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Abstract. We study a class of nearest-neighbor discrete time integer random walks
introduced by Zerner (2005), the so called multi-excited random walks. The jump
probabilities for such random walker have a drift to the right whose intensity de-
pends on a random or non-random environment that also evolves in time according
to the last visited site. A complete description of the recurrence and transience
phases was given by Zerner (2005) under fairly general assumptions for the envi-
ronment. We contribute in this paper with some results that allows us to point
out if the random walker speed is strictly positive or not in the transient case for a
class of non-random environments.

1. Introduction

The excited (or multi-excited if we follow Zerner’s terminology, 2005) random
walk (ERW) on Z

d can be informally described as a model of a random walk on
Z

d that upon its first Mx visits to site x is pushed toward a specific direction and
on subsequent visits a neighbor is chosen uniformly at random. This model was
introduced by Benjamini and Wilson (2003) and it gives an interesting intermediary
class between classical random walks and random walks in random environment.
For the sake of simplicity, we adopt Zerner’s terminology (2005) by saying Mx is
the initial number of cookies in site x, and that upon eating a cookie, i.e., visiting
a site which still has cookies, the random walk has a positive drift, say to the
”right”. The determination of the initial number of cookies and the intensity of
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the drift imposed on the walk each time a cookie is eaten, which can be random or
non-random, gives what we call the environment for the excited random walk.

The first non trivial question about the behavior of the ERW is if it is transient.
This was first studied by Benjamini and Wilson (2003), where it was proved that the
non-random ERW is transient in dimension d > 1 if there is at least one cookie per
site. The further question is naturally about the strict positivity of the walk’s speed
in the transient regime, for one or more cookies in dimension 3 this was affirmatively
answered by Kozma in Kozma (2003). While in one dimension, for at most one
cookie per site it is simple to show recurrence, it is not evident the behavior of the
walk with two or more cookies per site. Transient and recurrent regimes in one-
dimension were completely characterized by Zerner (2005) not only for non-random
ERW, but also for those with an stationary and ergodic environment. In his paper
Zerner also shows that the one-dimensional ERW with two or less cookies per site
has null speed, however the same question remains open for three or more cookies
per site. Our aim is to give a partial answer to this question.

To present our results, we start with the formal description of the ERW. An envi-
ronment is of the form ω = (ω(x))x∈Z, where for each x ∈ Z, ω(x) = (ω(x, k))k∈N ∈
[1/2, 1]N. The discrete time ERW with starting point and environment (x0, ω) is
a stochastic process ((Xn, ωn))n≥0 with law P(x0,ω) whose transition is defined by
the following rule.







P(x0,ω)((X0, ω0) = (x0, ω)) = 1
(Xn+1, ωn+1) = (Xn + 1, θXnωn) , with probability = ωn(Xn, 1)
(Xn+1, ωn+1) = (Xn − 1, θXnωn) , with probability = 1 − ωn(Xn, 1) ,

where θz : [1/2, 1]Z×N → [1/2, 1]Z×N is defined by

θzω(x, k) =

{

ω(x, k) , x 6= z
ω(z, k + 1) , x = z

for every k ∈ N. Although the term ERW is more likely to refer only to the position
of the walk, i.e., to the process (Xn)n≥0, we prefer it indicating the two coordinate
process ((Xn, ωn))n≥0 as above, because the last one is Markovian and in this way
we improve the readability of the text.

We will make two further assumptions on an environment: First that on each
site there is initially only a finite number of cookies and second that on each visit
to a site with available cookies, a cookie must be consumed. Therefore for such
an environment ω we have that there exists an Mx ∈ N such that ω(x, k) > 1/2
if and only if k ≤ Mx. For a p > 1/2 and M ∈ N, we will denote by ωM,p the
homogeneous environment with Mx = M , for every x, and ω(x, k) = p for k ≤ M .

Following Zerner (2005), an environment ω as above will be called a cookie
environment. This is reasonable from the point of view that if ω(x, k) > 1/2 we
say that a cookie of intensity ω(x, k) will be ready to be consumed by the time of
the k-th visit to the site x.

In Zerner (2005) it was shown that the excited random walk starting at (0, ωM,p)
is transient if and only if M(2p−1) > 1 and he obtained a law of large numbers for
the excited random walk under more general environments proving that the walk’s
speed

a.s- lim
n→∞

Xn

n
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is well defined. We also find in Zerner (2005) that for p < 1 and M = 2 the walk’s
speed is 0. The question of what the walk’s speed is, in the transient regime for
homogeneous environments with more than 2 cookies per site remains open. Our
results in this direction are the following:

Theorem 1.1. For the ERW starting at (0, ωM,p) we have that

(i) For every p ∈ (1/2, 1), there exists M0 = M0(p) sufficiently large such that
the walk’s speed is strictly positive for all M > M0.

(ii) If the bias p and the number of cookies, M , satisfy

M(2p− 1) ∈ (1, 2)

then the cookie r.w. is transient but with speed 0.

Remark 1.2. In section 3 3 we will show through a counter example that Theorem
1.1 (i) cannot be generalized to ergodic random initial enviroments with mean
number of cookies per site greater than M . That is, for a fixed p > 1/2, for each
M > 0 we construct a cookie enviroment ω, with drift p > 1/2 and a random
number of cookies Nx per site x, so that: (i) (Nx)x∈Z is ergodic; (ii) E(Nx) ≥ M ;
(iii) for each x0 ∈ Z the ERW with starting environment (x0, ω) has zero speed.

We do believe that statement (ii) of Theorem 1.1 is almost optimal, i.e., that
if M(2p − 1) > 2 then the ERW starting at (0, ωM,p) has positive speed. In this
direction we show that:

Theorem 1.3. There exist constants C0 > 1 and 0 < ε0 < 1
2 such that if p ≤ 1

2 +ε0
and M(2p− 1) ≥ C0 then the ERW starting at (0, ωM,p) has strictly positive speed.

