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Abstract. Stein’s (1972) method is a very general tool for assessing the quality
of approximation of the distribution of a random element by another, often sim-
pler, distribution. In applications of Stein’s method, one needs to establish a Stein
identity for the approximating distribution, solve the Stein equation and estimate
the behaviour of the solutions in terms of the metrics under study. For some Stein
equations, solutions with good properties are known; for others, this is not the case.
Barbour and Xia (1999) introduced a perturbation method for Poisson approxima-
tion, in which Stein identities for a large class of compound Poisson and translated
Poisson distributions are viewed as perturbations of a Poisson distribution. In
this paper, it is shown that the method can be extended to very general settings,
including perturbations of normal, Poisson, compound Poisson, binomial and Pois-
son process approximations in terms of various metrics such as the Kolmogorov,
Wasserstein and total variation metrics. Examples are provided to illustrate how
the general perturbation method can be applied.

1. Introduction

Many applications of Stein’s (1972) method, when approximating the distribu-
tion L(W ) of a random element W of a metric space X by a probability distribu-
tion π, are accomplished broadly as follows. The aim is to estimate Eh(W ) − π(h)
for each member h of a family of test functions H, where π(h) :=

∫
hdπ. To do

this, one finds a normed space G and an appropriate Stein operator A on G char-
acterizing π; A : G → F ⊂ R

X , for some F ⊃ H, must be such that π(Ag) = 0 for
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all g in G, and that π is the unique probability distribution for which this is the
case. ‘Appropriate’ in this context means that an inequality of the form

|E{(Ag)(W )}| ≤ ε‖g‖G, g ∈ G, (1.1)

can be established, for some (small) ε. Finally, for each h ∈ H, find a function
gh ∈ G satisfying the Stein equation

Agh = h− π(h). (1.2)

Then it follows from (1.1) that

|Eh(W ) − π(h)| ≤ ε‖gh‖G . (1.3)

Hence, if it can be shown that

‖gh‖G ≤ C‖h‖F , (1.4)

for some norm ‖ · ‖F on F , we can conclude that

dH(L(W ), π) ≤ Cε sup
h∈H

‖h‖F , (1.5)

where, for any two distributions P and Q on X ,

dH(P,Q) := sup
h∈H

|P (h) −Q(h)|. (1.6)

Thus, if (1.2) and (1.4) are satisfied, it is enough for the dH-approximation of L(W )
by π to establish the inequality (1.1); in this sense, Stein’s method for π can be
said to work for the distance dH. Distances of this form include the total variation
distance dTV , with H the set of functions bounded by 1, and the Wasserstein
distance dW , with H the Lipschitz functions with slope bounded by 1.

Probabilistic inequalities of the form (1.1) can be derived by a variety of tech-
niques, including Stein’s exchangeable pair approach, the generator method and
Taylor expansion. However, the analytic inequality (1.4) can prove to be a stum-
bling block, especially if a reasonably small value of C is desired, unless π happens
to be a particularly convenient distribution. For X = R, the normal and Poisson
distributions lead to simple versions of (1.4). However, when introducing Stein’s
method for compound Poisson distributions, Barbour et al. (1992a) were only able
to prove analogous inequalities with satisfactory values of C for distributions for
which the generator method was applicable, and this represents a strong restric-
tion on the compound Poisson family. The class of amenable compound Poisson
distributions was subsequently extended in Barbour and Xia (1999), where a per-
turbation technique was introduced, which enabled the good properties of the solu-
tions of the Poisson operator to be carried over to those of the Stein equations for
neighbouring compound Poisson distributions. Their approach was taken further
in Barbour and Čekanavičius (2002) and in Čekanavičius (2004). Here, we show
that the perturbation idea can be applied not just in the Poisson setting, but in
great generality. One consequence is that the range of compound Poisson distribu-
tions whose solutions have good properties can be further extended, but the scope
of possible applications is much wider. In particular, there is no need to restrict
attention to random variables on the real line; distributions and random elements
on quite general spaces can be considered.

The perturbation method is discussed in the general terms in Section 2. Theo-
rem 2.1 shows how to find the solution gh in (1.2) for A = A1, when A1 is close
enough to a ‘nice’ Stein operator A0, and the probability measure π0 associated
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with A0 has supp (π0) = X ; the theorem also gives the inequality corresponding
to (1.4). Theorem 2.4 gives conditions under which Stein’s method works, but which
do not assume the support condition, and Theorem 2.5 allows a further slight re-
laxation, which is particularly relevant to approximation of random variables using
the Kolmogorov distance. In Section 3, a number of specific examples are given,
some of which are illustrated from the point of view of application in Section 4.

As indicated above, there are various ways in which an inequality (1.1) relevant
in any particular setting may be derived. This means that the choice of operator A1,
and of the corresponding approximating probability measure π1, is frequently dic-
tated by the problem under consideration in a more or less natural way. The choice
of A0 is more a matter of chance. If A1 is not itself one of the operators for which
the solutions to (1.2) are known to satisfy an inequality of the form (1.4), then
one looks for an A0 which is, and which is not too far away from A1. Such an
operator need not exist. In order for our perturbation approach to be successful, it
is necessary for the contraction inequality (2.8) to be satisfied, and this limits the
set of operators which can be considered as perturbations of any given A0, for the
purposes of our theorems.

2. Formal approach

Let X be a Polish space, and G a linear subspace of the functions g : X → R

equipped with a norm ‖ · ‖G . Suppose that π0 is a probability measure on X with
supp (π0) = X0 ⊂ X . Define

F := {f : X → R, π0(|f |) <∞};
F0 := {f ∈ F : f(x) = 0 for all x /∈ X0};
F ′ := {f ∈ F : π0(f) = 0}; F ′

0 := F0 ∩ F ′,

and let P0 be the projection from F onto F ′
0 given by

P0f := f1X0 − π0(f)1X0 ,

where, here and subsequently, 1A denotes the indicator function of the set A, and
multiplication of functions is to be understood pointwise. Now let ‖ · ‖ be a norm
on F , set

F := {f ∈ F : ‖f‖ <∞},

and define F0 := F ∩F0, F
′
:= F ∩F ′, F ′

0 := F ∩F ′
0; we shall require that ‖ · ‖ is

such that

P0 : F → F ′

0. (2.1)

We also assume that F is a determining class of functions for probability measures
on X (Billingsley 1968, p. 15).

We now suppose that there is a ‘nice’ Stein operator A0 characterizing π0. By
this, we mean that

A0 : G → F ′
0, (2.2)

and also that it is possible to define a right inverse

A−1
0 : F ′

0 → G0 := {g ∈ G : g(x) = 0 for all x /∈ X0},
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satisfying

A0(A−1
0 f) = f for all f ∈ F ′

0; (2.3)

‖A−1
0 P0f‖G ≤ A‖f‖, f ∈ F , (2.4)

for some A <∞. Note that (2.2) means that

π0(A0g) = 0 for all g ∈ G. (2.5)

On the other hand, in view of (2.3), if π is any probability measure on X0 such that

π(A0g) = 0 for all g ∈ G, then π(f) = 0 for all f ∈ F ′

0, meaning that π(f) = π0(f)
for all f ∈ F0, and hence for all f ∈ F . Since F is a determining class, π = π0,
and A0 characterizes π0 through (2.5).

