that Tk+1 < j ≤ k + 1, let

Zk+1
j := Zk

j−1.

(Thus Vk designates the k-th bit added and Tk designates the position where it gets
added.)

To prove the main result of this paper, we generate a random variable hav-
ing same distribution as Ln using the bit-drop-scheme. Instead of generating the
sequence X , we generate the triangular array {Zk

i }i≤k≤n and, independently, a
random number Na with binomial distribution with parameters p and n. Then, we
look for the longest common subsequence of Y and Zk with k = n − Na.

More precisely, let La
n(k) designate the length of the Longest Common Subse-

quence of Zk and Y = Y1Y2 . . . Yn. Then:

Lemma 3.1. Assume that case I holds and Zk is generated independently of Y and
Na, according to the mechanism described above. Then, Ln has same distribution
as La

n(n − Na).

Proof . For every l, k ≥ 0 we have that P (Ln = l|Na = k) = P (La
n(n − k) = l).

This gives the thesis. �

We can now explain the main idea behind the proof of Theorem 2.1: assume
f is a map with bounded slope so that f ′(x) ≥ c > 0 for all x ∈ R. Let B be
any random variable. Lemma 3.2 tells us, that in this case, the variance of f(B) is
bounded below by c2 ·VAR[B]. On the other hand, the map k 7→ La

n(·) is very likely
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to increase above a linear rate larger than a constant k1 > 0. Hence VAR[Ln] =
VAR[La

n(n = Na)] should be larger then k2
1VAR[Na]. The most difficult part in the

proof is showing that with high probability the slope of k 7→ La
n(k) is “everywhere”

bounded below by a positive constant. This problem is solved in the next section.
Let us look at the details of the proof of Theorem 2.1:

Lemma 3.2. Let c > 0. Assume that f : R → R is a map which is everywhere
differentiable and such that for all x ∈ R:

df

dx
≥ c. (3.1)

Let B be a random variable such that E[|f(B)|] < +∞ Then:

VAR[f(B)] ≥ c2 · VAR[B]. (3.2)

Proof . We have that E[B] and E[f(B)] are finite. Observe that limx→±∞ f(x) =
±∞ and f(x) is strictly increasing so that there exists x0 ∈ R such that

f(x0) = E[f(B)]. (3.3)

By the mean value theorem, we know that there exists a map δ : R → R such
that for all x ∈ R we have

f(x) = f(x0) + f ′(δ(x)) (x − x0) . (3.4)

By definition of variance and eqs.(3.3)(3.4) we have:

VAR[f(B)] = E[(f(B) − f(x0))
2] = E[f ′(δ(B))2 (B − x0)

2]. (3.5)

Using eq.(3.1) we get:

VAR[f(B)] ≥ c2E[(B − x0)
2]. (3.6)

Observe that
E[(B − x0)

2] ≥ min
y

E[(B − y)2] = VAR[B], (3.7)

where we used a well known minimizing property of the variance. This immediately
gives

VAR[f(B)] ≥ c2VAR[B], (3.8)

which finishes this proof. �

Typically, the (random) map k 7→ La(k) does not strictly increase for every
k ∈ [0, n]. But it is likely that every order o(ln n) points, it increases by a linear
quantity. Next we define an event which guarantees that the map k 7→ La(k)
increases linearly on the scale o(ln n):

Definition 3.1. Let En
slope designate the event that ∀i, j, such that 0 < i < j ≤ n

and i + k2 ln n ≤ j, we have:

La(j) − La(i) ≥ k1|i − j|. (3.9)

Here k1, k2 > 0 designate constants which do not depend on n and which will be
fixed in the proofs in sects. 4,5.

The above definition gives the discrete equivalent of condition (3.1) in the case
of a discrete function. Before proceeding we need a discrete version of Lemma 3.2.
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Lemma 3.3. Let c, m > 0 be two constants. Let f : Z → Z be a non decreasing
map such that:

• for all i < j:

f(j) − f(i) ≤ (j − i). (3.10)

• for all i, j such that i + m ≤ j:

f(j) − f(i) ≥ c · (j − i). (3.11)

Let B be an integer random variable such that E[|f(B)|] ≤ +∞. Then:

VAR[f(B)] ≥ c2

(

1 − 2m

c
√

VAR[B]

)

VAR[B]. (3.12)

Proof . Because of conditions (3.10) and (3.11), we can find a continuously differ-
entiable map g : R → R satisfying the following conditions:

• g agrees with f on every integer which is a multiple of m.
• ∀x ∈ R, we have that

c ≤ g′(x) ≤ 1. (3.13)

Thus, we can apply lemma 3.2 to g(B) and find:

VAR[g(B)] ≥ c2 · VAR[B]. (3.14)

The random variable g(B) approximates f(B):

|f(B) − g(B)| ≤ (1 − c) · m. (3.15)

Hence,

VAR[f(B) − g(B)] ≤ m2. (3.16)

Since, f(B) = g(B) + (f(B) − g(B)), we can apply the triangular inequality and
find:

√

VAR[f(B)] ≥
√

VAR[g(B)] −
√

VAR[f(B) − g(B)]. (3.17)

Hence:

VAR[f(B)] ≥ VAR[g(B)] − 2
√

VAR[g(B)] ·
√

VAR[f(B) − g(B)] =

=VAR[g(B)]

(

1 − 2
√

VAR[f(B) − g(B)]
√

VAR[g(B)]

)

.