2. Technical Estimates

We start this section with some definitions, which will not be used only here
but through the entire paper. Consider an ERW (Xn, ωn)n∈N starting at some
(0, ω). For integers R, S > 0 let TR = inf{n ≥ 1 : Xn = R}, T R

S = inf{n ≥
TR : Xn = S} and NR (Nn

R) be respectively the number of visits of the walk to
site R (before time n). For an environment ω and x ∈ Z we write P(x,ω) for the
probability induced by the excited random walk starting at (x, ω) and E(x,ω) for the
corresponding expectation operator. When ω is the environment with no cookies
the exited random walk is a simple random walk and we only write Px. Finally let
(Fn)n≥1 be the filtration generated by (Xn)n≥0.

Denote by Dk the total drift of the ERW (Xn, ωn)n≥1 accumulated until time k,
i.e., (2p−1) times the number of cookies eaten before time k. Let us recall another
observation of Zerner (2005) that Vn = Xn − Dn is a P(0,ω)−martingale with
respect to the filtration generated by (Xn)n≥1. Therefore we obtain the martingale
decomposition for Xn as Vn + Dn, where V is a martingale whose increments are
either ±1 (if there is no cookie to be eaten in the next site) or 2(1 − p) or −2p
(otherwise) and D is an increasing process, with both processes starting at value 0.

Lemma 2.1. For an ERW starting at the origin with M cookies in at least αN
sites in (−N, 0], the probability that the cookie r.w. reaches −N before eating MαN

4

cookies is bounded by 2M
αN
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Proof: There are at least αN
2 sites in (−N( 1−α

2 ), 0) with M cookies. We denote

these sites from right to left by x1, x2, . . . , xR for R = αN
2 . For xi fixed and based

on monotonicity results obtained in Zerner (2005), we consider without loss of
generality the cookie r.w. X with no cookies to the right of xi. At each visit to xi

the probability that the cookie r.w. returns to xi before hitting −N is greater or
equal to the same probability computed with respect to a simple symmetric random
walk which is given by 1

2 + 1
2

(

1 − 2
αN

)

= 1 − 1
αN . Thus the probability that M

cookies are eaten at xi before hitting −N is (1 − 1
αN )M . So if V is the number of

xi at which less than M cookies are eaten before hitting −N . Then

E(V ) ≤
αN

2

(

1 −

(

1 −
1

αN

)M
)

,

so P(V ≥ αN
4 ) ≤ 2(1 − (1 − 1

αN )M ) ≤ 2M
αN . �

Lemma 2.2. For an ERW starting at the origin with M cookies initially present
for at least αN sites in (−N, 0], the probability that the cookie r.w. reaches −N
before N is bounded by

2M

αN
+ exp

(

− c
Mα

4
(2p − 1)

)

for c not depending on p or N or M or α.

Proof: Consider the martingale decomposition for the position of the ERW Xn =
Vn+Dn as above. Now we have the inclusion {T−N < TN} is contained in the union
{X “ eats” < MαN

4 cookies before hitting −N}∪ {There exists no n < n′ ≤ SN,V :

Vn′ − Vn ≥ 2N}, where SN,V is the first time V touches −
(

Mα
4 + 1

)

(2p − 1)N .
By standard Brownian embedding we have that the probability of the later event
is bounded by

e−c( Mα
4 +1)(2p−1)

for some c universal not depending on p or M and the result follows. �

Corollary 2.3. For every ε > 0, there exists M1 and n1 so that for all N ≥ n1, if
the ERW begins at zero with an environment ω such that 1

4 of the sites in (−N, 0)
have at least M1 cookies in them, then

P(0,ω)(TN < T−N) ≥ 1 − ε.

By repeated application of the Strong Markov property we then obtain

Corollary 2.4. For every ε > 0, there exists M1 and n1 so that for all N ≥ n1

and positive integer k0, if the ERW begins at zero with an environment ω such that
for k = 0, 1, 2 · · ·k0, the number of sites with at least M1 cookies in spatial interval
((−2k+1 + 1)N, (−2k + 1)N ] exceeds 2k−1N , then

P(0,ω)( T−2k0N ≤ TN ) ≤ εk0 .

The following is crude but useful.
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Lemma 2.5. Let (Xn : n ≥ 0) be an ERW with X0 = 0 and initial environment
so that in interval (−cN, N) there are less than γN cookies. The probability that
X hits −cN before N is at least

1 − γ(2p− 1)

1 + c + 2/N
.

Proof: Until leaving interval (−cN, N) the position of the ERW Xn is equal to
Vn + Dn (see the beginning of this section). Thus the event {T−cN ≤ TN} contains
the event that V hits (−∞,−(c + γ(2p− 1))N ] before [N(1− γ(2p− 1)),∞). Now
for τ the first hitting time for V of (−∞,−(c+γ(2p−1))N ]∪ [N(1−γ(2p−1)),∞)
we have

0 = E(Vτ ) ≥ (−(c + γ(2p− 1))N − 2)P(Vτ ≤ −(c + γ(2p − 1))N)

+ (N(1 − γ(2p− 1))(1 − P(Vτ ≤ −(c + γ(2p − 1))N))

so

P(Vτ ≤ −(c + γ(2p − 1))N) ≥
N(1 − γ(2p − 1))

N(1 + c) + 2
�

We similarly have

Lemma 2.6. Consider an ERW (Xn, ωn)n≥0 so that for the initial environment ω
there are less than γN cookies on (−N, N), for γ(2p− 1) < 1. Then the probability
that X exits (−N, N ] after time N2/2 is at least c0 for some constant c0 depending
only on γ.

We now seek to refine Lemma 2.5.

Lemma 2.7. Fix ε > 0 and N < ∞ such that ε(2p−1) ≤ N−2. Let Ω be the event:
the ERW starting at 0

(a) exits (−2k, 2k) to the left and
(b) on exiting this interval, the number of cookies in [−2k, 2k) is less than

ε 2k+1.

Define Ck = Ck(ε, N, b, M) as the infimum of P(0,ω)(Ω) over all environments ω
having at most M cookies per site and satisfying

(i) For every 0 ≤ i < N the number of cookies in (− (i+1)2k

N , −i2k

N ] is less or

equal to b2k

N .