In the setting of the introduction, for h ∈ H ⊂ F0 a family of test functions,
we have h(x) − π0(h) = (P0h)(x) for x ∈ X0, so that we can take gh = A−1

0 P0h
and obtain (1.2), in view of (2.3). Inequality (2.4) is just (1.4) for A0, with f in
place of h. Hence, because of (1.5), Stein’s method for π0 based on (1.1) (with
A0 in place of A) works for distances based on families H of test functions whose
norms are uniformly bounded. Our interest here is in extending this to probability
measures π1 characterized by generators A1 which are close to A0.

So let π1 be a finite signed measure on X with π1(X ) = 1, and such that
|π1|(|f |) < ∞ for all f ∈ F . Let A1 be a Stein operator for π1, meaning that
A1 : G → F ′

1, where

F ′
1 := {f : X → R; |π1|(|f |) <∞, π1(f) = 0},

so that

π1(A1g) = 0 for all g ∈ G; (2.6)

set U = A1 −A0, and assume also that

UA−1
0 P0 : F → F . (2.7)

The key assumption which ensures that A1 can fruitfully be thought of as a per-
turbation of A0 is that

‖UA−1
0 P0‖ =: γ < 1. (2.8)

Remark. Having to satisfy the condition (2.8) significantly limits the choice of
distributions π1 whose Stein equations can be treated as perturbations of that
for π0. This is clearly illustrated in the examples of the next section.

Theorem 2.1. With the above definitions, suppose that assumptions (2.1)–(2.4)
and (2.6)–(2.8) are satisfied. Then the operator

B := A−1
0 P0

∑

j≥0

(−1)j(UA−1
0 P0)

j : F → G0 (2.9)

is well defined, and

‖B‖ ≤ A/(1 − γ); ‖UB‖ ≤ γ/(1 − γ). (2.10)

Furthermore, for f ∈ F and for all x ∈ X0,

(A1Bf)(x) − (P1f)(x) = c(f) = π1(f) − π0(f) + π0(UBf), (2.11)

where P1f = f − π1(f)1; here, 1 = 1X . In particular, if X0 = X , we have
c(f) = 0, so that B is a right inverse of A1 on F ′

1 ∩ F .
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Proof. The first part is immediate from (2.4) and (2.8), from the properties of
A−1

0 and from (2.7). It is then also immediate that

(A0 + P0U)Bf = P0f, f ∈ F .
Hence, for f ∈ F , we have

A1Bf = (A0 + P0U + (I − P0)U)Bf
= P0f + (UBf)1X c

0
+ π0(UBf)1X0 , (2.12)

so that, for x ∈ X0,

(A1Bf)(x) − (P1f)(x) = π1(f) − π0(f) + π0(UBf) =: c(f). (2.13)

For the constant c(f), note that, from (2.6) with Bf for g and from (2.12), we
have

0 = π1(f1X0) − π1(X0)π0(f) + π1((UBf)1X c
0
) + π0(UBf)π1(X0)

= π1(f) − π1(f1X c
0
) − π0(f) + π1(X c

0 )π0(f) + π1((UBf)1X c
0
)

+ π0(UBf)(1 − π1(X c
0 )).

This implies, from the first part of the theorem, that

c(f) = π1(f) − π0(f) + π0(UBf) = 0

if X c
0 = ∅, and

c(f) = π1(f1X c
0
) − π1(X c

0 )π0(f) − π1((UBf)1X c
0
) + π0(UBf)π1(X c

0 ) (2.14)

otherwise. �

Remark. If X0 = X , then it follows from Theorem 2.1 that

A1Bh = P1h = h− π1(h)

for test functions h ∈ H ⊂ F . Hence, for such h, the function gh := Bh satis-
fies (1.2), where A is replaced by A1 and π by π1. It then follows from (2.10) that
‖gh‖G ≤ A(1 − γ)−1‖h‖, so that (1.4) is satisfied with C = A/(1 − γ), and hence
Stein’s method for π1 based on (1.1) (with A1 for A) works for distances dH derived
from bounded families of test functions.

If X0 6= X , the inequalities (2.10) are still satisfied, so that (1.4) is still true
with C = A/(1 − γ) if gh = Bh. However, this choice of gh now gives only an
approximate solution to (1.2):

(A1gh)(x) = h(x) − π1(h) + c(h), x ∈ X0. (2.15)

This is still enough to show that Stein’s method works for π1 based on (1.1) (with
A1 for A), as is demonstrated in Theorem 2.4 below. To make the connection, we
first need two more lemmas.

The first concerns the size of |c(f)|. This can be controlled in a number of ways,
two of which are given in the following lemma. For any finite signed measure π and
any A ⊂ X , we define

κ(π,A) := sup
{f∈F : ‖f‖≤1}

|π|(f̂1A), (2.16)

where f̂(x) := |f(x) − π0(f)|.
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Lemma 2.2. For f ∈ F , we have

(i) |c(f)| ≤ 2|π1|(X c
0 )

1 − γ
‖f‖∞;

(ii) |c(f)| ≤ κ(π1,X c
0 )

1 − γ
‖f‖.

Proof. The proof is immediate from (2.14) and (2.16). �

The second lemma translates (2.15) into an inequality bounding the difference
|π(f) − π1(f)| in terms of |π(A1Bf)|, for a general probability measure π on X .

Lemma 2.3. Under the conditions of Theorem 2.1, if π is any probability measure
on X , then, for any f ∈ F , we have

|π(f) − π1(f)| ≤ |π(A1Bf)| +
{

2(1− γ)−1{|π1|(X c
0 ) + π(X c

0 )} ‖f‖∞;

(1 − γ)−1{κ(π1,X c
0 ) + κ(π,X c

0 )} ‖f‖.

Proof. It follows from (2.12) that

π(A1Bf) = π(P0f) + π((UBf)1X c
0
) + π0(UBf)π(X0)

= π(f) − π(f1X c
0
) − π0(f)(1 − π(X c

0 ))

+ π((UBf)1X c
0
) + π0(UBf)(1 − π(X c

0 ))

= {π(f) − π1(f)} + c(f) − π(f1X c
0
)

+ (π0(f) − π0(UBf))π(X c
0 ) + π((UBf)1X c

0
).

Hence, and using (2.16), the lemma follows. �

This lemma gives the information that we need, when deriving distributional
approximations in terms of the measure π1. Let H ⊂ F be any collection of test
functions which forms a determining class for probability measures on X . Then
define the metric dH on finite signed measures ρ, σ on X , by

dH(ρ, σ) := sup
h∈H

|ρ(h) − σ(h)|. (2.17)

In the special case where H := {f ∈ F : ‖f‖ ≤ 1}, we write dF for dH. The
following theorem shows that Stein’s method for π1 based on (2.18) works for the
distance dF , even when X0 6= X .

Theorem 2.4. Suppose that the conditions of Theorem 2.1 are satisfied, and write
g0
f := A−1

0 P0f for all f ∈ F . Then, if

|π(A1g
0
f )| ≤ ε‖g0

f‖G for all f ∈ F , (2.18)

it follows that

dF (π, π1) ≤ (1 − γ)−1{Aε+ ε′(π, π1)},
where

ε′(π, π1) := min{2(|π1|(X c
0 ) + π(X c

0 ))F, κ(π1,X c
0 ) + κ(π,X c

0 )},
and

F := sup
{f∈F : ‖f‖≤1}

‖f‖∞. (2.19)
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Proof. In fact, let f̃ =
∑
j≥0(−1)j(UA−1

0 P0)
jf . Then (2.18) together with (2.8)

and (2.4) imply that

|π(A1Bf)| = |π(A1g
0
f̃
)| ≤ ε‖g0

f̃
‖G ≤ Aε‖f̃‖ ≤ Aε

1 − γ
‖f‖.

