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On the precision of the spectral profile
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Abstract. We examine the spectral profile bound of Goel, Montenegro and Tetali
for the L∞ mixing time of continuous-time random walk in reversible settings. We
find that it is precise up to a log log factor, and that this log log factor cannot be
improved.

1. Introduction

Of all the formulas suggested in the literature as bounds for the mixing time
of a finite graph (see e.g. Lovász and Kannan (1999); Morris and Peres (2005);
Fountoulakis and Reed (2007)), possibly the most promising, from a geometric
point of view, is the spectral profile formula. Introduced by Goel, Montenegro and
Tetali (Goel et al., 2006), it brings into the realm of finite graphs the idea of Faber-
Krahn inequalities. A Faber-Krahn inequality is an inequality relating the volume of
a set A and the first eigenvalue of the Laplacian with Dirichlet boundary conditions
on A — we will give all definitions in the discrete settings below, but for the history
of the topic, mainly in continuous settings, one should consult Grigor’yan (1994),
Chavel (2001, §VIII.6) or Benguria (2001), which has a somewhat different take on
this topic and an excellent historical survey. This approach is promising because, as
Grigory’an discovered (Grigor’yan, 1994), on a general complete manifold it gives
sharp estimates on the decay of the heat kernel, even in cases where the manifold
does not have polynomial volume growth. The requirement of polynomial growth
was essential in previous approaches to this problem, using Sobolev (Varopoulos,
1985) or Nash (Carlen et al., 1987) inequalities.

Let us describe Faber-Krahn inequalities in the discrete settings. We will work
with weighted, undirected, finite graphs. Let G be such a graph and ω : G × G →
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[0,∞) the weight function. The heat kernel is defined by

K(x, y) :=
ω(x, y)

ω(x)
ω(x) :=

∑

z

ω(x, z).

The heat kernel is a stochastic matrix (i.e.
∑

y K(x, y) = 1) and hence describes a

Markov chain on G. The symmetry ω(x, y) = ω(y, x) gives that it is self-adjoint
with respect to the stationary measure π defined by

π(x) :=
ω(x)

∑

y ω(y)

and therefore the associated Markov chain is reversible. It is important to note that
the results of Goel et al. (2006) are not restricted to the reversible case, and apply
to any finite Markov chain, but in this paper we will restrict our attention to the
reversible case. The Laplacian, which is an operator on L2(G, ω) is defined simply
as ∆ := I − K and is self-adjoint and positive.

When A ⊂ G is some subset, we will introduce the restricted Laplacian with
Dirichlet boundary conditions

(∆Af)(x) =

{

∆f(x) x ∈ A

0 otherwise.
(1.1)

The smallest eigenvalue for ∆A will be denoted by λ0(A). It is easy to see that
λ0(A) may also be defined as

λ0(A) = inf
supp f⊂A

f 6≡0

〈∆f, f〉

||f ||22
(1.2)

where 〈f, g〉 =
∑

x f(x)g(x)π(x) and ||f ||pp =
∑

x f(x)pπ(x). It is somewhat more
elegant to describe the results of Goel et al. (2006) with the following quantity
instead,

λ(A) = inf
supp f⊂A

f≥0,f 6≡const

〈∆f, f〉

||f ||22 − ||f ||21
(1.3)

and we will adhere to this convention. Note that as long as π(A) ≤ 1 − ε the
quatities λ0 and λ are comparable, Goel et al. (2006, eq. (1.4)). A Faber-Krahn
inequality is an inequality of the form λ(A) ≤ Λ(π(A)) for some function Λ, so the
minimal function Λ satisfying this is defined by

Λ(r) := inf
0<π(A)≤r

λ(A).

