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Yueyun Hu, Département de Mathématiques, (Institut Galilée, L.A.G.A. UMR 7539),
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Abstract. In this note we show that in any dimension d, the strong disorder prop-
erty implies the strong localization property. This is established for a continuous
time model of directed polymers in a random environment : the parabolic Anderson
Model.

1. Introduction

Let ω = (ω(t))t≥0 be the simple continuous time random walk on the d-dimensional
lattice Z

d, with jump rate κ > 0, defined on a probability space (Ω,F , P). We
consider an environment B = (Bx(t), t ≥ 0, x ∈ Z

d) made of independent standard
Brownian motions Bx defined on another probability space (H,G,P).
For any t > 0 the (random) polymer measure µt is the probability defined on the
path space (Ω,F) by

µt(dω) =
1

Zt
eβHt(ω)−tβ2/2

P(dω),

where β ≥ 0 is the inverse temperature, the Hamiltonian is

Ht(ω) =

∫ t

0

dBω(s)(s)

and the partition function is

Zt = Zt(β) = E

[

eβHt(ω)−tβ2/2
]

,

where E [] denotes expectation with respect to P.
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Bolthausen (1989) was the first to establish that (Zt)t≥0 was a positive martingale,
converging almost surely to a finite random variable Z∞, satisfying a zero-one law:
P(Z∞ > 0) ∈ {0, 1}. We shall say that there is strong disorder if Z∞ = 0 almost
surely, and weak disorder if Z∞ > 0 almost surely.
Another martingale argument, based on a supermartingale decomposition of log Zt,
enabled Carmona and Hu (2004), then Comets et al. (2003, 2004), and Rovira
and Tindel (2005), to show the equivalence between strong disorder and weak-
localization :

Z∞ = 0 a.s. ⇐⇒
∫ ∞

0

µ⊗2
t (ω1(t) = ω2(t)) dt = +∞ a.s. ,

where ω1, ω2 are two independent copies of the random walk ω, considered under
the product polymer measure µ⊗2

t :

µ⊗2
t (dω1, dω2) =

1

Z2
t

eβ(Ht(ω1)+Ht(ω2))−tβ2

P
⊗2(dω1, dω2) .

Let us define strong localization as the existence of a constant c > 0 such that

lim sup
t→+∞

sup
x

µt(ω(t) = x) ≥ c a.s.

This property implies the existence of highly favored sites, in contrast to the simple
random walk (β = 0) for which supx P (Xt = x) ∼ Ct−d/2 → 0. Carmona and Hu
(2004), and then Comets et al. (2004), showed that in dimension d = 1, 2, for any
β > 0, there was not only strong disorder but also strong localization.

We shall prove in this note the

Theorem 1.1. In any dimension d, strong disorder implies strong localization.

This completes the picture since we know now from Comets and Yoshida (2004)
that weak disorder implies diffusivity under the polymer measure.

For sake of completeness, let us state yet another localization property. The free
energy is the limit

p(β) = lim
t→+∞

1

t
log Zt ,

where the limit can be shown to hold almost surely and in every Lp, p ≥ 1 (see
e.g. Comets et al. (2004)). The function p(β) is continuous, non increasing on
[0, +∞[, p(β) ≤ 0, p(0) = 0, so there exists a critical inverse temperature βc ∈
[0, +∞] such that:

{

p(β) = 0 if 0 ≤ β ≤ βc ;

p(β) < 0 if β > βc .

When p(β) < 0 we say that the system has the very strong disorder property. We
shall prove that (see equation (2.1)):

p(β) = −β2

2
lim

t→+∞
1

t

∫ t

0

µ⊗2
s (ω1(s) = ω2(s)) ds a.s.

Therefore there is very strong disorder if and only if there exists a constant c > 0
such that almost surely:

lim
t→+∞

1

t

∫ t

0

µ⊗2
s (ω1(s) = ω2(s)) ds = c.
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The recent beautiful result of Comets and Vargas (2006), that is βc = 0 in dimension
d = 1, strengthen our belief in the

Conjecture : very strong disorder ⇐⇒ strong disorder

Proving this conjecture would unify all these notions of disorder and localization.