(ii) The number of cookies in [0, 2k) is less or equal to ε2k.

Then limk→∞ Ck ≥ 2−(1+b(2p−1))(1 + cN ), where cN → 0 as N → +∞.

Proof: Fix an environment ω satisfying (i) and (ii) in the statement. We consider

the event A(i) = {T
− i2k

N

≤ T2k} and let B(i) be the event that on hitting − i2k

N

there are less than ε
2

2k

N cookies remaining in interval
(

− i2k

N ,− (i−1)2k

N

]

. By the

strong Markov property we can write

P(0,ω)(Ω) ≥
N
∏

i=1

P“

− (i−1)2k

N ,ωT̃i−1

”

(

A(i) | ∩i−1
j=1 B(j)

)

−
N
∑

i=1

P(0,ω)(A(i)/B(i)),

where T̃i−1 is equal to T
− (i−1)2k

N

.
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We first consider the event A(i)/B(i). To bound this probability we follow along

the lines of Lemma 2.5. We consider for each x ∈ Ik =
[

−i2k

N + 2k/2,− (i−1)2k

N

)

the event Hx that all cookies at x are eaten before X hits − i2k

N . Now observe
that P (Hx) → 1 for k → ∞, uniformly in x and environment. Thus the expected

number of cookies remaining in
(

− i2k

N ,− (i−1)2k

N

]

when X hits − i2k

N is bounded by

M2k/2 +
2k

N

(

sup
x∈Ik

P(Hc
x)

)

= o(2k).

Thus supi P(A(i)/B(i)) → 0 as k → ∞ uniformly over environments satisfying (i)
and (ii).

We now obtain bounds on P
(

A(i)
∣

∣∩i−1
j=1B(j)

)

for i = 1. We apply Lemma 2.5
with

N = 2k

(

1 +
i − 1

N

)

, c =
1

N + i − 1

and

γ =
ε + ε/2 i−1

N + b
N

1 + i−1
N

< ε +
b

N + i − 1
·

This give a lower bound of

1 − ε(2p − 1) − b(2p−1)
N+i−1

N+i
N+i−1

=
(N + i)(1 − ε(2p− 1)) − b(2p − 1)

N + i

= 1 −
(1 + b(2p− 1))

N + i
−

N + i − 1

N + i
ε(2p− 1)

≥ 1 −
(1 + b(2p− 1))

N + i
−

ε(2p − 1)

N
.

From this we obtain that

lim
k→∞

Ck ≥
N
∏

i=1

(

1 −
1 + b(2p − 1))

N + i
−

ε(2p − 1)

N

)

= 2−(1+b(2p−1))(1 − o(1)) . �

3. Proof of (i) in Theorem 1.1

Consider the ERW (Xn, ωn)n∈N starting at (0, ωM,p) for some M > 0 and 0 <
p < 1. As a consequence of Zerner’s result (2005) on the existence of the ERW
speed we also have that TR

R converges almost surely to the inverse of the walk’s
speed. Since

TR =
∑

x≤R

NTR
x ,

to obtain the desired result, by Fatou’s lemma, we only have to show that there
exists a sequence (Ri)

+∞
i=1 with Ri → ∞ such that there exists a constant C > 0

with

sup
i

1

Ri

∑

x≤Ri

E[N
TRi
x ] ≤ C .
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Our aim will be to show the stronger result that

sup
x

E[Nx] < +∞ ,

which follows from the following proposition:

Proposition 3.1. For every p ∈ (1/2, 1) there exists a M0 = M0(p) sufficiently
large such that for the excited random walk (Xn, ωn)n∈N starting at (0, ωM,p) with
M > M0 we have for every n > 1

sup
x≥1

P(Nx ≥ n) ≤
C

nγ

for some constants C > 0 and γ > 1.

Our first step to estimate the supremum in the statement of the previous propo-
sition is to use coupling arguments and choose an appropriate environment ω̃M,p

such that
P(0,ωM,p)(Nx ≥ n) ≤ P(0,ω̃M,p)(N0 ≥ n)

for every x ∈ N. We take as the environment ω̃M,p the one with no cookies strictly
to the left of the origin and M cookies of intensity p to the right of the origin.
Clearly this choice satisfies the previous inequality.

Lemma 3.2. For every p ∈ (1/2, 1), there exists M0 = M0(p) sufficiently large
such that for all M > M0 for the excited random walk (Xn, ωn)n∈N starting at
(0, ω̃M,p) we have for every n > 1

P(0,ω̃M,p)(N0 ≥ n) ≤
C

nγ

for some constants C > 0 and γ > 1.

For an arbitrary R > 0 we have that the probability in the statement of the
previous lemma is bounded above by

P(0,ω̃M,p)(N
TR
0 ≥ n) + P(0,ω̃M,p)(T

R
0 < +∞) . (3.1)

The first term in the previous expression is dominated by (recall Px refers to simple
random walk probabilities started at x)

P0(N
TR
0 ≥ n) = P0(T0 ≤ TR)n ≤

(

1 −
c

R

)n

for some constant c > 0 not depending on R, this follows by comparison with the
simple symmetric random walk, see Lemma 1 in Zerner (2005). From this moment
on we take R = bnαc for some 0 < α < 1, from where a bound as the one in the
statement of Lemma 3.2 is easily obtained for the first term in (3.1).

We will have more work to deal with the second term in (3.1) and obtain the
bound

P(0,ω̃M,p)(T
bnαc
0 < +∞) ≤

C

nγ
(3.2)

for some C > 0 and γ > 1.

To begin the proof we fix some events: Take ε > 0 small, which will be fixed
later, and choose M1 = M1(ε) large enough in the sense of Corollary 2.3. We define
the event Γ(e, n) that the ERW starting at (0, w̃M,p) satisfies

(a) after hitting 2n for the first time, it hits 4n before hitting n and



286 Mountford et al.

(b) upon hitting 4n, there are more than e · n sites in interval (n, 2n) with at
least M1 cookies.

