
Alea 3, 133–142 (2007)

Component sizes of the random graph outside the

scaling window

Asaf Nachmias and Yuval Peres

Department of Mathematics, UC Berkeley, Berkeley, CA 94720, USA.
E-mail address: asafnach@math.berkeley.edu

Microsoft Research, One Microsoft way,, Redmond, WA 98052-6399, USA.
E-mail address: peres@stat.berkeley.edu

Abstract. We provide simple proofs describing the behavior of the largest com-
ponent of the Erdős-Rényi random graph G(n, p) outside of the scaling window,

p = 1+ε(n)
n where ε(n) → 0 but ε(n)n1/3 → ∞.

1. Introduction

Consider the random graph G(n, p) obtained from the complete graph on n
vertices by retaining each edge with probability p and deleting each edge with
probability 1 − p. We denote by Cj the j-th largest component. Let ε(n) be a

non-negative sequence such that ε(n) → 0 and ε(n)n1/3 → ∞. The following

theorems describe the behavior of the largest component when p = 1+ε(n)
n is outside

the “scaling-window”. The theorems, up to some logarithmic errors, were proved
first by Bollobás (1984) using enumerative methods. The logarithmic errors were
removed later by Luczak (1990).

Theorem 1.1. [Subcritical phase] If p(n) = 1−ε(n)
n , then for any δ > 0 and

integer ` > 0 we have

P
(∣∣∣

|C`|
2ε(n)−2 log(nε(n)3)

− 1
∣∣∣ ≥ δ

)
→ 0 ,

as n → ∞.

Theorem 1.2. [Supercritical phase] If p(n) = 1+ε(n)
n , then for any δ > 0 we

have

P
(∣∣∣

|C1|
2nε(n)

− 1
∣∣∣ ≥ δ

)
→ 0 ,
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and for any integer ` > 1 we have

P
(∣∣∣

|C`|
2ε−2(n) log(nε3)

− 1
∣∣∣ ≥ δ

)
→ 0 ,

as n → ∞.

The proofs of these theorems in Bollobás (1984) and Luczak (1990) are quite
involved and use the detailed asymptotics from Wright (1977), Bollobás (1984)
and Bender et al. (1990) for the number of graphs on k vertices with k + ` edges.
The proofs we present here are simple and require no hard theorems. The main
advantage, however, of these proofs is their robustness. In a companion paper (see
Nachmias and Peres (2007)) we use similar methods to analyze critical percolation
on random regular graphs. In this case, the enumerative methods employed in
Bollobás (1984) and Luczak (1990) are not available.

The phase transition in the Erdős-Rényi random graphs G(n, p) occurs when
p = c

n . Namely, if c > 1, then with high probability (w.h.p) |C1| is linear in n, and
if c < 1, then w.h.p. |C1| is logarithmic in n. When c ∼ 1 the situation is more

delicate. Luczak et al. (1994) prove that for p = 1+λn−1/3

n , the law of n−2/3|C1|
converges to a positive non-constant distribution which was identified by Aldous
(1997) as the longest excursion length of Brownian motion with some variable drift.

See Nachmias and Peres (2005) for a recent account of the case p = 1+λn−1/3

n with
simple proofs.

Thus, |C1| is not concentrated and is roughly of size n2/3 if p = 1+λn−1/3

n . How-

ever, if ε(n) a sequence such that n1/3ε(n) → ∞ and p = 1+ε(n)
n , then as stated in

Theorems 1.1 and 1.2, the size |C1| of the largest component in G(n, p) is concen-
trated.

2. The exploration process

We recall an exploration process, due to Martin-Löf (1986) and Karp (1990), in
which vertices will be either active, explored or neutral. After the completion of
step t ∈ {0, 1, . . . , n} we will have precisely t explored vertices and the number of
the active and neutral vertices is denoted by At and Nt respectively.

