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Abstract. We consider a random walk with transition probabilities weakly depen-
dent on an environment with a deterministic, but strongly chaotic, evolution. We
prove that for almost all initial conditions of the environment the walk satisfies the
CLT.

1. Introduction

The continuing interest in the limit properties of random walks has generated a
remarkable amount of literature (see Sznitman, 2004; Zeitouni, 2004 for a review of
the field). In particular, many papers have addressed the case of random walks in
dynamical environments. Apart from few papers in which special hypotheses are
imposed on the form of the transition probabilities (implying that the process is
reversible with respect to the stationary measure of the environment, see Kipnis
and Varadhan, 1986) the authors have usually investigated the case in which the
evolution of the environment is described by a Markov process with positive transi-
tion probabilities and the transition probabilities of the walk are close to constant
(see, e.g., Boldrighini et al., 2000; Bandyopadhyay and Zeitouni, 2006 and refer-
ences therein). While such a situation has recently been settled in great generality
(Dolgopyat et al., 2007) the case of more complex local dynamics and/or far from
constant transition probabilities is still wide open.
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In this paper we address the first issue establishing conditions under which the
CLT holds for a deterministic local evolution with strong chaotic properties. Such
a CLT is established for almost all the initial conditions of the environment with
respect to a (natural) stationary measure (this is commonly called a quenched CLT).

The deterministic dynamics is taken to be independent at each site (although our
method can be easily extended to weakly interacting cases, cf. Keller and Liverani,
2005; Dolgopyat et al., 2007). The single site dynamics is a piecewise expanding one
dimensional map. While multidimensional expanding dynamics could be treated
similarly the case of Anosov map poses a real problem. Indeed the technique used
to control the environment dynamics is borrowed from the study of coupled map
lattices (more precisely from Keller and Liverani, 2006) and the extension of such
a technique to coupled Anosov systems is still missing. In general, the extension to
more general dynamics (with substantially weaker ergodic properties) would be of
interest, but to obtain results in this direction new ideas seem to be needed.

Note that the present strategy differs, in its probabilistic part, from the one used
in Dolgopyat et al. (2007). In particular, it is not necessary to prove absolutely
continuity of the invariant measure of the environment as seen from the particle
with respect to the invariant measure of the environment in a fixed reference frame.
We hope that this simplification may be helpful in treating more general cases.

The plan of the paper is the following. In section 2 the system under investigation
is explained in detail and the main result of the paper is precisely stated. This
main result (Theorem 2.7) follows after estimating the asymptotic independence of
two random walks in the same environment (Lemma 2.8). In Section 3 we study
ergodic properties of the environment. Section 4 contains the proof of the annealed
(averaged) invariance principle. In section 5 the proof of Lemma 2.8 is reduced to
an estimate on the number of close encounters (Lemma 5.2). Lemma 5.2 is proven
in Section 6.

Convention 1.1. In this paper we will use C to designate a generic constant de-
pending only on the quantities appearing in the Assumptions 1, 2, 3, 4 below. We
will use instead Cyp ... for constants depending also on the parameters a,b,c,....
Consequently the actual numerical value of such constants may vary from one oc-
currence to the next. On the contrary we will use Cy,Cs, ..., to designate constants
whose value is fived through the paper.

2. Model and Results

Let I = [0,1] and T : I — I be a piecewise C? topologically mixing map such
that |D,T| > X > 2 for each x € I for which the derivative is well defined. Then,

I%" =: O is the space of environments (it is a measurable space with the product
(Borel) o-algebra T) and 6 € © is an environment on Z¢. This environment evolves
deterministically according to a map F' : © — ©.

Assumption 1 (Fnvironment Dynamics). For each 6 € ©
(F(6))q :=T(6q)-

That is, the evolution is independent at each site.*

1The case of weakly coupled maps can be treated similarly by using the techniques introduced
in Keller and Liverani (2006) and used here to study the present, simpler, case.
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The evolution of the environment can be thus seen as a deterministic Markov
process on the space OF =:  such that, for all (6"),cn := 0 € Q, 6™ := F"(¢°). If
Ho is the unique absolutely continuous invariant measure of T',? then u¢ := ®pezdlto
is the natural invariant measure for F' we are interested in. In fact, it is possible to
show (Keller and Liverani, 2006) that it is the only invariant measure in a reasonably
large class of measures; see the precise statement below.

We consider a bounded increment random walk X,, in such environment. More
precisely, let A == {z € Z? : ||z|| < Co} and A,, = X, 41 — X, then the process is
defined by the transition probabilities

P({A, = 2} | Xpn,0°) = 7. (X" 0") (2.1)

where m, = 0 for all z ¢ A, 7,() depends only on {,}4en, and, for each z € Z4,
(7%6); := 0;4.. We will be interested in the measure P, on Q x (Z%)N determined
by the above process when the environment is started with the measure v and the
walk starts from zero. We will use the notation P¢ for P,.. Finally, we will use E
for the expectation with respect to the latter measure and E, for the expectations
with respect to the process P,,.

Assumption 2 (Regularity). The functions {m,}.en belong to CL.
The next assumption depends on a parameter € > 0.

Assumption 3 (Perturbative regime). There exists {a,}.en C Ry, >
such that

zEA az = 1’
| — azllcr < a.e.

)

In the following, when we will say “assumption 3 holds for ¢;” we will mean that
it holds with € = ¢;. The values ¢; will be taken small enough for Theorem 2.2,
Proposition 2.4, Lemma 2.5 and Lemma 3.5 to hold.

Assumption 4 (Ellipticity). For each | € Z¢\ {0}, the function |3 m,e*b?)

zeEA

S

CO(I* Ry) is not identically equal to 1.

It is well known that to study the properties of X, it is convenient to study the
process of the environment as seen from the particle. In fact, such a process can be
considered in several fashions of which the following will be relevant in the sequel.

2.1. Process of the environment as seen from the particle. Consider the process
w =: (W")pen € Q described by the action of the Markov operator S : L>®(©) —
L*>°(©) defined by

Sf(w):= Zﬂ'z(w)foF(Tzw) =: ZSzf. (2.2)
zEN zEA

Remark 2.1. It is easy to verify that the process w, w® = 6, has the same distribu-
tion as the process (7%X76"),en, 6° = 0.

We can then consider the measure P, on Q of the associated Markov process
started with a measure v.

2For the existence and uniqueness (among measures absolutely continuous w.r.t. Lebesgue)
see Baladi (2000).
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In analogy with the techniques used in the study of coupled map lattices, see
Keller and Liverani (2006), it is then natural to restrict the space of measures on
which S’ acts.® To this end we start by defining the following norms

lul == sup  p(yp)
\WCO((—),R)Sl

||| :==sup  sup (0, )
i€2 9] 00 (o g) <1

(2.3)

We then consider the Banach space of complex valued measures?

B:={peM(®) : |l <oo}. (2.4)

It is easy to check that such measures have finite dimensional marginals absolutely
continuous w.r.t. Lebesgue and the densities are functions of bounded variations
with variations bounded by the norm of the measure. Moreover u¢ is the unique
invariant measure for F' belonging to B, Keller and Liverani (2006).

Theorem 2.2. For each dynamics F satisfying assumption 1 and transition prob-
abilities satisfying assumption 2, the operator S’, is a bounded operator on B. In
addition, there exists g > 0, depending on F', such that if assumption 3 holds for
€0, then there exists a unique invariant probability measure p* € B (S'u® = u*).
This measure enjoys the following properties: There exists n € (0,1) such that for
each v € B and local functions o, ¢ € C° each depending only on L wvariables with
the two sets of dependency having distance at least M

(1) [v(57"¢) = p (#)r(1)] < CLy"|9|oo |V
(2) |1 (pp) — p* (L) (@) < CLN?% |ploo|@loo -

The proof of the above theorem can be found in Section 3.2.

Remark 2.3. Theorem 2.2 implies that the process P,w is a stationary (and ergodic)
process.