Eventually, let us end this rather lengthy introduction by making clearer the con-
nection with the parabolic Anderson model (see Carmona and Molchanov (1994)
or Cranston et al. (2002)). The point to point partition functions

Zt(x, y) = Ex

[

eβHt(ω)−tβ2/2 1(ω(t)=y)

]

satisfy the stochastic partial differential equation (see Section 2)

dZt(0, x) = LZt(0, .)(x) dt + βZt(0, x) dBx(t) ,

where L = κ∆ is the generator of the simple random walk ω with jump rate κ, that
is ∆ is the discrete Laplacian.

Let us explain now the structure of this paper. Section 2 is devoted to the study
of the partition function as a martingale, and we prove that its asymptotics are
governed by the asymptotics of the overlap It = µ⊗2

t (ω1(t) = ω2(t)).
An important fact is that It itself is a semimartingale. In Section 3 we establish a
decomposition of It which is not its canonical semimartingale decomposition (this
decomposition can be obtained via the parabolic Anderson equation(1)). In fact
this decomposition looks a lot like a renewal equation involving the overlap for the
simple random walk : it is the basic ingredient of our proof of the main result, since
it is in this decomposition that we inject our knowledge of the behaviour of the
overlap for simple random walk.

2. The partition function

Without loss in generality we can work on the canonical path space Ω made of
ω : R

+ → Z
d, càdlàg, with a finite number of jumps in each finite interval [0, t]. We

endow Ω with the canonical sigma-field F and the family of laws (Px, x ∈ Z
d) such

that under Px, (ω(t))t≥0 is the simple random walk starting from x, with generator
L = κ∆. With these notations, we consider, attached to each path ω ∈ Ω, the
exponential martingale

Mω
t = exp(βHt(ω) − tβ2/2) = 1 + β

∫ t

0

Mω
s dBω(s)(s) ,

with respect to the filtration Gt = σ(Bx(s), s ≤ t, x ∈ Z
d). We have Zt = E [Mω

t ]
and thus the

Proposition 2.1. The process (Zt)t≥0 is a continuous positive Gt martingale with
quadratic variation

d〈Z, Z〉t = Z2
t β2 It dt , with It = µ⊗2

t (ω1(t) = ω2(t)) .
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Proof : We know that linear combinations of martingales are martingales. This
extends easily to probability mixtures of martingales. Indeed, let 0 ≤ s ≤ t and let
U be positive bounded and Gs-measurable. Then, by Fubini-Tonelli’s theorem :

E[ZtU ] = E[E [Mω
t ]U ] = E [E[Mω

t U ]]

= E [E[Mω
s U ]] (Mω is a martingale)

= E[E [Mω
s ]U ] = E[ZsU ] .

Observe that if ω1, ω2 are paths, then we can compute the quadratic covariation

d〈Mω1 , Mω2〉t = Mω1
t Mω2

t β2 1(ω1(t)=ω2(t)) dt.

Therefore, we have formally:

d〈Z, Z〉t = d

〈∫

P(dω1)M
ω1 ,

∫

P(dω2)M
ω2

〉

t

=

∫

P
⊗2(dω1, dω2)d〈Mω1 , Mω2〉t

= β2Z2
t

1

Z2
t

∫

P
⊗2(dω1, dω2)M

ω1
t Mω2

t 1(ω1(t)=ω2(t)) dt

= Z2
t β2 It dt.

This again can be made rigorous by writing Nt = Z2
t −β2

∫ t

0 Z2
s Is ds as a probability

mixture of martingales:

Nt =

∫

P
⊗2(dω1, dω2)(M

ω1
t Mω2

t − β2

∫ t

0

Mω1
s Mω2

s 1(ω1(s)=ω2(s)) ds) .