For x ≥ 0, we denote Γx(e, n) the “shift” of event Γ(e, n) that is the intersection
of

(a) after time Tx+2n (= T x
x+2n), the ERW hits x + 4n before x + n

(b) at time Tx+4n (= T x
x+4n) the number of sites in (x+n, x+2n) with at least

M1 cookies is at least e · n.

As a consequence of Lemma 10 in Zerner (2005), note that

P(0,ω)(Γ
x(e, n)|FTx) = P(0,ω)(Γ(e, n)).

for all environments ω with fully occupied (M cookies per site) to the right of x
(included). Note also that Γx(e, n) and Γy(e, n) are independent for 0 ≤ x ≤ y−4n
under P(0,ω).

Now let (ni)
+∞
i=1 be an increasing sequence of integers such that n1 = n1(ε) is

fixed large enough to satisfy Corollary 2.3, but for the moment not fully specified,

and nj+1 =
⌊

n
3/2
j

⌋

for j ≥ 1. Observe that for an arbitrary sequence (ei)
+∞
i=0 , we

have, provided n1 is sufficiently large, that

+∞
⋂

j=h(nα)

3
j

n
1/2
j

k

⋂

l=0

Γlnj (ej , nj) ⊂ {T
bnαc
0 = +∞} ,

where h(nα) = sup{j : nj < bnαc
2 }. Therefore

P(0,ω̃M,p)(T
bnαc
0 < +∞) ≤

+∞
∑

j=h(nα)

3
j

n
1/2
j

k

∑

l=0

P(0,ω̃M,p)

(

Γlnj (ej , nj)
c
)

≤
+∞
∑

j=h(nα)

(3n
1/2
j + 1) P(0,ω̃M,p) (Γ(ej , nj)

c) (3.3)

where the second inequality follows from monotonicity arguments (see Section 7 in
Zerner (2005)).

We shall prove the following result:

Lemma 3.3. There is a decreasing sequence (ei)
∞
i=1 with e1 = 3

4 , ei ≥ 1/2 for
every i and nj as above such that there exists a M0 sufficiently large so that for all
M > M0 and every j ≥ 1,

P(0,ω̃M,p) (Γ(ej , nj)
c) ≤

1

nζ
j

(3.4)

for some ζ > 3+α
2α .

From Lemma 3.3 and (3.3), we obtain (3.2). We are going to show Lemma 3.3
by induction and the first step is:
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Lemma 3.4. For every 1/2 < p < 1 and ζ > 1, we have that for every R sufficiently
large there exists M0 = M0(n, p, ζ) such that for M > M0

P(0,ω̃M,p)(Γ(3/4, R)c) ≤
1

Rζ
.

Proof: We couple the ERW (Xn)+∞
n=1 with the symmetric random walk reflected at

the origin (Ym)+∞
n=1 as in Lemma 1 in Zerner (2005). We have almost surely that

Xn ≥ Yn, n ≥ 1. Therefore, for M0 > M1 = M1(ε)

P(0,ω̃M,p)(Γ(3/4, R)c) ≤ P(0,ω̃M,p),0

(

Γ(3/4, R)c ∩

{

sup
n≤(M0−M1)

Yn < 4R

})

+

+P(0,ω̃M,p),0

(

Γ(3/4, R)c ∩

{

sup
n≤(M0−M1)

Yn ≥ 4R

})

≤ P0

(

sup
n≤(M0−M1)

Yn < 4R

)

+

+P(0,ω̃M,p),0

(

Γ(3/4, R)c

∣

∣

∣

∣

∣

{

sup
n≤(M0−M1)

Yn ≥ 4R

})

.

Now suppose M0 ≥ R2(2ζ′+1) + M1 then by the CLT the first probability in
the rightmost term of the previous expression is of order R−2ζ . Thus it remains
to deal with the second probability. Now observe that if {supn≤(M0−M1) Yn ≥
4R} happens then the excited random walk has arrived at 4R without eat all the
cookies on a single site in the interval [0, 4R] and therefore the second probability
is bounded above by the probability that an asymmetric simple random walk with
jump probability p starting at 2R touches R before 4R, this is the Gambler’s ruin
probability which is bounded above by e−cR for some constant c depending on p but
not on R. Now taking R sufficiently large we obtain the inequality in the statement.
�

Proof of Lemma 3.3: Apply Lemma 3.4 with R = n1 to obtain an M0 = M0(n1, p, ζ)
such that for all M > M0, (3.4) holds for j = 1. Then suppose that (3.4) holds for
some arbitrary integer i ≥ 1, we will show that it also holds for i+1. To guarantee
the uniform bound, we should later adjust n1 by making it larger if necessary.

We first note that if the event Γx(ei, ni) occurs this says very little, in principle,
about the number of cookies in (x + ni, x + 2ni) by the time the point y is reached
for y > x+4ni. However if Γx(ei, ni)∩Γx+ni(ei, ni) occurs then after hitting x+3ni

for the first time (necessarily between Tx+2ni and Tx+4ni) the cookie r.w. must hit
x + 5ni before hitting x + 2ni,. If

Γx(ei, ni) ∩ Γx+ni(ei, ni) ∩ Γx+2ni(ei, ni)

occurs then after hitting x + 4ni the cookie r.w. must hit x + 6ni before x + 3ni

and hence before x + 2ni. By induction we obtain that on

Γx(ei, ni) ∩ Γx+ni(ei, ni) . . . ∩ Γx+rni(ei, ni)

the ERW hits x + (r + 4)ni before x + ni after hitting x + 2ni for the first time and
at time Tx+(r+4)ni

the number of sites in (ni, 2ni) with M0 or more cookies is at
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least eini. Since for every 0 < s < r we have

r
⋂

j=0

Γx+jni(ei, ni) ⊆
r
⋂

j=s

Γx+jni(ei, ni)

we have that on
r
⋂

j=0

Γx+jni(ei, ni),

for every interval (x + jni, x + (j + 1)ni), j = 1, . . . , r, the number of sites with
more than M0 cookies is at least eini and

T
x+(j+2)ni

x+(j+1)ni
> T

x+(j+2)ni

x+(4+r)ni
.