Applying the inequalities (3.14) and (3.16) to the last inequality above, yields

VAR[f(B)] ≥ c2VAR[B]

(

1 − 2 m

c
√

VAR[B]

)

, (3.18)

which finishes this proof. �

Let σZ designate the σ-algebra of the triangular array Zk
i and σY Z the σ-algebra

of the triangular array Zk
i and of the Yi. Thus:

σZ := σ(Zk
i |i ≤ k ≤ n) σY Z := σ(Zk

i , Yj |i ≤ k ≤ n, j ≤ n).

We are now ready for the proof of the main theorem 2.1 of this article.



Fluctuations of the longest common subsequence 203

Proof of theorem 2.1. By Lemma 3.1 it is enough to prove that there exits k > 0
not depending on n, such that:

VAR[La(n − Na)] ≥ kn. (3.19)

Note that for any random variable D and any σ-field σ, we have

VAR[D] = VAR[ E[D|σ] ] + E[ VAR[D|σ] ]. (3.20)

Thus, since the variance is never negative, we find that

VAR[D] ≥ E[ VAR[D|σ] ]. (3.21)

Taking La(n − Na) for D and σY Z for σ, we find:

VAR[La(n − Na)] ≥ E[ VAR[La(n − Na)|σY Z ] ]. (3.22)

Note that the map La(·) is σY Z -measurable. Thus, conditional on σY Z , La(·)
becomes a non-random increasing map. The event En

slope is σY Z -measurable. When

En
slope holds, then the hypotheses of Lemma 3.3 holds for f = La(·) with c = k1

and m = k2 ln n. This implies that

VAR[La(n − Na)|σY Z ] ≥ (k1)
2

(

1 − 2k2 ln n

k1

√

VAR[Na|σY Z ]

)

VAR[Na|σY Z ]. (3.23)

Since Na is a binomial variable with parameter p and n and is independent from
σY Z , we have that

VAR[Na] = VAR[Na|σY Z ] = np(1 − p). (3.24)

Using the last equality with inequality (3.23), we obtain:

VAR[La(n − Na)|σY Z ] ≥ np(1 − p) (k1)
2

(

1 − 2k2 ln n

k1

√

p(1 − p)n

)

. (3.25)

Since, VAR[La(n − Na)|σY Z ] is never negative and since inequality (3.25) holds,
whenever En

slope holds, we find

VAR[Ln] ≥ E[ VAR[La(n − Na)|σY Z ] ] ≥

≥ n · P (En
slope) ·

[

p(1 − p) (k1)
2

(

1 − 2k2 ln n

k1

√

p(1 − p)n

)]

. (3.26)

The expression on the right side of inequality (3.26) divided by n converges to

P (En
slope)p(1 − p) (k1)

2 .

We will show in Lemma 4.1 below that P (En
slope) → 1 as n → ∞. Hence, for all n

big enough, VAR[Ln] is larger than np(1 − p) (k1)
2
/2 > 0. This finishes the proof

of theorem 2.1.

4. Slope of La(·)

This section is dedicated to the proof of the following lemma:

Lemma 4.1. We have that:

P (En
slope) → 1 (4.1)

as n → ∞.
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We first need a few definitions. A common subsequence of length m of the two
sequences Zk and Y , can be viewed as a pair of strictly increasing functions:

(π, η)

such that π : [1, m] → [1, k], η : [1, m] → [1, n] and

∀i ∈ [1, m], Zk
π(i) = Yη(i). (4.2)

Definitions:

(1) Let π : [1, m] → [1, k] and η : [1, m] → [1, n] be two increasing functions.
The pair of (π, η) is called a pair of matching subsequences of Zk and Y iff
it satisfies condition (4.2).

(2) Let Mk
1 designate the set of all pairs of matching subsequences of Zk and

Y .
(3) Let Mk

2 designate the set of all pairs of matching subsequences of Zk and
Y of maximal length, (i.e. of maximal length in the set Mk

1 .)
(4) Let ≤ indicate the natural partial order relation between increasing func-

tions π : [1, m] → N, i.e. π1 ≤ π2 iff, for every i ∈ [1, m], π1(i) ≤ π2(i).
With a slight abuse of notation we will indicate with ≤ also the partial or-
der induced on the pairs of increasing function (π, η), i.e. (π1, η1) ≤ (π2, η2)
iff π1 ≤ π2 and η1 ≤ η2.