Thus the conclusion follows immediately from Lemma 2.3 and from the definition
of dF . �

Note that (2.18) is a weakening of what would normally be required for (1.1),
inasmuch as the inequality is only needed for the functions g0

f , which, being the
solutions to the Stein equation for the ‘nice’ operator A0, may well be known in
advance to have good properties.

Theorem 2.4 is applied most simply when π is the distribution of some random
element W , for which it can be shown that

|E(A1g)(W )| ≤
l∑

j=1

εjcj(g), g ∈ G. (2.20)

Here, the quantities εj are to be computed using W alone, and the function g enters
only through the constants cj(g). If the norm ‖ · ‖ on F can be chosen in such a

way that the cj(g
0
f ) can be bounded by a multiple of ‖f‖ for any f ∈ F , then

Theorem 2.4 can be invoked.
The choice of norms on F for which this procedure can be carried through

depends very much on the structure of the random variable W : see Section 4.
Broadly speaking, for the more stringent norms, the contraction condition (2.8) is
harder to satisfy; on the other hand, there are then fewer functions having finite
norm, and so the inequality (2.18) is easier to establish. Take, for example, standard
normal approximation, with G the space of bounded real functions with bounded
first and second derivatives, endowed with the norm

‖g‖G := ‖g‖∞ + ‖g′‖∞ + ‖g′′‖∞ , (2.21)

and with A0 the Stein operator given by

(A0g)(x) = g′(x) − xg(x), g ∈ G. (2.22)

Here, it is possible, in many central limit settings, to derive an inequality of the
form (1.1):

|E(A0g)(W )| ≤ ε‖g‖G
for some ε, as, for example, in Chen and Shao (2005, p. 5). Now, for g0

f = A−1
0 P0f

with ‖f ′‖∞ < ∞, we have ‖(g0
f )

′′‖∞ ≤ 4‖f ′‖∞ by Proposition 5.1 (c)(i) and (iii)

with y = g0
f , so that inequality (1.4) is satisfied with

‖f‖(1) := ‖f‖∞ + ‖f ′‖∞ (2.23)

as norm on F . This, in turn, leads to corresponding approximations with respect
to the distance dF =: d(1), from (1.5).

In the usual central limit context, there is typically no hope of taking the argu-
ment further, and choosing H = F for the supremum norm ‖ · ‖∞ in place of ‖ · ‖(1)

on F . This is not because the perturbation argument would fail, but because there
can usually be no inequality of the form |E(P0f)(W )| ≤ ε‖f‖∞ for all f ∈ F , un-
less ε is rather large; this is because the supremum of the left hand side is then just
the total variation distance between L(W ) and the standard normal distribution,
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and this is not necessarily small under the usual conditions for the central limit
theorem. More is, however, possible with some extra restrictions: see Cacoullos
et al. (1994) and Example 4.1.

The distance d(1) is not the one most commonly used for measuring the accuracy
of approximation in the central limit theorem. Here, it is usual to work with the
Kolmogorov distance dK , which is of the form defined in (2.17), with the set of test
functions

HK := {1(−∞,a] : a ∈ R}.
For these test functions, it can in many central limit applications be established, al-
beit with rather more effort, that |E(A0gh)(W )| is bounded, uniformly for h ∈ HK ,
by a quantity of the form kε for some k <∞ and ε reflecting the closeness of L(W )
and the standard normal distribution. This in turn, with (1.2), implies error esti-
mates for standard normal approximation, measured with respect to Kolmogorov
distance.

Now the set HK forms a subset of F , when the supremum norm is taken on F ,
and the perturbation arguments leading to Lemma 2.3 can still be applied success-
fully, for Stein operators A1 suitably close to A0. However, in order to deduce dis-
tance estimates as in Theorem 2.4, it is necessary to be able to bound |E(A0g

0
f )(W )|

not only for f ∈ HK , but also for any f of the form f := (UA−1
0 P0)

jh, where

h ∈ HK and j ≥ 1, since these functions are used to make up the function f̃ intro-
duced in the proof of Theorem 2.4. Now these functions f are not typically in the
set HK . However, it can at least be shown that both g0

h and (g0
h)

′ are uniformly
bounded for h ∈ HK . For some operators A1, this is enough to be able to conclude
that

sup
h∈HK

‖Ugh‖(1) < ∞.

It is then possible to apply the following result, in which the Stein operator A0 is
now quite general.

Theorem 2.5. Suppose that the conditions of Theorem 2.1 are satisfied, and that H
is any family of test functions with H := suph∈H ‖h‖∞ < ∞, and such that g0

h :=

A−1
0 P0h is well defined for h ∈ H, satisfying A0g

0
h = P0h and Ug0

h ∈ F . Assume
further that

γH := H−1 sup
h∈H

‖Ug0
h‖ < ∞. (2.24)

Then, if π is such that
sup
h∈H

|π(A1g
0
h)| ≤ Hε1 (2.25)

and
|π(A1g

0
f )| ≤ ε2‖g0

f‖G , f ∈ F , (2.26)

it follows that

dH(π, π1) ≤ H

{
ε1 +

γHAε2
1 − γ

+
ε(π, π1)

1 − γ

}
,

where ε(π, π1) := κ(π1,X c
0 ) + κ(π,X c

0 ).

Proof. Once again, much as in the proof of Theorem 2.4, we note that

|π(A1Bh)| ≤
∑

j≥0

|π(A1A−1
0 P0(UA−1

0 P0)
j h)| = |π(A1g

0
h)| +

∑

j≥1

|π(A1g
0
fj )|,

(2.27)
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where fj := (UA−1
0 P0)

j h, j ≥ 1. Now, for h ∈ HK ,

‖f1‖ = ‖Ug0
h‖ ≤ HγH ,

by (2.24), and then, by (2.8),

‖fj‖ ≤ γj−1HγH , j ≥ 2.

Hence, from (2.27), (2.4), (2.25) and (2.26), it follows that

sup
h∈HK

|π(A1Bh)| ≤ Hε1 +
∑

j≥1

ε2Aγ
j−1HγH ,

and the theorem now follows from Lemma 2.3. �

In particular, if A0 is the Stein operator for normal approximation given in (2.22),
and taking the norm ‖ · ‖(1), Theorem 2.5 can be applied with H = HK ; in circum-
stances in which the conditions (2.24)–(2.26) are satisfied, this leads to estimates
of the error in approximating the distribution π of a random variable W by π1,
measured with respect to Kolmogorov distance. In particular, the estimates (2.25)
and (2.26) relating to the distribution of W are of a kind which can often be verified
in practice; see Section 4.

3. Examples

In the first two examples, the sets X0 and X are the same, so that the elements
in the bounds involving probabilities of the set X c

0 make no contribution. The
first of these is purely for illustration, since properties of the Stein equation for the
perturbed distribution could be obtained directly.

Example 3.1. In this example, we consider approximation by the probability dis-
tribution π1 := tm,ψ on R, with density

pm,ψ(x) = km,ψ(1 + x2/m)−(m+1)ψ/2 e−(1−ψ)x2/2, x ∈ X := R,

where km,ψ is an appropriate normalizing constant. This family of densities
interpolates between the standard normal (ψ = 0) and Student’s tm distribution
(ψ = 1) distribution, as ψ moves from 0 to 1; m is classically a positive integer. We
take for G the space of bounded real functions with bounded derivatives, endowed
with the norm

‖g‖G := ‖g‖∞ + ‖g′‖∞ .