Fix an ordering of the vertices {v1, . . . , vn}. In step t = 0 of the process, we
declare vertex v1 active and all other vertices neutral. Thus A0 = 1 and N0 = n−1.
In step t ∈ {1, . . . , n}, if At−1 > 0, let wt be the first active vertex; if At−1 = 0,
let wt be the first neutral vertex. Denote by ηt the number of neutral neighbors of
wt in G(n, p), and change the status of these vertices to active. Then, set wt itself
explored.

Denote by Ft the σ-algebra generated by {η1, . . . , ηt}. Observe that given Ft−1

the random variable ηt is distributed as Bin(Nt−1 − 1{At−1=0}, p) and we have the
recursions

Nt = Nt−1 − ηt − 1{At−1=0} , t ≤ n , (2.1)

and

At =

{
At−1 + ηt − 1, At−1 > 0
ηt, At−1 = 0 , t ≤ n .

(2.2)

As every vertex is either neutral, active or explored,
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Nt = n − t − At , t ≤ n . (2.3)

At each time j ≤ n in which Aj = 0, we have finished exploring a connected
component. Hence the random variable Zt defined by

Zt =

t−1∑

j=1

1{Aj=0} ,

counts the number of components completely explored by the process before time
t. Define the process {Yt} by Y0 = 1 and

Yt = Yt−1 + ηt − 1 .

By (2.2) we have that Yt = At −Zt, i.e. Yt counts the number of active vertices at
step t minus the number of components completely explored before step t.

At each step we marked as explored precisely one vertex. Hence, the component
of v1 has size min{t ≥ 1 : At = 0}. Moreover, let t1 < t2 . . . be the times at which
Atj = 0; then (t1, t2 − t1, t3 − t2, . . .) are the sizes of the components. Observe
that Zt = Ztj + 1 for all t ∈ {tj + 1, . . . , tj+1}. Thus Ytj+1 = Ytj − 1 and if
t ∈ {tj + 1, . . . , tj+1 − 1}, then At > 0, and thus Ytj+1 < Yt. By induction we
conclude that At = 0 if and only if Yt < Ys for all s < t, i.e. At = 0 if and only if
{Yt} has hit a new record minimum at time t. By induction we also observe that
Ytj = −(j − 1) and that for t ∈ {tj + 1, . . . tj+1} we have Zt = j. Also, by our
previous discussion for t ∈ {tj + 1, . . . tj+1} we have mins≤t−1 Ys = Ytj = −(j − 1),
hence by induction we deduce that Zt = −mins≤t−1 Ys + 1. Consequently,

At = Yt − min
s≤t−1

Ys + 1 . (2.4)

Lemma 2.1. For all p ≤ 2
n there exists a constant c > 0 such that for any integer

t > 0,

P
(
Nt ≤ n − 5t

)
≤ e−ct .

Proof. Let {αi}t
i=1 be a sequence of i.i.d. random variables distributed as Bin(n, p).

It is clear that we can couple ηi and αi so ηi ≤ αi for all i, and thus by (2.1)

Nt ≥ n − 1 − t −
t∑

i=1

αi . (2.5)

The sum
∑t

i=1 αi is distributed as Bin(nt, p) and p ≤ 2
n so by Large Deviations

(see Alon and Spencer (2000) section A.14) we get that for some fixed c > 0

P
( t∑

i=1

αi ≥ 3t
)
≤ e−ct ,

which together with (2.5) concludes the proof. �

3. The subcritical phase

Before beginning the proof of Theorem 1.1 we require some facts about processes
with i.i.d. increments. Fix some small ε > 0 and let p = 1−ε

m for some integer m > 1.
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Let {βj} be a sequence of random variables distributed as Bin(m, p). Let {Wt}t≥0

be a process defined by

W0 = 1, Wt = Wt−1 + βt − 1 .

Let τ be the hitting time of 0,

τ = min
t
{Wt = 0} .

By Wald’s lemma we have that E τ = ε−1. Further information on the tail
distribution of τ is given by the following lemma.