2.2. Annealed statistical properties.

Proposition 2.4. For each dynamics F satisfying assumption 1 and transition
probabilities satisfying assumption 2, if assumption 3 is satisfied for eg (where g9 >
0 is as in Theorem 2.2), then there exists a vector v € R? and a matriz 2 > 0
such that, for each probability measure v € B we have

1
NIEV(XN) — v
XN —ovN

Wi =N (0,%%)  under P,.

Moreover, there exists C; > 0 such that, setting Xy := Xy — uN, the following
inequality holds for all N € N and t € R9:

‘Eu (eﬁ@,ffw)) _ e—%(t,z%)’ < Cl(l + HtHS)N—%”V”
Finally, if assumption 4 is also satisfied, then %2 > 0.

3As usual the dual operator S’ is defined as §'v(f) = v(Sf) for all f € CO.
4By M(O) we designate the set of complex valued finite Borel measures on ©.
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Proof. Let us start noticing that

% NZE (Ag) = NZE v(Ak | Fi)),

where Fj = 0{0°, X1,..., Xx}. The relevance of the process as seen from the
particle is due to the following fact:

Ey(Ag | Fi) =Y zma(r0F) =) 2. (wh) = g(wh). (2.5)

zEA zEA
Thus,
1 | V=l 1 Nl
1 _ kyy _ © N>
N (XN) = 2 v(g(wh)) = k:O[(S) v|(g).

Accordingly, Theorem 2.2 implies
. 1 wroy
Jim By (X)) = p(g) =:v. (2.6)
To prove the CLT let An = Xn+1 — Xn, then

E, (ef<tXN>):E (ef@XN 1>Ey(e

iN (t,An—1—) ‘fol))-

Since v v
E, (eVLﬁ(t’A"_v> ‘ fk) = ZT(Z(TX’CHk)eTZﬁ“’Z_U),
zEN
it is natural to introduce the operators, for all t € C¢,
sz 2= h(72F(6)) = Ze<t’z_”>,$’zh. (2.7)
zEN zEA
Then,

E, (6\/7%<t’Ak_v> ‘ ]:k) = (Mit/\/ﬁl)(TXkek),

and the reader can then check, by induction, the formula

E, (er“X >) = (MY, ). (2.8)

The operator M acting on the space B is an analytic perturbation of the operator

= M. Unfortunately, S’ does not have a nice spectrum on B, so in order to apply
usual perturbation theory, it is necessary to lift the dynamics to an appropriate
space in the spirit of Bardet et al. (2007). We do so in section 3.3 where we prove
the following result.

Lemma 2.5. Under the assumptions of Theorem 2.2 there exists Cy > 0 and a
function oy analytic in {||t| < Ca2} such that for each n € N, probability measure
v € B and local function f depending on L variables we have

(ML f)l < CLIad || fl|lv |
v(M{1) = o (14 O(vl)) + O™ [[v[D)-

Moreover, ay = 1, &9 = 0 and &g > 0 (the “dot” stands for the derivatives with
respect to t). Finally, if assumption 4 is also satisfied, then égo > 0.
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Using Lemma 2.5 and setting 32 := &y, we have
_1
(MY, ) =l x (L+ O(N 2 o)) + Ol ])-

We can finally compute, for ||| < CN% and N large enough,?

i ¢ 1T+t
E, (6 I~ (LXN)) ag/ ~ O ( ]|\|/v|| |I/|>
14

(1 - %@, T2t) + 0(|t|3N-%)>N +0 (%Ivl)

— 1<t>22t> O(|It]°N 21) -+ (M >
e 2 O 12 5

from which Proposition 2.4 follows. O

Next, we need a large deviations estimate.

Lemma 2.6. Under the assumptions of Theorem 2.2 and assumption 4 there exists
ag > 0 such that for each v € B, n,m € N and a € (0,a9) the following holds true

P, <{‘%(Xn+m .0

> a}) < Ce 9 m(||y| + 1).

Proof. Again this large deviation result can be obtained by perturbation theory
of the operator S’. Indeed, for each w € R?, |w|| = 1 and ¢ € R,

P, <{i<w, Xner - Xn> > CL}) <E, (et(<w’)~("+m7)~(">7am))
m
= (S M),

tw

Since by Theorem 2.2 sup,, oy |[(S")"v|| < C|lv||, we can apply Lemma 2.5 and
obtain, for t < Cj,

1 - .
P, ({ ot Koo — % 2 o} ) < Cemtmma 0+ Cll) + O o)
t2 "
< oot (14 S w S0+ O1) ) 1+ vl + Co o]

mt2
< OeftaerT(w,EQw)Jr(’)(mM?’)(1 + ||V||) + C’I]mHVH.

Finally, choosing ¢ = 7 and ag so small that the term O(t?) is small with

a
w,X2w)

2
2 20
) ag T 2w, 22w
respect to STy (wsTwy < Cy and e ¢ > >,

Py <{i<w, Xotm = Xn) > }) < Ce GO (1 |v)).
m

We then conclude by noticing that the above estimate for all the w in the set
{+e;}L ,, where {e;}¢_, is the standard base of R?, implies the Lemma. O

SIF ||¢)) > CN the last statement of Proposition 2.4 is obvious: the left hand side is < 2.
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2.3. Main result: Quenched C.L.T. Let Py be the measure P¢ conditioned to start-
ing the environment in the configuration . We will use Eg for the expectation with
respect to Py.

Theorem 2.7. For each dynamics F satisfying assumption 1 and transition prob-
abilities satisfying assumptions 2 and 4, if assumption 3 is satisfied for 1 (where
go > &1 > 014s as in Lemma 3.5), then (using the same notation as in Proposition
2.4), for u® almost all 0 € © the following holds

(a) XN —v Pyas;
(b) F22% = N (0,5%) under P

Proof. Lemma 2.6 implies the bound P¢({{N~'Xy — v| > €}) < Ce= O’V (a)
follows then by applying Borel-Cantelli.

To prove (b) let & € (0,1) be a number to be specified later. Combining Lemma
2.6 and Borel-Cantelli Lemma we see that for any § > 0, P¢-almost surely for any
kand 0 < j < 2=k we have®

a X — Xopy joer | < Cp x5 203k 2.9
me[2h4j20k 2k 4 (j41)208] et = 00 (29)

By Fubini Theorem for almost every 6 (2.9) holds Py almost surely. Therefore it
is enough to prove the convergence along the subsequence njj, = 2% + j2°% where
0<j <207k

To conclude it suffices to prove that there exists # > 0 and b € N such that
for each smooth function ¢ : R* — R compactly supported in a box of size L the
following inequality holds

1~ 2 _
E ([Ba(eV5w) ~ x| ) < CuldlaN ™, (210)

where Exr (g x2) is the expectation with respect to the Gaussian measure N(0,%2).

Indeed, denote
—F X"J"c
5]16 =1Ly | ¥ \/m .

Then (2.10) and Chebyshev inequality imply

P° ({|&x — Enoz2)(9)| = €}) < Crlplere™?n ). (2.11)

Hence, by finally choosing a such that a+ 3 > 1, {x — Exr(o,x2)(¢) almost surely.
Next, choose a family ¢,, which is dense in CJ(R?). Then, for almost every 6, we

ha.\/e
Ee ‘% ,—nj EN 0,22 ( )

for all m. Then, for any such 6

Eg <80 <&>> — Eprqo,z2) ()
VK

for any continuous compactly supported ¢ proving (b).

6The X in Cy,x,s stands for the dependence on the random walk realization {Xn }nen.
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The result is then proved provided (2.10) is true. It turns out that (2.10) can
be conveniently interpreted in terms of two independent walks X, Yy in the same
environment. In fact, calling E? the expectation with respect to such a process it
follows

E ( [Ba(eV 4 X)) - Exvos ()] ) = BV K)ol

— 2E(p(N "2 Xn)Epr0.52)(9) + Enro.52) ()
=E2(p(N "2 Xn)p(N"2Yy)) — Eno,52) ()2 + O(LY g]| cass N7P).

[N

Yv))

where we have used the quantitative estimate in the Proposition 2.4.7
We have thus reduced the proof of the theorem to proving the following.

Lemma 2.8.

E*(p(N~2Xn)p(N"2Yy)) — Exo.52)(9)?| < Cllglles N7°.