(5) Let Mk ⊂ Mk
2 designate the set of all (π, η) ∈ Mk

2 which are minimal
according to the relation ≤, (i.e. minimal in the set Mk

2 ).
(6) Let (π, η) be a pair of matching subsequences of length m and let i ∈

[0, m − 1]. We call the quadruple

(π(i), π(i + 1), η(i), η(i + 1)) , (4.3)

a match of (π, η). If η(i) + 2 ≤ η(i + 1), we call the match a non-empty
match. If there exists j, such that η(i) < j < η(i + 1) and Yj = 1,
resp. Yj = 0, we say that the match contains a 1, resp. a 0. We also
say that the match contains the point j and call the bit Yj a free bit of
the match (π(i), π(i + 1), η(i), η(i + 1)). Sometimes we identify the match
(π(i), π(i + 1), η(i), η(i + 1)) with the couple of binary words:

(

Zk
π(i)Z

k
π(i)+1 . . . Zk

π(i+1) , Yη(i)Yη(i)+1 . . . Yη(i+1)

)

.

(7) Let 0 < s < t ≤ n. We call the integer interval [s, t] = {s, s + 1, . . . , t} a
block of Y , if for all r ∈ [s, t] we have Yr = Ys but Ys−1 6= Ys and Yt 6= Yt+1.
The cardinality | [s, t] | = s − t + 1 is called length of the block [s, t].

Let us give an illustrative example. Take Z6 = 101011, n = 9 and Y = 111000111. Let (π, η)
be defined as follows:

π(1) = 1, π(2) = 3, π(3) = 4, π(4) = 5, π(5) = 6

and

η(1) = 1, η(2) = 2, η(3) = 4, η(4) = 7, η(5) = 8.

Then, (π, η) is a pair of matching subsequences of Z6 and Y . The common subsequence associated
with it is:

Z6
1Z6

3Z6
4Z6

5Z6
6 = Y1Y2Y4Y7Y8 = 11011.

We represent the pair of matching subsequences (π, η) using an alignment of Z6 and Y :

1 0 1 0 1 1
1 1 1 0 0 0 1 1 1

In this example (π, η) contains the four following matches:
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(1)

1 0 1
1 1

(2)

1 0
1 1 0

(3)

0 1
0 0 0 1

(4)

1 1
1 1

The first match above is empty. The second match contains a one. Here, Y3 is a free bit of the
second match. The third match contains two zero’s: Y5 and Y6 are free bits of the third match.
The forth match is empty. The common subsequence 11011 is of maximal length (among all the
common subsequences of Z6 and Y ). So, we have that La(6) = 5. Hence, La(7) can only be equal
to 5 or 6.

What is the probability that La(7) is larger by one than La(6)? When we generate Z7 by
dropping the bit V7 on Z6, then there are five positions where it can fall:

position 1 position 2 position 3 position 4 position 5

1x01011 10x1011 101x011 1010x11 10101x1

where x designates the possible positions of the bit V 7. Each of these positions has same prob-
ability. Positions 1 and 2 correspond to the first match. Position 3 corresponds to the second
match. Position 4 correspond to the third match and position 5 corresponds to match number
four.

If V7 = 1 and the bit drops on the match which contains a one (that is match number two

corresponding to position three, i.e. T7 = 3), then La(7) = La(6) + 1. The reason is that the bit

V 7 can then get matched with the free 1-bit in match two and increase the score La(6) by one.

Similarly, if V7 = 0 and the bit V 7 drops on match number three, the score gets increased by one,

since then V 7 gets matched with the “free” zero contained in match number three. Hence, when V 7

drops on match number three, the result is: La(7) = La(6)+1. In general La(k +1) = La(k)+1,

if the bit Vk+1 drops on a match which contains a bit of the same color as to Vk+1. (By color, we

mean 0 or 1.)

From the idea of the previous example, we can get a lower bound for the prob-
ability that the score La(k) increases by one. The bit Vk+1 is equally likely to be
equal to one or equal to zero. So, when it drops on a nonempty match, the score
has at least 50% probability to increase. Each nonempty match corresponds to at
least one position. The bit V k+1 has k − 1 equally likely positions. It follows: for
any pair (π, η) of matching subsequences of Zk and Y :

P
(

La(k + 1) = La(k) + 1 | Zk, Y
)

≥ 1

2
·# of nonempty matches of (π, η)

k
(4.4)

if (π, η) is of maximal length.

Let us explain at this stage the main ideas for the proof of lemma 4.1. We
distinguish two cases depending on the value of k.