Lemma 3.1. There exists constant C1, C2, c1, c2 > 0 such that for all T ≥ ε−2 we

have

P(τ ≥ T ) ≤ C1

(
ε−2T−3/2e−

(ε2−c1ε3)T
2

)
,

and

P(τ ≥ T ) ≥ c2

(
ε−2T−3/2e−

(ε2+C2ε3)T
2

)
.

Furthermore,

E τ2 = O(ε−3) .

We will use the following proposition due to Spitzer (1956).

Proposition 1. Let a0, . . . , ak−1 ∈ Z satisfy
∑k−1

i=0 ai = −1. Then there is precisely
one j ∈ {0, . . . , k − 1} such that for all r ∈ {0, . . . , k − 2}

r∑

i=0

a(j+i) mod k ≥ 0 .

Proof of Lemma 3.1. By Proposition 1, P(τ = t) = 1
t P(Wt = 0). Since

∑t
j=1 βj

is distributed as a Bin(mt, p) random variable we have

P(Wt = 0) =

(
mt

t − 1

)
pt−1(1 − p)mt−(t−1) .

Replacing t − 1 with t in the above formula only changes it by a multiplicative
constant which is always between 1/2 and 2. A straightforward computation using
Stirling’s approximation gives

P(Wt = 0) = Θ
{
t−1/2(1 − ε)t

(
1 +

1

m − 1

)t(m−1)(
1− 1 − ε

m

)t(m−1)}
. (3.1)

Denote q = (1 − ε)
(
1 + 1

m−1

)m−1(
1 − 1−ε

m

)m−1

, then

P(τ ≥ T ) =
∑

t≥T

P(τ = t) =
∑

t≥T

1

t
P(Wt = 0) = Θ

( ∑

t≥T

t−3/2qt
)

.

This sum can be bounded above by

T−3/2
∑

t≥T

qt = T−3/2 qT

1 − q
,

and below by
2T∑

t=T

t−3/2qt ≥ (2T )−3/2 qT (1 − qT )

1 − q
.
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Observe that as m → ∞ we have that q tends to (1 − ε)eε. By expanding eε we
find that

q = (1 − ε)(1 + ε +
ε2

2
) + Θ(ε3) = 1 − ε2

2
+ Θ(ε3) .

Using this and the previous bounds on P(τ ≥ T ) we get the first two assertions of
the Lemma.

The third assertion follows from the following computation. By (3.1) we have
that for some constant C > 0

E τ2 =
∑

t≥1

t2P(τ = t) =
∑

t≥1

tP(Wt = 0) ≤ C
∑

t≥1

√
tqt .

Thus, by direct computation (or by Feller (1971), section XIII.5, Theorem 5)

E τ2 ≤ O
( 1

1 − q

)3/2

= O(ε−3) .

�

Proof of Theorem 1.1. We begin with an upper bound. Recall that component
sizes are {tj+1 − tj : j ≥ 0} where tj are record minima of the process {Yt}. For a
vertex v denote by C(v) the connected component of G(n, p) which contains v. We
first bound P(|C(v1)| ≥ T1) where

T1 = 2(1 + δ)ε−2 log(nε3) .

Recall that |C(v1)| = mint{Yt = 0}. Couple {Yt} with a process {Wt} as in Lemma
3.1, which has increments distributed as Bin(n, p) − 1 such that Yt ≤ Wt for all t.
Define τ as in Lemma 3.1. Since p = 1−ε

n and T1 ≥ ε−2, Lemma 3.1 gives that

P(τ ≥ T1) ≤ C1ε(nε3)−(1+δ)(1−c1ε) log−3/2(nε3) ,

for some fixed C > 0. Our coupling implies that P(|C(v1)| ≥ T1) ≤ P(τ ≥ T1).
Denote by X the number of vertices v such that |C(v)| ≥ T1. If |C1| ≥ T1, then
X ≥ T1. Also, for any two vertices v and u, by symmetry we have that |C(v)| and
|C(u)| are identically distributed. We conclude that

P(|C1| ≥ T1) ≤ P(X ≥ T1) ≤
EX

T1
=

nP(|C(v1)| ≥ T1)

T1

≤ C1nε(nε3)−(1+δ)(1−c1ε) log−3/2(nε3)

2(1 + δ)ε−2 log(nε3)
≤ (nε3)−δ(1−c1ε)+c1ε → 0 .