�

The positive martingale Zt converges almost surely to a positive finite random
variable Z∞. We refer to any of Bolthausen (1989); Comets et al. (2004); Carmona
and Hu (2002) for a proof of the following zero-one law.

Proposition 2.2.

P(Z∞ = 0) ∈ {0, 1} .

We can now show the equivalence between strong disorder and weak localization.

Proposition 2.3. The supermartingale log Zt has the decomposition

log Zt = Mt −
1

2
At

with (Mt)t≥0 a continuous martingale of quadratic variation

〈M, M〉t = At = β2

∫ t

0

Is ds .

Consequently:

• either Z∞ = 0 and
∫∞
0

Is ds = +∞ almost surely;

• or Z∞ > 0 and
∫∞
0

Is ds < +∞ almost surely.

In both cases the free energy is given by

p(β) = −β2

2
lim

t→+∞
1

t

∫ t

0

Is ds = −β2

2
lim

t→+∞
1

t

∫ t

0

E[Is] ds . (2.1)
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Proof : One can even prove (see Carmona and Hu, 2002) that weak disorder is
equivalent to the uniform integrability of the martingale (Zt)t≥0.

Itô’s formula yields :

log Zt =

∫ t

0

dZs

Zs
− 1

2

∫ t

0

d〈Z, Z〉s
Z2

s

= Mt −
1

2
β2

∫ t

0

Is ds = Mt −
1

2
At.

Therefore,

• On {A∞ = 〈M, M〉∞ < +∞} the martingale Mt converges almost surely,
Mt → M∞ so log Zt → M∞ − 1

2A∞ and Z∞ > 0 almost surely, and

p(β) = limt→+∞ 1
t log Zt = 0.

• On {A∞ = 〈M, M〉∞ = +∞}, we have almost surely Mt

〈M,M〉t

→ 0 so
log Zt

At
→ − 1

2 and log Zt → −∞, so Z∞ = 0. Furthermore, p(β) =

limt→+∞ 1
t log Zt = − 1

2 limt→+∞ 1
t At.

We conclude this proof by taking expectations:

p(β) = lim
t→+∞

1

t
E[log Zt] = −1

2
lim

t→+∞
1

t
E[At] = −β2

2
lim

t→+∞
1

t

∫ t

0

E[Is] ds .

�

The connection with the parabolic Anderson model is contained in the

Proposition 2.4. The point to point partition functions (Zt(0, x), t ≥ 0, x ∈ Z
d)

satisfy the stochastic partial differential equation

dZt(0, x) = LZt(0, .)(x) dt + β Zt(0, x) dBx(t) ,

where L = κ∆ is the generator of the simple random walk with jump rate κ, that is
∆ is the discrete Laplacian.

Proof : Let pt(x) = P (Xt = x) be the probability function at time t of simple
random walk. By Fubini’s stochastic theorem and Markov property:

Zt(0, x) =

∫

P(dω)Mω
t 1(ω(t)=x)

=

∫

P(dω)1(ω(t)=x)(1 + β

∫ t

0

Mω
s dBω(s)(s))

= pt(x) + β

∫ t

0

∫

P(dω)1(ω(t)=x)M
ω
s dBω(s)(s)

= pt(x) + β

∫ t

0

∫

P(dω)pt−s(ω(s) − x)Mω
s dBω(s)(s)

= pt(x) + β

∫ t

0

Zsµs(pt−s(ω(s) − x)dBω(s)(s)) .

We conclude by differentiating with respect to t, taking into account that

d

dt
pt(x) = Lpt(x).

In other words, we combine

pt−s(y) = 1(y=0) +

∫ t

s

Lpu−s(y) du
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and Fubini’s stochastic theorem. (This result is just Feynman-Kac formula com-
bined with time reversal of the continuous time random walk). �

3. Itô’s formula for the polymer measure

Let (P⊗n
t )t≥0 be the semi-group of the Markov process ω(t) = (ω1(t), . . . , ωn(t))

constructed from n independent copies of the simple random walk (ω(t))t≥0: if
f : R

n → R is a bounded Borel function, then

P⊗n
t f(x1, . . . , xn) = Ex1,...,xn

[f(ω1(t), . . . , ωn(t))] .