Lemma 2.8 is proved in Section 5. (|

3. Proofs: Environment

In this section we establish all the needed properties of the environment dynam-
ics. The basic idea is to prove that the environment enjoys very strong mixing
properties. Our first aim is to prove Theorem 2.2, that is exponential decay of
space-time correlations.

Note that S1 =1, hence

IS ) < |pl, (3.1)

that is S is a contraction in the |- | norm. In addition, it is possible to prove that
for each o € (2A71,1) there exists A, B,eg > 0 and such that, if assumption 3 is
satisfied for £y, then for each n € N and p € B8

1(S)" ull < Ao™||pll + Blul.- (3-2)

For finitely many sites the above estimate would suffice to prove that the operator
S’ is quasi-compact and this, together with the topologically mixing assumption,
would imply the existence of a spectral gap. Unfortunately, such a proof is based
on the compactness of the unit ball {yx € B : ||p|| < 1} in the topology of the |- |
norm which fails when one considers infinitely many sites.

The obvious idea is to use explicitly the fact that the dynamics in different sites
are independent, hence the system has a product structure, yet this is a subtle
issue. To understand better the situation, let us recall few facts about the single

I ¢ is the Fourier transform of ¢, then Proposition 2.4 yields, for each p < % and b € N,

1y R 1
E(p(N ZXN))_EN(O,E2)(4P)’SC 1 N |p(8)]dt + C HtH<J\m(1+Iltll3)1\7 2 |@(t)|dt

oo NP
< Catlleller [ a4 e+ CatllplleoNF [ (14 2%t s,
NP 0

which gives the advertised result provided b > d and p is chosen small enough.
8See (2.4) for the definition of B. Inequality (3.2) follows directly from (3.7) and Lemma 3.4.
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site systems. At each site we have the dynamical system (I = [0,1],7). Let us
consider the norm in M(I) given by
[vllo = sup u(¥),
‘%"CO <1
where ¢’ is the derivative of . The Banach space B = {v e M : |v|o < oo}
consists of measures absolutely continuous with respect to the Lebesgue measure
my. In addition, if dv = hdm,, then the density h is a function of bounded

variation and |h|gy = ||v||.° By a change of variable one can compute that, if
dv = hdmg, then d(T'v) = (Lh)dm,, where the operator L is defined as

Lh(z)= > |D,T|""h(y).
y€T ()

The operator L is often called the Ruelle-Perron-Frobenious transfer operator. It
is well known that, if T is topologically mixing, then the operator £, acting on
BV has 1 as a simple eigenvalue (corresponding to the unique invariant measure
absolutely continuous with respect to Lebesgue) and enjoys a spectral gap, that is
there exists 79 € (0,1) such that the rest of the spectrum is strictly contained in
a disk of radius 79 (see, e.g., Baladi, 2000 for details). Clearly the above implies
that T has a spectral gap when acting on B. Unfortunately, it turns out that the
tensor products of B is a too small a space to be really useful for our purposes.'®
This is the reason why we have introduced the spaces B which is a generalization of
measures with density of bounded variations to the infinite dimensional setting. Yet
on such a space S’ does not behave very well and we will use an abstract covering
space on which the dynamics will exhibit a spectral gap.

More precisely, we would like to introduce a Banach space B and two (possibly
only partially defined) maps ¥ : B — B and Pr : B — B and an operator S : B — B
such that the dynamics of the latter covers the dynamics of S’ as illustrated by the
following commutative diagram

_st
(3.3)

—
(s

S
S — &
& — T
3

We will first define the space B and the map S. Then we will prove Theorem 2.2 by
proving that S has a spectral gap on B. Next we will obtain other, more refined,
results by using the same strategy (albeit applied to different operators).

3.1. Covering dynamics. First we define the above mentioned abstract space. Let
B :=C x [X,ez4Bp] where!!

B, :={u€B:u(p) =0V e C’O) that do not depend on 6,}.

9The equality of the norms follows from the usual weak definition of BV, the fact that the
measures must be absolutely continuous can be easily proved by approximating a measure with
finite norm by one with a smooth density (just use a mollifier) and remembering that the unit
ball of BV is compact in L'. See Keller and Liverani (2005) for more details.

10The problem is already present for two sites since BV (I) @ BV (I) # BV (12).

Hpor example, if vp, 1/;’, (pe Zd) are probability measures on I such that v, = 1/1’, for all p # q,
and we set v 1= ®pezdVps v = ®pEZdV;’ then v — v/ € By.
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The vector space B is a Banach space when equipped with the norm

el = supfle,l, lpll = p € 2%} .
Here we use the notational convention that an element g € B has components
¢y € Cand fi := (up)p with p, € B,
Next we define a projection Pr : D € B — B and a map ¥ : B — B allowing to
transfer objects between the two spaces.
Let p. € B be a fixed probability measure on I then m = ®gap, is a product

probability measure on ©. For each g = (c,, (1p)p) € B and local function f we
define

Pru(f) =cum(f)+ Y m(f), (34)

peZd
which makes clear in which sense B “covers” B ( or M(©)).

Remark 3.1. Note that, although Pr pu(f) is well defined on each local function,

Pr p is not necessarily a measure. Let By; C B be such that the elements of Pr By,
give rise to bounded linear functionals on the space of local functions, and hence
identify uniquely a measure.'?> We will call such a measure Pr p.

The choice of the map W is quite arbitrary, we will fix a convenient one. Consider
a strict total ordering < of Z¢ such that 0 < p for each p € Z%\ {0} and the sets
{q : q < p} are finite for each p € Z.13

Let ¢, be the successor of ¢ (that is, ¢ < ¢4 and there are no ¢’ € Z? such that
q¢ < ¢ < qy). For each q € Z¢ we can then consider the o-algebra }'g determined
by all the variables 6, with ¢ < ¢/, hence F{ is the complete o-algebra. Next, for
each f € C°(©) and ¢ € Z%, define the operator J,f = m(f | Fg) —m(f | F2,).
For each local function f we can write!

f=m(f)+ Y Jo()
q€eZ4

Accordingly, for each p € B we define j1,(f) := J,u(f) € By, and the lift

U(p) = (u(1), (Jgm)q) -
Note that ¥ is a bounded operator. Indeed if ¢ < p, then
|T41(06, )| < |1l 74 (00, 0) o0 < 2|1l [l 10l oo-
If g > p, then
| Tq14(9a, )| < 11(0, )| < |1l 1T4(0)lo0 < 2l 1ll [l oo
Finally, for ¢ = p, we have [Jgu(9p,9)| < ([ul lp«]l + lel)lploo- In other words
there exists C's > 0, depending on the choice of p., such that
()l < Csllull (3.5)
Clearly, ¥(B) C D and for each u € B it holds true
Pr (W(1)) = .

Now that we know how to lift measures, we can address the dynamics.

128ince the local functions are dense in the continuous ones by the Stone-Weierstrass theorem.

Bror example, one can start from zero and spiral out over larger and larger cubical shells.

Ldpg f is local there exists a box Ax C © such that f depends only on the variables {8, : ¢ €
A}, but this means that the sum consists only of finitely many terms.
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For all z € Z%, 7% u,(p) := pq(p o 72) = 0 if  does not depend on 6,_,. Thus
we can define the decomposition for 774 via the decomposition p, = Jyu of pu:

= Z (T71)q == Z T gz

qeZ? q€Z4

Setting Ay = U.ca7*A, we can define the covering dynamics S by (¢, Sji+Cc)
where ¢ := (¢,) with ¢, = J;S/m = J;g‘ and

o {ZzeA SLpp—z + quAl ZzeA p zﬂq—z for each p & A4, (3.6)

(5)y =
P ZzEA Azﬂp z + quAl ZZGA p zuq—z for each p S Alu

where S, f(w) := m.(w)fo For*(w), A.f(w) :=a.foFor*(w) and S, := S, — A..
It is easy to check the following.

Lemma 3.2. The operator S is well defined as a bounded operator from B to B.
For each p € B and continuous local function f we have Pr(Sp)(f) = Pr(w)(Sf)
which implies that for each n € N and p € B we have PrS" ¥y = S™'

We have thus established a setting in which the commutative diagram (3.3) holds
true.

