
Alea 3, 301–320 (2007)

On the Critical Behavior at the Lower Phase Tran-

sition of the Contact Process

Michael Aizenman and Paul Jung

Departments of Physics and Mathematics, Princeton University, Princeton, NJ 08544
E-mail address: aizenman@princeton.edu

Mathematics Department, Cornell University, 591 Malott Hall, Ithaca, NY 14850
E-mail address: pjung@math.cornell.edu

Abstract. We present general results for the contact process by a method which
applies to all transitive graphs of bounded degree, including graphs of exponential
growth. The model’s infection rates are varied through a control parameter, for
which two natural transition points are defined as: i. λT , the value up to which the
infection dies out exponentially fast if introduced at a single site, and ii. λH , the
threshold for the existence of an invariant measure with a non-vanishing density
of infected sites. It is shown here that for all transitive graphs the two thresholds
coincide. The method, which proceeds through partial differential inequalities for
the infection density, yields also generally valid bounds on two related critical ex-
ponents. The main results discussed here were established by Bezuidenhout and
Grimmett (1991) in an extension to the continuous-time process of the discrete-
time analysis of Aizenman and Barsky (1987), and of the partially similar results
of Menshikov (1986). The main novelty here is in the derivation of the partial dif-
ferential inequalities on which the Aizenman and Barsky (1987) analysis is based
by an argument which is formulated directly for the continuum.

1. Introduction and statement of the main results

Since its introduction by Harris (1974), the contact process has attracted interest
as a model for the spread of “infection”. The model undergoes a phase transition
which is reached by varying the ratio of the infection rate to the healing rate, which
in our notation is λ : 1. The small λ regime can be characterized by the finiteness
of the “susceptibility”, χ(λ), which is the total time lost to infection within the
population if an infection is introduced at a single site. A duality argument allows
to conclude that if χ(λ) <∞ then the infection dies out even if initially the entire
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population was infected. As λ approaches the edge of the regime {λ : χ(λ) < ∞}
the susceptibility diverges and the contact process exhibits critical behavior with
characteristics similar to those observed in models of statistical mechanics.

Upon analysis, it turns out to be a generally valid statement that right past the
point of divergence of χ(λ) a homogeneous contact process enters the phase at which
there is a stationary measure with persistent infection. The technique presented
below allows to establish this basic feature for the contact processes on the broad
class of transitive graphs. This is the class of graphs which are invariant under
the action of a symmetry group which acts transitively. Included in the collection
are some graphs for which the contact process is known to exhibit more than one
transition, in the sense explained below. In this generality, the basic properties of
the model include the following:

(1) For λ with χ(λ) < ∞ the probability that infection from a single site will
persist in the population for time t decays exponentially in time. In models
for which the rates for the direct transmission have suitable exponential
decay, the probability that the infection would reach distance d away also
exhibits, in that phase, exponential decay in the distance.

(2) At the edge of the above region χ(λ) ↗ ∞, i.e., the model exhibits criticality
at the point

λT := sup{λ |χ(λ) <∞} . (1.1)

which is named for Temperley.
(3) For λ > λT the model is in the phase at which the infection persists. The

threshold for the latter condition has been recognized by the term λH , for
Hammersley. Thus the above statement amounts to the coincidence of the
two points: λT = λH .

(4) At the transition point, which can now be denoted simply λc, the model
exhibits critical behavior with characteristic exponents which in general are
bounded by their ‘mean-field’ values. The bounds are realized in certain
situations.

In regard to the spread of infection, the contact process can be viewed as ori-
ented percolation. That offers a helpful perspective, as the above characteristics
are shared by transitive percolation models with or without orientation. It was
in that context that the characteristics 1.-3. of the phase diagram were initially
established for the discrete-time version of the models, in two different and indepen-
dently derived methods, presented in the works of Menshikov (1986) and Aizenman
and Barsky (1987). The argument of Menshikov (1986) was limited to graphs of
subexponential growth, such as Z

d. The method of Aizenman and Barsky (1987)
readily extends to transitive graphs and yields also additional information on the
critical exponents, which follow through partial differential inequalities on which
more is said below. However, both analyses were initially presented for only the
discrete-time version of the models. The extension to the continuous-time con-
tact process was accomplished in the work of Bezuidenhout and Grimmett (1991),
through a detailed control of the (1D) continuum limit. Our main goal here is to
present a direct extension of the method of Aizenman and Barsky (1987) to the
contact process in terms which are natural for the continuum, casting the argument
in the generality of the transitive graphs of arbitrary growth rate.
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1.1. The model and its parameters. We shall introduce the model in the context of
transitive graphs. Before giving a formal description of the generator of the time
evolution, let us set some notation. For G = (V,E) a connected transitive graph
with vertex set V and edge collection E, the contact process {At}t∈R is a random
time-dependent collection of subsets of V describing a set of infected sites. If the
initial set of infected sites is given by B at time T , then the corresponding measure
on {At}t∈R is given by P

(B,T )(·). Let

c(y,A) =

{
1 if y ∈ A
λ

∑
x∈A Jx,y if y 6∈ A

.

where Jx,y is a translation invariant kernel with

|J | =
∑

y

Jx,y <∞.

The generator of the contact process At is formally given by

Lf(A) =
∑

x

c(x,A)[f(A • {x}) − f(A)] , (1.2)

where • denotes the symmetric difference operation, i.e., for x ∈ V : A • {x} =
A ∪ {x} when x 6∈ A and A • {x} = A\{x} when x ∈ A.

Often times the kernel is 1 when x and y are neighbors and 0 otherwise; the
finiteness of |J | implies that the vertex degree is finite. A simple description of the
process in this case is as follows. At time t, the set of infected vertices is denoted by
At. A vertex heals independently with exponential rate 1, while uninfected vertices
become infected at exponential rate λ times the number of infected neighbors.

Two significant quantities which reflect properties of the model are:

(1) the infection density of the upper invariant measure

θ+(λ) := lim
T→−∞

P
(V,T )(o ∈ A0) = lim

T→−∞
P

({o},T )(A0 6= ∅) (1.3)

where the second equation is by duality and stationarity,
(2) the susceptibility

χ(λ) :=

∫ ∞

0

E
({o},0)(|At|)dt <∞ , (1.4)

which, by Fubini, equals the expected value of the sum of the times lost to infection
at the different sites. The contact process exhibits a number of different phases,
depending on the control parameter λ. Some of the thresholds of interest are defined
as follows.