Theorem 3.1. Let f : R
n → R be a bounded Borel function, and t ≥ t0 ≥ 0. Then,

µ⊗n
t [f(ω(t))] = µ⊗n

t0

[

P⊗n
t−t0f(ω(t0))

]

+ β2
∑

i<j

∫ t

t0

µ⊗n
s

[

1(ωi(s)=ωj(s))P
⊗n
t−sf(ω(s))

]

ds

− nβ2
∑

i

∫ t

t0

µ⊗(n+1)
s

[

1(γ(s)=ωi(s))P
⊗n
t−sf(ω(s))

]

ds

+
n(n + 1)

2
β2

∫ t

t0

µ⊗n
s

[

P⊗n
t−sf(ω(s))

]

Is ds

+

∫ t

t0

µ⊗n
s

[

P⊗n
t−sf(ω(s))(β

∑

i

dBωi(s)(s) − n
dZs

Zs
)

]

,

where γ is an extra independent copy of ω.

Proof : Given paths ω1, . . . , ωn, we let

Ut = Ut(ω1, . . . , ωn) =
Mω1

t . . . Mωn

t

Zn
t

.

We use the following easy computations of quadratic variations:

d〈Mγ , Mτ 〉t = Mγ
t Mτ

t β2 1(γ(t)=τ(t)) dt

d〈Mγ , Z〉t = β2Mγ
t Ztµt

[

1(ω(t)=γ(t))

]

dt , d〈Z, Z〉t = Z2
t β2Itdt ,

The classical Itô’s formula yields:

Ut = Ut0 +

∫ t

t0

Us

(

n
∑

i=1

βdBωi(s)(s) − n
dZs

Zs

)

+ β2

∫ t

t0

Us





∑

i<j

1(ωi(s)=ωj(s)) − n
∑

i

µs

[

1(γ(s)=ωi(s))

]

+
n(n + 1)

2
Is



ds ,

where in the last line µs acts on the generic path γ. Since,

µ⊗n
t [f(ω(t))] =

∫

f(ω(t))Ut(ω) dP
⊗n(ω)

we conclude this proof by applying Fubini’s theorem and Markov’s property. For
example,
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∫

f(ω(t))Ut0 (ω) dP
⊗n(ω) = E

[

f(ω(t))
Mω1

t0 . . . Mωn

t0

Z(t0)n

]

=
1

Z(t0)n
E
[

P⊗n
t−t0f(ω(t0))M

ω1
t0 . . . Mωn

t0

]

= µ⊗n
t0

[

P⊗n
t−t0f(ω(t0))

]

.

�

4. Proof of the main result

We assume that there is strong disorder so almost surely, Z∞ = 0 and
∫∞
0 Is ds =

+∞, and we shall show that for a certain c0 > 0, lim supt→+∞ Vt ≥ c0 almost
surely, with Vt = supx µt(ω(t) = x).

Let r(t) = P
⊗2(ω1(t) = ω2(t)) and R(t) =

∫ t

0 r(s) ds. In dimension d = 1, 2,

R(∞) = +∞ so certainly β2R(∞) > 1. In dimension d ≥ 3, R(∞) < +∞
and Markov’s property implies that L∞ =

∫∞
0 1(ω1(s)=ω2(s)) ds is under P

⊗2 an
exponential random variable of expectation R(∞). Since, by Fubini’s theorem,

E
[

Z2
t

]

= E
⊗2
[

E
[

eβ(Ht(ω1)+Ht(ω2))−tβ2
]]

= E
⊗2

[

e
β2

2 Var(Ht(ω1)+Ht(ω2))−tβ2

]

= E
⊗2
[

eβ2
R

t

0
1(ω1(s)=ω2(s)) ds

]

,

the second moment method yields that if β2R(∞) < 1, then suptE
[

Z2
t

]

= E
⊗2
[

eβ2L∞

]

<

+∞, so Zt is an L2 bounded martingale, hence E [Z∞] = 1 and Z∞ > 0 almost
surely. Birkner (2004) improved this result by using a conditional moment method :
if R(∞) < +∞, then there exists β−

c > 1√
R(∞)

such that for β < β−
c , Z∞ > 0 almost

surely. Hence, since we assumed strong disorder, we certainly have β2R(∞) > 1.