An appropriate Stein operator A1 for tm,ψ is given by

(A1g)(x) = g′(x) − x

{
(1 − ψ) +

ψ(m+ 1)

m+ x2

}
g(x), g ∈ G; (3.1)

this follows because pm,ψ(x) is an integrating factor for the right hand side of (3.1),
and hence, for any g ∈ G,

∫ ∞

−∞

(A1g)(x)pm,ψ(x) dx = [g(x)pm,ψ(x)]
∞
−∞ = 0,

so that (2.6) is satisfied. Now, at least for small enough ψ, A1 could be thought of
as a perturbation of the standard normal distribution, with Stein operator

(A0g)(x) = g′(x) − xg(x), g ∈ G,
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discussed above, whose properties are well documented: see, for example, Chen and
Shao (2005, Lemmas 2.2 and 2.3). Rather than take the standard normal for π0,
we actually prefer to perturb from a normal distribution N (0, (1−ψ)−1). This has
Stein operator

(A0g)(x) = g′(x) − (1 − ψ)xg(x), g ∈ G, (3.2)

which gives

(Ug)(x) = −x ψ(m+ 1)

m+ x2
g(x), g ∈ G.

The properties of A−1
0 are as given in Proposition 5.1, with y replaced by g. For

the supremum norm on F , we find that assumptions (2.1)–(2.4) and (2.6)–(2.7) are
satisfied, and that

sup
x

|x(A−1
0 P0f)(x)| ≤ 2(1 − ψ)−1‖f‖;

‖UA−1
0 P0‖ ≤ 2ψ(1 − ψ)−1(1 + 1

m ) =: γ,

from Proposition 5.1 (b)(iii). Condition (2.8) is satisfied if γ < 1, in which case
Theorem 2.4 shows that Stein’s method works.

Note, however, that Student’s tm distribution itself is too far from the normal
for this perturbation argument to be applied, since then ψ = 1, and so γ = ∞.

For bounded functions f with bounded derivative, it follows from Proposi-
tion 5.1 (c)(iv) that

sup
x

|x(A−1
0 P0f)′(x)| ≤ 3

1 − ψ
‖f ′‖∞ .

This translates into a bound for ‖UA−1
0 P0f‖(1), and (2.8) is then satisfied for all ψ

small enough. As for normal approximation, bounding E{(A0g)(W )} by a linear
combination of ‖g‖∞, ‖g′‖∞ and ‖g′′‖∞ may be a much more reasonable prospect
than using only ‖g‖∞ and ‖g′‖∞, and these quantities are themselves all bounded

by multiples of ‖f‖(1), for g = A−1
0 P0f and f ∈ F (1)

:= {f ∈ F : ‖f‖(1) < ∞}:
see Proposition 5.1 (c)(i)–(iii), with y = g. In such cases, d(1)-approximation is a
consequence.

To deduce Kolmogorov distance using Theorem 2.5, note that, for H = HK ,

γH = sup
h∈HK

‖Ug0
h‖(1)

≤ 2
ψ

1− ψ

(
1 +

1

m

){
1 +

1√
m

+
1

4

√
2π(1 − ψ) +

1

2
(1 − ψ)

√
m

}
,

from Proposition 5.1 (a)(i)–(iii). If an approximation with respect to d(1) can be
obtained from Theorem 2.4, then the estimate used in (2.18) can be used also
in (2.26), and the main further obstacle is thus to verify condition (2.25).

Example 3.2. Our second example also concerns a perturbation of the normal
distribution, but now to a distribution π1, whose Stein operator is not so easy to
handle directly. This time, we take for G the space of real functions g with g(0) = 0
and having bounded first and second derivatives, endowed with the norm

‖g‖G := ‖g′‖∞ + ‖g′′‖∞.
As Stein operator A1, we fix α > 0 and take the expression

(A1g)(x) = g′′(x) − xg′(x) + α{g(x+ z) − g(x)}, g ∈ G, (3.3)
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which can be viewed as a perturbation of the Stein operator

(A0g)(x) = g′′(x) − xg′(x), g ∈ G,
characterizing the standard normal distribution. This operator is equivalent to that
given in (2.22), and the properties of A−1

0 are given in Proposition 5.1, with y = g′

and ψ = 0. The distribution π1 is that of the equilibrium of a jump–diffusion
process X , with unit infinitesimal variance, and having jumps of size z at rate α.

Once again, taking the supremum norm on F , it is easy to check that assumptions
(2.1)–(2.4) and (2.6)–(2.7) are satisfied, and since

‖(A−1
0 P0f)′‖∞ ≤

√
2π ‖f‖∞,

from Proposition 5.1 (b)(i), it follows that

‖UA−1
0 P0‖ ≤

√
2π zα. (3.4)

Hence, from Theorem 2.4, Stein’s method works for π1 if γ =
√

2πzα < 1; an
estimate of the form (2.18) is all that is needed.

As above, the supremum norm may be more difficult to exploit in practice than
the norm ‖ · ‖(1). Here, for f ∈ F , and writing g0

f = A−1
0 P0f , we have

|(Ug0
f )

′(x)| ≤ α

∫ z

0

|(g0
f )

′′(x+ t)| dt ≤ 4αz‖f‖∞,

from Proposition 5.1 (b)(ii), and Theorem 2.4 can be applied if α is small enough

that γ = (4 +
√

2π)zα < 1.
For Kolmogorov approximation, note that, for H = HK ,

γH = sup
h∈HK

‖Ug0
h‖(1) ≤ (1 +

√
2π/4) zα ,

by Proposition 5.1 (a)(i)–(ii). Once again, the main effort in addition to d(1)–
approximation is to verify (2.25) of Theorem 2.5.

Note that we are also free to perturb from other normal distributions. If we
choose to centre at the mean αz of π1, we can do so by writing

(A1g)(x) = g′′(x) − (x − αz)g′(x) + α{g(x+ z) − g(x) − zg′(x)}, g ∈ G,
with the first two terms the Stein operator for the normal distribution N (αz, 1).
The third, perturbation term can be bounded by 2αz2‖f‖∞, and its derivative
by αz2‖f ′‖∞ (Proposition 5.1 (b)(ii)–(iii)), enabling (2.8) to be satisfied for ‖f‖(1)

for a larger range of α, if z is small enough. It is also possible to begin with
N (αz, 1 + αz2/2), correcting for both mean and variance.

It is also possible to generalize the class of perturbed measures by replacing the
term α(g(x+ z)− g(x)) corresponding to Poisson jumps of rate α and magnitude z
by a more general Lévy process, taking instead

∫
{g(x + z) − g(x)}α(dz), for a

suitable measure α.