We now turn to prove a lower bound. Write

T2 = 2(1− δ)ε−2 log(nε3) ,

and define the stopping time

γ = min{t : Nt ≤ n − δεn

8
} .

Recall that {tj} are times in which Atj = 0 and also that Ytj = −(j−1) is a record

minimum for {Yt}. For each integer j let {W (j)
t } be a process with increments dis-

tributed as Bin(n− δεn
8 , p) and initially W

(j)
0 = −(j−1). Since ηt∧γ is stochastically

bounded below by a Bin(n − δεn
8 ) random variable we can couple such that

Y(tj+t)∧γ ≥ W
(j)
(t∧(γ−tj))∨0 .
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Define the stopping times {τj} by

τj = min{t : W
(j)
t = −j} .

Take

N =
⌊
ε−1(nε3)(1−

δ
8 )

⌋
.

We will prove that w.h.p. tN < γ and that there exists k1 < k2 < . . . < k` < N such
that τki ≥ T2. Note that by our coupling, these two events imply that |C`| ≥ T2.
Lemma 2.1 shows that for some c > 0 we have

P
(
γ ≤ δεn

40

)
≤ e−cεn . (3.2)

By bounding the increments of {Yt} above by variables distributed as Bin(n, p)− 1
we learn by Wald’s Lemma (see Durrett (1996)) that E [tj+1 − tj ] ≤ ε−1 for any

j ≥ 0, hence E tN ≤ ε−2(nε3)(1−
δ
8 ). We conclude that

P(tN ≥ δεn

40
) ≤ 40ε−2(nε3)(1−

δ
8 )

δεn
=

40

δ
(nε3)−

δ
8 , (3.3)

which goes to 0 as εn−1/3 tends to ∞.

Next, we take m = n − δεn
8 in Lemma 3.1 and note that p =

(1−ε)(1− δε
8 )

m ≥
1−(1+ δ

8 )ε

m . Hence, Lemma 3.1 gives that for any j

P(τj ≥ T2) ≥ c2ε(nε3)−(1+ δ
8 )2(1−δ)(1+C2ε) log−3/2(ε3n) ≥ ε(nε3)−(1− δ

4 ) .

Let X be the number of j ≤ N such that τj ≥ T . Then we have

EX ≥ Nε(nε3)−(1− δ
4 ) ≥ C(nε3)

δ
8 → ∞ ,

hence by Large Deviations (see Alon and Spencer (2000), section A.14), for any
fixed integer ` > 0 we have

P
(
X < `

)
≤ e−c(nε3)

δ
8 , (3.4)

for some c = c(`) > 0. By our coupling we have that
{
|C`| < T2

}
⊂

{
X < `

}
∪

{
tN > γ

}
.

This together with (3.2), (3.3) and (3.4) gives

P(|C`| < T2) ≤ O
( (nε3)−

δ
8

δ

)
.

�

4. The supercritical phase

In this section we denote ξt = ηt − 1. We first prove some Lemmas.

