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Abstract. We introduce new models of stationary random fields, solutions of

Xt = F
(
(Xt−j)j∈Zd\{0}; ξt

)
,

the input random field ξ is stationary, e.g. ξ is independent and identically dis-
tributed (iid). Such models extend most of those used in statistics. The (nontrivial)
existence of such models is based on a contraction principle and Lipschitz condi-
tions are needed; those assumptions imply Doukhan and Louhichi (1999)’s weak
dependence conditions. In contrast to the concurrent ones, our models are not set
in terms of conditional distributions. Various examples of such random fields are
considered. We also use a very weak notion of causality of independent interest: it
allows to relax the boundedness assumption of inputs for several new heteroscedas-
tic models, solutions of a nonlinear equation.

1. Introduction

Description of random fields is a difficult task, a very deep reference is Georgii’s
1988 book; a synthetic presentation is given by Föllmer (1988). The usual way to
describe interactions makes use of conditional distributions with respect to large
sets of indices. This presentation is natural for discrete valued random fields as
in Comets et al. (2002). The existence of conditional densities is a more restrictive
assumption for continuous state spaces. The existence of random fields is often
based on conditional specifications, see Föllmer (1988, pages 109–119) and Do-
brushin (1970), through Feller continuity assumptions. The uniqueness of Gibbs
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measures is often based on projective conditional arguments; it follows with a mix-
ing type argument. Such conditions rely on the regularity of conditional distri-
butions; applications to resampling exclude such hypotheses. Various applications
to image, geography, agronomy, physic, astronomy or electromagnetism may for
instance be considered, see Georgii (1988) or Loubaton (1989).
We omit here any assumption relative to the conditional distributions. Our idea is
to define random fields through more algebraic and analytic arguments. We present
here the new models of stationary random fields subject to the relation:

Xt = F
(
(Xt−j)j∈Zd\{0}; ξt

)
(1)

where ξ = (ξt)t∈Zd is an independent identically distributed (iid) random field. The
independence of inputs ξ may also be relaxed to a stationarity assumption.
For the models with infinite interactions (1), the existence and uniqueness rely
on the contraction principle. Lipschitz type conditions are thus needed, they are
closely related to weak dependence, see Doukhan and Louhichi (1999). Analogue
weak dependence conditions are already proved in Shashkin (2005) for spin systems.
A causal version of such models, random processes solutions of an equation Xt =
F (Xt−1, Xt−2, . . . ; ξt) (t ∈ Z) is considered in Doukhan and Wintenberger (2006);
in this paper the results are proved in a completely different way fitting to coupling
arguments. Our results state existence and uniqueness of a solution of (1) as a
Bernoulli shift Xt = H((ξt−s)s∈Zd) as well as the weak dependence properties of
this solution.
Our models are not necessarily Markov, neither linear or homoskedastic. Moreover
the inputs do not need additional distributional assumptions (like for Gibbs random
fields). They extend on ARMA random fields which are special linear random
fields (see Loubaton (1989) or Guyon (1995)). A forthcoming paper will be aimed
at developing statistical issues of those models. Identification and estimation of
random fields with integer values will be considered in Doukhan et al. (2007).
The paper is organized as follows. We first recall weak dependence from Doukhan
and Louhichi (1999) in § 2. General results are then stated for stationary (non
necessarily independent) inputs. Those results imply heavy restrictions on the
innovations in some cases: a convenient notion of causality is thus used. A last
subsection addresses the problem of simulating such models.
A following section details examples of such models. They are natural extensions
of the standard times series models. We shall especially consider LARCH(∞) and
doubly stochastic linear random fields for which this causality allows to relax the
boundedness assumptions. Proofs are postponed to a last section of the paper.

2. Main results

In order to state our dependence results, we first introduce the concepts of weak
dependence. Our main results will be stated in the following subsection. After this,
causality will be proved to imply other powerful results. A last subsection is aimed
at describing a way to simulate those very general random fields.

2.1. Weak dependence. We recall here the weak dependence conditions introduced
in Doukhan and Louhichi (1999). They may replace heavy mixing assumptions.

Definition 1. Set ‖(s1, . . . , sd)‖ = max{|s1|, . . . , |sd|} for s1, . . . , sd ∈ Z. One E =
R

k−valued random field (Xt)t∈Zd is weakly dependent if for a sequence (ε(r))r∈N
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with limit 0

|Cov (f(Xs1
, . . . , Xsu

) , g (Xt1 , . . . , Xtv
)| ≤ ψ(u, v,Lip f,Lip g)ε(r),

where indices s1, . . . , su, t1, . . . , tv ∈ Z
d are such that ‖sk − tl‖ ≥ r for 1 ≤ k ≤ u

and 1 ≤ l ≤ v. Moreover, the real valued functions f, g defined on
(
R

k
)u

and(
R

k
)v

, satisfy ‖f‖∞, ‖g‖∞ ≤ 1 and Lip f,Lip g < ∞ where a norm ‖ · ‖ is given

on R
k and,

Lip f = sup
(x1,...,xu)6=(y1,...,yu)

|f(x1, . . . , xu) − f(y1, . . . , yu)|
‖x1 − y1‖ + · · · + ‖xu − yu‖

.

If ψ(u, v, a, b) = au + vb, this is denoted as η−dependence and the sequence ε(r)
will be written η(r).
If ψ(u, v, a, b) = abuv, this is denoted as κ−dependence and the sequence ε(r) will
be written κ(r).
If ψ(u, v, a, b) = au+ vb+abuv, this is denoted as λ−dependence and the sequence
ε(r) will be written λ(r).

2.2. Random fields with infinite interactions. Let ξ = (ξt)t∈Zd be a stationary ran-

dom field with values in E′ (usually E′ = R
k′

for some k′ ≥ 1 but in some cases E ′

is a denumerable tensor product of such sets). We shall consider stationary E = R
k

valued random fields driven by the implicit equation (1). For a topological space
S, B(S) denote the Borel σ-algebra on S.
We denote I = Z

d \{0}. In the sequel, F :
(
E(I)×E′,B(EI)⊗B(E′)

)
→
(
E,B(E)

)

denotes a measurable function defined for each sequence with a finite number of
non-vanishing arguments (1). In this paper ‖ · ‖ will be arbitrary norms on E (or
E′ when needed). We will always use the suppremum norm on Z

d and this norm
will be also denoted by ‖ · ‖. We prove that simple assumptions entail existence of
a unique solution as a Bernoulli shift

Xt = H
(
(ξt−j)j∈Zd

)

Let µ denote ξ’s distribution; this is a probability measure on the measurable space(
E′Zd

,B
(
E′Zd))

. For some m ≥ 1, we denote ‖ · ‖m the usual norm of L
m and

the space of µ-measurable H :
(
E′Zd

,B
(
E′Zd))

→ (E,B(E)) with finite moments
is denoted

L
m(µ) = {H

/
E‖H(ξ)‖m <∞}.

We shall use the assumptions:

: (H1) ‖F (0; ξ0)‖m <∞.
: (H2) There exist constants aj ≥ 0, for j ∈ α > 0 with, for each ∀z, z′ ∈
E(Zd\{0}),

‖F (z; ξ0) − F (z′; ξ0)‖ ≤
∑

j∈Zd\{0}
aj‖zj − z′j‖, a.s. (1)

∑

j∈Zd\{0}
aj = e−α < 1.