Now based on the previous discussion we also have that if ei+1 ≤ ei than, if n1

is large enough,

Γ(ei+1, ni+1) ⊃ Γ(ei, ni+1) ⊇

4
ni+1

ni
⋂

l=
ni+1
2ni

Γlni(ei, ni) .

This implies that for Γ(ei+1, ni+1)
c to happen it is necessary that at least one

of Γjni(ei, ni)
c also happens for ni+1

2ni
≤ k ≤ 4ni+1

ni
. But, by independence, the

probability that there exist 0 ≤ k ≤ j − 4 ≤ 4ni+1

ni
− 4 such that Γkni(ei, ni)

c ∩

Γjni(ei, ni)
c occurs is bounded above by

(

4ni+1

ni
P(Γ(ei, ni)

c)

)2

. (3.5)

This now reduces the estimate on P(Γ(ei+1, ni+1)
c) to dealing with the event where

there are at most four consecutive l ∈ [ni+1

2ni
− 3, 4ni+1

ni
] with Γlni(ei, ni)

c occurring.

We will see that we need essentially to consider that Γlni(ei, ni)
c occurs for a single

l. We now consider the event B1 that there exists a unique l so that

(a) l ∈
(

ni+1

2ni
− 3, 4ni+1

ni

)

(b) Γlni(ei, ni)
c occurs

(c) Γjni (ei, ni) occurs for every j ∈
(

l + 3, 4ni+1

ni

)

and for every j ∈ (0, l).

On this event we note that there are two ways that Γkni(ei, ni) cannot happen:
if too many cookies in ((k + 1)ni, (k + 2)ni) are eaten, which necessarily occurs

while the ERW X is in this interval, or T kni+2ni

kni+ni
< T kni+2ni

kni+4ni
, which necessarily

occurs for X at the site (k + 1)ni. Thus we have that the moment σ0 at which it

becomes certain that Γlni(ei, ni)
c occurs for some l ∈

(

ni+1

2ni
− 3, 4ni+1

ni

)

, either B1

is at this moment impossible or we have that on every interval (kni, (k + 1)ni) for
nik < Xσ − ni and k ≥ ni+1

2ni
there are at least ei ≥ 1/2 sites with M1 cookies and

for x ≥ Xσ0 + 4ni the number of cookies is equal to M . We now define a stopping
time subsequent to σ0:

σ1 = inf{n > σ0 : Xn = Xσ0 + 9ni or Xn = Xσ0 − n
5/4
i } .
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(We may assume that n
5/4
i << ni+1/2.) We have by Corollary 2.4 and our choice

of M1 that for n1 large

P(Xσ1 = Xσ + 9ni) ≥ 1 − εlog2(n
1/4
i /9) = 1 − (n

1/4
i /9)log2 ε ≥ 1 −

1

n
− 1

5 log2 ε
i

.

On the other hand we have on {Xσ1 = Xσ+9ni}∩{There exists no l, l′ with ni+1

2ni
≤

l, l′ ≤ 4ni+1

ni
with l′ − l > 3 and Γn,l(ei, ni)

c ∩ Γn,l′(ei, ni)
c} that

ΓXσ0+8ni(ei, ni) ∩ ΓXσ0+9ni(ei, ni) . . . ∩ Γ4ni+1(ei, ni)

occurs. This implies

(i) for every interval [kni, kni+1] not intersecting [Xσ0 − n
5/4
i , Xσ0 + 9ni) the

number of sites with Mi cookies will exceed eini

(ii) upon hitting Xσ0 + 9ni the cookie walk passes from Xσ0 + kni to Xσ0 +
(k + 2)ni before returning to Xσ0 + (k − 1)ni for all k ≥ 9 and such that

k ≤ 4ni+1

ni
−

Xσ0

ni
.

Thus we have on this event that

(1) After hitting 2ni+1 the cookie r.w. hits 4ni+1 before ni+1

(2) upon hitting 4ni+1 the number of sites in (ni+1, 2ni+1) with ≥ M0 cookies
is at least

ni+1ei − 2n
5/4
i ≥ ni+1

(

ei −
3

n
1/4
i

)

≡ ni+1ei+1

(if n1 is (and therefore all ni are) large).

Clearly if e1 = 3/4 and n1 is fixed large enough to ensure that
∑∞

i=1
3

n
1/4
i

< 1/4

then {ei} defined as above satisfy ei ≥ 1/2 for every i. The preceding show that
the only way that event Γ(ei+1, ni+1)

c can occur is if either

(i) for two l, l′ differing by more than 3 such that l, l′ ∈
[

0, 4ni+1

ni

]

we have

Γlni(ei, ni)
c ∩ Γl′i(ei, ni)

c

(ii) {Xσ0 < 4ni+1} ∩ {Xσ1 = Xσ0 − n
5/4
i }, for σ0 and σ1 as above.

This, together with (3.5), gives the inequality

P(Γ(ei+1, ni+1)
c) ≤

(

4
ni+1

ni
P(Γ(ei, ni)

c)

)2

+ 4
ni+1

ni

1

n
− 1

5 log2ε
i

P(Γ(ei, ni)
c).

By the induction hypothesis P(Γ(ei, ni)
c) ≤ 1

nζ
i

then

P(Γ(ei+1, ni+1)
c) ≤

(

4n
1/2
i

C

nζ
i

)2

+
4n

1/2
i

n
− 1

5 log2ε
i

C

nζ
i

≤
1

nζ
i+1

(

16C2

n
ζ/2−1
i

+
4C

n
− 1

5 log2ε−(ζ+1)/2
i

)

.

If ε is fixed sufficiently small and afterward n1 is taken large, the expression under
parenthesis in the rightmost term of the previous expression is bounded by 1 and
then (3.4) holds for i + 1. �
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Counter-example We wish to show through a counter example that the previous
result cannot be generalized to ergodic environments, i.e., for a fixed p > 1/2, we
give an initial ergodic environment with mean number of cookies per site greater
or equal to M such that the ERW speed is 0 for any choice of M .