Lemma 4.1. If p = 1+ε
n , then for all t ≤ 3ε(n)n

EAt = O(εt +
√

t) , (4.1)

and
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EZt = O(εt +
√

t) . (4.2)

Proof. Write T = 3εn. We will use (2.4). First observe that since ηt can always
be bounded above by a Bin(n, p) random variable, we can bound E [ξt | Ft−1] ≤ ε
for all t. Hence, the process {εj−Yj}t

j=0 is a submartingale for any t. Denote by γ

the stopping time γ = min{t : Nt ≤ n − 15εn}. By Doob’s maximal L2 inequality
we have

E [ max
j≤t∧γ

(εj − Yj)
2] ≤ 4E [(ε(t ∧ γ) − Yt∧γ)2] . (4.3)

The process {Yt} is stochastically bounded above by the process {Xt} which has
i.i.d. increments distributed as Bin(n, p) − 1 random variables. By definition, con-
ditioned on the event j < γ, the random variable ηj can be stochastically bounded
below by a Bin(n− 15εn, p) random variable. Thus, the process {Yt∧γ} is stochas-

tically bounded below by the process {X̃t∧γ}, where {X̃t} has i.i.d. increments
distributed as Bin(n − 15εn, p) − 1 random variables. Hence we can couple such
that

Y 2
t∧γ1{Yt∧γ≥0} ≤ X2

t∧γ , Y 2
t∧γ1{Yt∧γ<0} ≤ X̃2

t∧γ .

It is an immediate computation to verify that EX2
t∧γ = O(ε2t2 + t) and that

E X̃2
t∧γ = O(ε2t2 + t) and thus EY 2

t∧γ = O(ε2t2 + t). We use this and the Cauchy-
Schwarz inequality to bound the right hand side of (4.3),

E [(ε(t ∧ γ) − Yt∧γ)2] = O(ε2t2 + t) .

Lemma 2.1 implies that for n large enough,

P
(
NT ≤ n − 15εn

)
≤ e−3cεn ≤ 1

n2
, (4.4)

and as {Nt} is a decreasing sequence we deduce that P(γ ≤ T ) ≤ n−2. Hence for
any t ≤ T

E [(εt − Yt)
2] ≤ E [(ε(t ∧ γ) − Yt∧γ)21{t<γ}] + O(n2)P(t ≥ γ)

= O(ε2t2 + t) .

We deduce by (4.3) and Jensen inequality that for any t ≤ T

E [min
j≤t

(Yj − εj)] = O(εt +
√

t) ,

hence E [minj≤t Yj ] = O(εt +
√

t) and so by (2.4) we obtain (4.1). Inequality (4.2)
follows immediately from the relation Zt = At − Yt. �

Lemma 4.2. If p = 1+ε
n , then for all t ≤ 3ε(n)n

ENt = n(1 − p)t + O(ε2n) , (4.5)

and

E ξt = ε − t

n
+ O(ε2) . (4.6)
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Proof. Observe that by (2.1) we have that

E [Nt | Ft−1] = (1 − p)Nt−1 − (1 − p)1{At−1=0} .

By iterating this relation we get that ENt = n(1− p)t +O(E Zt) which by Lemma
4.1 yields (4.5) (observe that for t = 3εn we have εt ≥

√
t by our assumption on ε).

Since
E[ξt | Ft−1] = pNt−1 − p1{At−1=0} − 1 ,

by taking expectations and using (4.5) we get

E ξt = (1 + ε)(1 − 1 + ε

n
)t − 1 + O(ε2)

= (1 + ε)(1 − (1 + ε)t/n) − 1 + O(ε2) = ε − t

n
+ O(ε2) ,

where we used the fact that (1 − x)t = 1 − tx + O(t2x2). �

Proof of Theorem 1.2. Write T = 3εn and ξ∗j = E [ξj | Fj−1]. The process

Mt = Yt −
t∑

j=1

ξ∗j ,

is a martingale. By Doob’s maximal L2 inequality we have that

E (max
t≤T

M2
t )) ≤ 4EM2

T .