3.2. Mizing properties of the environment. We have now the necessary machinery
to deal with the statistical properties of the environment.

Proof of Theorem 2.2 . Let us first discuss the environment dynamics F. Its
basic properties are described by the so called Lasota-Yorke inequalities asserting
that there exists B > 0 such that, for all n € N,1®

|F' | < |p]
[(F)" ull < A7 ull + Blpl.

Note that the above implies that {||(F’)"u||} nen is bounded.

(3.7)

Lemma 3.3. There exists 0. € (10, 1) such that, for each q € Z¢, i, € By,

ICF)" gl < Cn Nl pagll-

15T he first is trivial since |F/u()| = |pu( o F)| < |p| |¢|oo. For the second, given any smooth
local function ¢, let ©o_, (€) := (%), where Gp = T0,, for each p # g while 95 £. Next introduce
a function ¢, piecewise linear in the variable fq such that wg_ (0p) — ¢(0) = 0 for each 0;, on the
discontinuity values of T'. By construction ¢g_ (T0p) — ¢(F'0) is then a Lipschitz function in 6,
thus

|F' (8o, 0l = |1((8a, (¢ — #)) 0 F)| + |1l 186, dloo < |1, (1De,T1~" (¢ — ¢) o F)| + Clul lploo
< Ikl 1Dg, T1™H (% = ¢) 0 Floo + Clul [eloo < [2A7Hlull + Clul] ¢]so-

The above yields ||[F'u| < 2XA71||u|l + C|u| which iterated yields the wanted result with B =
(1 —2X71)71C. See Baladi (2000); Keller and Liverani (2005) if more details are needed.
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Proof. For each local function ¢ € C° we can define vy, (&) = ©(6™¢), where
9;}75 = T"0, for each p # ¢ while 92“5 =&,

(F') 1) = |t <39q / oy (€) 9q]<p3¢q(T”€)d£> \

1
< gl \ [ & lxwan© -0 wzﬂ(&)ds\

< CHMqH “C"[X[O,Hq] - eq”BV lploo < C|‘Mq||ng|90|007

by the spectral gap of £ and the fact that mc(x[,0,) — 04) = 0, i.e. it is a zero
average function. Then, by the Lasota-Yorke inequality,

1Y gl < @A IE) gl + BIE") g
< @A (@AY lgll + Blul] + BOnG | ugll
< [@ T+ @AY B+ BOg] |lugll.
The result follows by optimizing the choice of j + k = n. O

Lemma 3.4. Multiplication by a C' local function is a bounded operator on B.

Proof. For any smooth local functions ¥, ¢, |[t)|ec < 1 we have
0;
v (on [ (0on0)
0

To use the above facts, it is convenient to introduce a more compact notation for
the pieces that make up the operator S. Let 14 : Z% — {0,1} be the characteristic
function of the set A C Z9. Then define the operators K, ,,, : B — B by
K. pq0 = 1 (g+ 2)A, and K, g1 = Tac (p)ll{p} (g + 2)SL + 1, (¢ + z)JI’jS;.
With this notation (3.6) can be rewritten as

(Sp)p = Z Z Z K p.qobq-

z€N 0€{0,1} qcZd

< vl

V(¢ 0p,00)| =

0;
/OWGM‘ <3llvll|ler-  (38)

O

Hence, iterating,
— B
(S N)qo - z § § Kzl7q0;q1;(71 o .Kzn;Qn71;Qn7Un/'I’Qn' (3'9)
21,20 €N 01,...,0,€{0,1} q1,...,qnEZI

By assumption 3, Lemma 3.3, Lemma 3.4 and the inequalities (3.7) it follows
that there exists a constant Cy > 0, depending only on F' and 7., such that
2oq 1Kz pganqll < Cacaz||pl| and

Z 1K z1000,01,0 K gn—1,00,00a, | < Caazy - az,n || A
Q10 qn €L4

Accordingly, if C%¢ + 7. < 1, then there exists n, € N and n € (1.,1) such that
Cy(ns + C3e)™ < n™ < 1. This means that every 21,...,2,, term in (3.9) will be
smaller than n™*a., - --a.,_ |/f, hence for all n € N,

1(S™m)|| < Can™ "™ |all- (3.10)
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Since S"p = (¢, S"f1 + ¢, Zz;i Sk¢) and the series ¢, = Y 7o | S¥( converges by
(3.10), it follows that pu™ := (1,¢,) is an invariant vector for S. In addition

8" — cup® || < O[], (3.11)

That is the operator S on B has 1 as a simple maximal eigenvalue and a spectral
gap. From this result we can obtain the decay of temporal correlation simply by
projecting down to B. Indeed, let 1 be a probability measure and ¢ be a smooth
local function depending only on the sites A C Z? and let L be the cardinality of
A, then, by Lemma 3.2 and (3.11), (3.5),

[u(d 0 S™) = Pr(p?) (@) = [Pr(S™(¥(p) — 1)) (¢)|

D (8™ W(n) — 1))g(9) (3.12)

geA

D™ (¥ () = 1))l [Blos < CLy" (]l + C)|loc-

geEA

IN

Thus, remembering (3.1), u* € By, that is it gives rise to a bounded linear
functional on local functions. Accordingly, we can define the measure u* = Pr (u™)
which will be invariant by S’. Equation (3.12) gives then the temporal correlation
decay for such a measure and, together with (3.2), implies that pu* € B.

To have the spatial decay of correlations note that if ¢ and ¢ are supported at
a distance M, then their support, under the dynamics, grows at most linearly in
time, thus it will take a time % before the supports have a common variable.
Accordingly, since p¢ depends on 2L variables, (3.12) (applied repeatedly to the
product measure m) implies

1 (8) = (S )YM/2%m(pg) + O(Ln™/2% | pp| )
= m(SM/2% ) m(SM/2% ¢) + O(Ln™/? || )

= 1 ()" (6) + O(Ly™/2% |ipg| o0 ).
0

3.3. Perturbation Theory. In this section we prove Lemma 2.5.
We deal with operators of the the type M, f := 3 _, S. (e$t#=v) f) where t € C%.
The problem is to study the spectrum for small ¢.16

Proof of Lemma 2.5. First of all we need to lift the operator to our covering
space. The obvious solution is to define M u by

m(Mtl) + Z Zeu"ZiU),u/pfz(gzl)a S’tﬂ+zcﬂ

pEA zEA

where { = ({,) = (JpMim) and

S oen €TINS g + S pen, €TINS, Y g & A,

S, ‘EL — zEA R 313
( t )q ZzGA €<t’z_U>Alzﬂq—z 4 ZPGIX €<t’z_U>JéS;Mp—z V q€e Aj. ( )
z€E

16T his problem is already well investigated, see in particular Bardet et al. (2007), here we treat
it in detail only because we need some explicit estimates not readily available in the literature.
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A direct computation shows that, for each smooth local function ¢, Pr(M,u)(p) =
Pr(p)(M,p), thus the lift covers the dynamics. In addition, one can easily check
that My = S and that M; is analytic in ¢.}7 Accordingly, standard perturbation
theory implies that there exists a4, p,, analytic in ¢, such that M,u, = ayp, with

w

oo =1, pg = p".

We will normalize p, so that u, = (1, 7). Setting p: := Pr(u,), for each fixed
local function f, u:(f) = Pr p,(f) is analytic in ¢ since the sum implicit in the right
hand side is just a finite sum.'® However Lemma 2.5 requires a more quantitative
information.