Fix some 1
2 < ε < 1 and 0 < σ < 1 such that

∑

n≥2 σn ≥ M . Now consider a

sequence (Xk)k≥1 of i.i.d random variables with the following distribution:

Xk =

{

0 , with probability σ,
2n , with probability γ/4εn, for n ≥ 2,

where γ is a normalization constant chosen so that γ
∑∞

n=2
1

4nε + σ = 1. With
our choice for ε, E[Xk] is finite. Now let (Nx)x≥0 be the renewal counting process
associated to (Xk)k≥1 : Nx = sup{m :

∑m
k=1 Xk ≤ x}. We now replace (Nx)x≥0

by the corresponding translation invariant two sided process (Nx)−∞<x<+∞ with
N0 = 0. We fix the initial environment as the following

ω(x, j) =

{

p, for 1 ≤ j ≤ (Nx+1 −Nx) ,
1
2 , otherwise .

The environment ω is stationary and ergodic, moreover, by the condition imposed
on σ, the expected number of cookies per site is E[N1] ≥ M . We have then that
there exists a strictly positive constant c (not depending on n) so that for all n ≥ 2,
the number of disjoint intervals which are initially empty of cookies and of length
at least 2n contained in [0, M), Nn(M), satisfies

Nn(M) ≥ c4−εnM.

Now the additional time τI for the cookie random walk to traverse such an interval,
I , for the first time, after arriving at its leftmost endpoint is easily seen to satsify
P (τI > 4n) > d > 0 for some constant not depending on n. Thus we obtain by the
law of large numbers that

lim inf
M→∞

TM

M
≥ c4−εnd4n.

Since ε < 1 and n is arbitrarily large, we have that the velocity must be zero.

4. Proof of (ii) in Theorem 1.1

Consider the excited random walk (Xn, ωn)n∈N starting at (0, ωM,p) for some
fixed p > 1/2 and M which satisfies M(2p − 1) ∈ (1, 2). It is well known (see
Zeitouni (2001) Lemma 2.1.17), that

a.s− lim
V →∞

TV

V
=

(

a.s − lim
n→∞

Xn

n

)−1

=
1

µ
, (4.1)

which is the inverse of the walk’s speed. By the dominated convergence theorem
we have under truncation that

lim
V →+∞

E(0,ωM,p)

[

TV

V
∧ m

]

= m ∧
1

µ
.

However we are going to show that for m large

lim inf
V →+∞

E(0,ωM,p)

[

TV

V
∧ m

]

≥ Cmγ ,
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for some 0 < γ < 1, which implies that µ = 0.

First we explain how the proof works. Accordingly we fix v, v′ so that 1 <
M(2p− 1) < 1+ v < 1+ v′ < 2. Our first aim will be to show that with sufficiently
large probability for a fixed large density of x’s

P(0,ωM,p)[Tx+1 − Tx ≥ 22r|FTx ] ≥ c2−r(1+v′) (4.2)

for some c > 0 and every r sufficiently large. For x satisfying (4.2) and a sufficiently
large m and r such that 22r ≤ m ≤ 22(r+1)

P(0,ωM,p)[Tx+1 − Tx ≥ m|FTx ] ≥
c

mα

for α = (1 + v′)/2 < 1. From this last inequality we will have that the limit in 4.1
is ∞ and so the ERW velocity will be zero.

The proof of (4.2) is based on applications of Lemma 2.7 and in conformity with
its statement we fix arbitrarily ε small and N ≤ (ε(2p− 1))−1/2 so that in notation
of Lemma 2.7

2−(1+v)(1 + cN ) > 2(1+v′) ,

and let K be sufficiently large so that

max
k≥K

Ck ≥ 2−(1+v′) . (4.3)

We start by stating some direct implications of Lemma 10 in Zerner (2005) which
gives that the sequence

((Xτk,m
− k)m≥0)k≥0 = (Zk)k≥0

is stationary ergodic in k, where (τk,m)m≥1 is defined by τk,0 = −1 and τk,m+1 =
inf{n > τk,m : Xn ≥ k}. We can without loss of generality assume that (Zk)k≥0

extends to an ergodic two sided process (Zk)−∞<k<∞. The implications we men-
tioned are:

Fact 1: Consider the functional f(Zk) which is the number of cookies left at site
k finally. We have Zerner (2005), Lemma 2 that a.s for every k,

lim
n→+∞

1

n + 1

k
∑

x=−n+k

f(Zx) =
1

(2p − 1)
((2p − 1)M − 1) <

v

2p − 1
. (4.4)

This implies that a.s. for every x, there exists Lx < ∞ such that for every r ≥ Lx,

x− 2r(i−1)
N −2r

∑

y=x− 2ri
N −2r

f(Zy) ≤
2r

N

v

2p− 1

for every i = 1, 2, . . . , N . Furthermore we can also fix L such that a.s.

a.s-lim
n→+∞

1

n

n
∑

y=0

ILy≤L > 9/10.

Fact 2: Let h(Zx, l) be equal to 1 if the number of excursions from x to (−∞, x)
is equal to l, otherwise its value is 0. For every l there exists c(l) < 1 such that

a.s-lim
n→+∞

1

n + 1

k
∑

x=−n+k

h(Zx, l) = c(l). (4.5)
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Note that since M(2p−1) > 1 implies that X is transient by Zerner (2005), Theorem
12, then almost surely there exists l such that h(Zx, l) = 1 and thus

∑

l c(l) = 1.
Moreover we can pick k0 so large that the density of x making at most k0 excursions
from x to (−∞, x) is at least 9/10, i.e.

a.s-lim
N→+∞

1

N

N
∑

x=0

k0
∑

l=0

h(Zx, l) ≥ 9/10.

Fact 3: We consider for x fixed the indicator function gR(x) of the event that
among the first k0 excursions of X from x to (−∞,−x) the value x−2R is realized.
By the Markov property and simple majoration of X by appropriate random walks
we can fix L′ > 0 sufficiently large such that for every x we have E [gL′(x)] < 100−1

and so with probability greater than 9
10 , for n large,

1

n

n−1
∑

0

gL′(x) ≤
1

10
.