We now extend the function F to the trajectories of a stationary random field:

1If V denotes a vector space and B an arbitrary set then V (B)
⊂ V B denotes the set of

v = (vb)b∈B such that there is some finite subset B1 ⊂ B with vb = 0 for each b /∈ B1.
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Lemma 1. Assume (H1) and (H2). Let X and X ′ be two E−valued stationnary
random fields in L

m, then:

1) lim
p→∞

F
(
(Xj10<‖j‖≤p)j 6=0; ξ0

)
exists in L

m and a.s., we denote it

F
(
(Xj)j∈Zd\{0}; ξ0

)
.

2)
∥∥F
(
(Xj)j∈Zd\{0}; ξ0

)
− F

(
(X ′

j)j∈Zd\{0}; ξ0
)∥∥

m
≤

∑

j∈Zd\{0}
aj

∥∥Xj −X ′
j

∥∥
m
.

Theorem 1. Assume that ξ is stationary and (H1) and (H2) hold. Then there
exists a unique stationary solution of equation (1). This solution writes Xt =
H
(
(ξt−j)j∈Zd

)
for some H ∈ L

m(µ).

Lemma 8 below, will also provide us with an approximation of this solution with
finitely many interactions.

2.2.1. Weak dependence of the solution (iid inputs). In the general case we shall
restrict to independent inputs to derive η−weak dependence of the previous solu-
tion.

Theorem 2. Assume that ξ is iid and (H1) and (H2) hold. Then the stationary
solution of equation (1) obtained in theorem 1 is η−weakly dependent and there
exists a constant C > 0 with

η(r) ≤ C · inf
p∈N∗

{
e−α r

2p +
∑

‖i‖>p

ai

}
. (2)

Remark. If ai = 0 for ‖i‖ > p then η(r) ≤ C · e−α r
2p .

Sub-geometric rates are now derived from specific decays of the coefficients:

Lemma 2 (Geometric decays). If ai ≤ Ce−β‖i‖ there exists a constant C ′ > 0 with

η(r) ≤ C ′r
d−1

2 e−
√

αβr/2.

Lemma 3 (Riemanian decays). If ai ≤ C‖i‖−β for a β > d, there exists C ′ > 0
with

η(r) ≤ C ′
( r

ln r

)d−β

.

Thus a large range of decay rates may be considered for such models of random
fields.

2.2.2. Weak dependence of the solution (dependent inputs). If ξ is either η or λ-
dependent it may be proved in specific examples that weak dependence is hereditary.
Here follows a general result. The following assumption will be necessary:

(H2’) There exist a subset Ξ ⊂ E ′ with P (ξ0 ∈ Ξ) = 1, nonnegative constants with∑

j∈Zd\{0}
aj = e−α < 1 and a constant b > 0 such that

‖F (x;u) − F (x′;u′)‖ ≤
∑

j∈Zd\{0}
aj‖xj − x′j‖ + b ‖u− u′‖ ,

for all x, x′ ∈ E(Zd\{0}) and u, u′ ∈ Ξ.

We quote that assumption (H2’) is more restrictive than (H2)
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Proposition 1. Assume (H1) and (H2’).

1): If the random field ξ is η−weakly dependent, with weak dependence
coefficients ηξ(r), then X is η−weakly dependent with, for some C > 0,

η(r) ≤ C inf
p∈N∗

{ ∑

‖j‖>p

aj + inf
n∈N∗

{
an + pnηξ ((r − 2pn) ∨ 0)

}}
.

2): If the random field ξ is λ−weakly dependent, with dependence coefficients
denoted λξ(r), then X is λ−weakly dependent with, for some C > 0,

λ(r) ≤ C inf
p∈N∗




∑

‖j‖>p

aj + inf
n∈N∗

{
an + p2nλξ ((r − 2pn) ∨ 0)

}


 .

Remark. For models with finite interactions, i.e. F (x;u) = f(xj1 , . . . , xjk
;u) for

x = (xj)j 6=0, this simply writes

η(r) ≤ c inf
n∈N∗

{an + knηξ ((r − 2ρn) ∨ 0)} ,

λ(r) ≤ c inf
n∈N∗

{
an + k2nλξ ((r − 2ρn) ∨ 0)

}
,

here ρ = max{‖j1‖, . . . , ‖jk‖}. If ηξ(r) or λξ(r) have geometric or Riemannian
decay the same holds for the output random field. More precisely set a = e−α and
k = eκ under η-dependence and k2 = eκ under λ-dependence, then decay rates of
the outputs (Xt) write
Geometric decays:

e
αβ

α+2ρβ+κ
r for dependence decays of the inputs with order e−βr

Riemannian decays:

r−
αb

α+κ for dependence decays of the inputs with order r−b

2.3. Causality. For d = 1, the recurrence equation Xt = ξt(a+bXt−1) is given with
F (x;u) = u(a+ bx1). There exist a stationary solution with ξt and Xt−1 indepen-
dent. Here (H2) implies that innovations are bounded, which seems unrealistic.
In this example, instead of H ((ξt)t∈Z)) ∈ L

m(µ), this is enough to exhibit solu-
tions H ((ξt)t≥0) ∈ L

m(µ) (which is independent of (ξs)s<0). This allows to replace
suprema by integrals in (H2) in order to derive a contraction principle. Causality
of random fields has been considered in Helson and Lowdenslager (1959); we adapt
this idea in order to relax the previous assumption.

Definition 2 (causality). If A ⊂ Z
d \ {0}, we denote c(A) the convex cone of R

d

generated by A,

c(A) =

{
k∑

i=1

riji

/
(j1, . . . , jk) ∈ Ak, (r1, . . . , rk) ∈ R

k
+, k ≥ 1

}
.

1) The set A is a causal subset of Z
d if c(A) ∩

(
− c(A)

)
= {0}.

2) If F is measurable with respect to the σ-algebra FA ⊗B(E′) for some causal set
A, then the equation Xt = F ((Xt−j)j∈I ; ξt) is A-causal.

For a causal set A ⊂ Z
d, we denote by Ã the subset c(A) ∩ Z

d.
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Examples. A singleton is causal, as well as {i, j} if and only if −j /∈ i · R
+. The

half plane {(i, j) ∈ Z
2/i > 0}

⋃
{(0, j); j > 0} ⊂ Z

2 is also causal.

One consequence of this notion is the elementary lemma:

Lemma 4. If A is a causal subset of Z
d, then ∀(j, j′) ∈ A× Ã we have j + j′ 6= 0.

For a linear basis b = (b1, . . . , bd) of R
d, (x1, . . . , xd) 7→ x1b1 + · · ·+xdbd, defines

an isomorphism f : R
d → R

d. We denote by ≤b the total order relation on R
d

defined by:
u ≤b v ⇔ f−1(u) ≤lex f

−1(v)

with ≤lex the lexicographic order on R
d.

Proposition 2 (characterization of causal sets). If B is a convex cone of R
d such

that B ∩ (−B) = {0} there exists a basis b of R
d such that B ⊂ {j ∈ R

d/0 ≤b j}.
Moreover if b is a basis of R

d, {j ∈ Z
d/0 <b j} is a causal set of Z

d witch will be
called maximal causal subset.

Remarks.

• The maximal causal subsets of Z are {1, 2, 3, . . .} and {−1,−2, . . .}. An
example of maximal causal subset of Z

2 is {(i, j) ∈ Z
2/i > 0 or (i = 0, j >

0)}.
• Helson and Lowdenslager (1959) define symmetric half planes as subsets
S ⊂ Z

2 such that S is stable by addition and S ∪ (−S) = Z
2, S ∩ (−S) =

{0}. A nice review of this causality condition is given in Loubaton (1989),
applications are essentially given in terms of linear random fields.