Λ(r) is the spectral profile. It is defined for all r ≥ π∗ := min∅6=A⊂G π(A).
The main result of Goel et al. (2006) is a bound for the L∞ mixing time of

the continuous-time random walk in terms of the spectral profile. Let us give the
necessary definitions. The continuous-time random walk on G is defined using −∆
as the infinitesimal generator. Explicitly, we define

Ht = e−t∆ = e−t
∞
∑

n=0

tn

n!
Kn(x, y)

and think about Ht(x, y) as the probability that a particle doing continuous-time
random walk on G, starting from x will be at y at time t. Hence we define the
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mixing time using

τ∞(ε) := inf

{

t > 0 : sup
x,y∈G

∣

∣

∣

∣

Ht(x, y) − π(y)

π(y)

∣

∣

∣

∣

≤ ε

}

.

We may now state the main result of Goel et al. (2006),

τ∞(ε) ≤

∫ 4/ε

4π∗

2 dr

rΛ(r)
. (1.4)

In the rest of the discussion we will fix ε = 1
2 and denote the left hand side by τ∞

and the right hand side by ρ.

1.1. The starting point of this short note was the hope that in fact (1.4) is precise
in the sense that ρ < Cτ∞ (1). This was motivated by the fact that Faber-Krahn
inequalities give sharp bounds in many interesting manifolds, and by the fact that
(1.4) is in fact sharp under a certain δ-regularity condition (see Goel et al. (2006,
§3)). And in fact, the techniques there give quite easily (and with no regularity
assumption), the following:

Theorem 1.1. For any finite graph G,

ρ < Cτ∞ log log 1/π∗(G).

Unfortunately, it turns out that this cannot be improved. Indeed we have

Theorem 1.2. There exist a sequence nk → ∞ and graphs Gk of size nk and
π∗ = 1

nk

such that

ρ ≥ cτ∞ log log nk.

The proof of theorem 1.2 is also not difficult — the graphs Gk will be (details in
section 2) composed of log log nk pieces Hi where each Hi corresponds to a distinct
range of r-s in the integral defining ρ (1.4). On the other hand, a random walker
starting at Hi will see only Hi — when it finally leaves Hi it will already be too
mixed to notice any effects from the other Hj-s. Thus, perhaps the most natural
question to ask is

Question 1.3. Is it possible to have the graphs Gk transitive?

A graph G is transitive if for all x, y ∈ G there exists an automorphism of the
graph taking x to y. It would be extremely exciting if the answer to the question
were to be no. A less exciting, but nonetheless very natural question is as follows.

Question 1.4. Is it possible to have the graphs Gk unweighted and of uniformly
bounded degrees?

Here the rationale for the question is geometric. The analogy between graphs
and manifolds works best for manifolds with bounded geometry and graphs with
bounded degrees. Hence there is a certain discord in the fact that the examples
constructed in theorem 1.2 are weighted. One would be tempted to solve the

question by constructing the graphs (call them Gsimple
k ) randomly, namely put an

edge between x and y in Gsimple
k with probability ω(x, y) where ω is the weight

1Here and below we use C and c to denote absolute positive constants that may be different
from place to place. C will be used for constants which are “large enough” and c for constants
which are “small enough”. The notation f ≈ g will stand for cf ≤ g ≤ Cf .
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function of Gk. However, more care is needed — applying the recipe above naively
would immediately create logarithmic tails that would dominate the mixing time.

Finally, we remark that in non-reversible settings existing bounds are quite weak.
For example, it is possible to have ρ ≥ c|G|2 while τ∞ ≤ C|G| log |G|. A careful dis-
cussion of this phenomenon can be found in Montenegro and Tetali (2006, examples
5.3-5.5).

1.2. Another relevant set of problems revolves around the following: is the mixing
time a geometric property? This is particularly interesting since many results in
mixing have been achieved using representation theory (Bayer and Diaconis (1992)
is probably the most famous) or using coupling (e.g. Luby et al. (2001)), techniques
which are better described as “algebraic” rather than “geometric”. To make the
question formal let us define the notion of a rough isometry.