Definition 1.1.

λT := sup{λ : χ(λ) <∞}

λH := sup{λ : θ+(λ) = 0 }

λGN := sup{λ : P
({o},0)(o ∈ At) −→

t→∞
0 }

Their general relation is:

λT ≤ λH ≤ λGN . (1.5)

Remarks: The two first transition points were already mentioned above. The third
has appeared in the work of Grimmett and Newman (1990) within the context of
percolation models on products of regular trees and Euclidean lattices, where its
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analog is the threshold for the uniqueness of the infinite cluster. The above work
motivated (Pemantle, 1992), where it was shown that λH < λGN for the contact
process on regular trees of degree four or more; the proof was extended to all regular
trees in (Liggett, 1996) and then more succinctly in (Stacey, 1996).

The contact process can be viewed in terms of a graphical representation, where-
by one traces the state of the infection over the ‘space × time’ graph, G×R. Healing
events are represented by Poisson processes of intensity 1 on the lines of V × R,
and infection-transmission events are represented by Poisson processes of intensity
λJx,y on (V × V ) × R. For the latter, the set V × V appears as the collection of
directed edges, and an event at (exy, t) represents a possible transmission from x to
y at time t. The set of possible sources of infection for a site x at time t is the set
of all points in V ×R from which there is a path which does not backtrack in time,
reaching (x, t) without passing through any healing event. We refer to this set as
C(x, t). One may view it as the connected cluster of (x, t) in an oriented percolation
model. For brevity we denote C = C(o, 0). For a more detailed description of the
graphical representation picture and its relation to the self-duality of the contact
process we refer the reader to Liggett (1999).

The graphical representation highlights the strong relationship this process has
with oriented percolation, and yields the following interpretation of the two transi-
tion points:

λT = inf{λ : E (|C|) = ∞}

λH = inf{λ : P (|C| = ∞) > 0 } , (1.6)

where |C| denotes the set’s size. For a discrete set like At the size refers to the
set’s cardinality, whereas for a generic S ⊂ V ×R, such as C, we denote by |S| the
total length of the set’s vertical segments.

By known arguments, the small-λ phase has the following characteristics:

Proposition 1.2. For any λ < λT there exist some c <∞ and τ > 0 such that

E
({o},0)(|At|) < c e−t/τ . (1.7)

Furthermore, if
∑

x Jo,x e
+ε|x| < ∞ for some ε > 0, then also

P
({o},0)(At ∩ B

c
r 6= ∅ for some t ≥ 0) ≤ k e−µr (1.8)

for some k < ∞ and µ > 0, where Bc
r ⊂ V represents the complement of a ball of

radius r around the vertex o.

The proof of the above proposition follows from a subadditivity property of the
contact process and can be found in several places in the literature. For complete-
ness we include a proof of the above proposition in Appendix (A).

1.2. Summary of the main results. Among the key statements proven below is:

Theorem 1.3. For any contact process on a transitive graph, with a translation-
invariant infection-transmission rate Jx,y and a constant healing rate 1,

λT = λH .

As discussed above, for G = Z
d the above result was established in Bezuidenhout

and Grimmett (1991). The main method used there, based on Menshikov (1986),
readily extends to transitive graphs of subexponential growth (such graphs are
amenable, though the converse is not true). It allows to conclude that at λ < λH

the probability that the infection of one site will affect another decays exponentially
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in the distance (and also in time). However, if G is non-amenable, e.g., a regular
tree, exponential decay does not yet imply finiteness of χ(λ). Nevertheless, it is
not difficult to extend the arguments given in Section 3.2 of Bezuidenhout and
Grimmett (1991), which follows the approach of Aizenman and Barsky (1987), to
prove the above theorem for the full class of transitive graphs.

In Aizenman and Barsky (1987), certain non-linear differential inequalities were
derived within a somewhat natural extension of the model, for which one adds
the possibility of spontaneous infection, at the rate h. Added insight is derived
from the consideration of the model within the two parameter space of (λ, h).
The original model is then recovered through the limit h → 0. In terms of the
graphical representation of the contact process, the spontaneous infection events
are represented by a Poisson process on V × R with density h dt.

It may be noted that while the extra parameter h has a very natural meaning for a
contact process, in the original context of percolation it has appeared as a somewhat
ad-hoc auxiliary “ghost field”, whose introduction was motivated by an analogy
with the external magnetic field of ferromagnetic Ising spin systems Aizenman
et al. (1987).

Keeping the terminology used in the percolation discussion, the events of spon-
taneous infection (points in space × time) will be referred to as green sites, and
their collection denoted by G. The function θ+(λ) which referred to the limiting
density of infection starting from the ‘all infected’ state, finds its extension to h > 0
in the function:

θ(λ, h) = P(C(o, 0) ∩G 6= ∅) . (1.9)

Following are some of the relevant properties of this extension of the model.

Lemma 1.4. For any contact process on a transitive graph:
i. At each h > 0 there is a unique stationary state, to which the state of the system
converges for all asymptotic initial condition ((S−T ,−T ) for T → ∞) with the
infection density given by the above function θ(λ, h).
ii. For h > 0, the function θ(λ, h) is monotone in its arguments, continuous in λ,
and continuously differentiable in h.
iii. In the limit h → 0+, the function θ(λ, h) yields the quantities which were
introduced above for the h = 0 model as follows:

lim
h↘0

θ(λ, h) = θ+(λ) (1.10)

for λ < λH : lim
h↘0

∂θ(λ, h)

∂h
= χ(λ) . (1.11)

Since the main idea is rather standard, we relegate the proof of the above lemma
to Appendix (B). As can be seen there, the graphical representation provides the
following useful expressions for θ and its derivative χ(λ, h) := ∂θ(λ, h)/∂h is:

θ(λ, h) = P(C(o, 0) ∩G 6= ∅) = E

(
1 − e−h|C|

)
, (1.12)

for λ < λH : χ(λ, h) = E ( |C(o, 0)|; C(o, 0) ∩G = ∅ ) = E

(
|C| e−h|C|

)
.(1.13)

The graphical representation enables the derivation of partial differential inequal-
ities which, via integration through the two-parameter space prove Thm 1.3 and
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provide also additional information about the behavior in the vicinity of the critical
point, which can now be commonly denoted as λc := λT = λH .