We first deal with the case k < 0.45n. In this case it easy to show that with
large probability all the bits in Zk are matched. Let En

1k be the event:

En
1k := {La

n(k) = k} (4.5)
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and

En
1 :=

0.45n
⋂

k=1

En
1,k. (4.6)

Observe that we have

En
1 = {La

n(k + 1) − La
n(k) = 1, ∀k < 0.45n} (4.7)

i.e. the slope of La
n(k) is equal to 1 for all k < 0.45n if En

1 holds. In the next
section we prove the following lemma:

Lemma 4.2. We have

lim
n→∞

P (En
1 ) = 1. (4.8)

Assume that instead of looking for a LCS, we want to know if one sequence is contained in

another. For example for given l ∈ N, we may be interested in finding out if the sequence Zk

is a subsequence of Y1Y2 . . . Yl. For this let ν(i) be the smallest l such that Zk

i
is a subsequence

of Y1Y2 . . . Yl. Then, ν(1), ν(2), ν(3), . . . defines a renewal process. The interarrival times Ii =

ν(i + 1) − ν(i) have geometric distribution and expectation E[Ii] = 2. Thus, E[ν(i)] = 2i and

VAR[n] = o(n). From this it follows that if we want Zk to be with high probability a subsequence

of Y1Y2 . . . Yl, we need to take l somewhat above 2k. Let us give a numerical example. Take

Z3 = 001 and Y = 10101000111. Then, ν(1) denotes the indices of the first Yi equal to zero. In

this case, ν(1) = 2. Similarly, ν(2) is the smallest i ≥ ν(1) such that Yi = Z3
2

= 0. Here: ν(2) = 4.

Finally, ν(3) is the smallest i ≥ ν(2), such that Y3 = 1, hence ν(3) = 5.

Let us next give the main ideas, why with high probability, the slope of k 7→ La(k)
is increasing linearly on the domain [0.45n, n]. We use the bit-drop scheme to prove
this: we show that typically the random map k 7→ La(k) has a positive drift γ > 0.
We define:

En
2k :=

{

∀(π, η) ∈ Mk, # of nonempty matches of (π, η) is larger than γn
}

. (4.9)

When En
2k holds, every pair (π, η) ∈ Mk has at least γn non-empty matches. The

proportion of non-empty matches to k hence is larger or equal to γ. Using inequality
4.4, it follows that

P
(

La(k + 1) = La(k) + 1 | Zk, Y
)

≥ 0.5 · γ (4.10)

when En
2k holds. Let En

2 be the event:

En
2 :=

n
⋂

k=0.45n

En
2k. (4.11)

Inequality 4.10 implies, that when En
2 holds, the map k 7→ La(k) has positive drift

0.5γ > 0 for k ∈ [0.45n, n]. By large deviation it follows, that with high probability
k 7→ La(k) has positive slope on [0.45n, n] as soon as En

2 holds . (See lemma 4.9.)
It remains to explain why En

2 holds with high probability.
Let us first summarize the general idea:
We proceed by contradiction. Assume all the matches of (π, η) ∈ M k

2 were empty.
Then all of the following would hold:

• (η(1), η(2), η(3), . . . , η(m)) = (η(1), η(1) + 1, η(1) + 2, . . . , η(1) + m) where
m is the length of the LCS of Zk and Y : m = La(k).
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• The sequence

Yη(1)Yη(2) . . . Yη(m) = Yη(1)Yη(1)+1 . . . Yη(1)+m

is a subsequence of

Zk
π(1)Z

k
π(1)+1 . . . Zk

π(m).

Hence we would have two independent i.i.d. sequences of Bernoulli variables with
parameter 1/2, where one is contained in the other as subsequence. This implies
that the sequence containing the other must be approximately twice as long. Hence
k is approximately at least twice as large as m = La(k). Thus, the ratio La(k)/k
is close to 50% or below. This is very unlikely, since it is known that the La(k)/k
is typically above 80%. This is our contradiction.

From the previous argument it follows that with high probability any (π, η) ∈ M k

contains a non-vanishing proportion ε > 0 of free bits. (Hence, La
n(k)/η(La

n(k)) ≥
ε.) We need to show that this proportion ε of free bits generates sufficiently many
non-empty matches: the free bits should not be concentrated in a too small number
of matches.

Let us go back to the numerical example starting on page 11 to illustrate how we count the
proportion of bits that are free. In that example, the first match of (π, η) contains no free bit.
The second match contains one free bit which is a one. The third match contains two free bits
which are zero’s. The forth match contains no free bit. The sequence Y contains a total of 8 bits
which are involved in a match of (π, η). (Note that the last bit Y9 of Y is not counted since it is
not involved in a match of (π, η).) We have a proportion of free bits to bits involved in matches
equal to:

3/8 = (8 − 5)/5 =
η(La

n(k)) − La
n(k)

η(La
n(k))

=
η(5) − 5

η(5)
.

The 3 free bits generate two non-empty matches.

To prove that there are more than γn nonempty matches two arguments are
used:

• Any pair of matching subsequence (π, η) which is minimal according to our
partial order for pairs of matches satisfies:

every match of (π, η) can contain zero’s or one’s but not both at the
same time. Hence, each match of (π, η) ∈ Mk contains free bits from at
most one block of Y .