Definition 1.5. Let X and Y be metric spaces and let f : X → Y be a function
and let K ∈ (0,∞). We say that f is a K-rough isometry if the following two
properties hold:

(1) For any a, b ∈ X ,

1

K
d(a, b) − K ≤ d(f(a), f(b)) ≤ Kd(a, b) + K.

(2) For any y ∈ Y there exists an x ∈ X such that

d(f(x), y) ≤ K.

To use this for Markov chains we will restrict ourselves to the simplest settings,
that of random walk on a (unweighted) graph with bounded degree. In this case
the graph has a natural metric structure given by the path metric, i.e. the distance
d(v, w) is defined to be the length of the shortest path between v and w. And we
ask: is the mixing time invariant to rough isometries? Formally:

Conjecture 1.6. Let G, H be two graphs with deg G, deg H ≤ d. Let f : G → H
be a K-rough isometry in the path metrics on G and H. Then

τ(G) ≤ C(K, d)τ(H). (1.5)

Since a rough isometry is reversible, this would in fact imply that τ(G) ≈ τ(H).
It is an interesting observation that all approximations for the mixing time I am

aware of are rough isometry invariants. It is easy to see that isoperimetric inequal-
ities are rough-isometry invariants, and hence both the Lovász-Kannan integral
(Lovász and Kannan, 1999) and the Fountoulakis-Reed integral (Fountoulakis and
Reed, 2007, which bounds the L1 mixing time rather than our τ∞, but the con-
jecture is just as relevant for τ1) are rough-isometry invariants. To see that, for
example, the spectral gap is a rough isometry invariants one has to define it using
functional inequalities i.e. (1.3) — note that the spectral gap is exactly λ(G) —
and then it becomes easy to check that the spectral gap and the spectral profile are
both rough isometry invariants. Thus a precise bound of this style for the spectral
gap would probably imply the conjecture.

In particular, combining Goel et al. (2006, theorem 1.1) with theorem 1.1 gives
a weaker form of (1.5):

τ∞(G) ≤ C(K, d)(log log |G|)τ∞(H). (1.6)
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This result, however, is not new. Indeed, τ∞ is comparable to the best constant in
the logarithmic Sobolev inequality α defined by

α = inf
Entπ f2 6=0

〈∆f, f〉

Entπ f2

in the sense that
c

α
≤ τ∞ ≤

C log log 1/π∗

α
.

See Montenegro and Tetali (2006) for historical background, the definition of the
entropy Entπ and for the equivalence (theorem 4.13 ibid). It is easy to see that α
is a rough isometry invariant hence this gives another derivation of (1.6).

We end this discussion with an observation of Itai Benjamini, that the mixing
time from a given point is not a rough isometry invariant. Thus, for example, the
mixing time from the root of a binary tree of height h is ≈ h. However, the mixing
time from a neighbor of the root is ≈ 2h (see Aldous and Fill (2007, chapter 5)
for both). Since there is a rough isometry of a tree on itself carrying the root to a
neighbor, this demonstrates the claim.

I wish to thank László Lovász and Prasad Tetali for many useful discussions. This
material is partially based upon work supported by the National Science Founda-
tion under agreement DMS-0111298. Any opinions, findings and conclusions or
recommendations expressed in this material are mine and do not necessarily reflect
the views of the National Science Foundation.

2. Proofs

Proof of theorem 1.1. Denote by Ak a Rayleigh set of measure 2−k i.e. π(Ak) ≤ 2−k

and

λ(Ak) = min{λ(S) : π(S) ≤ 2−k}.

Where λ is from (1.3). It is easy to see that

ρ ≈

blog2 1/π∗c
∑

k=1

1

λ(Ak)
.