Theorem 1.5. For any transitive graph
(i) for λ > λc:

θ+(λ) ≥ Const. (λ − λc)
1 (1.14)

(ii) at λ = λc:

θ(λc, h) ≥ Const. h1/2 . (1.15)

The inequalities imply bounds for the associated critical exponents:

β ≥ 1 , δ ≥ 2 . (1.16)

As explained above, these results are known already for both the discrete-time
contact process (Aizenman and Barsky, 1987), and the continuous-time model
(Bezuidenhout and Grimmett, 1991). The main novelty here is in the derivation
for the continuous-time process of the partial differential inequalities which are
discussed next.

It should be noted that the critical exponent bounds (1.16) are saturated for the
contact process on regular trees (of degree three or more) (Wu, 1995; Schonmann,
1998), and also on Z

d when d is very large or just d > 4 and the kernel is sufficiently
‘spread-out’ (Barsky and Wu, 1998; Sakai, 2001). The discrete-time version of this
statement was proven earlier through the combination of the results of Barsky and
Aizenman (1991) and Nguyen and Yang (1993).

1.3. The key differential inequalities. The derivation of the above results proceeds
through certain non-linear partial differential inequalities (PDI). The simplest of
these is:

∂χ

∂λ
≤ |J |χ2 . (1.17)

This relation, which for percolation was presented in Aizenman and Newman (1984),
is basically known in the generality considered here. It has been noted that (1.17)
implies a critical exponent bound (γ ≤ 1) which concerns the divergence rate for χ
as λ↗ λT :

χ(λ) ≥
|J |−1

|λT − λ|+
. (1.18)

Next are partial differential inequalities which are similar to the PDI which were
derived in Aizenman and Barsky (1987) for the discrete-time contact process, in the
context of percolation model, extending an earlier differential inequality of Chayes
and Chayes (1986), which has yielded a percolation analog of (1.14) with λc inter-
preted as λH .

Theorem 1.6. For any contact process on a transitive graph, at Lebesgue almost
every (λ, h) ∈ R+ × R+ (due to the monotonicity of θ, the derivatives exist in this
sense):

∂θ

∂λ
≤ θ|J |

∂θ

∂h
(1.19)

and

θ ≤ h
∂θ

∂h
+

(
2λ2|J |θ + hλ

) ∂θ
∂λ

+ θ2 . (1.20)
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In (Aizenman and Barsky, 1987), where the discrete version of the above theo-
rem was established, it was envisioned that an extension to the continuum ought
to be possible through a limiting argument, but the result may involve some more
complicated coefficients. Nevertheless, as is shown here the inequalities are valid
in a rather simple form, which is not that different from the discrete-time ver-
sion. The proof proceeds through a finite-volume version of the statement, given
in Theorem 3.2 in Section 3. Theorem 1.6 is proved in Section 4.

For the purpose of the derivation let us present some notions which are of general
use when working with Poisson processes.

2. A Poisson process differentiation formula

The analysis is made clearer by recognizing a general expression for the deriva-
tives of the probabilities of monotone events with respect to Poisson densities.
Derivatives of functionals of Poisson processes have been useful in many contexts,
see Borovkov (1996), Bacelli et al. (1995). In particular, one can apply such anal-
ysis to form a continuum analog of ‘Russo’s formula’. The formulae presented in
this section are similar to those found in Zuev (1993).

Definition 2.1. Let X be a measure space, and Ψ(ρ) a monotone functional on the
space M of non-negative measures ρ(x) on X. A function K(x, ρ) on X × M is
said to be the variational derivative of Ψ(·) at x if for all finite positive continuous
measures α on X

d

ds
Ψ(ρ+ s α)

∣∣∣∣
s=0+

=

∫
K(x) dα(x) . (2.1)

It is easy to see that when it exists, the variational derivative is unique. We
denote it

δΨ

δρ(x)
= K(x) . (2.2)

We shall now consider functionals of the form

Ψ(ρ) = Pρ(ω ∈ F ) (2.3)

where F is an increasing event, i.e., one whose indicator function is a non-decreasing
function of the configuration ω ⊂ X, and the subscript on P indicates that ω is
distributed by the Poisson process with intensity measure ρ.

Definition 2.2. Let F be an increasing event defined for the point process. A
point x ∈ X is said to be pivotal for F in the configuration ω if ω\{x} 6∈ F but
ω ∪ {x} ∈ F . The set of pivotal points is denoted

∆F (ω) := {x : ω ∪ {x} ∈ F and ω\{x} /∈ F} . (2.4)

Lemma 2.3. For any Poisson process, the probability of any increasing event F
has a variational derivative given by

δ Pρ(F )

δ ρ(x)
= Pρ(F

c; {x ∈ ∆F}) . (2.5)

If the density ρ is non-atomic (ρ({x}) = 0 for all x ∈ X) then also

δ Pρ(F )

δ ρ(x)
= Pρ (x ∈ ∆F ) . (2.6)
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Proof . Since the variational addition α is a continuous measure, a valid way to
generate a random configuration distributed by the Poisson process at the density
ρs := ρ+ s α is to take the union of two configurations ω0 and ω̃s, drawn indepen-
dently through a pair Poisson processes at intensities ρ and sα, correspondingly.
By this construction,

Pρs
(F ) − Pρ0

(F ) = P (ω0 /∈ F, ω0 ∪ ω̃s ∈ F )

= P (ω0 /∈ F, ω0 ∪ ω̃s ∈ F, |ω̃s| = 1) + (2.7)

+ P (ω0 /∈ F, ω0 ∪ ω̃s ∈ F, |ω̃s| ≥ 2)

where the first equality is due to monotonicity of F , and | · | denotes the cardinality
of a set. The first of the two events in the last expression coincides with the event
that i. ω0 /∈ F , and ii. ω̃s is a one-point subset of ∆F (ω0). The second term is
dominated by [s α(X)]2. Conditioning on ω0, and using the explicit Poisson formula
for ω̃s, one gets:

Pρs
(F ) − Pρ0

(F ) = sE

(
F c;α(∆F (ω0)) e

−sα(∆F (ω0))
)

+ O(s2)

= s

∫
Pρ(F

c;x ∈ ∆F ) dα(x) + O(s2) . (2.8)

The first claim now readily follows.
If ρ is non-atomic then the probability that the site x seen on the right in eq. (2.5)

is occupied, and thus F occurs, vanishes for each a-priori specified x ∈ X. Hence the
condition F c can be omitted from eq. (2.5), which is thus reduced to eq. (2.6). �

One may note that some auxiliary conditions are required for an extension of
the differentiation formula (2.1) to apply also to the case where α is not a finite
measure. E.g., for any set F which is measurable at infinity the pivotal set ∆F is
a.s. empty, yet the probability of F need not be independent of ρ.