Example 3.3. As our third example, considered already in Barbour and Xia (1999)
and in Barbour and Čekanavičius (2002), we consider (signed) compound Poisson
distributions π1 on Z, the set of all integers, as perturbations of Poisson distribu-
tions on Z+ := {0, 1, 2, · · · }. We begin with π1 as the compound Poisson distribu-
tion CP(λ, µ) on Z+, the distribution of

∑
l≥1 lNl, where N1, N2, . . . are indepen-

dent, and Nl ∼ Po(λµl); m1 :=
∑
l≥1 lµl is assumed to be finite. In this case, we
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have X = X0 = Z+. With G the space of bounded functions g : IN → R, endowed
with the supremum norm, a suitable Stein operator for π1 is given by

(A1g)(j) = λ
∑

l≥1

lµlg(j + l) − jg(j), j ≥ 0, (3.5)

considered as a perturbation of the Stein operator

(A0g)(j) = λm1g(j + 1) − jg(j), j ≥ 0; (3.6)

this means that

(Ug)(j) = λ
∑

l≥1

lµl{g(j + l) − g(j + 1)}, j ≥ 0. (3.7)

Taking the supremum norm on F , assumptions (2.1)–(2.4) and (2.6)–(2.7) are sat-
isfied; and since, from the well-known properties of the solution of the Stein Poisson
equation,

‖∆(A−1
0 P0f)‖∞ ≤ 2

λm1
‖f‖∞, (3.8)

where ∆g(j) := g(j + 1) − g(j), it follows that

‖UA−1
0 P0‖ ≤ 2λ

∑

l≥1

l(l− 1)µl/(λm1) = 2m2/m1,

where m2 =
∑

l≥1 l(l − 1)µl. Hence (2.8) is satisfied if m2/m1 < 1/2, and Theo-
rem 2.4 can then be invoked. Note that, in this setting, it is reasonable to work in
terms of the supremum norm, since total variation approximation may genuinely
be accurate.

There are nonetheless other distances that are useful. Two such are the Wasser-
stein distance dW , defined for measures P and Q on Z by

dW (P,Q) := sup
f∈Lip1

|P (f) −Q(f)|,

where Lip1 := {f : Z → R; ‖∆f‖∞ ≤ 1}, and the point metric dpt defined by

dpt(P,Q) := max
j∈Z

|P{j} −Q{j}|,

which has application when proving local limit theorems.
For Wasserstein distance, it is natural to begin with the semi-norm ‖f‖ :=

‖f‖W := ‖∆f‖∞ on F , which becomes a norm when restricted to F ′
. The argu-

ments in Section 2 go through in this modified setting very much as before; the

only practical differences are that one needs to check that P0UA−1
0 maps F ′

0 into
itself, and to replace the condition (2.8) by

γ := ‖P0UA−1
0 ‖ < 1. (3.9)

For the Poisson operator A0 given in (3.6), it is known that

‖g0
f‖∞ ≤ ‖P0f‖W = ‖f‖W ; ‖∆g0

f‖∞ ≤ 1.15(λm1)
−1/2‖f‖W ;

‖∆2g0
f‖∞ ≤ 2(λm1)

−1‖f‖W , (3.10)

whenever f ∈ F and g0
f := A−1

0 P0f (Barbour and Xia, 2006). Hence, for A1 as

in (3.5) and f ∈ F ′

0, it follows from (3.7) that

‖P0Ug0
f‖W = ‖∆P0Ug0

f‖∞ ≤ λ
∑

l≥1

l(l − 1)µl‖∆2g0
f‖∞ ≤ 2(m2/m1)‖f‖W ,
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so that P0UA−1
0 indeed maps F ′

0 into itself, and γ = ‖P0UA−1
0 ‖ ≤ 2m2/m1.

Thus (3.9) is satisfied for m2/m1 < 1/2, and the perturbation approach can then
be invoked.

For the point metric, we take the l1–norm ‖f‖ := ‖f‖1 :=
∑

j∈Z
|f(j)| on F .

For f ∈ F0 and g0
f = A−1

0 P0f , we have

‖g0
f‖∞ ≤ (λm1)

−1‖f‖1; ‖∆g0
f‖1 =

∑

j≥1

|∆g0
f (j)| ≤ 2(λm1)

−1‖f‖1; (3.11)

both inequalities are consequences of the proof of the second inequality in Barbour
et al. (1992b, Lemma 1.1.1). Hence, from (3.7), it follows immediately that

‖Ug0
f‖1 =

∑

j≥0

|(Ug0
f )(j)|

≤ λ
∑

l≥1

lµl
∑

j≥0

l−1∑

s=1

|∆g0
f (j + s)|

≤ 2λm2(λm1)
−1‖f‖1 = 2(m2/m1)‖f‖1,

so that condition (2.8) is once again satisfied if m2/m1 < 1/2.
If, more generally, π1 is a (signed) compound measure on Z, with characteristic

function

exp

{
λ
∑

l∈Z

µl(e
ilθ − 1)

}
,

similar considerations can be applied. Here, we now have X = Z, but X0 is still Z+.
The corresponding Stein operator is formally exactly as in (3.5), except that the
l-sum now runs over the whole of Z, and we require m1 to be positive; also, the
role of m2 is now played by m′

2 =
∑

l∈Z
l(l−1)|µl|. When applying Lemma 2.3 and

Theorem 2.4, we have the inequalities

κ(π,Z−) ≤ 2 |π|(Z−)

for use with dTV ,

κ(π,Z−) ≤
∑

j<0

|π|{j}(|j| + λ)

for dW , and, with the fact that maxj π0(j) ≤ (2eλ)−1/2 (Barbour et al., 1992b,
p. 262),

κ(π,Z−) ≤ 1√
2eλ

|π|(Z−) + max
l<0

|π|{l}

for dpt.

Example 3.4. In this example, the setting is similar to that in the preceding ex-
ample, but we now consider a compound Poisson distribution π1 = CP(λ1, µ1)
on Z+ as a perturbation not of a Poisson distribution, but of another compound
Poisson distribution π0 = CP(λ0, µ0) on Z+. The reason for doing so is that the
solutions to the Stein equation are known to be well behaved only for rather re-
stricted classes of compound Poisson distributions: see Barbour and Utev (1998)
and Barbour and Xia (2000). The perturbation method offers the possibility of
expanding the class of those with good behaviour by including neighbourhoods not
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only of the Poisson distributions, but also of any other compound Poisson distribu-
tions whose Stein solutions can be controlled. In particular, we shall suppose that
the distribution π0 = CP(λ0, µ0) is such that

jµ0
j ≥ (j + 1)µ0

j+1, j ≥ 1,

and that δ := µ0
1 − 2µ0

2 > 0, these conditions implying that, with c1(λ
0) = 4 −

2(δλ0)−1/2 and c2(λ
0) = 1

2 (δλ0)−1 + 2 log+(2(δλ0)),

‖g0
f‖∞ ≤ {δλ0}−1/2c1(λ

0)‖f‖∞ and ‖∆g0
f‖∞ ≤ {δλ0}−1c2(λ

0)‖f‖∞, (3.12)

where, as usual, g0
f := A−1

0 P0f ; see Barbour et al. (1992a, pp. 1854-5). Here, the

Stein operators A0 and A1 are given as in (3.5), with the corresponding choices of
λ and µ, giving

(Ug)(j) =
∑

l≥1

l{λ1µ1
l − λ0µ0

l }g(j + l), j ≥ 0.

As in the previous example, we shall only consider perturbations which preserve
the mean, so that also

λ1
∑

j≥1

jµ1
j = λ0

∑

j≥1

jµ0
j .

Taking the supremum norm on F , assumptions (2.1)–(2.4) and (2.6)–(2.7) are
satisfied. In order to express the contraction condition (2.8), write

E := 1
2

∑

l≥1

l|λ1µ1
l − λ0µ0

l |,

and define probability measures ρ and σ on IN by

ρl = E−1l(λ1µ1
l − λ0µ0

l )
+; σl = E−1l(λ0µ0

l − λ1µ1
l )

+, l ≥ 1;

set θ := EdW (ρ, σ), where dW denotes the Wasserstein distance. Then, using (3.12),
it follows easily that

‖UA−1
0 P0‖∞ ≤ {δλ0}−1c2(λ

0)θ =: γ,

with (2.8) satisfied if γ < 1.