Observe that since Vt = supx Ut(x) with Ut(x) = µt(ω(t) = x), we have

It = µ⊗2
t (ω1(t) = ω2(t)) =

∑

x

µ⊗2
t (ω1(t) = x = ω2(t))

=
∑

x

Ut(x)2 ≤ Vt

∑

x

Ut(x) = Vt

and It ≥ V 2
t . Therefore we shall show that almost surely, lim supt→+∞ It ≥ c0. It

is sufficient to prove that if Jt = It 1(It≥c0) then for a constant c1 > 0,

lim sup
t→+∞

∫ t

0
Js ds

∫ t

0
Is ds

≥ c1 almost surely,

(indeed recall that
∫∞
0

Is ds = +∞ almost surely).

We now have to choose c0 > 0. Since β2R(∞) > 1, there exists ε0 ∈ (0, 1
16 ) and

t0 > 0 such that β2R(t0)(1 − 4
√

ε0) > 1. We let c0 = ε0 inf0≤t≤t0 r(t).
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Let us apply now Itô’s formula of Theorem 3.1, between t−t0 and t, to the function
f(x1, x2) = 1(x1=x2):

It = µ⊗2
t (f(ω(t))) = Nt0,t + µ⊗2

t−t0

[

P⊗2
t0 f(ω(t − t0))

]

(4.1)

+ β2

∫ t

t−t0

µ⊗2
s

[

P⊗2
t−sf(ω(s))1(ω1(s)=ω2(s))

]

ds

− 2β2

∫ t

t−t0

µ⊗3
s

[

P⊗2
t−sf(ω(s))(1(γ(s)=ω1(s)) + 1(γ(s)=ω2(s)))

]

ds

+ 3β2

∫ t

t−t0

µ⊗2
s

[

P⊗2
t−sf(ω(s))

]

Is ds,

where

Nt0,t =

∫ t

t−t0

µ⊗2
s

[

P⊗2
t−sf(ω(s))(β

∑

i

dBωi(s)(s) − 2
dZs

Zs
)

]

.

The following inequalities are standard folklore,and are crucial in our proof: they
will be used repeatedly hereafter and we provide a proof in the appendix.

0 ≤ P⊗2
t f(x1, x2) ≤ r(t) = P⊗2

t f(x, x) ≤ 1. (4.2)

In particular, we have

It ≥ Nt0,t + β2

∫ t

t−t0

r(t − s)Is ds (4.3)

− 4β2

∫ t

t−t0

µ⊗3
s (P⊗2

t−sf(ω(s))1(γ(s)=ω1(s))) ds.

Indeed, the second and fifth terms of (4.1) are non negative, in the second term we
have

P⊗2
t−sf(ω(s))1(ω1(s)=ω2(s)) = P⊗2

t−sf(ω1(s), ω1(s))1(ω1(s)=ω2(s))

= r(t − s)1(ω1(s)=ω2(s)) ,

and finally, the fourth term can be written, thanks to symmetry of f ,

−4β2

∫ t

t−t0

µ⊗3
s (P⊗2

t−sf(ω(s))1(γ(s)=ω1(s))) ds .

Claim 1 :

µ⊗3
s (P⊗2

t−sf(ω(s))1(γ(s)=ω1(s))) ≤ Is inf(
√

Isr(t − s), r(t − s)) .