By the arguments of section 3.2 (see (3.10)) it follows that Mg =S =1+ R
where I12 = II, IIR = RII = 0 and ||R"|| < Cn", for all n € N. Thus by standard
perturbation theory (see Kato, 1966), M; = axIl; + R; where |ag — az| < CJjt|l,
[T = 10| < CJ¢ll, R < O, with ne < n+C|[t]|. Hence, [M}|| < Clov|" + Cny’
and, for each local function function f depending only on L variables

(MEv(f)] = [Pr(MEY @) (£)] < Lifleo IMFY @) < Clau|™[V[| L] floo

provided that |oy| > 1, which holds for all ||t|| < B for some B > 0. This proves
the first inequality of Lemma 2.5.
To prove the second note that ;v = ¢,(v)p, with £o(v) = [v]o hence

Miv(1) = [MP ()], = [af LY (v) + O [Vl
= [f o ¥ (V)]y + O((n;' + o CO|[v[l) = o (1 + O(E|vI))) + O [[v]))-

19

Finally, to study the derivatives of a we use the relation p (M) = ayui(p) for
any local smooth function ¢. Differentiating with respect to t yields

(M) + (M) = o () + efe(p)
jis (M) + 2 (Mep) + e (Mp) = g () + 20t (p) + arfie() — (3.14)
f1(1) = fie(1) = 0,
Since M; = Doaenlz— v)et*) S, and M, = doen(z—v)® (2 — v)elt*=) S, the
above equations, for ¢ = 0 imply (substituting ¢ = 1)
do = p" (Mol) = p*(g —v) =0,

where ¢ is defined in (2.5) and we have used (2.6). Next, substituting in the first
of the (3.14), p = ZZ;& Sk¢, for some local function ¢, we have

n—1 n—1
> Mot (8%¢) = 1o (1= 8) > 5%¢) = jio(¢) — Pr (8™ fag) ().
k=0 k=0

17For the first assertion note that

S S (8= Y S (5 = 3 S (s = 3 wp(S1) =0

pEA] zEA peZd zEA pezd z€EA pezd

For the latter just write it as power series of ¢t.

18Note that e is not necessarily a measure and gives rise to an analytic object only when
applied to a local function. We will abuse notations by writing fi1; to mean the functional on local
functions defined by Pr (%ut)(cp).

19Here we use the notation [1]o to designate the components ¢, of the vector v = (¢, 7).
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By (3.11), taking the limit for n to infinity, we have
0(9) =Y Mou*(5%9). (3.15)
k=0
Finally, the second of the (3.14), setting ¢ = 1 and ¢ = 0, yields®°

o =2 p"(MoS"Mol) + p* (Mol)

n=0
- 221{3”1” (B0 ® Ao) + By (Ao A).

Since M1 is a local function the sum is convergent. Hence

(3.16)

n

o = lim ~ |2 3 Epe (Am+k ®Ak) + (Ak ® Ak)

n—oo n
k,m=0
= lim —E (Xn®Xn> >0
n—oo n

Finally, if there exists w € R? such that dow = 0, it means (from (3.16) and
Theorem 2.2) that there exists a constant Cs > 0 such that, for all n € N,

By (0w, X)) < G55 B (J(w, X)) < G

We can thus extract a subsequence {n,} such that (w, X, ;) converges weakly almost
surely to a random variable Z. Let ¢ = E,» (Z | Fo) and g, = (w, g — v), then, for
each Fy measurable smooth local function ¢,

By (p( = 59)) = lim By (p(Xn, = Xny1)) = lim w9 = 5% 50)
= ﬂw(spgw)v
20Remember that &y = (O, 8t at) is a d X d matrix.

21The latter follows by Theorem 22. Let B = > (w,z —v)2m;, and G; = > (w,z —
v)S, (87 (w, g — v)), then

-

n—1 n—1ln

E(an> Zus’“ )+ XJ:

Jj=

and |p¢(S*B) — u* (B)] < Cn*, |ue(S*G;) — u*(Gy)| <
(w, z—v)u®(S*S.p), for e in assumption 3 such that (143
and (3.8)) ||vg,.|| £ C. Hence Theorem 2.2 yields

(S G < 1D lvr,=(87 (g = v))| < Cn?

=
bl

o

Cj9n*. Moreover, setting vy () :=
€)2A~1 < 1 we have (by equation (3.7)

Thus we can write

B (16w, Xa)l?) = By (1w, %) >‘<CZ77 +C'n2_:1 [XJ: i+ Z 3% } <c.

k=0 k=j+1



104 Dmitry Dolgopyat and Carlangelo Liverani

where we have used Theorem 2.2. Thus g, = ¥ — Sv, u"“-a.s.; a similar argument
proves the same identity p®-a.s.. This implies that, setting My = 0, and

Mpi1 = My, = (w,A,) = E((w, Ag) | Fo) + (") = Spp(w™)
= (w, Ap) + (") — (™),
M, is a P, stationary martingale. Moreover,
(w, Xn> = M, — 1/)(‘0") + 1/}((")0)'
From this it follows that

C > By (| M) Z]E n) + P = p(w™)?)
k=1
n—1
= 3 By ([, A} + 9™ = [0(w™)P)
k=1

= (n-1) [ w(lfw, Ar) + 9@ = 150 () + SHO)2)] -

Thus Y, m.|(w, 2 — v) + Yo Fo7?]? = |3, m.((w, z — v) + ¢ o For?)?, that is
(wyz—v)+ Yo For? =gy, + Sp=1), u’-as..

Next, let o, = p*(m.), then, Y a, =1 and ) _(w,z —v)a, = p*(Gw) = 0.
Hence,

Zozzw oFor* =19 p"-as.

z
Note that the operator Sqp = > a.p o F o 7% defines a Markov process with
invariant measure pu® and satisfies the hypothesis of Theorem 2.2. Since v =
Z;é Sk Gy, + S™p, for each ¢ € L2 (u™),

n;—1
gli{lololu ¢ Z S gw - hm E (¢(WO)<waXng>) = ‘uw(d)w)
k=0

In addition, assumption 3 implies that setting,?? for each smooth local function ¢,
n,g(p) = 1" (6S5e),
(1 +e)" (14+¢&)™

Wm0 ()| < ST =on |Ploo ™ (5™ i0]) = ﬁlsﬁlmu (lel)-

Thus vy, 4 is absolutely continuous with respect to p* with density py,.o € L (u™).
Accordingly,??
nGg— 1

H*(99) = 1 (5ay) = lim > (688" Guw)
k=0

n;—1 n;—1
=D [H(8"Gu)n"(9) + O(Con™ k)] + lim, > 0(Cyn)
k=0 k =ny
nlfl
=) u(S*Gu)u" (¢) + CoOm™ + n™nf).
k=0

22Indeed, p¥(m2) < az(1 +¢), thus 7, > (1 —e)az > (1 —)(1 + &) Las.
ZNote that (3.7) imply [|Shpull < 32, az[[F'ull < 2N |pll + Blu| and [Sap| < |p|. Thus,
iterating, for each n € N, [|(S%)’ u|| < Cl|pll.
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Taking first the limit for n — oo and the one | — oo yields u™ (1)) = pu™ (@) (V).
That is 9 is p" almost surely constant. This implies that g, = 0 and hence
(w,z —v)m, = 0, u* a.s.. This is equivalent to saying that the vectors in the
set {({e1,2),...,(€d,2))zea U{(1,...,1)} are linearly dependent over R, but this
implies that they are linearly dependent over Z. In other words we can assume that
w € Z%. Accordingly,

Z ﬂ_zei<w,z>

zENA

_ Z 7T_Zei('uu,v}

zENA

=1 upu¥—as..

Which, since u* € B (hence its marginal on I is absolutely continuous w.r.t.
Lebesgue) and 7, € C*(I*,R) (assumption 2), contradicts assumption 4. O

3.4. Variation bounds for conditional measures. In the previous subsection we ob-
tained several results for random walks provided that we start the environment in
a measure with “density” of bounded variation. Here we show why such measures
constitute a natural class for the problem at hand. More precisely we shall show
that if we start with a nice measure and condition on a behavior of a walk during
an initial time interval we still have a good control on the variation of densities.

For future needs we consider two random walks (X;,Y;) evolving in the same
environment starting respectively at a,b € Z? and with the environment at time
zero distributed according to the measure v € B. Let ]P’i)bﬂj be the measure on
(© x 724N associated to such a process and Ei_’lw the corresponding expectation
P2 .= ]P’g’oyy and E2 := Egﬁoyy.