3. Derivation of the Partial Differential Inequalities

3.1. A dictionary for the contact process. We shall now translate Lemma 2.3 to the
situation at hand. Recall that the space × time picture of the contact process is
described in terms of three independent Poisson processes describing the random
healing events, at constant rate 1, the spontaneous infection events, and the random
infection-transmissions. In discussing the partial derivatives of the corresponding
probability, we allow the latter two processes to be inhomogeneous, i.e., of densities
given by functions rather than constants: hx(t) and λx,y(t) Jx,y. The corresponding
probability measure is denoted by Pλ,h.

Of particular interest will be the event E = {C ∩G 6= ∅}, where C = C(o, 0) is
the infecting cluster for a particular site (o, 0) . We apply in the natural way the
terminology introduced in Definition 2.2 and say that in a given configuration ω a
site (x, t) ∈ V × R is green pivotal if a change of the green set G at (x, t) will have
an affect on whether ω ∈ E or not. Likewise, we will say that an ordered bond et

yx,
at time t, is bond pivotal for E if the presence of a transmission-event there will
affect whether ω ∈ E or not.
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Lemma 3.1. For the contact process on an arbitrary graph,

δθ(λ, h)

δλy,x(t)
= Jy,x Pλ,h(et

yx is bond pivotal for E) (3.1)

δθ(λ, h)

δhx(t)
= Pλ,h((x, t) is green pivotal for E) , (3.2)

and for models with h constant:

h
∂

∂h
θ(λ, h) = Pλ,h(C has exactly one green site) . (3.3)

Proof . The first two assertions are direct consequences of Lemma 2.3.
For finite graphs, equation (3.3) can be understood from (3.2), as we comment

below. However a direct proof which is not limited by the finiteness condition can
be obtained from the expression (1.12) for θ(λ, h) which readily yields:

h
∂

∂h
θ(λ, h) = E

(
h|C| e−h|C|

)

= Pλ,h(C has exactly one green site) , (3.4)

where the last step is an explicit Poisson process relation. �

Remark: It is instructive to note that equation (3.3) can be explained by (3.2)
through the following argument. Let A = {ω : |C ∩ G| = 1} be the event that
C has exactly one green site. Conditioned on A there is a uniquely defined site
Y (ω), for which the event Y (ω) = (x, t) is characterized by:

i. (x, t) ∈ G, i.e., the site is an arrival point for the corresponding Poisson
process,

ii. in the configuration ω, (x, t) is a pivotal site for {C ∩G 6= ∅}, i.e., for E.

The above two statements refer to independent conditions: i. referring to the
status of the site itself (or arbitrarily small intervals including it), and ii. expressing
a property of the configuration in the complement of this site. The probability of
the former event (which is 0 for any a-priori specified t) has density h with respect
to dt. A simple approximation argument can be used to show that event ii. is
asymptotically independent of i. when the uncertainty interval is shrunk to a
point. This yields the identity:

E (1A δ(Y − (x, t))) = hP ((x, t) is green pivotal for E) , (3.5)

which is to be interpreted in a distributional sense.
Thus,

P (|C ∩G| = 1) = E (1A) =
∑

x

∫ 0

−∞

E (1A δ(Y − (x, t))) dt

= h
∑

x

∫ 0

−∞

P ((x, t) is green pivotal for E) dt (3.6)

= h
∑

x

∫ 0

−∞

δθ(λ, h)

δhx(t)

∣∣∣∣
h(·)≡h

dt .

where the last step is by (3.2). Now, in case the total time duration of the space
× time graph is finite, the last expression yields h ∂θ

∂h , and thus we obtain (3.3). In
this step we are applying the Definition 2.1 and Lemma 2.3 with α chosen to be
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the Lebesgue measure dt. This argument is, however, limited by the restriction in
Lemma 2.3 that the variational derivative α be finite.

3.2. Differential inequalities at finite cutoffs. As we just saw, certain technical is-
sues need to be addressed in order to carry the analysis directly for an infinite
graph, e.g., the decomposition of ∂

∂hθ into the sum which appears at the last line

of (3.6) is valid only if
∑

x

∫
1dt < ∞. We shall circumvent this problem through

finite time and space cutoffs.
In order to apply arguments like the one seen above, we let θT,L the probability

that infection is present at the origin o at time 0 due to a spontaneous infection
event which has occurred within the finite time interval (−T, 0] at some site within
VL := {x ∈ V : |x| ≤ L}. Equivalently, θT,L is the infection probability at (o, 0)
for the finite subgraph GL with the vertex set VL, in the state which results from
A−T = ∅. More generally, the infection probability in this state at (x, t) is denoted
by θT,L(x, t), and we let θmax

T,L := maxx∈VL
θT,L(x, 0).

Due to the abundance of parameters, the dependence of the above quantities
on (λ, h) will occasionally be suppressed in the notation. As a step towards Theo-
rem 1.6 we first derive the following finite-volume version.

Theorem 3.2. On the finite graph, GL × [−T, 0], the infection density introduced
above θT,L ≡ θT,L(λ, h), satisfies for λ ≥ 0 and h > 0:

∂

∂λ
θT,L ≤ |J | θmax

T,L

∂

∂h
θT,L (3.7)

and

θT,L ≤ h
∂

∂h
θT,L +

(
2λ2|J |θmax

T,L + hλ
) ∂

∂λ
θT,L + [θmax

T,L ]2 , (3.8)

This statement is proven in the rest of this section. We start with the first
inequality, using the dictionary provided by Lemma 3.1.