• With high probability, the total number of integer points in [0, n] contained
in blocks of Y of length ≥ D is very small. (By choosing D large, we make
the total number of points contained in blocks longer than D, much smaller
than the number of free bits.)

From the two points above, it follows that for (π, η) ∈ M k, the majority of free bits
are at most D per match. This ensures that the proportion ε of free bits, generates
a proportion of at least order ε/D non-empty matches.

Let us look at an example of a pair (π, η) which is of maximal length but not minimal according
to our order relation on Mk

2
. Take Z7 = 0101101 and Y = 00110010111. Define the pair of

matching subsequences (π, η) as follows:

π(1) = 1, π(2) = 2, π(3) = 3, π(4) = 4, π(5) = 5, π(6) = 7

and
η(1) = 1, η(2) = 7, η(3) = 8, η(4) = 9, η(5) = 10, η(6) = 11.

Let us represent this pair of matching subsequences by an alignment:

0 1 0 1 1 0 1
0 0 1 1 0 0 1 0 1 1 1
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This gives the common subsequence 010111. The pair (π, η) is of maximal length, but it is not
minimal for our order relation on Mk

2
: instead of η(2) = 7, take η∗(2) = 3. Let otherwise η∗

be equal to η. Then (π, η∗) is strictly below (π, η). To construct η∗ we used the fact that a
match of (π, η) contained both zero’s and one’s. It is always possible to find a strictly smaller pair
(π, η∗) ∈ mK

2
when a match of (π, η) contains hero’s and one’s at the same time.

Note that (π, η) contains 5 free bits, but only one non-empty match. All the free bits of (π, η)

are concentrated in one match. The match containing all the free bits contains several blocks. By

taking a minimal pair of matching subsequences, this kind of situation is avoided.

Let us look at the details of the proof of Lemma 4.1. Let La
l (k) denote the

length of the LCS of Zk and the sequence Y l := Y1Y2 . . . Yl. For Y l to be entirely
contained as a subsequence in Zk, one needs k to be approximately twice as long
as l. (We have that Y l is a subsequence of Zk iff La

l (k) = l.) Hence, it is unlikely
that that Y l is a subsequence of Zk, when k = 2l(1− δ). (Here δ > 0 is a constant
not depending on l.) In other words, it is unlikely that:

La
l (2l(1 − δ)) ≥ l.

Similarly, it is unlikely, that Y l is “close to being a subsequence of Zk”, when
k = 2l(1− δ):

Lemma 4.3. There exists a function δ : R → R such that limε→0 δ(ε) = 0 and

P
(

La
l

(

2l
(

1 − δ(ε)
))

> l(1 − ε)
)

≤ Ce−cl, (4.12)

for all l > 0 and suitable constants c > 0 and C > 0 not depending on l. (Note that
the constants c > 0 and C > 0 may depend on ε.)

We can now define:

En
3l = {La

l (2l(1 − δ(ε))) ≤ (1 − ε)l} (4.13)

and

En
3 :=

n
⋂

k=0.2n

En
3k, (4.14)

where ε is a suitable number, to be fixed in the following, and δ(ε) is given by
Lemma 4.3. It follows that:

Corollary 4.1. If δ(ε) in the definition of En
3 is given by Lemma 4.3, we have

lim
n→∞

P (En
3 ) = 1. (4.15)

Typically, La
n(k) is above 80% ·k. However, to make things easier, we prove only

that it is above 65% · k. We define:

En
4k := {La

n(k) ≥ 0.65k} (4.16)

and

En
4 :=

n
⋂

k=0.45n

En
4,k. (4.17)

The next lemma is proved in the next section:

Lemma 4.4. We have

lim
n→∞

P (En
4 ) = 1. (4.18)
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Let us define the event En
6k :

En
6k :=

{

La
n(k) ≤ (1 − ε)η(La

n(k)), ∀(π, η) ∈ Mk
}

(4.19)

and

En
6 :=

n
⋂

k=0.45n

En
6k. (4.20)

The event En
6k says that any pair of matching subsequences (π, η) ∈ M k has a

proportion of at least ε free bits. (Note that η(La
n(k)) is the number of the last bit

of Y involved in a match of (π, η). Furthermore, La
n(k) represents the number of

bits that are “matched” by (π, η). Hence, η(La
n(k))−La

n(k) is the number of “free”
bits.)

Lemma 4.5. Take ε > 0 small enough, so that

50%

1 − δ(ε)
< 65%. (4.21)

Then, we have that, for all k > 0.45n,

En
3 ∩ En

4k ⊂ En
6k. (4.22)

Thus

En
3 ∩ En

4 ⊂ En
6 . (4.23)

Proof . Let k ∈ [0.45n, n]. We show that if En
6k does not hold and En

3 holds, then
En

4k can not hold. This in terms implies (4.22).
Let (π, η) ∈ Mk. If En

6k does not hold, than the proportion of “free” bits of
(π, η) is below ε. In other words:

La
l (k)

l
≥ 1 − ε,

where l := η(La
n(k)). (Note that La

l (k) = La
n(k), since (π, η) is of maximal length.)