Example 3.5. In our last example, we consider solving the Stein equation for a
point process, whose distribution π1 is close to that of a spatial Poisson process.
Let X be a compact metric space, and let X denote the space of Radon measures
(point configurations) on X. Then a Poisson process on X with intensity measure Λ

satisfying λ := Λ(X) <∞ is a random element
∑N

l=1 δXl of X, where N,X1, X2, . . .
are all independent, N ∼ Po(λ) and Xl ∼ λ−1Λ for l ≥ 1, and δx denotes the unit
mass at x. Its distribution π0 can be characterized by the fact that π0(A0g) = 0
for all g in

G := {g : X → R; g(∅) = 0, ‖∆g‖∞ <∞},
where

(A0g)(ξ) :=

∫

X

{(g(ξ + δx) − g(ξ))Λ(dx) + (g(ξ − δx) − g(ξ))ξ(dx)} ,

and ‖∆g‖∞ := supξ∈X ,x∈X
|g(ξ + δx) − g(ξ)|. Note that the Stein operator A0 is

the generator of a spatial immigration–death process, with π0 as its equilibrium
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distribution. For the measure π1, we take the equilibrium distribution of another
spatial immigration–death process on X, with generator A1 given by

(A1g)(ξ) :=

∫

X

{(g(ξ + δx) − g(ξ))Λ1(ξ, dx) + (g(ξ − δx) − g(ξ))ξ(dx)} ;

here, the immigration measure is allowed to depend on the current configuration ξ.
We can write A1 = A0 + U if we set

(Ug)(ξ) :=

∫

X

(g(ξ + δx) − g(ξ))(Λ1(ξ, dx) − Λ(dx)),

and we note that X0 := supp (π0) = X .
We begin by considering perturbations appropriate for total variation approxi-

mation, taking the set of functions F : X → R with the supremum norm ‖ · ‖∞.
Then, as in Barbour and Brown (1992, pp. 12–14), it is possible to define a right
inverse A−1

0 satisfying (2.3) and (2.4), with A = 2. To check that UA−1
0 P0 : F → F ,

we combine the definition of U and (2.4) to give

|(Ug0
f )(ξ)| ≤ 2Lξ(X)‖f‖∞,

where Lξ(·) denotes the absolute difference between the measures Λ1(ξ, .) and Λ(·);
hence we shall need in addition to assume that

λ̃ := 2 sup
ξ∈X

Lξ(X) < ∞, (3.13)

in order to make progress. If we do, then (2.8) is satisfied with γ = λ̃ if λ̃ < 1, and
Theorem 2.4 can be used to show that Stein’s method works.

Total variation is often too strong a metric for comparing point process distri-
butions, and so an alternative metric d2 is proposed in Barbour and Brown (1992),
based on test functions Lipschitz with respect to a metric on X which is bounded
by 1. Similar calculations can be carried out in this setting also; the condition
needed to satisfy (2.8) is somewhat more stringent.

Even the contraction condition λ̃ < 1 is rather restrictive. Consider a hard-core
model, in which X ⊂ R

d has volume ϑ, Λ(dx) = dx, and Λ(ξ, dx) = I [ξ(B(x, ε)) =
0] dx, where I [C] denotes the indicator of the event C; this specification of Λ(ξ, dx)
is such that no immigration is allowed within distance ε of a point of the current
configuration ξ. Then λ̃ = ϑ, and contraction is only achieved if the expected
number ϑ of points under π0 is less than 1. However, one could also consider
a model with π1 the equilibrium distribution of a slightly different immigration
death process, in which

Λ(ξ, dx) = max{I [ξ(B(x, ε)) = 0], I [ξ(X) > 2ϑ]}dx;

for large ϑ, the difference between the equilibrium distributions of the two processes
is small, but, for the new process, λ̃ ≤ 2ϑa(ε), where a(ε) is the area of the ε-
ball, meaning that models with much larger expected numbers of points can still
satisfy the contraction condition. Nonetheless, these are still models in which, at
distance ε, little interaction can be expected; the mean number of pairs of points
closer than ε to one another under π0 is about 1

2ϑa(ε), and, if the contraction

condition is satisfied, this has to be less than 1
4 .
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4. Illustrations

In this section, we illustrate how the perturbations described above can be used
in specific examples.

Example 4.1. In our first illustration, we return to the setting and notation of Ex-
ample 3.2, and consider approximation by the distribution π1 whose Stein operator
is given in (3.3) above. The distribution we wish to approximate is the equilibrium
distribution π of another jump–diffusion process, in which the jumps do not have
fixed size z, but are randomly chosen with z as mean; this process has generator A
given by

(Ag)(x) = g′′(x) − xg′(x) + α

∫
{g(x+ ζ) − g(x)}µ(dζ), g ∈ G. (4.1)

This distribution can be expected to be close to π1 provided that the probability
distribution µ is concentrated about z, and since the distribution π is reasonably
well understood, such an approximation may constitute a useful simplification.

The main step is thus to establish a bound of the form (2.18), after which The-
orem 2.4 can be applied. However, for X ∼ π and g0

f := A−1
0 P0f , we immediately

have

π(A1g
0
f ) = π(Ag0

f ) − αE

{∫
{g0
f (X + ζ) − g0

f (X + z)}µ(dζ)

}

= −αE

{∫
{g0
f (X + ζ) − g0

f (X + z)}µ(dζ)

}
,

since π(Ag) = 0 for all g ∈ G. From this it follows by the mean value theorem that

|π(A1g
0
f )| ≤ 1

2α

∫
(ζ − z)2µ(dζ) ‖(g0

f )
′′‖∞ ≤ 2α

∫
(ζ − z)2µ(dζ) ‖f‖∞.

This suggests that the supremum norm on F is an appropriate choice, and from
Theorem 2.4, if γ :=

√
2π zα < 1, as in (3.4), it follows that

dTV (π, π1) ≤ 2α

∫
(ζ − z)2µ(dζ)/(1 − γ).

Thus the total variation distance between the two distributions is small if the vari-
ance of µ is small (and γ < 1).

Example 4.2. We continue with the setting and notation of Example 3.2, and
again approximate by the distribution π1. Here, as the measure π, we take the
equilibrium distribution of a Markov jump process WN , defined as follows. We let
XN be the pure jump Markov process on Z+ with transition rates given by

j → j + 1 at rate N ; j → j − 1 at rate j;

j → j + bz
√
Nc at rate α,

and we then set WN (t) := {XN(t)−N}/
√
N . If z = 0, the equilibrium distribution

of XN is the Poisson distribution with mean N , and that of WN the centered and
normalized Poisson distribution, which is itself, for large N , close to the normal in
Kolmogorov distance, but not in total variation. Here, we wish to find bounds for
the accuracy of approximation by π1 when z > 0. As above, we need a bound of
the form (2.18), so as to be able to apply Theorem 2.4.
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Much as above, we begin by observing that π(Ag) = 0 for all g ∈ G, where now,

writing wjN := (j −N)/
√
N and ηN := 1/

√
N , we have

(Ag)(wjN ) = N{g(wjN + ηN ) − g(wjN )}
+ j{g(wjN − ηN ) − g(wjN )} + α{g(wjN + bz

√
NcηN ) − g(wjN )}.