Proof of (3.7). Applying equation (3.1):

∂

∂λ
θT,L =

∑

y,x∈VL

∫ 0

−T

δθT,L(λ, h)

δλy,x(t)

∣∣∣∣
λ(·)≡λ

dt (3.9)

=
∑

y,x∈VL

Jy,x

∫ 0

−T

Pλ,h(et
yx is vacant and is bond pivotal for E) dt.

Spelling out the condition on the right-hand side we get:

∂

∂λ
θT,L =

X

y,x∈VL

Jy,x

Z 0

−T

Pλ,h((x, t) ∈ C; Ec; C(y, t) ∩ G 6= ∅) dt (3.10)

=
X

y,x∈VL

Jy,x

Z 0

−T

Pλ,h(C(y, t) ∩ G 6= ∅ | (x, t) ∈ C; Ec) ×

Pλ,h((x, t) ∈ C; Ec) dt (3.11)

The conditional expectation is the average of the probability of the event that
there is a connecting path from G to (y, t) in the complement of the cluster of sites
which are reached from (o, 0), moving back in time, without visiting (x, t). Condi-
tioning on the exact extent of this cluster, we see that the conditional probability
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is dominated by θmax
T,L (λ, h). Thus,

∂

∂λ
θT,L(λ, h) ≤ θmax

T,L (λ, h)
∑

y,x∈VL

Jy,x

∫ 0

−T

Pλ,h((x, t) ∈ C;Ec) dt (3.12)

= θmax
T,L (λ, h) |J |

∑

x∈VL

∫ 0

−T

Pλ,h((x, t) ∈ C;Ec) dt (3.13)

= θmax
T,L (λ, h) |J |

∂

∂h
θT,L(λ, h) , (3.14)

which is the statement we wanted to show. �

Inequality (3.8) is a bit more involved. Start by breaking the event {C ∩G 6= ∅}
into two cases:

A = {C has exactly one green site}

B = {|C ∩G| ≥ 2}.

By Lemma 3.1, we have Pλ,h(A) = h ∂
∂hθT,L. To estimate the probability of B, we

split it further. Let us define a “gate” as a space × time point which, in a given
configuration, needs to be visited by all paths which connect G to (o, 0). It is easy
to see that:

(a) The collection of gates is well ordered.
(b) The last gate is either a green site or a vertex of a transmission bond, “or”

taken in a non-exclusive sense (though the probability that both occur is
zero.) We denote the former event as Bs and the latter as Bb.

Lemma 3.3.

Pλ,h(Bs) ≤
θmax

T,L

1 − θmax
T,L

× h
∂

∂h
θT,L (3.15)

Proof . As was discussed already, the last factor in (3.3) coincides with Pλ,h(A).
The probabilities of Bs and A will be compared here through the probability den-
sities for the uniquely defined ‘markers’ for the two events. For A, that role is
played by the unique green site in C, and the corresponding decomposition of its
probability is given by equations (3.5) and (3.6). For Bs we note that conditioned
on it there is a unique site W (ω) ∈ VL × [−T, 0] for which the event W (ω) = (x, t)
has the following characteristics

(W1) (x, t) ∈ G
(W2) (x, t) ∈ C and there is no green site within the cluster of sites from which

(o, 0) can be reached without visiting (x, t)
(W3) there is a green site connected to (x, t) by a path in the complement of the

above cluster.

The condition (W1) has an infinitesimal probabiliy, of density h with respect to dt.
Let Φx,t denote the cluster described in (W2) and θ(x, t)Φc be the probability of the
event (W3) conditioned on that cluster. We have the following analog of equation
(3.5):

E (1Bs
δ(W − (x, t))) = h E

(
1[Φx,t∩G=∅] θ(x, t)Φc

)

≤ h E
(
1[Φx,t∩G=∅] (1 − θ(x, t)Φc )

)
×

θmax

1 − θmax
(3.16)
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where we used the fact that 0 ≤ θ(x, t)Φc ≤ θmax ≤ 1 and hence

θ(x, t)Φc

1 − θ(x, t)Φc

≤
θmax

1 − θmax
(3.17)

Now, as is easily seen,

E
(
1[(x,t)∈C] 1[C∩G=∅] [1 − θ(x, t)Φc

W
]
)

= P((x, t) ∈ C; C ∩G = ∅)

= P((x, t) is green pivotal for E)(3.18)

Putting it together, we get the following analog of (3.6)

P(Bs) =
∑

x∈VL

∫ 0

−T

E (1Bs
δ(W − (x, t))) dt

≤ h
∑

x∈VL

∫ 0

−T

P((x, t) is green pivotal for E) dt ×
θmax

1 − θmax

=
θmax

1 − θmax
× h

∂

∂h
θT,L (3.19)

which proves the lemma, through a comparison with (3.6). �

Now we come to the trickiest estimate:

Lemma 3.4.

Pλ,h(Bb)(λ, h) ≤
[
2λ2|J |θmax

T,L (λ, h) + hλ
] ∂

∂λ
θT,L(λ, h) (3.20)

Proof . As in the last proof, we shall compare P (Bb) with ∂
∂λθT,L by expressing

each of the quantities as integrals, with simple bounds relating the two integrands.
The probability of Bb would be decomposed similarly to that of Bs there, except
that we shall also integrate over the specifics of the last event occurring at x before
the time t.

For a site (x, t), let τx,t be the time of the last event at x preceding t, which
can be either healing, spontaneous infection, or an infection-transmission event into
x. By properties of the Poisson distribution, for (x, t) specified: P (t− τx,t ≥ u) =

e−(1+h+λ|J|)u, and conditioned on the value of τx,t the probabilities of the three
possibilities for the event, have the ratios 1 : h : λ|J |.