What we get from Facts 1-3 is that for n large with probability at least 9
10 , a

density of 7
10 of sites x are going to satisfy: Lx ≤ L and T x

x−2L′ = +∞, i.e., at the

time x is visited for the first time the ERW satisfies

x− 2r(i−1)
N −2r

∑

y=x− 2ri
N −2r

f(Zy) ≤
2r

N

v

2p− 1

for every r ≥ L and does not visit x − 2L′

again. We say that the environment is

good on the right of x−2R for R = max{L, L′}, if there is at most 2R

N · v
2p−1 cookies

on each interval
(

x −
2li

N
− 2l, x −

2l(i − 1)

N
− 2l

)

.

for i = 1, ..., N and l ≥ R. We say that a site x is good if the environment on the
right of x − 2R is good.

Now fix β as the infimum, over all possible environments with at most M cookies
per site, of the probability that the ERW starting from 0 hits −2R before 1 eating all
the cookies in the interval (−2R, 0] (assume without loss of generality that R > 0).
Suppose that x is good, then by the Markov property for (Xn, wn)n≥1 and Lemma
2.6 (with γ taken as ν/(2p − 1)) we have that

P(0,ωM,p)[Tx+1 − Tx ≥ 22r|FTx ] ≥ β c0 P
[

Tx+1 ≤ T x−2R

x−2r+1

∣

∣

∣
FTx

]

,

for some universal constant c0 not depending on r and x. The initial environment,
ωM,p, conditioned to FTx , for a good x, translated by 2R−x satisfies the hypotheses
of Lemma 2.7 with b = v/(2p− 1), and thus we can apply the lemma recursively to
the events obtained by translating Ω by x − 2R, x − 2R+1, ... , x − 21+r to obtain
that

P(0,ωM,p)

[

Tx+1 ≤ T x−2R

x−2r

∣

∣

∣
FTx

]

≥
r+1
∏

k=R

Ck .
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We may, without loss of generality, suppose R ≥ K from (4.3) and thus

P(0,ωM,p)[Tx+1 − Tx ≥ 22r|FTx ] ≥ β c

r
∏

k=R

Ck ≥ c′2−r(1+v′) .

Therefore, we have now that with probability at least 9
10 for large V

P(0,ωM,p)[Tx+1 − Tx ≥ 22r|FTx ] ≥ C 2−r(1+v′) (4.6)

for 7
10 of x in [0, V ]. Hence we write

E(0,ωM,p)

[

TV

V
∧ m

]

= E(0,ωM,p)

[

1

V

V −1
∑

x=0

(Tx+1 − Tx) ∧ m

]

which, by (4.6), for V large is bounded below by

E(0,ωM,p)

[

1

V

V −1
∑

i=1

m P(0,ωM,p)[Tx+1 − Tx ≥ m|FTx ]

]

≥ (4.7)

≥
C

V

(

7

10
(V − 22R) − m

)

m1− 1+v′

2 , (4.8)

and then, for γ = 1 − 1+v′

2 > 0, we have that

E(0,ωM,p)

[

TV

V
∧ m

]

≥
C

V

(

7

10
(V − 22R)

)

mγ ≥ C ′′mγ ,

for V large. �

5. Proof of Theorem 1.3

5.1. Preliminaries. Let ε, κ > 0 let W be a nearest neighbour random walker on
Z which jumps to the right with probability 1/2 + ε, when it is at position x ∈
[−κ/ε, κ/ε], while for x 6∈ [−κ/ε, κ/ε] it moves like a symmetric random walker. Let
L, v > 0 be positive integers and consider the following events:

A1 = A1(ε, L, κ) =
{

W touches L+κ
ε for the first time before it touches −L+κ

ε

}

;

A2 = A2(ε, L, κ, v) =
{

∃x ∈ [
−κ

ε
,
κ

ε
] : W has visited x more than v

ε times before it hits L+κ
ε

}

.

Lemma 5.1. There exist constants L0, ε0, κ0 > 0 and c0 > 0 such that for all
ε < ε0 and κ < κ0 so that for event A := A1 defined by the parameters L0, ε, κ, we
have that for all x ∈ [−κ/ε, κ/ε]:

P x,ω̄(A) >
1

2
+ c0κ .

This can be seen by exlicit calculation for what is a birth and death process (see
e.g. Hoel et al. (1987)). We have also that for this birth and death process, the
excursion theory is easily analysed and we obtain via a simple chaining argument

Lemma 5.2. For the L0 fixed in Lemma 5.1, there exists v < ∞ so that for all
ε < ε0 and κ < κ0 (the constants of Lemma 5.1) the event A := A2 defined by the
parameters L0, ε, κ, v, we have that for all x ∈ [−κ/ε, κ/ε]:

P x,ω̄(Ac) < e−
1
κ .
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Putting the two lemmas together we find (possibly at the price of reducing further
κ0)

Lemma 5.3. There exist constants L0, ε0, κ0 > 0 and c1 > 0 such that for all
ε < ε0 and κ < κ0 so that for event A := A1∩Ac

2 defined by the parameters L0, ε, κ,
we have that for all x ∈ [−κ/ε, κ/ε]:

P x,ω̄(A) >
1

2
+ c1κ .

Remark 5.4. The object is to apply the above to a cookie random walk. The result
above immediately implies that for a cookie random walk (with bias parameter
1
2 + ε), at least v

ε cookies at each point in interval [−κ
ε , κ

ε ] and with no cookies

outside of this interval, we have that P x,ω̄(A) > 1
2 + c1κ. Since the existence of

cookies to the left of −κ
ε can only help event A1 while not affecting at all event A2,

these have no effect on the above bounds. Likewise the existence of cookies to the
right of κ

ε can only increase the probability of event A and so Lemma 5.3 applies
to cookie random walks in some generality.

5.2. Coupling. By Lemma 5.3, one can fix L0 > 0 sufficiently large and ε0, κ > 0
sufficiently small so that for all ε < ε0 we have

P x,ω(A) ≥ 1/2 + c1κ for all x ∈ [−κ/ε, κ/ε] .