It follows that

La
l (k) ≥ l(1− ε). (4.24)

Now, when En
3k holds, then

La
l (2l(1 − δ(ε))) ≤ l(1 − ε). (4.25)

Comparing inequality (4.24), with (4.25) and noting that the (random) map x 7→
La

l (x) is increasing, yields:

k ≥ 2l(1 − δ(ε))

and hence

k ≥ 2η(La
n(k))(1 − δ(ε)) ≥ 2La

n(k)(1 − δ(ε)).

From this it follows, that:

La
n(k)

k
≤ 50%

1 − δ(ε)
< 65%, (4.26)

where the 65%-bound is obtained from inequality (4.21). Inequality (4.26) contra-
dicts En

4k . �
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To obtain En
2 we must be sure that the free bits of Y do not concentrate in a

small amount of of matches of (π, η) ∈ Mk. As explained in the example on page
12, any match of (π, η) ∈ Mk can contain 0’s or 1’s, (or nothing) but not 0’s and 1’s
at the same time. This is due to the minimality respect to the ordering <. In fact if
(π(i), π(i + 1), η(i), η(i + 1)) is a non empty match we must have that Yl 6= Yη(i+1)

for all η(i) < l < η(i + 1). Otherwise, we could match the bit Zπ(i+1) with Yl

instead of Yη(i+1). This modification would yield a pair of matching subsequences

of same length but strictly smaller according to our order relation on M k
2 . Thus,

all the free bits of a match of (π, η) ∈ Mk are contained in only one block of Y .
It is useful to see how many bits are contained in long blocks. Let BLOCKD

designate the set of all blocks [i, j] ⊂ [0, n] of Y of length at least D. (For the
definition of blocks see the definitions at the beginning of this section.) Let ND

denote the total number of points in the sequence Y which are contained in a block
of length at least D:

ND :=
∣

∣

{

s ∈ [1, n] | ∃[i, j] ∈ BLOCKD, s ∈ [i, j]
} ∣

∣ . (4.27)

Let En
5 designate the event:

En
5 :=

{

ND ≤ εn/4
}

. (4.28)

We will show in section 6 that:

Lemma 4.6. For every ε > 0 there exists D such that

lim
n→∞

P (En
5 ) = 1. (4.29)

We then have the following combinatorial fact:

Lemma 4.7. We have that, for all k > 0.45n:

En
4 ∩ En

5 ∩ En
6k ⊂ En

2k , (4.30)

with γ = 0.0425ε
D−1 . Thus also:

En
4 ∩ En

5 ∩ En
6 ⊂ En

2 . (4.31)

Proof . We prove 4.30. The event En
6k implies that for each (π, η) ∈ Mk there are

at least ε η(La
n(k)) free bits. We have:

η(La
n(k)) ≥ La

n(k). (4.32)

When En
4 holds, we have that:

La
n(k) ≥ 0.65k. (4.33)

Since we take k ≥ 0.45n, inequalities 4.32 and 4.33, together imply that the number
of free bits of (π, η) ∈ Mk is at least

ε 0.65 · 0.45n = ε 0.2925n.

By En
5 , there are at most 0.25εn bits contained in blocks of length ≥ D. Thus,

there are at least 0.0425ε · n free bits contained in blocks of length < D. Recall
that every match of (π, η) ∈ Mk contains free bits from only one block. Hence,
every match of (π, η) ∈ Mk can contain at most D − 1 free bits from blocks of
length < D. Hence, these ε 0.0425n free bits which are not in ND, must fill at least
ε 0.0425n/(D− 1) matches of (π, η) ∈ Mk. It follows that (π, η) ∈ Mk has at least
0.0425ε · n/(D − 1) non-empty matches. �
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Lemmas 4.5 and 4.7 jointly imply that that En
3 ∩ En

4 ∩ En
5 ⊂ En

2 . Hence:

P (Enc
2 ) ≤ P (Enc

3 ) + P (Enc
4 ) + P (Enc

5 ), (4.34)

where Enc
x denotes the complement of En

x . We have that P (Enc
3 ), P (Enc

4 ) and
P (Enc

5 ) all converge to zero when n → ∞. (This follows from Lemmas 4.1, 4.4 and
4.6.) Hence, we have that:

lim
n→∞

P (En
2 ) = 1. (4.35)

Let σk denote the σ-algebra:

σk := σ(Zk
i , Yj |i ≤ k, j ≤ n).

It is easy to check that En
2k is σk-measurable. Note that La(k+1)−La(k) is always

equal to one or zero.