Indeed with Us(x) = µs(ω(s) = x) we have

µ⊗3
s

[

P⊗2
t−sf(ω(s))1(γ(s)=ω1(s))

]

=
∑

x

µ⊗3
s

[

P⊗2
t−sf(x, ω2(s)) 1(γ(s)=ω1(s)=x)

]

=
∑

x

Us(x)2µs(P
⊗2
t−sf(x, ω(s)))

and

µs(P
⊗2
t−sf(x, ω(s))) =

∑

y

Us(y)P⊗2
t−sf(x, y) ≤ r(t − s)

∑

y

Us(y) = r(t − s) .
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We also have, by Cauchy-Schwarz,

µs(P
⊗2
t−sf(x, ω(s))) ≤

(

∑

y

Us(y)2
∑

y

(P⊗2
t−sf(x, y))2

)
1
2

=
√

Isr(2(t − s)) ≤
√

Isr(t − s) ,

since if ω̃(t) = ω1(t) − ω2(t) we have, thanks to Markov property and symmetry,

r(2t) = P (ω̃(2t) = 0) =
∑

y

P0(ω̃(t) = y)Py(ω̃(t) = 0) =
∑

y

P0(ω̃(t) = y)2

=
∑

y

P⊗2
t f(0, y)2 =

∑

y

P⊗2
t f(x, y)2.

Claim 2 :

4β2R(t0)

∫ T

0

Js ds +

∫ T

t0

Is ds ≥
∫ T

t0

Nt0,t dt (4.4)

+ β2(1 − 4
√

ε0)R(t0)

∫ T−t0

t0

Is ds .

Observe that when Is ≤ c0 and t − t0 ≤ s ≤ t, we have Is ≤ ε0r(t − s), therefore,
from Claim 1 we deduce that,

∫ t

t−t0

µ⊗3
s (P⊗2

t−sf(ω(s))1(γ(s)=ω1(s))) ds ≤
∫ t

t−t0

Is

√

Isr(t − s)1(Is≤c0) ds

+

∫ t

t−t0

r(t − s)Is 1(Is>c0) ds

≤ √
ε0

∫ t

t−t0

r(t − s)Is ds

+

∫ t

t−t0

r(t − s)Js ds.

Plugging this inequality into (4.3) yields

It ≥ Nt0,t + β2(1 − 4
√

ε0)

∫ t

t−t0

r(t − s)Is ds − 4β2

∫ t

t−t0

r(t − s)Js ds .

Given T ≥ t0, we are going to integrate this inequality between t0 and T . On the
one hand,

∫ T

t0

dt

∫ t

t−t0

r(t − s)Js ds =

∫ ∫

1(0≤u≤t0,t0−u≤s≤T−u)Jsr(u) dsdu

≤ R(t0)

∫ T

0

Js ds .

On the other hand,
∫ T

t0

dt

∫ t

t−t0

r(t − s)Is ds ≥
∫ T−t0

t0

Is ds

∫ t0

0

r(u) du = R(t0)

∫ T−t0

t0

Is ds .

The claim follows immediately.
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Claim 3 : let NT =
∫ T

t0
Nt0,t dt. Then as T → +∞

NT
∫ T

0 Is ds
→ 0 in probability.

Let us defer the proof of this claim. Since 0 ≤ Is ≤ 1 and
∫∞
0 Is ds = +∞, we have,

lim
T→+∞

∫ T

t0
Is ds

∫ T

0 Is ds
= lim

T→+∞

∫ T−t0
t0

Is ds
∫ T

0 Is ds
= 1 a.s.

Let c1 =
β2(1−4

√
ε0)R(t0)−1

4β2R(t0)
. If we divide (4.4) by φT =

∫ T

0
Is ds and take lim sup as

T → +∞, we obtain that almost surely

lim sup
T→∞

1

φT

∫ T

0

Js ds − c1 ≥ lim sup
T→∞

NT

4β2R(t0)φT

≥ lim sup
T→+∞

− |NT |
4β2R(t0)φT

= − lim inf
T→+∞

|NT |
4β2R(t0)φT

= 0 .