Note that S \ {0} is a maximal causal subset of Z
2. This notion plays a

prominent part in prediction theory of 2-D stationary process (see Loubaton
(1989)).

If D ⊂ Z
d, we denote by πs (respectively π′

s) the coordinate applications in EZd

(resp. in (E′)Z
d

), FD = σ(πs; s ∈ D) and F′
D = σ(π′

s; s ∈ D). Hence we denote
by L

m
D(µ) the subspace of L

m(µ) of functions µ-measurable with respect to F′
D.

The following result takes this definition into account to relax the assumptions in
theorem 1,

Theorem 3. Let Xt = F
(
(Xt−j)j∈Zd\{0}; ξt

)
be a A-causal equation with iid inputs

ξ. Besides the assumption (H1) we assume the following condition:
(H3) there exist nonnegative constants with

∑
j∈A aj = e−α < 1 and

‖F (x; ξ0) − F (x′; ξ0)‖m ≤
∑

j∈A

aj‖xj − x′j‖, ∀x, x′ ∈ E(Zd\{0}).

Then there exists a unique strictly stationary solution X of this equation in L
m if

for each t ∈ Z
d, Xt is measurable wrt σ

(
ξt−j/j ∈ Ã

)
.

This solution writes Xt = H
(
(ξt−j)j∈Zd

)
where H ∈ L

m
eA . and it is η−weakly

dependent; moreover relation (2) still holds for a constant C > 0.

Now the function F is extended as follows:

Lemma 5. Suppose (H1) and (H3). If ξ0 is independent of σ
(
(Xj , X

′
j)/j ∈ A

)
for

two random fields X and X ′ in L
m then,

1) lim
p→∞

F
(
(Xj10<‖j‖≤p)j 6=0; ξ0

)
exists in L

m and it is denoted F
(
(Xj)j 6=0; ξ0

)
.
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2)
∥∥F
(
(Xj)j 6=0; ξ0

)
− F

(
(X ′

j)j 6=0; ξ0
)∥∥

m
≤
∑

j∈A

aj

∥∥Xj −X ′
j

∥∥
m

.

2.4. Simulation of the model. Simulations of those models are deduced from the
proof of the existence theorems based on the Picard fixed point theorem. Consider

the shift operators θj :
(
E′)Z

d

→
(
E′)Zd

defined as (xk)k∈Zd 7→ (xk+j )k∈Zd . For
H ∈ L

m(µ) we note

Φp(H) = F
((

(H ◦ θj)1‖j‖≤p

)
j
;π0

)

It is shown in theorem 1’s proof that the application Φ : L
m(µ) → L

m(µ) given by

Φ(H) = F ((H ◦ θj)j 6=0;π0).

is well defined and has a fixed point in L
m(µ).

The proof of theorem 3 shows that it is also the case for a A−causal equation if we
replace L

m(µ) by L
m
eA (µ).

For n, p ∈ N
∗, t ∈ Z

d we denote

Xn
t = Φ(n)(0)

(
(ξt−j)j∈Zd

)

and

Xn
p,t = Φ(n)

p (0)
(
(ξt−j)j∈Zd

)
.

Lemma 6. We assume that conditions in theorem 1 or in theorem 3 hold for some
m ≥ 1. Let n ∈ N then:

(1) For every t ∈ Z
d, ‖Xt −Xn

t ‖m ≤ an‖X0‖m, hence limn→∞Xn
t = Xt a.s.

(2) if p ∈ N we have,
∥∥Xt −Xn

p,t

∥∥
m

≤ ‖X0‖m

{
an + 1

1−a

∑
‖j‖>p aj

}
. Thus if

p = pn is chosen such that
∑

n≥1

( ∑

‖j‖>pn

aj

)m

<∞ then

lim
n→∞

Xn
pn,t = Xt, a.s. (3)

Remarks.

• If the random field has finitely many interactions, then 1. provides a sim-
ulation scheme.

• For each finite p the operator Φp can be calculated thus relation (3) provides
an explicit simulation scheme even for infinitely many interactions.

• A.s. convergence rates may also be evaluated in the previous lemma. They
write oa.s. (a

nnε) in the first point for each ε > 1/m and oa.s. (n
−ε) for

0 < ε < α − 1/m if
∑

‖j‖>pn
aj ≤ Cn−α for some C > 0, α > 1/m in the

point 2.
• If T ⊂ Z

d is a finite set the random field X may be analogously simulated
over T and (Xt)t∈T is estimated by

(
Xn

pn,t

)
t∈T

.

2.4.1. Simulation scheme for finitely many interactions. Let

F (x;u) = f(xj1 , . . . , xjk
;u).

The sequence of random fields Xn is defined from:

X1
t = f(0; ξt), t ∈ Z

d, Xn+1
t = f

(
Xn

t−j1 , . . . , X
n
t−jk

; ξt
)
, for n ≥ 0
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We now simulate samples (X10
t )1≤t1,t2≤15 of LARCH models with d = 2, k = k′ = 1

and p = 10:

Xt = ξt

(
1 +

∑

0<‖j‖≤p

ajXt−j

)

(1) In the figure 1, we represent the non causal case with aj =
0.05

j21 + j22
and ξ0

is uniform on [−1, 1].

(2) Figure 2 deals with the causal case with aj =
0.05

j21 + j22
if 0 ≤ j1, j2 ≤ 10 and

aj = 0 otherwise. In this case, ξ0 is N(0, 1)-distributed.

Figure 1. Non causal LARCH field.

Figure 2. Causal LARCH field.
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3. Examples

Theorems 2 and 3 are now applied to examples of random fields with infinite
interactions. Causality will allow to weaken moment conditions. In fact, theorem
2 proves a contraction principle in L

m for each value of m while theorem 3 only
works with one fixed value of m.

3.1. Finite interactions random fields. If ξt = (ζt, γt) with ζt ∈ R
p and γt a p × q

matrix, and functions f(·) ∈ R
p and g(·) ∈ R

q

Xt = f(Xt−`1 , . . . , Xt−`k
) + γtg(Xt−`1 , . . . , Xt−`k

) + ζt (1)

with `1, . . . , `k 6= 0.
E.g. non linear auto-regression corresponds to γt ≡ 0 and ARCH type models are
obtained with ζt = 0 (classically p = q = 1, f is linear and g2(x1, . . . , xk) is an
affine function of x2

1, . . . , x
2
k).

Theorems 1, 2, 3 imply the following lemma,

Corollary 1. Suppose ‖ζ0‖m <∞ and
{

‖f(x1, . . . , xk) − f(y1, . . . , yk)‖ ≤ ∑k
i=1 bi‖xi − yi‖,

‖g(x1, . . . , xk) − g(y1, . . . , yk)‖ ≤ ∑k
j=1 cj‖xj − yj‖

.

(1) If ξ is iid and

k∑

i=1

(
bi + ‖γ0‖∞ci

)
= e−α < 1, then η(r) ≤ C

(
e−

α
2k

)r
for

model (1).

If the equation (1) is causal and
k∑

i=1

(
bi + ‖γ0‖mci

)
= e−α < 1, the same

holds.

(2) If now ξ is η or λ-weakly dependent, g bounded and

k∑

i=1

(
bi + ‖γ0‖∞ci

)
=

e−α < 1, then X is η or λ-weakly dependent. Decays are given according
to proposition 1.

The remark following proposition 1 states precise decays. The volatility coeffi-
cients γt need to be bounded in the general case and they only have finite moments
under causality. Functions f and g may only depend on a strict subset of the indices
1, . . . , k.