Lemma 4.8. When En
2k holds, then

P (La(k + 1) − La(k) = 1|σk) ≥ 0.5γ. (4.36)

Proof . This has already been explained. (See inequality 4.10). �

We finally observe that

P (Enc
slope) ≤ P (Enc

slope ∩ (En
2 ∩ En

1 )) + P (Enc
2 ) + P (Enc

1 ). (4.37)

Since P (Enc
1 ) and P (Enc

2 ) both go to zero as n goes to infinity, we only need to
prove that

P (Enc
slope ∩ (En

2 ∩ En
1 )) → 0 for n → ∞, (4.38)

to establish lemma 4.1.

Lemma 4.9. We have that

P (Enc
slope ∩ (En

2 ∩ En
1 )) → 0

as n → ∞.

Proof . We can assume that γ < 1. Define k1 := 0.4γ, so that k1 ≤ 0.4. Let

∆(k) := La
n(k + 1) − La

n(k)

when En
2k holds, and ∆(k) := 1 otherwise. From eq.(4.36), it follows that:

P (∆(k) = 1|σk) ≥ 0.5γ. (4.39)

Furthermore, ∆(k) is equal to zero or one and σk-measurable. For k ∈]0.45n, n],
let

L̃a
n(k) = La

n(0.45n) +
k−1
∑

i=0.45n

∆(i).

For k ∈ [0, 0.45n], let L̃a
n(k) := La

n(k). Note that when En
2 holds, then

La(k) = L̃a(k), (4.40)

for all k ∈ [0, n−1]. Introduce the event Ẽn
slope to be the event such that ∀i, j, with

0.45n < i < j ≤ n and i + k2 ln n ≤ j, we have:

L̃a
n(j) − L̃a

n(i) ≥ k1|i − j|. (4.41)

When En
1 holds, then La

n(k) has a slope of one on the domain [0, 0.45]. Hence, the
slope condition of En

slope holds on the domain [0, 0.45n], since we have k1 ≤ 0.4.

When En
2 holds, then La

n(k) and L̃a
n(k) are equal. It follows that when En

2 and Ẽn
slope
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both hold, then the slope condition of En
slope is verified on the domain [0.45n, n].

Hence

En
1 ∩ En

2 ∩ Ẽn
slope = En

1 ∩ En
2 ∩ En

slope. (4.42)

Thus

P (Enc
slope ∩ En

1 ∩ En
2 ) = P (Ẽnc

slope ∩ En
1 ∩ En

2 ) ≤ P (Ẽnc
slope).

It only remains to prove that P (Ẽnc
slope) goes to zero as n → ∞. For this we can

use large deviation. Let Ẽn
i,j be the event that

L̃a
n(j) − L̃a

n(i) ≥ k1|i − j|.
Then

Ẽn
slope =

⋂

i,j

Ẽn
i,j ,

where the intersection in the last equation above is taken over all i, j ∈ [0.45n, n]
such that i + k2 ln n ≤ j. It follows that

P (Ẽnc
slope) ≤

∑

i,j

P (Ẽnc
i,j ) (4.43)

where the last sum is taken over all i, j ∈ [0.45n, n] such that i + k2 ln n ≤ j. Since
we took k1 = 0.4γ and because of (4.39), large deviation tells us that there exists
constants c, C > 0 such that

P (Ẽnc
i,j ) ≤ Ce−c|i−j| (4.44)

for all i, j ∈ N. (The constants C, c do not depend on i, j.) Take k2 := 3/c. With
this choice, (4.44) becomes:

P (Ẽnc
i,j ) ≤ Cn−3, (4.45)

when k2 ln n ≤ |i − j|. Note that there are less than n2 terms in the sum in
inequality (4.43). By (4.45), each term in the sum in inequality (4.43), is less or
equal to Cn−3. Thus inequality (4.43) and (4.45) together imply that

P (Ẽnc
slope) ≤

C

n
.

This finishes this proof. �

5. Bounds for the probabilities.

We report in this section several proofs of the lemmas used in section 4.

Lemma 5.1. There exists c < 0, so that for every n and ν < 0.5 we have

P (La
n(νn) = νn) ≥ 1 − ec(0.5−ν)2n. (5.1)

Proof . We can build a pair of matching subsequences has follows: start from Zk
1

and match it with the first Yi1 = Zk
1 , then match Zk

2 with the first Yi2 = Zk
2 such

that i2 > i1. We can proceed as before until we reach the end of the Zk or of
the Y . More precisely we can define a matching (π, η) such that π(i) = i and
ν(i) = inf l>ν(i−1){Yl = Zk

i } (see remark after Lemma 4.2 for an explicit example).