On the other hand, by Goel et al. (2006, lemma 3.1), for any k ≥ 2

τ∞ ≥ c
− log(π(Ak))

λ(Ak)
≥

ck

λ(Ak)
. (2.1)

As for k = 1, we have 1/λ(A1) ≤ 1/λ(G) but λ(G) is just the spectral gap and
hence 1/λ(G) ≤ Cτ∞ Montenegro and Tetali (2006, theorem 4.9). Hence (2.1)
holds for k = 1 as well. Therefore

ρ ≤

blog2 1/π∗c
∑

k=1

Cτ

k
≈ τ log log 1/π∗. �

Proof of theorem 1.2. We may assume w.l.o.g. that k is sufficiently large. We define
simply

nk = (k − dlog ke + 1)22k
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where log, here and below, is to base 2. The graph will consist of k − dlog ke + 1

pieces, which we denote by Hdlog ke, . . . , Hk, each with 22k

vertices. We can already
define the weight function between the Hls: for every v1, v2 in different Hls we set

ω(v1, v2) =
k2−k

|G|
.

Let Al be a set of vertices of size 22k−2l

and Bl a set of size 22l

. Setwise we define
Hl = Al × Bl and then define the weight function ω as follows:

ω((a1, b1), (a2, b2)) =

{

1
|Hl|

2l−k + 1
|G|k2−k b1 6= b2

1
|Al|

+ 1
|Hl|

2l−k + 1
|G|k2−k b1 = b2.

With this definition of ω we would have that ω(v) = 1 + 2l−k + k2−k for every
v ∈ Hl. The inhomogeneity of ω is somewhat bothersome so we modify ω(v, v) to
fix this, writing

ω(v, v) = (1 − 2l−k) +
1

|Al|
+

1

|Hl|
2l−k +

1

|G|
k2−k ∀v ∈ Hl

with the result being that ω(v) = 2 + k2−k for all v.
With our graph G defined we can start investigating its properties. We first

estimate the spectral profile ρ. By the discrete inverse Cheeger inequality (Alon
and Milman (1985, lemma 2.1)), for any set S,

λ(S) ≤ C
π(∂S)

π(S)
= C

ω(∂S)

ω(S)
.

where we consider the weight function ω as a measure which is a constant multiple
of π. We use it for the set Al × {pt} which we confusingly call Ãl. Now, ω(Ãl) ≈

|Al| = 22k−2l

. There are two types of edges coming out of Ãl, edges to Hl and
edges to the other His. The first type has weight

1

|Hl|
2l−k +

1

|G|
k2−k =

1

|Hl|
2l−k(1 + o(1))

where the o notation above and also below means “as k → ∞, uniformly in l ∈
[log k, k]”. So, after summing over all couples (v1, v2), v1 ∈ Ãl and v2 ∈ Hl \ Ãl

gives a total contribution ≤ |Al|2
l−k(1+o(1)). The second type has weight 1

|G|k2−k

so after summing over all (v1, v2), v1 ∈ Ãl and v2 ∈ G\Hl gives a total contribution
≤ |Al|k2−k. Since l > log k we get

λ(Ãl) ≤ C
ω(∂Ãl)

ω(Ãl)
≤ C2l−k. (2.2)

Now, π(Ãl) = |Al|/|G| = 1/(k − dlog ke + 1)22l

. For brevity denote ε = 1/(k −
dlog ke + 1). We get that,

∫ ε/22l−1

ε/22l

dv

vΛ(v)
≥

1

Λ(ε/22l)

∫ ε/22l−1

ε/22l

dv

v
≥

1

λ(Ãl)
· c2l

(2.2)

≥ c2k.

Summing we get

ρ =

∫ 8

4π∗

dv

vΛ(v)
≥ c2k(k − dlog ke + 1) ≥ ck2k.