3.2. Linear fields. Let X be a solution of the equation

Xt =
∑

j∈A

αj
tXt−j + ζt, (2)

innovations ζt are vectors of E = R
k and coefficients αj

t are k × k matrices, ‖ · ‖ is
a norm of algebra on this set of matrices and X will be an E valued random field.

Let A ⊂ Z
d \ {0}, we assume that the iid random field ξ =

(
(αj

t )i∈A, ζt

)

t∈Zd
takes

now its values in (Mk×k)A × E; here Mk×k denotes the set of k × k matrices.
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Proposition 3. If b =
∑

j∈A ‖αj
0‖∞ < 1, then theorem 2 applies with aj = ‖αj

0‖∞.

For a causal equation if b =
∑

j∈A ‖αj
0‖m < 1 theorem 3 applies with aj = ‖αj

0‖m.

In both cases the solution of equation (2) writes a.s. and in L
m,

Xt = ζt +
∑

j∈A

αj
tξt−j +

∞∑

i=2

∑

j1,...,ji∈A

αj1
t α

j2
t−j1

· · ·αji

t−j1−···−ji−1
ζt−(j1+···+ji).

This means that the random coefficients are bounded in the general case and
they need only to have have finite moments under causality.
Examples. If the sequence (αj

t )t is deterministic then those models extend on linear

auto-regressive models. If only a finite number of coefficients αj
t do not vanish we

obtain auto-regressive models with random coefficients, see Tjostheim (1986).

3.3. LARCH(∞) random fields. Stationary innovations ξt are now k × k′ matrices
and ‖ · ‖ will denote a norm k × k′ or k′ × k matrices while Xt ∈ R

k. For bounded
innovations we first recall

Theorem 4 (Doukhan, Teyssière, Winant (2006)). Let αj be a k′ × k matrix for
j ∈ Z

d \{0}, note A(x) =
∑

‖j‖≥x ‖αj‖ and suppose that λ = A(1)‖ξ0‖∞ < 1, then

Xt = ξt


a+

∞∑

k=1

∑

j1,...,jk 6=0

αj1ξt−j1 · · ·αjk
ξt−j1−···−jk

a


 (3)

is a solution of the equation

Xt = ξt



a+
∑

j 6=0

αjXt−j



 , t ∈ Z
d (4)

if moreover ξ is iid, then

η(r) ≤ E‖ξ0‖


E‖ξ0‖

∑

k<r/2

λk−1A
( r
k

)
+
λ[r/2]

1 − λ


 ‖a‖.

If we use theorem 2 we also obtain that eqn. (4) admits a unique Bernoulli
shift L

m solution. Note that this solution is bounded. Notice that for Riemannian
decay the previous A(u) ≤ Cu−c relation yields η(r) = O(r−c) while theorem 3
only provides us this bound up to a log-loss; geometric decays yield the same result
for both cases.
Bounded innovations ξt look unnatural hence we investigate below the causal case.
Let A a causal subset of Z

d and

Xt = ξt

(
a+

∑

s∈A

asXt−s

)
(5)

Proposition 4. If b‖ξ0‖m < 1 with b =
∑

s∈A ‖as‖, theorem 3 applies with aj =
‖ξ0‖m‖αj‖ to the solution (3) of eqn. (5) (we set αj = 0 for j /∈ A).
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3.4. Non linear ARCH(∞) random fields. Models with

Xt = ξt

(
a+

∑

j 6=0

gj(Xt−j)
)

clearly extend on LARCH(∞) models; bounded functions gj provide robust models.

Corollary 2. If ‖gj(x) − gj(y)‖ ≤ αj‖x − y‖ and ‖ξ0‖∞
∑

j 6=0 αj < 1, theorem 2

holds with ai = ‖ξ0‖∞αi (innovations are bounded here).
Assume now that gi ≡ 0 for i /∈ A, causal set then theorem 3 holds with ai =
‖ξ0‖mαi (and now the innovations do not need anymore to be bounded).

This causality argument improves on Doukhan et al. (2006) by only assuming
finite moments for innovations instead of boundedness.

3.5. Mean field type model. Consider innovations in R
k′

and k × k matrices αi,

Xt = f
(
ξt,
∑

s6=t

αs−tXs

)
(6)

Corollary 3. Assume that f : R
k′ × R

k → R
k satisfies

sup
u∈Rk′

‖f(u, x) − f(u, y)‖ ≤ b‖x− y‖, ∀x, y ∈ R
k, b

∑

i6=0

‖αi‖ < 1.

then equation (6) admits a unique solution in L
m written as a Bernoulli shift and

this solution is η−weakly dependent with ai = b‖αi‖1.
The same results hold if now ai = 0 for i /∈ A with A is causal in Z

d and,
∥∥f
(
ξ0, x)

)
− f

(
ξ0, y

)∥∥
m

≤ b‖x− y‖, ∀x, y ∈ R
k, b

∑

i6=0

‖αi‖ < 1.

LARCH(∞) models take this form.

4. Proofs

We begin with the proof of some lemmas which relate the assumptions to con-
traction conditions in the space of Bernoulli shifts. Then we give separated proofs
for existence and weak dependence properties. Those proofs always follow two
steps since we first consider models with a finite range. For shortness we write here
I = Z

d \ {0}.

4.1. Proof of lemma 1. For p ∈ N
∗, we set Yp = F

(
(Xj10<‖t‖≤p)j , ξ0

)
and Y ′

p =

F
(
(X ′

j10<‖t‖≤p)j , ξ0
)
.

(1) If q ∈ N
∗ from assumption (H2),

‖Yp − Yp+q‖ ≤
∑

p<‖j‖≤p+q

aj ‖Xj‖ , a.s.

Since the serie
∑

j∈I aj ‖Xj‖m is convergent the serie
∑

j∈I aj ‖Xj‖ con-

verges a.s. Hence, we deduce that a.s (Yp)p∈N∗ is a Cauchy sequence in E
and then converges. We denote by Y = F

(
(Xj)j 6=0; ξ0

)
this limit.

Moreover, for p ∈ N
∗, we have:

‖Yp − F (0; ξ0)‖m ≤
∑

0<‖j‖≤p

aj ‖Xj‖m
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This proves that Yp ∈ L
m. Hence the convergence in L

m is a simply
consequence of the Fatou lemma since:

‖Y − Yp‖m ≤ lim inf
q→∞

‖Yq − Yp‖m ≤
∑

‖j‖>p

aj ‖X0‖m

(2) If p ∈ N
∗, we have using (H2):

∥∥Yp − Y ′
p

∥∥
m

≤
∑

j 6=0

aj

∥∥Xj −X ′
j

∥∥
m

,

hence the result follows with p→ ∞. �

4.2. Proof of the existence theorem 1. Assuming (H1) and (H2) we set a =∑
j 6=0 aj . With the notations of paragraph 2.4.,

Φp(H) = F
((

(H ◦ θj)1‖j‖≤p

)
j
;π0

)
, ∀H ∈ L

m(µ)

As a direct consequence of lemma 1, limp→∞ Φp(H) exists in L
m(µ). Denote this

limit by F ((H ◦ θj)j 6=0;π0), the application Φ : L
m(µ) → L

m(µ) is defined as

Φ(H) = F ((H ◦ θj)j 6=0;π0) .