If Φx,t is as in the proof of the previous lemma, then let K
(1)
x,t , K

(2)
x,t , and K

(3)
x,t be

the events that: {(x, t) ∈ C and Φx,t ∩G = ∅} and the last event at x preceding
t is correspondingly: healing, spontaneous infection, or an infection-transmission
event. Due to the independence of future from the past events, we have:

P
(
K1

x,t

)
: P

(
K2

x,t

)
: P

(
K3

x,t

)
= 1 : h : λ|J | (3.21)

Now, if the event Bb occurs there is a unique bond W̃ for which the event

W̃ = et
yx is characterized by the conditions:

(W̃1) the bond et
yx is realized as an infection-transmission event,

(W̃2) there is no green site which connects to (o, 0) without visiting (x, t)

(W̃3) the sites (x, t) and (y, t) are reached by a pair of disjoint paths from distinct
green sites gx and gy, both in the complement of Φx,t.
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The existence of a site with the above characteristics is in fact equivalent to the
eventBb. Thus P (Bb) can be written, in a form similar to (3.6), as a sum of integrals

of E

(
δ(W̃ − et

yx)
)
. Splitting that further according to the characteristics of the

last event at x preceding t, for which K
(1)
x,t is not an option, we get:

P (Bb) =
X

x,y∈VL
k=2,3

λJy,x × (3.22)

Z 0

−T

P

“

K
(k)
x,t

”

P

“

(x, τx,t) and (y, t) are disjointly connected to G |K(k)
x,t

”

dt .

In the statement that (x, τx,t) and (y, t) are disjointly connected to G, it is possible

that one of the paths has trivial length, e. g. the event K
(2)
x,t .

For k = 2 the conditional probability in the last expression satisfies:

P

(
(x, τx,t) and (y, t) are disjointly connected to G |K

(2)
x,t

)
=

= P

(
(y, t) is connected to G by a path avoiding (x, τx,t) |K

(2)
x,t

)
(3.23)

= P

(
(y, t) is connected to G by a path avoiding (x, τx,t) |K

(1)
x,t

)
.

The first equality holds since under the condition K
(2)
x,t the site (x, τx,t) is itself

green, and the second equality expresses the fact that the conditional probability
is not affected by the type of event which occurs at (x, τx,t).

For k = 3 the condition that (x, τx,t) is infected can be met in two ways, since
the site is at the end of an infection transmitting bond. By the van den Berg -
Kesten inequality van den Berg and Kesten (1985), which applies to independent
systems, the probability of the disjoint occurrence of two events is dominated by
the product of their separate probabilities. Peeling off one of the factors, and then
switching the value of k, we obtain:

P

“

(x, τx,t) and (y, t) are disjointly connected to G |K
(3)
x,t

”

≤

≤ 2 θ
max
T,L × P

“

(y, t) is connected to G by a path avoiding (x, τx,t) |K(1)
x,t

”

(3.24)

After the above bounds are inserted in (3.22), we use (3.21) to change also the

value of k in the factor P

(
K

(k)
x,t

)
appearing there. This results in:

P (Bb)≤ [h+ 2θmax
T,L λ |J |]

∑

x,y∈VL

λJy,x ×

∫ 0

−T

P

(
K

(1)
x,t ; {(y, t) is connected to G by a path avoiding (x, τx,t) }

)
dt

≤ [h+ 2θmax
T,L λ |J |]

∑

x,y∈VL

λJy,x

∫ 0

−T

P

(
et
(x,t) is bond pivotal for E

)
dt

= [h+ 2θmax
T,L λ |J |] λ

∂

∂λ
θT,L . (3.25)

where the last equation is by (3.9). �
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Proof of (3.8). Putting the above together, we have:

θT,L ≤ Pλ,h(A) + Pλ,h(Bs) + Pλ,h(Bb)

≤ h
∂θT,L

∂h
+ h

θmax
T,L

1 − θmax
T,L

∂θT,L

∂h
+

(
2λ2|J |θmax

T,L + hλ
) ∂θT,L

∂λ
. (3.26)

Collecting the first two terms and multiplying through by (1 − θmax
T,L ), one gets

(3.8). �

This concludes the proof of Theorem 3.2.

4. Analysis: from the PDI to the critical behavior

We shall now extend the inequalities of Thm 3.2 to the infinite-volume (Theo-
rem 1.6), and then explain how they yield the main results stated in the introduc-
tion.

Proof of Theorem 1.6. By the monotonicity of the contact process,

θmax
T,L (λ, h) ≤ θT,2L(λ, h) ≤ lim

T ′,L′→∞
θT ′,L′(λ, h) = θ(λ, h) . (4.1)

This relation permits us to simplify (linearize) the problem of passage to the limit,
by replacing θmax

T,L in the inequalities (3.7) and (3.8) by the limiting function θ. We
get

∂

∂λ
θT,L(λ, h) ≤ θ(λ, h) |J |

∂

∂h
θT,L(λ, h) (4.2)

and

θT,L ≤ h
∂

∂h
θT,L +

(
2λ2|J | θ + hλ

) ∂

∂λ
θT,L + θ2 . (4.3)

The finite-volume quantities are differentiable for h > 0 (in fact analytic in (λ, ·)).
In order to take the limit, we shall interpret the inequalities in a weaker sense, as
indicators of the corresponding relations for integrals of the quantities over dλ dh
against suitable test functions. General arguments permit to conclude that in this
sense the inequalities remain valid also in the limit.

More explicitely, through integration by parts (4.2) can be expressed as the
relation of the following Stieltjes integrals (each over R+) with positive, compactly
supported, test functions g ∈ Co(R+,R+)

−

∫ [∫
θT,L(λ, h) dg

]
dh ≤ −

∫ [∫
|J | θT,L(λ, h) d[gθ]

]
dλ , (4.4)

where dg on the left is a Stieltjes integral at fixed h and d[gθ] on the right is a
Stieltjes integral at fixed λ. By the bounded convergence theorem, as T, L → ∞,
the integrals converge to those of the limit. Since the limiting function is also
monotone in its arguments (λ, h), the integration by parts can be reversed in the
limit. The ultimate conclusion, allowed since the derivatives of monotone functions
are locally absolutely integrable, is that the limiting inequality (1.19) holds in the
sense of a relation holding at Lebesgue almost every (λ, h). A similar argument
permits to deduce (1.20) from (4.3), thereby proving Theorem 1.6. �

The inequalities which are established in Theorem 1.6 are very close to what was
proven in (Aizenman and Barsky, 1987) for the model’s discrete-time version on
Z

d. From this point on, the analysis of the PDI is identical, and it is covered by
the general results of Lemma 4.1 and Lemma 5.1 of (Aizenman and Barsky, 1987),
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which yield the following statement (formulated here in the notation of (Aizenman
and Barsky, 1987)).