Subtracting (A1g)(wjN ) and using Taylor’s expansion, it follows that

|(Ag)(wjN ) − (A1g)(wjN )|
≤ N−1/2( 1

3‖g′′′‖∞ + 1
2 |wjN |‖g′′‖∞ + α‖g′‖∞),

so that
|π(A1g)| ≤ N−1/2( 1

3‖g′′′‖∞ + 1
2E|WN |‖g′′‖∞ + α‖g′‖∞). (4.2)

Note that, taking g(w) = w and g(w) = w2 respectively in π(Ag) = 0, as we may,
by Hamza and Klebaner (1995, Theorem 2), it follows that |EWN | ≤ αz and

2E{W 2
N} ≤ 2Nη2

N + ηN |EWN | + 2αz|EWN | + αz2 ≤ 2 + αzηN + 2α2z2 + αz2,

which implies that

{E|WN |}2 ≤ E{W 2
N} ≤ 1 + 1

2αzηN + α2z2 + 1
2αz

2;

thus E|WN | is uniformly bounded in N . Furthermore, for g = g0
f := A−1

0 P0f and

f ∈ F (1)
, we can control the first three derivatives of g0

f by using Proposition 5.1

with y = (g0
f )

′, so that (4.2) yields a bound of the form

|π(A1g
0
f )| ≤ CN−1/2‖f‖(1),

for all f ∈ F (1)
. In view of Theorem 2.4, this translates into the bound

d(1)(π, π1) ≤ CN−1/2/(1− γ)

if γ < 1, where now, for ‖ · ‖(1), we have γ = (4 +
√

2π)zα, as in Example 3.2.
If, instead, Kolmogorov distance is of interest, then the only obstacle is to ver-

ify (2.25) of Theorem 2.5. For g = g0
h, the estimate given in (4.2) is fine, except for

the first term: it is no longer possible to bound the difference

DN (w) := N{g(w + ηN ) − g(w) + g(w − ηN )) − g(w)} − g′′(w)

by 1
3ηN‖g′′′‖∞, since, for h = ha = 1(−∞,a], g

′′′(a) is not defined. However, it is
clear that |DN (w)| ≤ 2‖g′′‖∞ for all w, and that, for |w − a| > ηN ,

|DN (w)| ≤ sup
|x−w|≤ηN

|g′′′(x)|.

Now, for h = ha, taking a > 0 without real loss of generality, we have

|g′′′(x)| ≤ C1 + C2ae
−a(a−x)1(0,a)(x), x 6= a, (4.3)

for universal constants C1 and C2, so that g′′′ is well behaved except just below a.
The bound (4.3) can then be combined with the concentration inequality

P[WN ∈ [a, b]] ≤ { 1
2 (b− a) + ηN}(E|WN | + αz),

obtained by taking g′′ = 1[a−ηN ,b+ηN ] and g′(w) =
∫ w
(b−a)/2

g′′(t) dt for any a ≤ b

in π(Ag) = 0, to deduce a bound E|DN (WN )| ≤ CN−1/2, and hence Kolmogorov
approximation also at rate N−1/2. Total variation approximation is of course never
good, since L(WN ) gives probability 1 to a discrete lattice, and π1 is absolutely
continuous with respect to Lebesgue measure.
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Example 4.3. (Borovkov–Pfeifer approximation) Borovkov and Pfeifer (1996) sug-
gested using a single n-independent infinite convolution of simple signed measures
as a correction to the Poisson approximation to the distribution of a sum of indepen-
dent indicator random variables. Their approximation is particularly effective in the
case that they treated, the number of records in n i.i.d. trials. Here, the approxima-
tion is not as complicated as it might seem, because the generating function of the
correcting measure can be conveniently expressed in terms of gamma functions. Its
accuracy is then of order O(n−2), which is way better than the O(1/ logn) error in
the standard Poisson approximation. Their approach was extended to the multivari-
ate case of independent summands in Čekanavičius (2002) and Roos (2003). Note
also that Roos (2003) obtained asymptotically sharp constants in the univariate
case. In this example, by treating their approximating measure as a perturbation
of the Poisson, as in Example 3.3, we investigate Borovkov–Pfeifer approximation
to the distribution of the sum of dependent Bernoulli random variables.

Let Ii, i ≥ 1, be dependent Bernoulli Be (pi) random variables. Define W =∑n
i=1 Ii, W

(i) = W − Ii, and let W̃ (i) be a random variable having the conditional

distribution of W (i) given Ii = 1; that is, for all k ∈ Z+, P(W̃ (i) = k) = P(W (i) =
k | Ii = 1). Let

λ =

n∑

i=1

pi; η1 =

n∑

i=1

{
pi

1 − 2pi

}
E|W̃ (i) −W (i)|.

The Borovkov–Pfeifer approximation is defined to be the convolution of the Pois-
son distribution Po (λ) and the signed measure BP determined by its generating
function:

B̂P(z) =

∞∏

i=1

{(
1 + pi(z − 1)

)
exp {−pi(z − 1)}

}
. (4.4)

Using the fact that

e−p(z−1)(1 + p(z − 1)) = exp {ln(1 + pz/q)− ln(1 + p/q) − p(z − 1)}

= exp

{
p2

q
(z − 1) +

∞∑

l=2

(−1)l+1

l

(
p

q

)l
(zl − 1)

}
, (4.5)

where q = 1 − p, one can see that BP is a signed compound Poisson measure,
provided that

∑n
i=1 p

2
i < ∞. Note that

∑∞
i=1 pi = ∞ is allowed, as is indeed the

case for record values, when pi = 1/i.

Theorem 4.1. Assume that pi < 1/3, i ≥ 1, that
∑

i≥1 p
2
i <∞, and that

θ1 : =
m′

2

m1
=

∑n
i=1 p

2
i (1 − 2pi)

−2

λ
<

1

2
. (4.6)
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Then

dTV (L(W ),Po (λ) ∗ BP) ≤ 2

λ(1 − 2θ1)

( ∞∑

i=n+1

p2
i

(1 − 2pi)2
+ η1

)
, (4.7)

dpt(L(W ),Po (λ) ∗ BP)

≤ 2

λ(1 − 2θ1)

(
sup
k

P(W = k)

∞∑

i=n+1

p2
i

(1 − 2pi)2
+ η1

)
, (4.8)

dW (L(W ),Po (λ) ∗ BP) ≤ 1.15√
λ(1 − 2θ1)

( ∞∑

i=n+1

p2
i

(1 − 2pi)2
+ η1

)
. (4.9)

Remark. Let Ii, i ≥ 1, be independent. Then it suffices to prove the corresponding
approximation for the sum Ws :=

∑n
i=s Ii only. Indeed, let BPs be specified by the

generating function:

B̂Ps(z) =

∞∏

i=s

{(
1 + pi(z − 1)

)
exp {−pi(z − 1)}

}
.

Then

Po (λ) ∗ BP = L
(
s−1∑

i=1

Ii

)
∗ Po

(
n∑

i=s

pi

)
∗ BPs

and

L(W ) = L
(
s−1∑

i=1

Ii

)
∗ L(Ws),

and so, by the properties of total variation we have

dTV (L (W ) ,Po(λ) ∗ BP) ≤ dTV

(
L (Ws) ,Po

(
n∑

i=s

pi

)
∗ BPs

)
.

If W is the sum of independent Bernoulli variables, then η1 = 0 and

sup
k

P(W = k) ≤
(

4

n∑

i=1

pi(1 − pi)

)−1/2

,

see Barbour and Jensen (1989, Lemma 1). Now, if we consider the records example
of Borovkov and Pfeifer (1996), with pi = 1/i, we can take any s ≥ 4 in the remark
above, and obtain orders of accuracy for the total variation distance, point metric
and Wasserstein metric of O((n ln n)−1), O(n−1(lnn)−3/2) and O(n−1(ln n)−1/2),
respectively.