Let show that Φ is a contraction of L
m(µ).If H , H ′ ∈ L

m(µ), then applying the
lemma 1 to the random fields X and X ′ defined as Xj = H ◦ θj(ξ) and X ′

j =
H ′ ◦ θj(ξ), we obtain:

‖Φ(H)(ξ) − Φ(H ′)(ξ)‖m ≤
∑

j 6=0

aj‖H ◦ θj(ξ) −H ′ ◦ θj(ξ)‖m

≤
∑

j 6=0

aj‖H(ξ) −H ′(ξ)‖m

Picard fixed point theorem applies since the space L
m(µ) is complete. There exists

a unique H ∈ L
m(µ) with Φ(H) = H thus H(ξ) = F

(
(H ◦ θj(ξ))j∈Zd ; ξ0

)
, a.s. Set

Xt = H ((ξt−i)i∈Zd) then with stationarity of ξ and since Z
d is denumerable we get

Xt = F
(
(Xt−j)j∈Zd\{0}; ξt

)
, ∀t ∈ Z

d a.s.

Let Y be a stationary solution of this equation, we denote ut = ‖Xt − Yt‖1 for
each t ∈ Z

d. We obtain ut ≤ ∑
j 6=0 ajut−j . As supt ut ≤ ‖X0‖1 + ‖Y0‖1 < ∞ we

note that the previous relation implies supt ut ≤ a supt ut. Hence ut = 0 for each
t. Thus Xt = Yt a.s for each t. �

4.3. Proof of theorem 2. For an independent copy (ξ ′t)t∈Zd of ξ = (ξt)t∈Zd and

s ∈ R
+, we set ξ(s) = (ξ

(s)
t )t∈Zd with ξ

(s)
t = ξt if ‖t‖ < s and ξ

(s)
s = ξ′s else. For

a Bernoulli shift defined by H a straightforward extension of a result in Doukhan
and Louhichi (1999) to random fields implies

η(r) ≤ 2δr/2, where δr =
∥∥∥H (ξ) −H

(
ξ(r)
)∥∥∥

1
(1)
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4.3.1. Weak dependence under finite interactions. We first assume that F depends
finitely many variables

Xt = F (Xt−j1 , . . . , Xt−jk
; ξ0)

Lipschitz coefficients of F in condition (H2) write a1, . . . , ak and we set a =∑k
i=1 ai < 1 and ρ = max{‖j1‖, . . . , ‖jk‖}. Let H be the element of L

m(µ)

with Xt = H ((ξt−i)i∈Zd) and δr = E
∥∥H(ξ) −H(ξ(r))

∥∥ = E

∥∥∥X0 −X
(r)
0

∥∥∥ with

X
(r)
t = H((ξ

(r)
t−i)i∈ Zd).

Lemma 7. Assume that (H1) and (H2) hold, then δr ≤ 2‖X0‖1a
r
ρ hence δr →r→∞

0.

Proof of lemma 7. Let r > 0. Since ξ and ξ(r) admit the same distribution, we have
for each t:

Xt = F (Xt−j1 , . . . , Xt−jk
; ξt), X

(r)
t = F (X

(r)
t−j1

, . . . , X
(r)
t−jk

; ξ
(r)
t )

If ‖t‖ < r then ξ
(r)
t = ξt and using (H2), we have:

‖Xt −X
(r)
t ‖1 ≤

k∑

l=1

al

∥∥∥Xt−jl
−X

(r)
t−jl

∥∥∥
1

(2)

Set now i = −[− r
ρ ] if r ≥ ρ, then if u ≤ i− 1 and l1, . . . , lu ∈ {1, . . . , k}: ‖jl1 +

jl2 + · · · + jlu‖ < r. We use inequality (2) to derive recursively the bounds

∥∥∥X0 −X
(r)
0

∥∥∥
1
≤

k∑

l1=1

al1

k∑

l2=1

al2 · · ·
k∑

li=1

ali

∥∥∥X−(jl1
+jl2

+···+jli
) −X

(r)
−(jl1

+jl2
+···+jli

)

∥∥∥
1

≤ 2‖X0‖1a
i

From i ≥ r/ρ we get ‖X0 −X
(r)
0 ‖1 ≤ 2‖X0‖1 a

r
ρ thus δr ≤ 2‖X0‖1a

r
ρ .

If now r < ρ,
∥∥∥X0 −X

(r)
0

∥∥∥
1
≤∑k

l1=1 al1

∥∥∥X−jl1
−X

(r)
−jl1

∥∥∥
1
.

Thus δr ≤ 2‖X0‖1a
i ≤ 2‖X0‖1 a

r
ρ . The result follows with a < 1. �

We now set a useful result. (Xt)t∈Zd and (Xp,t)t∈Zd will denote for p ≥ 0 the previ-
ous unique solution of the equations (1) and Zt = F

(
(Zt−j1{0<‖j‖≤p})j∈Zd\{0}; ξt

)
.

Lemma 8. Assume that the conditions in theorem 1 hold. Then Xp,t →s→∞ Xt in
L

m, for each t ∈ Z
d.

Proof. ‖Xp,0−X0‖m ≤ a‖Xp,0−X0‖m +‖X0‖m

∑

‖j‖>p

aj , thus ‖Xp,0−X0‖m ≤
P

‖j‖>p aj

1−a ‖X0‖m which entails the first result. We also quote that supp ‖Xp,0‖m <
∞. �

4.3.2. Weak dependence.

Lemma 9. Assume that the conditions in theorem 1 hold. Then the random field
(Xt)t∈Zd is η-weakly dependent.
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Proof. Recall that supp ‖Xp,0‖m <∞; if m ≥ 1, weak dependence follows from

E‖X(r)
0 −X0‖ ≤ E‖X(r)

0 −X
(r)
p,0‖ + E‖X(r)

p,0 −Xp,0‖+ E‖Xp,0 −X0‖
= 2E‖Xp,0 −X0‖ + E‖X(r)

p,0 −Xp,0‖

For r ≥ p, from lemma 7 we derive E‖X (r)
p,0 −Xp,0‖ ≤ 2‖Xp,0‖1

( ∑

‖j‖≤p

aj

) r
p

. Hence

δr = E‖X(r)
0 −X0‖ ≤ 2 · ‖X0‖1

1−a

∑
‖j‖>p aj + 2‖Xp,0‖1 a

r
p .

With supp ‖Xp,0‖1 < ∞ there exists C > 0 with δr ≤ C · infp

{∑
‖j‖>p aj + a

r
p

}
.

Using (1) we prove that (Xt)t is η-weakly dependent and η(r) ≤ δr/2. �

4.3.3. Decay rates. Using the representation of the solution as a Bernoulli shift
and the inequality (1) this will be enough to bound the expression of δr. Set
bp = #{i ∈ Z

d/ ‖i‖ ≤ p} and sp = #{i ∈ Z
d/ ‖i‖ = p} for ‖i‖ = max{|i1|, . . . , |id|}

we obtain bp = (2p+ 1)d and sp = bp − bp−1 ≤ Kpd−1 for a constant K > 0.

Proof of lemma 2.
∑

‖j‖>p

aj =
∑

q>p

∑

‖j‖=q

e−βq ≤ Kpd−1
∑

q>p

e−βq = O
(
pd−1e−βp

)
.

We thus find a constant C1 such that

δr ≤ C1 inf
p

{
pd−1e−βp + e−α r

p

}
= C1 inf

p

{
e−βp+(d−1) ln p + e−α r

p

}
.

Assume p ∼
√
αr/β, there is a constant C2 such that: δr ≤ C2r

d−1

2 e−
√

αβr. �

Proof of lemma 3. As before,
∑

‖j‖>p aj ≤ K pd−β

β−d . Hence

δr ≤ c · inf
p

{
e−αr/p +

pd−β

β − d

}
.