Let m € N and consider the o-algebra FXY = o{X;,Y1,..., X, Yim}. We
are interested in computing E2 ,  (f(X,Y,6™) | F3Y) for each local F1¥ ® T-
measurable function f and probability measure v € B. Thus, we are interested in

the measures ugfg)/ m defined by

a,b,v a,b,m

EZ,,(f(X.Y,0m) | FXY) = /O X, Y.0) XY, (d6).

Lemma 3.5. There exists Cg > 0 and 0 < &1 < &g such that, if assumption 3 is
satisfied for 1, then for each m € N, a,b € Z% and probability measure v € B the
following holds

[Vasbml < Collvl.

a,b,m

Proof. Given two random walks realizations X,Y : N — RZ let us define the
operators
SX,Y,kf(e) = Tz (TXk 6‘)7‘—11% (TYke)f © F(9)7

where 2z = Xi+1 — X and wi = Yi41 — Y. With such a notation we can write

! li
e X, Y,m—1""" SX,Y,OV

,bom T :
wom S(,Y,mq T SS(,Y,OV(l)

Recalling (3.8) and the Lasota-Yorke inequality for the map F (see (3.7)), and using
assumption 3 we have

18% v vl < 20711 +e1)?[v]laz, aw, + BSk y xv(1). (3.17)
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Hence, for g1 such that 2A71(1 4+ 1) < n(1 —e1)72 < 1 we can iterate the above
inequality and obtain

m—1

15% vt Sk vl < 7™ (1L = e wll T asau,
k=0

m—1 m—1

+ B Z nj(l — 51)2jV (Sx_’yyo cee Sx_’yymflfjl) H Az, Aoy,
j=0 k=m—j
< [0l + (1 =n)""Blv(Sx,y.o- - Sx,yim-11),

which proves the Lemma with Cg = 1+ (1 — 7)1 B.%4 O

4. Annealed Invariance Principle.

This section is devoted to proving an averaged invariance principle. This result
is used in Section 5 to prove Lemma 2.8.
Consider the process

X = = { Ky + (N = IND A }. (4.1)

Note that )A(tN € C°([0,1],R%), by construction. In fact, Lemma 2.6 implies higher
regularity.

Lemma 4.1. The family of processes {XN} c €°([0,1],RY) is tight.
Proof. Let ¢ € (0,1/2),

tscloa] [t —s|

and K3 = {f € CO0, 1L RY) © £(0) =0, L(f) < L}.
By Lemma 2.6 it follows that, for each N € N, ¢t € [0,1] and h € [—t,1 — ],

)

P ({HXﬁh XN > Lh<}) < e CLT, (4.2)

In addition, if | X}N] + ||Xt]ih| < L'~¢, then the set in (4.2) is empty for all
h > L~'. Now the result follows in complete analogy with the usual proof of the
Holder continuity of the Brownian motion, based on applying the above estimates
to the dyadic rationals, yielding

i ({XN ¢ KZ}) < e CL,
Since K§ are compact in C°([0, 1], R?) the tightness follows. O

Lemma 4.1 also allows us to prove the invariance principle.

Lemma 4.2. For each probability measure v € B the process {XtN} converges in
law to the Brownian motion with diffusion matriz $2.

24Note that, for a probability measure, 1 = v(1) = v(0,0:) < |Iv]|.
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Proof. In view of Lemma 4.1 we only need to check the convergence of finite
dimensional distributions. We consider two dimensional distributions, the general
case being very similar. Accordingly, let 1 < t2 and fix &1, &3. We have

E, (exp(ifés, XN) + {62, X)) =Eu (exp(i((s + &1, K5)) explitee, [R - X))

=E, (E (exp(i(éa. [X) — XNIIF ) expli(fen + &l X)) -

By Lemma 3.5 and Proposition 2.4 we have?®

. o S 1
B (exp(ifee (R — X)) = oo (- 56 B0z ~ )1+ 0(1) )
and so using Proposition 2.4 again we obtain

E, (exp(i<§1ffif> +i(&2, X§§>)) o o H[(62 5262 (1) H (€1 +62), 5 (1 +62)) 1]

Thus, ()/ftjy , )A(tjz ) is asymptotically Gaussian with zero mean and the variance pre-
dicted by the Brownian Motion. ([

5. Proofs: Quenched CLT via the study of two random walks

The goal of this section is to establish Lemma 2.8.

Lemma 4.1 shows that the distributions of the processes (XN, V;"N) are tight,
hence they have accumulation points. Our next task is to characterize such accu-
mulation points. Let us consider any accumulation point (Xf", Ytoo) We will see
that (X°,Y;>°) is a centered Gaussian random variables with variance

20
23:_t<0 22>' (5.1)

More precisely, if we define the second order differential operator Avz =20, (£3):;0:0;
we have the following.
Proposition 5.1. For any 1 € C3(R x R? x R R) we have
d e SN 1 A
EE2(¢(t7Xfov Y;OO)) = E2(6tw(t7Xfou thoo) + §AE§¢(t7Xfou thoo))

More precisely, there exists 5 € (0, %) and ¥ € (0,1 — 283) such that, for all N € N
and t,h € [0,1] such that h > N"~! we have

. . L o 1 o
B+ X T (0 KT = o0 K8 T+ S v, 3,57 )
< ClYlles(N"Ph+h? + N3).

251 fact, Lemma 3.5 considers two walks, yet the corresponding result for one walk can be
obtained by integrating over the second walk. Moreover, for each smooth function f : R2¢ — R,

Ev (f(XH, X)) | Feyny) =B (IE(f(X{LXZY) | X(ey - 081N | }—[th])

_ X N vN Y t1 N
=% iy (UG, X | Ky, 00))
=Eyn ,x (BGPN ey, X5) | X0,69)) =Eyn ,x (F&N . X))

t1’ )_([th],[th] t1’ X[th],[le]

Proposition 2.4 can then be applied after translating I/)‘)g[th]’[th] by X[th].
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Thanks to the above Proposition for each ¢ € C3(R¢ x R?) we can define 1 by
1

P12, y) = oz, y)
and, by applying Proposition 5.1 with the choice h = [N2#]~!, obtain the wanted
result:
E*(¢(X1, V1Y) = E*(v(1, X7, Vi)
hmt-1
= E2(4(0, X, YY) Z E>(W((i + Dby X gy, Yiayn) — w(ih, XN, Y0)

(5.2)

= EX(6(0,0,0)) + O les N ™) = Byvo.0p)(9) + O(8s (N7 + N72+27)),

where we have used the explicit solution of (5.2).2¢ Remembering the form of X2
(see (5.1)), Lemma 2.8, and hence Theorem 2.7, follow.

Proof of Proposition 5.1. We start by the following Taylor expansion
E2((t + by X0 VW) — B2(0(t, X, V1)) = E2(0i(t, XY, V)
+ Ez( m’@[](tu XtN7 Y;fN) (XtJrh XtN) + 6yw(t7XtN7 Y;N) (Y;Jrh YN))

1 N N N
+ 2E2((Xt+h XtN) 'a§¢(taXtNaYtN) (Xt+h XtN))
PR V) o0, XYV - (R, - X))
BV, — VM) Rt XY V) - (VY — V) (3)

1 N N
+§E2(atm1/)(t7XtNa}/tN) (Xt+h XtN))h
1 N N
+ 2B 00 XN TN - (T2, — V)

+ 0 (1031h? + [ lles [EAIXNA = X% + BN, - 7N1%)] ) -

Next, we will analyze the terms in equation (5.3) one by one.

First of all note that tl}e repnalnders are of prder h3 .27 Let us start the estimates
with the term E(9,%(t, XN, V,V) - (Xt]YHI — X}N)). To this end we consider the o-
algebra FXY generated by {X1,..., X, Y1,..., Y}, Setting § = g — v, £ =

%Indeed, equation (5.2) is just the backward heat equation, thus for ¢ € (0,1)

1 (@—zy—w), 27 ez y—w))
- 20-D
Y(t, @,y) am? den(z, H(1 = 1)° /R?d e ¢(z,w) dz dw.