The proof will be finished once we show that τ ≤ C2k.
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Let us therefore investigate the random walk on G. It will be convinient to
represent it as follows. Assume the walker is at a vertex v ∈ Hl. We first throw
a coin which has probability k/2kω(v) of success. Call the event that this throw
succeeded ξ1 and in this case choose one of the vertices of G randomly with equal
probability and move there. If ξ1 did not occur, throw a second coin which has
probability

2l−k

ω(v) − k2−k
= 2l−k−1

to succeed. Call the event that this throw succeeded ξ2 and in this case choose
one of the vertices of Hl randomly with equal probability and move there. Finally,
throw a coin with probability

1

ω(v) − k2−k − 2l−k
=

1

2 − 2l−k

to succeed (if l = k it always does). Call the event that this throw succeeded ξ3

and in this case choose one of the vertices of the copy of Al containing v randomly
with equal probability and move there. If none of ξ1, ξ2 and ξ3 succeeded, stay at
v. It is easy to see that this is equivalent to the walk on the graph (in fact, we
defined the weights on the graph with this representation in mind).

Examine a random walk of length 2k+1, starting from some v ∈ Hl. Let w ∈ G
and examine P(R(2k+1) = w) (that starting point will always be v — we will not
remind this fact in the notation). We first note that after an event of type ξ1 the
walk is completly mixed. Define τ1 to be the first time when ξ1 occurred, which is
a stopping time. Using the strong Markov property we get, for every t ≤ 2k+1,

P({τ1 = t} ∩ {R(2k+1) = w}) = P(τ1 = t)
1

|G|

and summing over t gives

P({τ1 ≤ 2k+1} ∩ {R(2k+1) = w}) = P(τ1 ≤ 2k+1)
1

|G|
≤

1

|G|
. (2.3)

Now, the event τ1 > 2k+1 can be estimated simply using

P(τ1 > 2k+1) =

(

1 −
k2−k

2 + k2−k

)2k+1

≤

(

1 −
k2−k

3

)2k+1

≤ e−2k/3 (2.4)

which immediately gives a lower bound P(R(2k+1) = w) ≥ (1 − o(1))/|G| valid for
all w. Further, if w 6∈ Hl then (2.3) gives an upper bound, since one cannot reach
from v to w without a ξ1 event. Hence we will henceforth assume w ∈ Hl and
τ1 > 2k+1. The estimate (2.4) is nice, but far from our goal of 3

2|G| .

After an event of type ξ2 the walk is totally mixed in Hl. Therefore if we define
τ2 to be the first time when ξ2 occurred then a similar calculation to the above
shows that

P({τ1 > 2k+1} ∩ {τ2 ≤ 2k+1} ∩ {R(2k+1) = w}) =

P(τ1 > 2k+1)P(τ2 ≤ 2k+1 | τ1 > 2k+1)
1

|Hl|

(2.4)

≤ e−2k/3 1

|Hl|
= o

(

1

|G|

)

.

With (2.3) we have

P({min{τ1, τ2} ≤ 2k+1} ∩ {R(2k+1) = w}) ≤
1

|G|
(1 + o(1)). (2.5)
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Again we note the probability that τ2 > 2k+1:

P(min{τ1, τ2} > 2k+1) ≤
(

1 − 2l−k−1
)2k+1

≤ e−2l

(2.6)

For the last part we assume w ∈ Ãl where here Ãl is the copy of Al containing v.
We define τ3 as the first time ξ3 occurred and get

P({min{τ1, τ2} > 2k+1} ∩ {τ3 ≤ 2k+1} ∩ {R(2k+1) = w}) =

P({min{τ1, τ2} > 2k+1})P(τ3 ≤ 2k+1 | min{τ1, τ2} > 2k+1)
1

|Al|

(2.6)

≤

≤ e−2l

· 22l−2k

= o

(

1

|Gk |

)

. (2.7)

Finally, in the case that τ1, τ2, τ3 > 2k+1 (so w must be v) we definitely have

P(min{τ1, τ2, τ3} > 2k+1) ≤

(

1 −
1

2 − 2l−k

)2k+1

≤ 2−2k+1

= o

(

1

|Gk|

)

. (2.8)

Summing up (2.3), (2.5), (2.7) and (2.8) we finally get

P
v(R(2k+1) = w) ≤

1

|G|
(1 + o(1))

and hence for k sufficiently large, τ ≤ 2k+1. This ends the theorem. �
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