Choose p ∼ αr
(β−d)lnr , thus there exists some constant C3 with δr ≤ C3

(
r

ln r

)d−β
.

�

4.4. Proof of proposition 1.

4.4.1. Models with finite interactions. We assume first that there exist k ≥ 1 and
j1, . . . , jk ∈ I such F (x;u) only depends on xj1 , . . . , xjk

for each x = (xj)j 6=0 ∈ EI .
Hence writing ai instead of aji

for 1 ≤ i ≤ k, we have

‖F (x;u) − F (y;u′)‖ ≤
k∑

i=1

ai‖xji
− yji

‖ + b‖u− u′‖, a =
k∑

i=1

ai < 1

Now h : Ek × E′ → E is such that F (x;u) = h(xj1 , . . . , xjk
, u). We will denote

ρ = max{‖j1‖, . . . , ‖jk‖}.

Lemma 10. 1) If the random field ξ is η−weakly dependent (the weak dependence
coefficients are denoted ηξ(r)) then X is η−weakly dependent with, for C > 0,

η(r) ≤ C inf
n∈N∗

{
an + knηξ ((r − 2ρn) ∨ 0)

}
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2) If the random field ξ is λ−weakly dependent (the weak dependence coefficients
are denoted λξ(r)) then X is λ−weakly dependent, for C > 0,

λ(r) ≤ C inf
n∈N∗

{
an + k2nλξ ((r − 2ρn) ∨ 0)

}

Proof of lemma 10. We will use the lemma 6 and the following useful lemma 11.

Lemma 11. (1) For every x and y ∈ C(Zd) we have ‖Φ(0)(x) − Φ(0)(y)‖ ≤
b‖x0 − y0‖ and if n ≥ 2,

‖Φ(n)(0)(x) − Φ(n)(0)(y)‖

≤
n−1∑

l=1

k∑

i1,...,il=1

ai1 · · · ail
b‖xji1

+···+jil
− yji1

+···+jil
‖ + b‖x0 − y0‖

(2) Fix x ∈ C(Zd). Then Φ(0)(x) only depends on x0 and Φ(0) defines a
b−Lipschitz function on C. We set K1 = b and p1 = 1.
For n ≥ 2 we set An =

⋃n−1
l=1 {ji1 + · · · + jil

/ 1 ≤ i1, . . . , il ≤ k} ∪ {0},
pn = card An and Kn = b 1−an

1−a . Then Φ(n)(0)(x) only depends on xj

for j ∈ An. Moreover Φ(n)(0) defines a Lipschitz function on Cpn and
Lip

(
Φ(n)(0)

)
≤ Kn.

Proof of lemma 11.

• The first point is easy to check. For n ≥ 2 we use induction. For n = 2

‖Φ(2)(0)(x) − Φ(2)(0)(y)‖ ≤
k∑

i=1

ai‖F (0, xi) − F (0, yi)‖ + b‖x0 − y0‖

≤
k∑

i=1

aib‖xi − yi‖ + b‖x0 − y0‖

Assuming that the inequality holds for an integer n ≥ 2, we estimate
φn,x,y = ‖Φ(n+1)(0)(x) − Φ(n+1)(0)(y)‖:

φn,x,y ≤
k∑

i=1

ai‖Φ(n)(0)(θji
x) − Φ(n)(0)(θji

y)‖ + b‖x0 − y0‖

≤
k∑

i=1

ai

( n−1∑

l=1

∑

1≤i1,...,il≤k

ai1 · · ·ail
b‖xji+ji1

+...+jil
− yji+ji1

+...+jil
‖

+ b‖xji
− yji

‖
)

+ b‖x0 − y0‖

=
n∑

l=1

∑

1≤i1,...,il≤k

ai1 · · · ail
b‖xji1

+...+jil
− yji1

+...+jil
‖ + b‖x0 − y0‖

Hence inequality holds for n+ 1.
• The case n = 1 is easy to check. For the first point we use induction. For
n = 2 the result is a consequence of:

Φ(2)(x)(0) = h (h(0, xj1), . . . , h(0, xjk
), x0)
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Suppose now the result true for an integer n ≥ 2. Then the identity

Φ(n+1)(0)(x) = h
(
Φ(n)(0)(θj1x), . . . ,Φ

n(0)(θjk
x), x0

)

shows that Φ(n+1)(0)(x) only depends of coordinates (xji+j)1≤i≤k,j∈An
and

x0 that is to say coordinates (xj)j∈An+1
.

For the second point, we use inequality in 1. We have:

φn,x,y ≤
n−1∑

l=1

∑

1≤i1,...,il≤k

ai1 · · · ail
b‖xji1

+...+jil
− yji1

+...+jil
‖ + b‖x0 − y0‖

≤ b
( n−1∑

l=1

al + 1
) ∑

j∈An

‖xj − yj‖ = b · 1 − an

1 − a

∑

j∈An

‖xj − yj‖

End of the proof of lemma 10. We recall the notation Xn
t = Φ(n)(0)

(
(ξt−j)j

)
for

n ∈ N
∗ and t ∈ Z

d. Set f1 = f(Xs1
, . . . , Xsu

), g1 = g(Xt1 , . . . , Xtv
) and

f ′
1 = f

(
Xn

s1
, . . . , Xn

su

)
, g′1 = g

(
Xn

t1 , . . . , X
n
tv

)

For each t ∈ Z
d, if n ∈ N\{0, 1} then At,n = {t}−An. If ‖si− tl‖ ≥ r for 1 ≤ i ≤ u

and 1 ≤ l ≤ v then d(Asi ,n, Atl,n) ≥ (r − 2ρn) ∨ 0 = dr,n. Thus

|Cov(f1, g1)| ≤ |Cov(f1 − f ′
1, g1)| + |Cov(f ′

1, g1 − g′1)| + |Cov(f ′
1, g

′
1)|

≤ 4E|f1 − f ′
1| + 4E|g1 − g′1|

+ψ(upn, vpn,KnLip (f),KnLip (g))εξ(dr,n)

≤ (4Lip (f)u+ 4Lip (g)v)an‖X0‖1

+ψ(upn, vpn,KnLip (f),KnLip (g))εξ(dr,n)

Note that this result is still true for n = 1.
1) Under η−weak dependence, ψ(u, v, a, b) = au+ bv,

|Cov(f1, g1)| ≤ (uLip f + vLip g)(4an‖X0‖1 +Knpnηξ(dr,n)

Thus |Cov(f1, g1)| ≤ (uLip f + vLip g)η(r) where

η(r) ≤ inf
n∈N∗

{4an‖X0‖1 +Knpnηξ(dr,n)}

2) With λ−weak dependence ψ(u, v, a, b) = au+ bv + abuv,

|Cov(f1, g1)| ≤ (uLip f + vLip g + uvLip fLip g)(4an‖X0‖1 +Knpnλξ(dr,n)

Now |Cov(f1, g1)| ≤ (uLip f + vLip g + uvLip fLip g)λ(r) with

λ(r) ≤ inf
n∈N∗

{4an‖X0‖1 +Knp
2
nλξ(dr,n)}

As (Kn)n is bounded and pn ≤∑n−1
l=1 k

l = k−kn

1−k for n ≥ 2, we obtain the proposed
bounds.