Since Mt has orthogonal increments with bounded second moment, we deduce that
EM2

T = O(T ). Hence, by Jensen’s inequality,

E
[
max
t≤T

∣∣∣Yt −
t∑

j=1

ξ∗j

∣∣∣
]
≤ O(

√
T ) = O(

√
εn) . (4.7)

As ξ∗j = pNj−1 − p1{Aj−1=0} − 1 by (2.3) we have

E |ξ∗j −E ξj | = pE |Aj−1 + 1{Aj−1=0} −EAj−1 −E1{Aj−1=0}| .
By the triangle inequality and Lemma 4.1 we conclude that for all j ≤ T

E |ξ∗j −E ξj | ≤ p · O(εj +
√

j) ,

and hence for any t ≤ T

E
[ ∑

j≤t

|ξ∗j −E ξj |
]
≤ p · O(εt2 + t3/2) ≤ O(ε3n) .

By the triangle inequality we get

E
[
max
t≤T

∣∣∣
t∑

j=1

(ξ∗j −E ξj)
∣∣∣
]
≤ O(ε3n) . (4.8)

Using the triangle inequality, (4.7), (4.8) and Markov’s inequality give that for any
a > 0

P
(

max
t≤T

∣∣∣Yt −
t∑

j=1

E ξj

∣∣∣ ≥ aε2n
)
≤ a−1(O(ε) + O((ε3n)−1/2)) −→ 0 . (4.9)

Lemma 4.2 implies that for any b > 0
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bεn∑

j=1

E ξj =

bεn∑

j=1

(
ε − t

n
+ O(ε2)

)
= (b − b2

2
)ε2n + O(ε3n) . (4.10)

By (4.9) and (4.10) we deduce that for δ > 0 small enough, with probability tending
to 1, the process Yt is strictly positive at all times in [δεn, (2 − δ)εn] and hence

P
(
|C1| ≥ 2(1 − δ)εn

)
≥ 1 − O

(
δ−1(ε + (ε3n)−1/2)

)
.

We also deduce by (4.9) and (4.10) that at time t = (2+ δ)εn we have Yt ≤ − δ2

3 ε2n

and at all times t ≤ δεn we have that Yt > − δ2

3 ε2n with probability tending to
1. Since component sizes are excursion lengths of Yt above its past minima, we
conclude that w.h.p. by time 2(1 + δ)εn we have explored completely at least one
component of size at least 2(1 − δ)εn. Condition on the time t0 of the first record
minimum after time 2(1 − δ)εn. The number of neutral vertices remaining at that
time is n − t0. The subgraph of G(n, p) induced on these remaining vertices is
distributed as G(n− t0, p). Since t0 ≥ 2(1− δ)εn and p = 1+ε

n , Theorem 1.1 implies
that w.h.p. G(n − t0, p) has no components of size at least εn.

Thus we have proved that w.h.p. in G(n, p) there exists a unique component of
size between 2(1− δ)εn and 2(1 + δ)εn. Condition on this event and on the size of
this unique component and consider the graph G∗ induced by the complement of
this component. This graph has m vertices where

|m − (n − 2εn)| ≤ 2δεn ,

and since p = 1+ε
n we have that

∣∣∣p −
(1 − ε

m

)∣∣∣ ≤ 2δε + O(ε2)

m
.

The graph G∗ is distributed as G(m, p) conditioned on the event A that it does not
contain a component of size between 2(1 − δ)εn and 2(1 + δ)εn. By Theorem 1.1
we have that P(A) = 1 − o(1). Thus for any collection of graphs B ⊂ A we have
that P∗

m,p(B) = (1 + o(1))Pm,p(B) where Pm,p is the distribution of G(m, p) and
P∗

m,p is the measure Pm,p conditioned on A . Thus, we conclude by Theorem 1.1
that for any integer ` > 1 and δ′ > 0

P
(∣∣∣

|C`|
2ε−2(n) log(nε3)

− 1
∣∣∣ ≥ δ′

)
→ 0 ,

concluding the proof of the theorem. �

Remark. With a little more effort it is possible to show for the supercritical case,
that in the exploration process for any fixed ` > 1, the `-th largest component is
explored after the largest component is explored.
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