Given Zk and Y we call Tj the sequence of random variables defined by Tj =
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ν(j)− ν(j − 1). Observe that the Tj is a sequence of independent random variable
all with geometric distribution of parameter 1

2 . It follows that

P (La
n(νn) = νn) ≥ P

(

νn
∑

i=0

Ti < n

)

= P

(

νn
∑

i=0

Ti −
1

ν
< 0

)

, (5.2)

but

P

(

νl
∑

i=0

Ti −
1

ν
> 0

)

≤ inf
s>0

E
(

es(
P

νn
i=0

Ti−
1

ν )
)

. (5.3)

Due to the independence of the Ti we have

E
(

es(
P

νn
i=0

Ti−
1

ν )
)

= E
(

es(T0−
1

ν )
)νn

=

(

es

2 − es

)νn

e−ns. (5.4)

It is easy to check that

inf
s>0

(

es

2 − es

)ν

e−s ≤ ec(0.5−ν)2 , (5.5)

for a suitable constant c < 0, so that we get

P (La
n(νn) = νn) ≥ 1 − ec(ν−0.5)2n. (5.6)

�

Proof of lemma 4.2. It follows immediately from the above lemma. �

In a very similar way we can prove that

Lemma 5.2. There exists δ > 0, c < 0 and C > 0, such that for every k

P (La
k(2(1 − δ)k) = k) ≤ Cecδ2k. (5.7)

Proof . Observe that the only possibility for La
n(k) = k is that the pair of matching

subsequences constructed at the beginning of the proof of lemma 5.1 has length k.
Using the notation of that proof we have that

P
(

La
(2−δ)k(k) = k

)

= P

(

k
∑

i=0

Ti ≤ (2 − δ)k

)

. (5.8)

This quantity can be evaluated as in the previous proof to obtain the lemma. �

We can now estimate the probability of En
3k.

Proof of Lemma 4.3. Consider a subset of S ⊂ [0, l] containing (1 − ε)l points.

There are
(

l
l(1−ε)

)

such subset. We can fix the sequence Y on the subset S. We

have 2εl Y ’s that agree on S. Calling δ(ε) = ε + δ′(ε) we have, due to Lemma 5.2,

that the probability of matching all Y in S is bounded by e−δ′(ε)2l. Collecting the
above estimates we get that

P
(

La
l

(

2l (1 − δ(ε))
)

> l(1 − ε)
)

≤ 2εl

(

l

l(1 − ε)

)

e−cδ′(ε)2l ≤

≤ Ce[ε(ln 2+ln ε)+(1−ε) ln(1−ε)−cδ′(ε)2]l (5.9)



214 Federico Bonetto and Heinrich Matzinger

where we have used Stirling’s formula. Thus it is enough to choose

δ′(ε) =

√

2

c
[ε(ln 2 + ln ε) + (1 − ε) ln(1 − ε)] (5.10)

to obtain the lemma. �

Proof of lemma 4.4. We can divide the sequences Zk and Y is subsequences of

length 10 and write La
k(k) <

∑k/10
i=1 Li where Li is the longest common sub-

sequence between Y10(i−1)+1 . . . Y10i and Zk
10(i−1)+1 . . . Zk

10i. From Chvàtal and

Sankoff (1975) we know that E(Li) = 6.97844. From a standard large deviation
argument we get

P





k/10
∑

i=1

Li < k

(

E(Li)

10
− δ

)



 <

(

inf
s<0

E
(

es(L0−(0.69−δ))
)

)
k
10

. (5.11)

Calling p(s, δ) = E
(

es(L0−(0.69−δ))
)

it easy to see that p(s, δ) is smooth in s,
p(0, δ) = 1 and ∂sp(0, δ) < 0 for every δ > 0. This implies that

inf
s<0

p(s, δ) < e−c(δ) (5.12)

for suitable c(δ) > 0. This immediately give the thesis of the Lemma.
�

Finally we prove Lemma (4.6):

Proof of lemma 4.6. Let ÑD be the number of integer points in [0, n − D] which

are followed by at least D times the same color in the sequence Y . Thus, ÑD is
the number of integer points s ∈ [0, n − D] so that

Ys = Ys+1 = . . . = Ys+D . (5.13)

It is easy to check that
ND ≤ DÑD. (5.14)

Let now Ỹs, s ∈ [0, n−D], be equal to 1 if and only if (5.13) holds, and 0 otherwise.
We find:

n
∑

s=1

Ỹs = ÑD. (5.15)

To estimate the sum (5.15) we can decompose it into D sub sums Σ1, Σ2, . . . , ΣD,
where

Σi =
∑

s=1,...,n

s mod D=i

Ỹs, (5.16)

so that

ÑD =

D
∑

i=1

Σi (5.17)

It is easy to see that

P
(

ND >
ε

4
n
)

≤ P
(

ÑD >
ε

4D
n
)

≤ D · P
(

Σ0 >
ε

4D2
n
)

, (5.18)

where the last inequality follows from the fact that at least one of the addends in
(5.17) has to be larger than ε

4D2 n. Now, the Ys appearing in the sub sum Σ0 are
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i.i.d. Bernoulli random variable with P (Ys = 1) = 2−D. We can apply a large
deviation argument analogous to the one used in the previous proof and obtain

P
(

Σ0 > (2−D + δ)
n

D

)

≤ e−c(δ) n
D . (5.19)

with c(δ) > 0 for δ > 0. Thus it is enough to choose D such that D2−D < ε
4 �
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