This yields

lim sup
T→∞

∫ T

0 Jsds
∫ T

0 Is ds
≥ c1 a.s.

Proof of Claim 3: By Fubini’s theorem,

NT =

∫ T

t0

dt

∫ t

t−t0

µ⊗2
s

[

P⊗2
t−sf(ω1(s), ω2(s))

(

∑

i

βdBωi(s)(s) − 2
dZs

Zs

)

]

=

∫ T

0

µ⊗2
s

[

G(s, ω1(s), ω2(s))
(

∑

i

βdBωi(s)(s) − 2
dZs

Zs

)

]

,

with

0 ≤ G(s, x1, x2) :=

∫ (T−s)+∧t0

(t0−s)+
P⊗2

t−sf(x1, x2) dt ≤ t0, ∀x1, x2 ∈ Z
d.

Let us view NT = XT as the value at time T of the continuous martingale

Xt =

∫ t

0

µ⊗2
s

[

G(s, ω1(s), ω2(s))
(

2
∑

i=1

βdBωi(s)(s) − 2
dZs

Zs

)

]

.

We can compute its quadratic variation :

〈X, X〉T ≤ 4β2

∫ T

0

µ⊗4
s

[

G(s, ω1(s), ω2(s))G(s, ω3(s), ω4(s))
(

1(ω1(s)=ω3(s)) + Is

)]

ds,

which satisfies

〈X, X〉T ≤ 8β2t20

∫ T

0

Isds. (4.5)
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Let ε > 0, we shall prove that

lim
T→∞

P
(

NT > ε

∫ T

0

Isds
)

= 0. (4.6)

To this end, define δ = ε/(8β2t0). We have

E
[

eδNT − δ2

2 〈X,X〉T

]

= E
[

eδXT − δ2

2 〈X,X〉T

]

= 1.

(since 〈X, X〉T is bounded, Novikov’s criterion for the exponential martingale is
obviously satisfied). It follows that

1 ≥ E
(

1(NT >ε
R

T

0
Isds)e

δNT − δ2

2 〈X,X〉T

)

≥ E
(

1(NT >ε
R

T

0
Isds)e

(δε− δ2

2 8β2t0)
R

T

0
Isds
)

= E
(

1(NT >ε
R

T

0
Isds)e

4β2t0δ2
R

T

0
Isds

)

by (4.5)

≥ e4β2t0δ2K P
(

NT > ε

∫ T

0

Isds,

∫ T

0

Isds ≥ K
)

,

for any constant K > 0. Consequently, we have

P
(

NT > ε

∫ T

0

Isds
)

≤ P
(

∫ T

0

Isds < K
)

+ e−4β2t0δ2K .

Since
∫ T

0 Isds → ∞ almost surely, we get

lim sup
T→∞

P
(

NT > ε

∫ T

0

Isds
)

≤ e−4β2t0δ2K ,

for any constant K > 0. Then by letting K → ∞ we get (4.6). Considering the
martingale −X , we prove in the same way that

lim
T→∞

P
(

−NT > ε

∫ T

0

Isds
)

= 0. (4.7)

and this complete the proof of Claim 3.
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Appendix

We provide a proof of (4.2). Recall that f(x, y) = 1(x=y). We let pt(x) =
P (ω(t) = x) be the distribution of simple random walk at time t. Then, by trans-
lation invariance:

P⊗2
t f(x1, x2) = P

⊗2
x1,x2

(ω1(t) = ω2(t))

= P
⊗2(x1 + ω1(t) = x2 + ω2(t))

=
∑

z

P (x1 + ω1(t) = z)P (x2 + ω2(t) = z) (by independence)

=
∑

z

pt(z − x1)pt(z − x2)

≤
(

∑

z

pt(z − x1)
2

)
1
2
(

∑

z

pt(z − x2)
2

)
1
2

(by Cauchy-Schwarz)

=
∑

z

pt(z)2 = r(t) .
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