27 In fact Lemma 2.6 implies, for each p € N, that

(XN, — XN |?) < NP (

)
1 ~ -
cont s [ ({2 )
p - TN (XT(t+n)NT [¢N7)

L 4 o —1_—Caz%hN 4
< Ch2 4+ CpN2hP L xP e de < Cph2.
(Nh) 2

(N1(X[(t+h)N] Xrent)
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[tN] + 1 we can write

Lith
E(XN, - X)) | FY) =N ) EAY | FY)+ 0N ?)
k=t
Lith
= N7E S DE((SPg) o r¥e | FXY) 4 O(N )
k=t

Lith

= N7 YOS (1R ](5) + O ).

k={y

where, by Lemma 3.5, [|(u)3Y]] < C and hence [(7%¢)(u)Y] < C. From
Theorem 2.2 and the fact that p*(g) = 0 it follows that

SN O A 5 1
B2 (0ot (t, X, YY) - (X = Xi))| < ONT2[[¢]lcr. (5.4)
In complete analogy we have
A _1
B2 (0,9, XV, YY) - (VA = Y/ < ONT2 ¢ |er (5.5)

The quadratic terms involving 0, and 0y, are estimated in the same manner yield-

ing terms of order N_%hHwHCz. The quadratic terms involving only X or only Y
yield the following

E2 (XN — X)X — X)j0000,0) = (82)iE2(0p,0,9)h + O (%)

E? ((Yt+h Y )i (Yt+h YN) Oy V) = (Zz)ijE2(ayiyﬂ/))h+O (|$”NC2) )
(5.6)

Indeed, in analogy with what we have done before, we can condition with respect
to F7 ¥ and

ét+h 1
A . A . 1
E*((X7%n = X)X = X5 | 7)) = 5 2o EA(AD(A0); 1 737
k=C;
liyh—1k—1 ~ ~ ~ ~
+ ) D EHADAYS); + AT (AN, | FEY)
k=, 1=t
ft+h—l
+NTIO 1+ > BA(AY,, AN + AR, 0 AN [ F)
I=t+1
(5.7)
where the boundary terms of the type E2((Aﬁ Di(AX); | F XY) have been esti-

mated as in (5.4). To estimate such an expression note that

E2((AR)i(AF); | FE¥) = (877 r X )yl (9,8 g) -
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Since Lemma 3.5 and Theorem 2.2 imply [|(S7~“ 7% ) Y| < COpf|| and also
that [|g; (ST % 7% )XY || < C||pf|| we can apply Theorem 2.2
[E2((AR)i(AF); | F)| = (87757 gy (@) + O7) = O 7)
[E2(AX)(AX); | 7| = (u (38" u) + O )
1 (g58* 7 gr) + 00 —").

Using such estimates in (5.7) and remembering formula (3.16) (for do = %2) the
first equation of (5.6) follows. The second equation of (5.6) is proven in complete
analogy.

Finally, we must deal with the mixed quadratic term.

Levn w2 AXY.(AY XY
) . E2((AX),(AY), | FXY) 1
(( t-‘rh t ) ( t+h t ).7) | yn ) et N ( /N)

If |k —m| > AIn N, then, for A > Inn~!, by Lemma 3.5 and Theorem 2.2 it follows
that

- E*((A)i(AN); | F&Y)
B0, - X000, - ¥ |2 =Y =i
ft+2AlnNSkS€t+h

Im—k|<Aln N

+O(N"3).

Next, suppose that |m — k| < Aln N and |Xx—amn — Ye—amn| > 4CoAln N.

Assume, to fix our ideas, that k¥ < m. Then, for all times [ such that |l —
k] < Aln N, the two walks explore disjoint parts of the environment. Thus, we
can consider the process started at time &k — Aln N with the conditional measure
(/f)i(}/A 1y and with the walks starting from ¢ = Xj—amn,0 = Yicamn, |la —
bl| > 4CoAInN. If we set £ = SAMN7Xeg and h = S k+AMNZYeg. we have
that the two functions depend on different sets of variables (let B C Z¢ be the set
of variables on which f depends and B’ the ones relative to h) and

]E2((Akx)i(5%)j | f;f—ixlnzv) = (Ne)i(—YAlnN(fh)'
We can then define the Newtonian potential of f,
___
|BI(IB| = 2)e
B 1
|B[(IB] = 2)yp

¥(6) - [ 167 = 07 717128 0) 40® 50m po(a0y)
IZ (5.8)

/ HoB_,ﬂB”—\BHQf(,ﬂB) dﬁB
IB

where 08 = (0));cp and «; is the volume of the unit ball in R!. Tt is well known
that, for #% in the interior of I2

> g0V = 1.

leB
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Thus, remembering Lemma 3.5, we can write?®

[E2 (AN | 0 w)| < D 1 410Dy (00,0 - )|

leB
< 1] 1) 1w - S0 05, ¥ - bl < CA'CE| 10N |glc - 5up 35 ¥
€ €

By (5.8) we have, for | € B,

91—191 B 7
V() = f(v)do j 9;) = vy (f).
801 ( ) /]Zd |B|(|B|—2)O&‘B|||GB—19B||‘B| ( )d ®J¢B:u0(d J) Vl( )

Unfortunately, v/ ¢ B due to the singularity of the kernel. To take care of this
problem we need to isolate the singularity. For each r > 0 let x,. € C*°(R?5,[0,1])
such that x,.(68) = 0 for all ||§B] < r and x,.(87) =1 for all ||#Z| > 2r. Clearly
X can be chosen radial and so that sup; |9g, Xr|ec < Cr~!. We then define

(0= 90, (0~ )
A0) = | BT S g A7) 49° 20 ol

and uf . (f) == v{(¢)—v/,(#). A direct computation shows that |uf .| < Cr(ACoIn N)~¢
and ||vf,.| < C(ACoIn N)~*Inr~'. Since |f| < 2|g|~ we can finally use Theorem 2.2
to estimate

E*((A)i(AN); | Filmn)| S C S+ sup (7)), (941 N gy))|
ocI®?

< CQr+p(G) + sup [|(7F) v IpA N
leB
oer®

<C{r+N 'lnr '} <CN'InN,

where we have chosen r = N1,
In conclusion,

B2 (X = X Dm0t X 1Y) - (B = V| < ON Al
+ Aln N N7'E*(Card{t < N : || X; — V;|| < 4CoAIn N})||¢||c2. '

In Section 6 we prove the following bound.

Lemma 5.2. Let A be a large constant and set Ly := AlnN. There exists §g €
(0,1) such that

E2(Card{t < N : | X, — Y;|| < Ly}) < CN% (N eN). (5.10)
Lemma 5.2 allows to estimate the last term in the right hand side of (5.9) by
CN® " In N[¢)[lez = Ch(h™ N~ ) In N|[¢|c2,
proving the proposition by choosing § = % and 9 =1 - 30. O

28Remember that the marginal of (u on B U B’ is absolutely continuous with respect to
Lebesgue, hence the boundary of IB has zero measure, moreover 0p, ¥ is a continuous function
d
on I%°,

e)ﬁ(Y
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6. Two walks estimates

In Section 5 we proved that Lemma 2.8 (and hence Theorem 2.7) holds provided
the average number of times two walks come closer than Aln N in time NNV is smaller
than N% for some &y € (0,1). The purpose of this section is to prove such an
estimate and therefore conclude the argument.

6.1. On the number of close encounters. The proof of inequality (5.10) can be
reduced to the following simpler inequality.

Lemma 6.1. There exist p € (0,1),C7 > 0 such that for any m € N and for any

a,b such that ||a — b|| > Ly, we have
C
P*({||X; - Yj|| > Ly Yje{m,...om+N}} | Xpn=a,Y,=b)> N—ZJ (6.1)
(Here P? is the underlying probability for the process (0, Xy,Y:) started with 0y
distributed according to u€).

We postpone the proof of the above Lemma until finishing the proof of (5.10).