Proposition 4.1. Let M(β, h) : R
2 7→ R be a positive function which for h = 0

is continuous from above and for h > 0 is continuous, increasing in each of its
arguments, and satisfies (in the a.e. sense):

∂M

∂β
≤ φM

∂M

∂h
(4.5)

M ≤ h
∂M

∂h
+ ψMa ∂M

∂β
+ M2 , (4.6)

with some 0 < a < ∞ and some φ(β, h) and ψ(β, h) which are finite on compact
subsets of R+ × R+. If there exists a value β0 for which

lim
h↘0

M(β0, h)/h = ∞ (4.7)

then for h↘ 0

M(β0, h) ≥ c1 h
1/(1+a) (4.8)

and for β ≥ β0

M(β, 0) ≥ c2 |β − β0|
1/a
+ , (4.9)

with some c1, c2 <∞.

Remark: Since at first glance it may appear surprising that hard information
about the critical behavior can be obtained from “soft ” inequalities like (4.5) and
(4.6), let us outline here the heuristics behind Theorem 4.1.

First, combining (4.5) and (4.6), one gets:

M ≤ h
∂M

∂h
+ φ(β, h)ψ(β, h)M (1+a) ∂M

∂h
+ M2 . (4.10)

We shall apply this relation to study the h dependence at small h in the vicinity of
β0, which is analogous to our λT .

It may be noted that the inequality (4.10) does not add much information about
the regime where M is linear in h since there h ∂

∂hM ≈ M , and thus already the
first term on the right accounts for the left side. However, at β0 the dependence of
M on h is singular, and may be given by a power law: M(β0, h) ≈ h1/δ, with some
δ > 1 ( the physicists convention for the corresponding exponent). For a shortcut,
which is of course not made in the actual proof, let us allow such an assumption –
taken in the literal sense that h ∂

∂hM ≈ 1
δM . We now see that at β0 and h small,

(4.10) holds not because of the first term on the right, but due to the presence of
the second:

(1 −
1

δ
)M ≤ φ(β, h)ψ(β, h)M (1+a) ∂M

∂h
+ o(M) , (4.11)

Dividing by M and integrating from h = 0 up, one gets (4.8), which leads to the
interesting conclusion that there is a gap in the allowed values of the exponent by
which M may vanish: it either vanishes linearly in h or at a slower power, 1/δ, with
δ ≥ 1 + a (in our case a = 1).

Once it is known that for β ≥ β0: M(β, h) ≥ c h1/(1+a), a similar treatment of
(4.6) yields for that regime

(1 −
1

1 + a
)M ≤ ψ(β, 0)M

∂M

∂β
+ o(M) . (4.12)
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Dividing by M , and integrating from β0 upward, one gets (4.9). In particular, one
learns that
M(β, 0+) > 0 for any β > β0 !

The complete proof of Theorem 4.1, which does not rely on the power law as-
sumption, can be obtained through the integration of the inequalities (4.5) and
(4.6) through suitable regimes in the (β, h) plane, as is done in Lemmas 4.1 and
5.1 of Aizenman and Barsky (1987).

Proofs of Theorem 1.3 and Theorem 1.5. The two statements follow now by
applying the principle expressed in Theorem 4.1, to the inequalities of Theorem 1.6,
with the correspondence:
(θ, λ, h) 7→ (M,β, h). For this purpose we note that by a simple estimate of the
contact process on a graph with only one vertex, θ(λ, h) ≥ h(1 +h) or equivalently
h ≤ θ/(1 − θ), and hence inequality (1.20) can be brought to the form (4.6) with
ψ = 2λ2|J | + λ/(1 − θ) and a = 1. �

5. Remarks

1. The results presented here can be extended also to graphs which are only quasi-
transitive in the following sense. The analysis can be adapted as long as it can be
shown that for each bounded region in the (λ, h) plane, there are 0 < c1 ≤ c2 <∞
such that

Pλ,h(C(x, t) ∩G 6= ∅) ∈ [c1θ(λ, h), c2θ(λ, h)] (5.1)

uniformly in (x, t). In particular, the conclusions of Theorem 1.3 hold under this
‘weak inhomogeneity’ condition.
2. Among the cases for which Theorem 1.3 applies to are the many graphs of
exponential growth which are the subject of current research. These include hy-
perbolic tessellations, Cayley graphs of non-amenable groups, and exponentially
growing amenable graphs such as the lamplighter group and the Diestel-Leader
graph (see Lyons and Peres (2007) and references therein.) An example for which
the discrete-time version of Theorem 1.3 was recently applied is the thermodynamic
limit of the small-world graphs, see Durrett and Jung (2006).
3. The method and results presented here apply also to unoriented percolation
models on transitive graphs similar to those considered here, i.e. G × R with one
continuum dimension. Similar independence of the argument from the presence of
orientation was noted in the previous related results on the contact process (Aizen-
man and Barsky, 1987; Bezuidenhout and Grimmett, 1991).
4. A topic which our discussion did not address is whether in addition to the gen-
eral Properties 1.-4. it is also true, for contact process in the generality considered
here, that the upper stationary infection density vanishes at the critical point. An
equivalent formulation is that at λ = λc infection from a single site will almost
surely die out. Such a statement was established for G = Z

d in the celebrated work
of Bezuidenhout and Grimmett (1990), and their arguments can most likely be
extended to all graphs of subexponential growth satisfying a certain homogeneity
involving block structures. The only related results known to the authors for con-
tact processes on graphs of exponential growth are those of (Morrow et al., 1994) –
where the corresponding statement is proven for regular trees, and the correspond-
ing statement for regular percolation on Cayley graphs of non-amenable groups,
of (Benjamini et al., 1999).



On the Lower Phase Transition of the Contact Process 317

5. Finally, we note that Theorem 1.3 allows to sharpen a statement which was
derived in Morrow et al. (1994). As a step towards the proof that infection from a
single site dies out almost surely at λH , it is shown there, for contact processes on
tree graphs, that

exp(ξ(λ) t) ≤ E
({o},0)(|At|) ≤ c exp(ξ(λ) t) . (5.2)

at some continuous ξ(λ), and c < ∞. It is not difficult to see that ξ(λ) > 0 for
λ > λH , and by Proposition 1.2 ξ(λ) < 0 for λ < λT . Thus, Theorem 1.3 (λH = λT )
allows to conclude that ξ(·) actually changes sign at the transition point.