We now prove that limr→∞ λ(r) = 0. We suppose that the sequence (λξ(r))r

nonincreasing without loss of generality. We use the bound

λ(r) ≤ C inf
N+2ρn=r,n∈N∗

{
an + k2nλξ(N)

}
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If N ∈ N, we choose nN = [log(λξ(N))/(log a− 2 log k)]. Note that limN→∞ nN =
∞ and limN→∞

(
anN + k2nNλξ(N)

)
= 0. For r ≥ rN = N + 2ρnN , we have

N + r − rN + 2ρnN = r, hence:

λ(r) ≤ anN + k2nNλξ(N + r − rN ) ≤ anN + k2nNλξ(N) →N→∞ 0

Hence limr→∞ λ(r) = 0. Analogously, limr→∞ η(r) = 0. �

4.5. General case. Recall that we have denoted (Xp,t)t∈Zd for s > 0 the unique

solution of the equation Zt = F
((
Zt−j10<‖j‖≤p}

)
j 6=0

; ξt

)
.

Denote f1 = f(Xs1
, . . . , Xsu

), g1 = g(Xt1 , . . . , Xtv
), f ′

1 = f(Xp,s1
, . . . , Xp,su

)
and g′1 = f(Xp,t1 , . . . , Xp,tv

), then

|Cov(f1, g1)| ≤ |Cov(f1 − f ′
1, g1)| + |Cov(f ′

1, g1 − g′1)| + |Cov(f ′
1, g

′
1)|

≤ 4 ‖X0 −Xs,0‖1(uLip f + vLip g) + |Cov(f ′
1, g

′
1)|

Recall that from the proof of lemma 8 we have: ‖Xp,0 − X0‖1 ≤ ‖X0‖1

1 − a

∑

‖j‖>p

aj .

Moreover, the field Xp,t is k−dependent with k = (2p)d.

• Suppose first that the random field ξ is η−weakly dependent. From propo-
sition 10,

|Cov(f ′
1, g

′
1)| ≤ (uLip f + vLip g)C inf

n∈N∗

{
an + pdnηξ ((r − 2pn) ∨ 0)

}

for a suitable positive constant C.
Hence we bound |Cov(f1, g1)| by,

(uLip f + vLip g)C



∑

‖j‖>p

aj + inf
n∈N∗

{
an + pdnηξ ((r − 2ρn) ∨ 0)

}



for another positive constant denoted C. Then we obtain the proposed
bound.

• Suppose that the random field ξ is λ−weakly dependent. From proposition
10, |Cov(f ′

1, g
′
1)| is bounded by

(uLip f + vLip g + uvLip fLip g) inf
n∈N∗

{
an + p2dnλξ ((r − 2pn) ∨ 0)

}

up a suitable positive constant C. Hence we bound |Cov(f1, g1)| by,

(uLip f + vLip g + uvLip fLip g)

×
( ∑

‖j‖>p

aj + inf
n∈N∗

{
an + p2dnλξ ((r − 2pn) ∨ 0)

})

up to another positive constant C. Then we obtain the proposed bound.
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4.6. Results on causality.

4.6.1. Proof of proposition 2. We will use here the Euclidean norm on R
d. We

proceed by induction on d.
For d = 1, if there exists r1, r2 ∈ B such that r1 > 0 and r2 < 0 then B ∩ (−B) 6=
{0}. Then we can choose b1 = 1 if B ⊂ R+ or b1 = −1 if B ⊂ R−.
Suppose the result true for d− 1. We first define b1.
1) If B◦ is empty, since B is convex and contain 0 there exists b1 ∈ R

d \ {0} such
that B ⊂ H = {x ∈ R

d/x.b1 = 0}(· denotes the scalar product in R
d).

2) Now if B◦ is not empty, like B ∩ (−B) = {0} it is clear that 0 /∈ B◦. Moreover
B◦ is still convex and by application of the Hahn-Banach theorem (Conway, 1990,
Theorem 3.3, p. 108), there exists b1 ∈ Rd\{0} such that B◦ ⊂ {x ∈ R

d/x.b1 ≥ 0}.
Like for a convex B◦ = B, then the same inclusion holds for B. We set here
H = {x ∈ R

d/x.b1 = 0}.
We consider now the convex cone C = B ∩H . If g denote an isomorphism between
H and R

d−1, then g(C) is a convex cone of R
d−1 such that g(C)∩

(
− g(C)

)
= {0}.

Hence there exists a basis c = (c2, . . . , cd) such that g(C) ⊂ {x ∈ R
d−1/0 ≤c x}.

For i = 2, . . . , d we set bi = g−1(ci). Then b = (b1, . . . , bd) is a basis of R
d and if

x = x1b1 + . . .+ xdbd ∈ B, we have by the preceding two points x1 ≥ 0. Suppose
that x1 = 0, then x ∈ C and g(x) ≥c 0 ⇒ (x2, . . . , xd) ≥lex 0 in R

d−1. Hence
(x1, . . . , xd) ≥lex 0 in R

d, in other word x ≥b 0.

4.6.2. Proof of lemma 5.
Proof of lemma 5. Denote for p ∈ N

∗, Yp = F
(
(Xj10<‖j‖≤p)j ; ξ0

)
.

1) We first prove that for p ∈ N
∗, Yp ∈ L

m.
Recall that here F is measurable wrt F eA ⊗ B(E′). Let x ∈ EI , then using the

independence between ξ0 and σ
(
Xj , j ∈ A

)
and the condition (H3), we have:

E
(
‖Yp − F (0; ξ0)‖m /Xj = xj , j ∈ A

)
= E

∥∥F ((xj10<‖j‖≤p)j ; ξ0) − F (0; ξ0)
∥∥m

≤




∑

0<‖j‖≤p

aj ‖xj‖




m

Hence by integration:

‖Yp − F (0; ξ0)‖m ≤
∥∥∥

∑

0<‖j‖≤p

aj ‖Xj‖
∥∥∥

m
≤ ‖X0‖m

As F (0; ξ0) ∈ L
m, we obtain the result.

It is enough to prove that (Yp)p∈N∗ is a Cauchy sequence in L
m. Using the same

method as in 1), we obtain if q > 0:

‖Yp+q − Yp‖m ≤ ‖X0‖m

∑

‖j‖>p

aj

This inegality imply the result.
2) Using the same method as in 1), we have for p ∈ N

∗:
∥∥Yp − Y ′

p

∥∥
m

≤
∑

0<‖j‖≤p

aj

∥∥Yj − Y ′
j

∥∥
m

Hence the result follows with p→ ∞. �
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4.7. Proof of theorem 3.

4.7.1. Existence. If H ∈ L
m
eA (µ), we denote by Y the random field defined as Yj =

H ◦ θj(ξ) for j ∈ Z
d. If j ∈ A, then H ◦ θj is measurable wrt σ(π′

j+j′/j
′ ∈ Ã) ⊂

F′
eA. Hence if p ∈ N

∗, Φp(H) ∈ L
m
eA (µ) and by the lemma 4, ξ0 is independant of

σ(Yj/j ∈ A). By application of the lemma 5, Φp(H) converges to an element of
L

m
eA (µ) witch is F

(
(H ◦ θj)j 6=0;π0

)
.

Lets show that the application Φ : L
m
eA (µ) 7→ L

m
eA (µ) defined as Φ(H) = F

(
(H ◦

θj)j 6=0;π0

)
is contraction in L

m
eA (µ). If H,H ′ ∈ L

m
eA (µ) then the two random fields

Y and Y ′ defined as Yj = H ◦ θj(ξ) and Y ′
j = H ′ ◦ θj(ξ) for j ∈ Z

d verify the

assumptions of lemma 5. Indeed σ(Yj , Y
′
j /j ∈ A) ⊂ σ(ξj+j′/j ∈ A, j′ ∈ Ã) and

using the lemma 4 we deduce the independence between ξ0 and σ(Yj , Y
′
j /j ∈ A).