Proof of Lemma 5.2. Notice that assumption 4 implies that the walks can move
in different directions with positive probability. In particular, there exists v > 0
such that for each a,b € Z?, m € N and § > 0,

P2 ({|XW+L?\] — Ym-‘,—L?\,H > LN} ‘ Xm=a,Y, = b> > c((‘i),}/éLN7 (6.2)
Indeed
]P)2 ({||Xm+6LN - Ym+6LN || > 6LN} ' Xm = a, Ym = b) > ’75LN

the latter being the probability of one fixed path in which X;,Y; get further and
further apart at each step. On the other hand

B ({113, -s1 = Yonss-anall = I} | 1K = Yol > ) = cl0), (63)

To verify (6.3) let W (¢) and W) (¢) be independent Brownian Motions such that
W (0) = W(0) = v, where ||v|| = 6. Let v := v ||v|| ", and

o(8) = %P (IW () = WO > 1, and for all £ € [0,1]

W2 1),%) > (WP(0),v) — g and (WD (1), %) < (WD (0),v) — g)

Observe that the invariance principle established in Lemma 4.2, Lemma 3.5 and the
fact that local dynamics are independent implies a two particle invariance principle
as long as the walkers explore disjoint regions in the phase space. Therefore the
probability that two walkers grow Ly apart exploring disjoint regions of the phase
space is at least ¢(d) for large N proving (6.3). Choose ¢ < 1 — p. Then,

IP2({ sup |Xi—Yi||§LN}’Xm:a,Ym:b>

m<i<m+Ne
NeL? (6.4)
< I (1—c(8)yPhn) < eme@n* s Laine < =oner®
j=1

— — 3
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provided that ¢ is sufficiently small.
Next, consider the sets By, := {(z,y) : ||z —y|| < R}, B}, == {||lz —y|| > R} and
the stopping times, for & > 0,
so:=if{jeN :5>0, (X;1,Y;1) € By, (X;,Y;) € B},
Sop := inf {j eN : J > Sok—2, (Xj_l,Y}_l) € BZN, (X],Yv]) S B{N} s
spo=inf {j €N : j>so, (X;o1,Yj_1) € Bf . (X;,Y;) € By},
Sok+1 = inf {j eN : J > Sok—1, (Xj_l,Y}_l) S BZ_N, (X],}/;) S BZN} .
Clearly, sor < Sogp+1 < Sokte and s > k. As Xy = Yy, these stopping times
are adapted to the filtration XY. Note that the sg; are upcrossing times hence

| X: — V|| < Ly for all the t € {sog—1,...,82 — 1}. With this notation, (6.4)
implies
P? ({SUP(S2i —82i-1) > Ng}) < NsupP? ({s9; — 59,1 > N¢}) < Ne N2
i<N i<N
Let us set J :=inf{k € N : s, > N}, clearly J < N,
E2(Card{n < N : | Xn — Y,|| < Ln}) < N2~V + NeE2(J). (6.5)
It remains to investigate the length of the intervals of time in which the two

walks are further apart than Ly. Let S, := {supy<,(s2r+1 — s2x) < N}, and
denote by FXY the o-algebra associated to the filtration F;¥¥ and the stopping

S2k

time so. Then, by (6.1),
P*({J > n}) < E*(1s,) = E*(Ls,_,P* ({52041 — $20 < N} | Sn-1))
= E2 (]157“1]}1)2 ({82n+1 — Sop < N} | fXY))

S2n

Co 9 Co\"
< (1—m>E (Is,_,) < < (1—m) :

Thus, letting 1 — o > a > p, it follows that
P2({J > N*}) < Ce” N7,

which means that E?(J) < N® + NP2({J > N®}) < CN®. In view of (6.5) this
proves (5.10) provided we have chosen dy so that ¢ + a < dy. 0

Our program is thus completed once we prove (6.1). To this end an intermediate
result is needed.

Lemma 6.2. Given R > 0, take two points ar and bg such that ||ag — br|| = R.
Consider two walks starting at ar and br respectively with the environment given
by the probability distribution v € B and define the stopping time 75 r as the first
time n > 0 such that

R
(1Xn — Yo < 155 or [ Xn =Yl > (1 +0)R.

For each Cs > 0 there exist Rs € Ry, ¢1,co0 > 0 such that for each |v|| < Cs, for
each R > Rs

PE ({”X‘I’s,R - YT&,R” > (1 + 6)R}) > - CleiQ/é .

2496
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Proof. Let Tgr be the first time n > 0 such that

max([| Xy — Xonll, [|[Yn — Yiull) >

ol 5

Then, by Section 4 the pair
<Xmin(TR,tR2) — X Ymin(Tr,tR2) — Xm>

R ’ R
is asymptotic, when R — oo, to a pair of independent Brownian Motions
W), WwP(t) e R xR W) =0, [W(0)]=1

stopped at time T when one of them wanders more than 1/2 from its starting
position.?? Let 7T be the first time [|[W®(t) = W@ (t)|| = (1 +6) or [|[WD(t) —
W ()| = (1 +8)~". Recall that

1
249

(the worst case is then d = 1, see e.g. Revuz and Yor, 1999, Section XI.1). On the
other hand

P{IW () = WP(r)| = (1+0)}) 2

PT <T1)<P(r>6)+P(T <) (6.6)
and both terms are O(e~%/?), the first one because
P(r>(k+ 18T > ké*) <y <1

and the second one by Hoeffding’s inequality (see e.g. Grimmett and Stirzaker,
2001). Now3Y

P({”X"'(S,R - YTJ,R = R(l + 6)})

1
> P({|| Xryp — Yry o = R(1L+6) and 751 < Tg}) > 525 cre= /9,

We now use the following comparison criterion (proved in section 6.2).

Lemma 6.3. Suppose £1,€2...&, ... is a random process such that &, = £1 and
for alln

P& =1 ... §n1) 2 1.

Let £1,& ... &n ... be iid random variables such that &, = +1, and P(&, = 1) = p.
Let

Jj=1 j=1

Then for any an < a < g

P(X); reaches ag before aq|Xy = o) > P()Ek reaches awg before 041|)Eo =a)

29More precisely, the fact that each component is approximately Brownian comes from Section
4 while independence is due to the fact that the walkers explore non-intersecting regions in the
phase space and can be proven by the same arguments used to estimate (5.9).

30Here ¢ should be taken a little bit larger than the implied constants in (6.6) to take into
account that our process is only approximated by Brownian Motion.
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Recall that by Gambler’s Ruin Formula for p # 1/2

b))
- (%)

Proof of Lemma 6.1. Let X,,, = aand Y, = b with |la—b|| > Ly and x € (3, 1).

Using ellipticity of assumption 4 for the first 6 L 5 steps we see that with probabil-
ity greater than N~ our walkers move distance (1 + §)Ly apart without getting
within distance Ly from each other. Let 7 be the first time after m when our
walkers move distance (1 + §)Ly apart and let 7,41 be the first time after 7,, when

P(/'E'k reaches ap before 041|)Eo =a)=

1% = Y51l = 1+ )X, — Yo, || or | X; = Y5l < (1+6) 7M1 Xr, — ¥l

: In || X,, — Y,
Applying Lemma 6.3 to X,, = W
kIn N

EE™) and using Lemma 6.2, taking into account Lemma 3.5, to estimate the

. InL
with o = —lnr(’l_ﬁ;), a=oa;+1, ay =

probability of moving apart we conclude from (6.7) that for each € > 0, by choosing
0 small and N large enough, the probability that the walkers move distance N*L
apart without getting within distance Ly from each other is at least ¢cd N ~77¢.

Hence there is a polynomially small probability of making an excursion of size
N*®Lx before returning to a distance Ly. On the other hand once we have such a
big excursion Lemma 2.6 implies that it will take more than IV steps to come back,
indeed

P? ({ i X, -V < LN} } 1Xe— Vil > N”LN>
L+1<j<t+N
< CNe‘CN%fl,

The last two estimates imply Lemma 6.1 ([

6.2. Comparison Lemma.

Proof of Lemma 6.3. Let Uy,Us...U, ... be random variables which are inde-
pendent and uniformly distributed on [0, 1]. Define

& =-1ifU, <P, =-1&=¢&,...,&n—1 =&,_1) and &, = 1 otherwise.

Also let £ = —1if U, <1 —p and £ = 1 otherwise. Let
=D& X=)8
j=1 j=1

Then {X,;} has the same distribution as {A,}, {X*} has the same distribution as
(X} and X* > 2. O
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