Appendix A. Exponential decay in the subcritical regime

For completeness, we provide here a proof that throughout the regime λ <
λT , which is characterized by χ(λ) < ∞, the probability that the infection, if is
introduced at a single site, would persist for time t and/or spread over distance L
decays exponentially in t and L. The proof uses generally known arguments.

Proof of Proposition 1.2. By the additivity of the contact process and the transi-
tivity of G,

E
({o},0)(|At+s|) ≤ E

({o},0)(|At|)E
({o},0)(|As|) . (A.1)

Subadditivity arguments permit to conclude that

lim
t→∞

1

t
log E

({o},0)(|At|) = inf
t>0

1

t
log E

({o},0)(|At|) = η (A.2)

exists so that exp(ηt) ≤ E
({o},0)(|At|). Since λ < λT , it must be that η < 0. For

0 < δ < −η we can find t̄ so that E
({o},0)(|At|) < exp((η+ δ)t) for all t > t̄. Letting

1/τ = −(η + δ) and choosing c large enough completes the proof of (1.7).

For (1.8), we consider a process F
{o}
t which is defined to be the contact process

ignoring all healing events. In particular A
{o}
s ⊂ F

{o}
s ⊂ F

{o}
t for all s < t. We

have that the left-hand side of (1.8) is bounded by

P
({o},0)(x ∈ Ft for some |x| > r) + P

({o},0)(At 6= ∅).

Coupling F
{o}
t with a branching random walk starting from one particle at the

origin gives the bound

P
({o},0)(x ∈ Ft) < eKtλpt(o, x) (A.3)

for some constant K where pt(o, x) is the transition probability of a random walk
on G (note that this is a general bound which does not require λ < λc). A standard
large deviations result which holds for

∑
x Jo,x e

+ε|x| < ∞, says that for all ξ > 0
there is a c > 0 such that

∑
|x|>ut pt(o, x) ≤ ce−ξt. This together with (A.3) gives

an exponentially decaying bound on P
({o},0)(Fr/u ∩Bc

r 6= ∅), whereas (1.7) implies

that P
({o},0)(Ar/u 6= ∅) decays exponentially in r. �

Appendix B. Uniqueness of the invariant measure in the presence of

spontaneous infection

In this appendix we prove the basic regularity properties which were asserted for
the process at h > 0 and its relation with the standard h = 0 version of the model.
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Proof of Lemma 1.4. i. In the presence of spontaneous infection, i.e., for h > 0,
the introduction of initial infection at time −T < 0, on a set S, will have negligible
effect on the infection at time 0 as T → ∞. To see this, we split the probability of
infection at a site at time 0 into two cases, (a) when it can be accounted for by a
spontaneous infection event, and (b) when it can be present only due to the initial
conditions:

P
(B,T )(o ∈ A0) = P (C(o, 0)) ∩ G ∩ V × [−T, 0] 6= ∅) + (B.1)

+P (C(o, 0)) ∩ G ∩ V × [−T, 0] = ∅; C(o, 0) ∩ B × {−T} 6= ∅)

The second term is negligibly small in the limit T → ∞, since

P (C(o, 0) ∩G ∩ V × [−T, 0] = ∅; C(o, 0) ∩ S × {−T} 6= ∅) =

= E

(
e−h|C(o,0)∩G∩V×[−T,0]|; C(o, 0) ∩ S × {−T} 6= ∅

)
≤ e−hT(B.2)

which is obtained by first conditioning on the percolation structure, i.e., the bond
variables and the healing events. Thus:

lim
T→∞

P
(B,−T )(o ∈ A0) = P (C(o, 0) ∩G 6= ∅) (B.3)

= E

(
1 − e−h|C(o,0)|

)
≡ θ(λ, h) .

This implies assertion i.
ii. The monotonicity of θ(λ, h) is a standard observation (and is valid also for

the approximating functions), and the continuous differentiability of θ(λ, h) in h,
for h > 0 is an easy consequence (B.3). We turn our attention to the continuity of
θ(λ, h) in λ.

As explained above, the probability that events occurring earlier that T ago are
of relevance is bounded by e−hT . Restricting to times [−T, 0]: the probability that
the cluster C∩V ×[−T, 0] reaches a site with |x| ≥ uT can in turn be bounded by the
estimates which are used in Appendix A. These show that, under the assumption
which is made on {Jx,y}, there exists 0 < u such that the probability that the
infection reaches the origin from a site at distance greater than uT is dominated
by ce−ξT . Hence, for L = uT :

|θ(λ, h) − θT,L(λ, h)| ≤ e−hT + ce−ξT . (B.4)

The continuity of θT,L(λ, h) in λ is obvious (for a detailed argument see (Liggett,
1999)). Since (B.4) shows that θT,L(·, h) converges uniformly to θ(·, h) on R+, it
must be that θ is continuous in λ.
iii. The representation (B.3) readily implies, via the monotone convergence theo-
rem, that

θ(λ, 0+) := lim
h↘0

θ(λ, h) = P (|C(o, 0)| = ∞) (B.5)

and for λ < λH ,

χ(λ) = lim
h↘0

∂θ(λ, h)

∂h
= E

(
|C(o, 0)|1[|C(o,0)|6=∞]

)
. (B.6)

The event {|C(o, 0)| = ∞} does not coincide with ∩T<0{o ∈ A
(V,T )
0 } however we

claim that the difference is of probability zero. More explicitly:

0 ≤ θ(λ, 0+) − θ+(λ) (B.7)

≤ P (|C(o, 0)| = ∞, ∃T ∈ (−∞, 0) : C(o, 0) ∩ V × {T} = ∅) = 0
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since it is easy to see that if |C(o, 0)∩V × [T1, 0]| = ∞, for some T1 < 0, then with
probability 1: C(o, 0) ∩ V × {T} 6= ∅ for all T < 0. �

The imbedding of the contact process within the its extended two-parameter
version through the relations established in this Appendix plays a fundamental role
in our analysis. In effect, it allows to relate the regimes of λ < λT and λ > λH , at
h = 0, by exploring the model along contours in the half plane {(λ, h) ∈ R

2
+ : h >

0}.
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