Proof of Theorem 4.1. In this case, X = X0 = Z+. Using (4.5), and setting
qi = 1−pi, we can write Po (λ)∗BP as the signed compound Poisson measure with
generating function

exp




∑

l≥1

λl(z
l − 1)



 , (4.10)



50 Barbour et al.

where λl = λ1l + λ2l, with

λ1l =
(−1)l+1

l

n∑

i=1

(
pi
qi

)l
, l ≥ 1;

λ21 =

∞∑

i=n+1

p2
i

qi
; λ2l =

(−1)l+1

l

∞∑

i=n+1

(
pi
qi

)l
, l ≥ 2.

Here, the components λ1l come from the signed compound Poisson representation
of a sum of independent Bernoulli Be (pi) random variables, 1 ≤ i ≤ n, and the λ2l

from the remaining BPn+1 measure.
Let µl = λl/λ. Then, since

∑∞
l=1 lλ1l =

∑n
i=1 pi = λ and

∑∞
l=1 lλ2l = 0, we have

m1 =
∑∞

l=1 lµl = 1. Hence, the formula for θ1 follows directly from

∞∑

l=2

l(l− 1)|λl| =

∞∑

l=2

(l − 1)

∞∑

i=1

(
pi
qi

)l
=

∞∑

i=1

p2
i (1 − 2pi)

−2.

Next, we take Stein operators A0 as in (3.6) and A1 as in (3.5). For g = g0
f :=

A−1
0 P0f , it follows that

E(A1g)(W ) =

{
∞∑

l=1

lλ1l E g(W + l) − E{Wg(W )}
}

+

∞∑

l=1

lλ2l E g(W + l). (4.11)

We begin by bounding the quantity in braces, which gives a bound for the accu-
racy of the approximation of L(W ) by the distribution of a sum of independent
Bernoulli Be (pi) random variables. We observe immediately that, for any i and l,

Eg(W + l) = piEg(W̃
(i) + l+ 1) + qiE{g(W (i) + l) | Ii = 0}

and that

Eg(W (i) + l) = piEg(W̃
(i) + l) + qiE{g(W (i) + l) | Ii = 0},

from which it follows that

Eg(W + l) = qiEg(W
(i) + l) + piEg(W̃

(i) + l + 1) + piuil,

where we write uil := Eg(W (i) + l) − Eg(W̃ (i) + l). Setting vil := (−1)l+1(pi/qi)
l,

so that lλ1l =
∑n
i=1 vil, and observing that pivil = −qivi,l+1, we thus have

∑

l≥1

vilEg(W + l) − E{Iig(W )}

= qi
∑

l≥1

vilEg(W
(i) + l) − qi

∑

l≥2

vilEg(W̃
(i) + l)

+ pi
∑

l≥1

viluil − piEg(W̃
(i) + 1)

=
∑

l≥1

viluil.
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Adding over 1 ≤ i ≤ n, we thus find that
∣∣∣∣∣
∞∑

l=1

lλ1l Eg(W + l) − E{Wg(W )}
∣∣∣∣∣

≤
n∑

i=1

∑

l≥1

|vil| |Eg(W (i) + l) − Eg(W̃ (i) + l)| ≤ η1‖∆g‖∞.

It now remains to estimate the remaining element
∑∞
l=1 lλ2l Eg(W + l) in (4.11).

Using the identity

g(W + l) = g(W + 1) +

l−1∑

s=1

∆g(W + s),

we have

∞∑

l=1

lλ2l Eg(W + l) = Eg(W + 1)

{
∞∑

l=1

lλ2l

}
+

∞∑

l=1

lλ2l

l−1∑

s=1

E{∆g(W + s)}

=

∞∑

l=1

lλ2l

l−1∑

s=1

E{∆g(W + s)},

because
∑∞
l=1 lλ2l = 0. Now we have

|E{∆g(W + s)}| ≤ min

{
‖∆g‖∞, ‖∆g‖1 max

k
P(W = k)

}
,

∞∑

l=2

l(l− 1)|λ2l| =

∞∑

i=n+1

p2
i

(1 − 2pi)2
.

The estimates (4.7)–(4.9) thus follow directly from the inequalities (3.8), (3.10)
and (3.11) in Example 3.3. �

5. Appendix

Here, we collect various properties of the solution y to the equation

y′(x) − (1 − ψ)xy(x) = h(x) − h̄ψ, x ∈ R, (5.1)

for given h and 0 ≤ ψ < 1, where h̄ψ = Eh(N), for N ∼ N (0, (1 − ψ)−1).

Proposition 5.1.

(a) If h = 1(−∞,z] for any z ∈ R, then

(i) ‖y‖∞ ≤ 1

4

√
2π

1 − ψ
;

(ii) ‖y′‖∞ ≤ 1;

(iii) sup
x

|xy(x)| ≤ 1

1 − ψ
.
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(b) If h is bounded, then

(i) ‖y‖∞ ≤
√

2π

1 − ψ
‖h‖∞;

(ii) ‖y′‖∞ ≤ 4 ‖h‖∞;

(iii) sup
x

|xy(x)| ≤ 2

1 − ψ
‖h‖∞.

(c) If h is uniformly Lipschitz, then

(i) ‖y‖∞ ≤ 2

1 − ψ
‖h′‖∞;

(ii) ‖y′‖∞ ≤ 4√
1 − ψ

‖h′‖∞;

(iii) ‖y′′‖∞ ≤ 2√
1 − ψ

‖h′‖∞;

(iv) sup
x

|xy′(x)| ≤ 3

1 − ψ
‖h′‖∞.

Proof. Equation (5.1) can be transformed, using the substitution x = w/
√

1 − ψ,
into the equation with ψ = 0 for the standard normal distribution, for which
the corresponding bounds are mostly given in Chen and Shao (2005, Lemmas 2.2
and 2.3). In particular, the bounds (a)(i)–(iii) follow directly from their Equations
(2.9), (2.8) and (2.7), respectively; the bounds (b)(i)–(ii) from the proofs of their
Equations (2.11) and (2.12); and the bounds (c)(i)–(iii) from their Equations (2.11)–
(2.13).

The bound (b)(iii) is easily deduced from the explicit expression for the solu-
tion y: for instance, for x > 0, we have

xy(x) = −xe(1−ψ)x2/2

∫ ∞

x

e−(1−ψ)t2/2(h(t) − h̄ψ) dt ,

immediately giving

|xy(x)| ≤ x

∫ ∞

0

e−(1−ψ)zx |h(x+ z) − h̄ψ| dz ,

from which (b)(iii) follows.
For (c)(iv), we argue only for x < 0, since the proof for x > 0 is entirely similar.

Noting that

y′′(x) − (1 − ψ)xy′(x) = (1 − ψ)y(x) + h′(x) ,

we obtain

y′(x) = e
(1−ψ)x2

2

∫ x

−∞

{(1 − ψ)y(t) + h′(t)} e− (1−ψ)t2

2 dt ;

hence

|xy′(x)| ≤ {(1 − ψ)‖y‖∞ + ‖h′‖∞}|x|e (1−ψ)x2

2

∫ x

−∞

e−
(1−ψ)t2

2 dt

≤ ‖y‖∞ + ‖h′‖∞/(1 − ψ) .

But now, from (c)(i) above, ‖y‖∞ ≤ 2
1−ψ ‖h′‖∞ . �
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