Hence, we have:

‖Φ(H)(ξ) − Φ(H ′)(ξ)‖m ≤
∑

j∈A

aj ‖H ◦ θj(ξ) −H ′ ◦ θj(ξ)‖m

=
∑

j∈A

aj ‖H(ξ) −H ′(ξ)‖m

witch shows the result.
The construction of Xt comes from theorem 2. The variable H(ξ) being measur-

able wrt σ
(
ξj ; j ∈ Ã

)
measurability of Xt is simply deduced. Then unicity is a

consequence of the application of the fixed point theorem. �

4.7.2. Weak dependence. Weak dependence of the solution is as in § 4.3.1 where
(H2) replaces (H3’). The case of finite range corresponds to k-Markov systems
on a finite causal set. To prove lemma 7, we use (H3’) and independence of rvs(
Xt−j1 , . . . , Xt−jk

, X
(r)
t−j1

, . . . , X
(r)
t−jk

)
and ξt to derive (2). In the general case we

note (Xp,t)t the solution of Zt = F
(
(Zt−j1{j∈Ap})j ; ξt

)
with Ap = {t ∈ A

/
‖t‖ ≤ p}

and we conclude as in lemma 9. �

4.8. Proof of lemma 6. 1) From the fixed point theorem, we deduce that for each
ε > 0:
∑

n≥1

P

(
‖Xt − Φ(n)(0)(ξt−j , j ∈ Z

d)‖ ≥ ε
)

≤ 1

ε

∑

n≥1

‖Xt − Φ(n)(0)(ξt−j , j ∈ Z
d)‖1

< ∞

Hence by the Borel-Cantelli lemma, we deduce limn→∞ Φ(n)(0)
(
ξt−j , j ∈ Z

d
)

= Xt

a.s.
2) We use induction. For n = 1

‖Xt − Φp(0)(ξt−j , j ∈ Z
d)‖1 = ‖F ((Xt−j)j , ξt) − F (0, ξt)‖1

≤ a‖X0‖1

≤ a‖X0‖1 + ‖X0‖1

∑

‖j‖>p

aj



130 Paul Doukhan and Lionel Truquet

Suppose the result true for an integer n ≥ 1, then

‖Xt −Xn+1
p,t ‖1 ≤

∑

‖k‖≤p

ak

∥∥∥Xt−k −Xn
p,t−k‖1 + ‖X0‖1

∑

‖k‖>p

ak

≤ a
(
an‖X0‖1 +

1− an

1 − a
‖X0‖1

∑

‖k‖>p

ak

)
+ ‖X0‖1

∑

‖k‖>p

ak

= an+1‖X0‖1 +
1 − an+1

1 − a
‖X0‖1

∑

‖k‖>p

ak

4.9. Proofs for the section 3.

4.9.1. Proof of corollary 1. Here F (x;u) = f(x`1 , . . . , x`k
)+h(u)g(x`1 , . . . , x`k

)+u.
Condition (H1) is easy to check and e.g. in the first case,

‖F (z; ξ0) − F (z′; ξ0)‖m ≤
k∑

i=1

bi‖z`i
− z′`i

‖ + ‖γ0‖∞
k∑

i=1

ci‖z`i
− z′`i

‖.

For dependent inputs, we remark that (z, u) 7→ F (z;u) is a Lipschitz function in
order to apply proposition 1.�

4.9.2. Proof of proposition 3. Normal convergence in L
m will justify all the forth-

coming manipulations of series. We only consider the more complicated causal case.
In order to prove that Xt ∈ L

m we will prove the normal convergence of the series.

Set S = ‖ξt‖ +

+∞∑

i=1

∑

j1,...,ji∈A

‖αj1
t · · ·αji

t−j1−···−ji−1
ξt−(j1+···+ji)‖m, we notice from

causality that indices t and (t− (j1 + · · · + j`)) are distinct if 1 ≤ ` ≤ i hence the
independence of inputs implies

‖αj1
t · · ·αji

t−j1−···−ji−1
ξt−(j1+···+ji)‖m ≤= ‖αj1

t ‖m · · · ‖αji
t−j1−···−ji−1

‖m‖ξt−(j1+···+ji)‖m

S ≤ ‖ζt‖m +
X

j∈A

X

j1,...,ji∈A

‖αj1
t ‖m · · · ‖αji

t−j1−···−ji−1
‖m‖ζt−(j1+···+ji)‖m

= ‖ζ0‖m

„

1 +
b

1 − b

«

< ∞.

In order to prove that Xt is solution of the equation, we expand it:

Xt = ζt +
∑

j1∈A

αj1
t ζt−j1 +

∞∑

i=2

∑

j1,...,ji∈A

αj1
t · · ·αji

t−j1−···−ji−1
ζt−(j1+···+ji)

= ζt +
∑

j1∈A

αj1
t


ζt−j1 +

∞∑

i=2

∑

j2,...,ji∈A

αj2
t−j1

· · ·αji

t−j1−···−ji−1
ζt−j1−(j2+···+ji)




= ζt +
∑

j1∈A

αj1
t Xt−j1
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Here F (x; (u, v)) =
∑

j∈A ujxj + v and we use notations in (H3). As ξ is iid, the

variables (Z(ξ), Z ′(ξ)) are (αj
0)j∈A are independent and

‖F (z; ζ0) − F (z′; ζ0) ‖m ≤
∑

j∈A

‖αj
0‖m‖zj − z′j‖

Since b =
∑

j∈A ‖aj
0‖m < 1, (H3) holds.

In the first non-causal case the above inequalities are only changed by using the
bound

‖αj1
t · · ·αji

t−j1−···−ji−1
ξt−(j1+···+ji)‖m ≤ ‖αj1

t ‖∞ · · · ‖αji
t−j1−···−ji−1

‖∞‖ξt−(j1+···+ji)‖m. �

4.9.3. Proof of proposition 4. Here (H1) holds and with the notation in (H3):

‖F (z, ξ0) − F (z′, ξ0)‖m ≤
∑

j∈Zd\{0}
‖αj‖‖ξ0‖m‖zj − z′j‖.

The proposed solution is in L
m from normal convergence of series

‖Xt‖m ≤ ‖ξt‖m

(
‖a‖+

∞∑

k=1

∑

j1,...,jk∈A

‖αj1‖‖ξt−j1‖m · · · ‖αjk
‖‖ξt−j1−···−jk

‖m‖a‖
)

= ‖ξ0‖m‖a‖
(
1 +

b‖ξ0‖m

1 − b‖ξ0‖m

)
<∞.

Substitutions prove that this process is a solution of the equation.

Xt = ξt

(
a+

∞∑

k=1

∑

j1,...,jk∈A

αj1ξt−j1 · · ·αjk
ξt−j1−···−jk

a
)

= ξt

(
a+

∑

j1∈A

αj1ξt−j1

(
a+

+∞∑

k=2

αj2ξt−j1−j2 . . . αjk
ξt−j1−j2−···−jk

))

= ξt

(
a+

∑

j1∈A

αj1Xt−j1

)
. �
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H. Föllmer. Random Fields and Diffusion Processes. In Lecture Notes in Math,
volume 1362, pages 101–204. École d’été de Probabilités de St Flour (1988).
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et modèles paramétriques. Traitement du signal 6-4, 223–247 (1989).
A. P. Shashkin. A weak dependence property of a spin system (2005). Preprint.
D. Tjostheim. Some doubly stochastic time series models. J. Time Series Anal. 7,

51–72 (1986).