From Theorem 1.1, there exists M0 = M0(κ) > 1 so that ERW with M0 cookies
and bias p = 1/2 + c1κ has a strictly positive drift. From now on we denote by X
the ERW with these parameters. Let Xε be a walker with environment given by
ωM0v/ε,1/2+ε. With Lemma 5.3 in hand we show that:

Proposition 5.5. There exists a coupling between X and X ε with the following
properties: there exist an increasing sequence of stopping times (τ ε

n)n≥1 with

lim sup
n

τ ε
n

n
< ∞ (5.1)

and a random function l : N+ → N+ with l(n + 1) − l(n) ≥ 1 such that

εXε
τε

n

L0
− Xl(n) ≥ −κ1 . (5.2)

We first show how this result leads to Theorem 1.3.
Proof of Theorem 1.3 First note that to prove the desired result it is only necessary
to treat ε small, so restricting to ε < ε0 of Lemma 5.3 is certainly legitimate. By
5.1 in Proposition 5.5 (and that l(n) ≥ n),

ε

L
lim inf

n

Xε
τε

n

τ ε
n

≥ lim inf
n

Xl(n)

τ ε
n

≥ lim inf
n

Xl(n)

l(n)

n

τ ε
n

.

Since X has a strictly positive speed, together with 5.2 this yields that X ε has a
strictly positive speed. �

Proof of Proposition 5.5 Consider the collection of intervals {rL/ε + [−κ/ε, κ/ε] :
r ∈ Z}. Let τ ε

0 = 0 and I(0) = [−κ/ε, κ/ε] and assume that τ ε
0 , . . . , τ ε

n were defined.
These stopping times will be chosen so that for each n ≥ 0 there will be a unique
interval I(n) ∈ {rL + [−κ/ε, κ/ε] : r ∈ Z} so that X ε

τε
n
∈ I(n). We also introduce

the process (Zn : n ≥ 0) by setting Zn = r if I(n) = rL/ε + [−κ/ε, κ/ε]. Now,
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define τ ε
n+1 as follows: If

∑n
i=0 IZi=Zn ≤ M0 − 1 then let τ ε

n+1 be the first time
after τ ε

n that

• there exists x ∈ I(n) so that the number of visits to x is greater than v/ε ,
• or Xε touches (L(Zn − 1) + κ)/ε ,
• or Xε touches (L(Zn + 1) − κ)/ε if

∑n
i IZi=Zn+1 ≤ M0 − 1 ,

• or Xε touches (L(Zn + 1) + κ)/ε if
∑n

i IZi=Zn+1 ≥ M0 ;

If
∑n

i=0 IZi=Zn ≥ M0 then let τ ε
n+1 be the first time after τ ε

n that

• Xε touches (L(Zn − 1) + κ)/ε ,

• or Xε touches (L(Zn + 1) − κ)/ε if
∑M0

i IZi=Zn+1 ≤ M0 − 1 ,

• or Xε touches (L(Zn + 1) + κ)/ε if
∑M0

i IZi=Zn+1 ≥ M0 .

From this definition it should be clear that

lim sup
n

τ ε
n

n
< Kε

(where Kε is a finite constant depend on ε). Notice that if
∑n

i=0 IZi=Zn = c ≤ M0−1
then every site in I(n) has at least v(M0 − c)/ε > v/ε cookies. We also make the
following observations:

(1) If Zn+1 = Zn − 1 then Xε
τε

n+1
= (ZnL + κ)/ε;

(2) If
∑n

i IZi=Zn ≤ M0 then, by Lemma 5.3 (and the remark following it), the
probability that Zn+1 = Zn + 1 (or equivalently Xε

τε
n+1

∈ (I(n) + L/ε)) is

greater than 1/2 + c1κ;
(3) If

∑n
i=0 IZi=Zn > M0 then, by the rules for τ ε

n, Xε
τε

n+1
= (ZnL + κ)/ε and

so the conditional probability given Fτε
n

that Zn+1 = Zn + 1 is at least 1/2
(here F. refers to the filtration for the process Xε

. ).

It is important to realize the purpose of the different rules when the number of
previous visits to the current site goes from M0 − 1 to M0: it would be possible
that when Zn = r for the M0 time that Xε

τε
n

were to the left of ZnL/ε. This would

mean that that the conditional probability of advancing might be less than 1/2. It
is to make the ”bridge” for the subsequent regime where (3) holds that we change
the rules for the stopping times.

We now introduce our comparison process: the idea is to consider X = (Xn :
n ≥ 0) a M0 cookie for bias p = 1/2 + c1κ. We do not couple so that Xn ≤ Zn

for all n but rather we will construct l(n) so that l(0) = 0, l(n + 1) − l(n) ≥ 1 and
Xl(n) = Zn quite simply. We will also have that for all r ∈ Z

l(n)
∑

i=0

IXi=r ≥
n
∑

i=0

IZi=r .

Thus, given l(n), we have either
n
∑

i=0

IZi=Zn > M0 or

n
∑

i=0

IZi=Zn ≤ M0 .

In the former case, by our inductive hypothesis,

P (Zn+1 = Zn + 1 | Fτε
n
) ≥

1

2
= P (Xl(n+1) = Xl(n) + 1 | σ(X0, . . . , Xl(n)))

and so we can couple them so that
{

Xl(n+1) = Xl(n) + 1
}

⊆
{

Zn+1 = Zn + 1
}

.
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In the latter case we have (by item (2))

P (Zn+1 = Zn + 1 | Fτε
n
) ≥

1

2
+ c1κ ≥ P (Xl(n+1) = Xl(n) + 1 | σ(X0, . . . , Xl(n)))

and again we can couple them.
To define l(n) we simple set l(n + 1) = l(n) + 1 if Zn+1 = Xn+1. If not, we

take l(n + 1) = inf{k ≥ l(n) : Xk = Zn+1}. Thus Xl(n) = Zn and
∑l(n)

i=0 IXi=r ≥
∑n

i=0 IZi=r for all r, as we required. Together with the definition of l(n), item (1)
implies 5.2 and the proof of Proposition 5.5 is complete. �
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