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Abstract. Pointwise and uniform convergence rates for kernel estimators of the
stationary density of a linear process have been obtained by several authors. Here
we obtain rates in weighted L1 spaces. In particular, if infinitely many coefficients
of the process are non-zero and the innovation density has bounded variation, then
nearly parametric rates are achievable by proper choice of kernel and bandwidth.

1. Introduction

Consider a linear process Xt =
∑∞

s=0 asεt−s with independent and identically
distributed (i.i.d.) innovations εt that have finite mean and density f . We assume
that a0 = 1 and that the coefficients are summable,

∑∞

s=0 |as| < ∞. Then Xt has
a stationary density g. It can be estimated by the kernel estimator

ĝ(x) =
1

n

n
∑

j=1

kb(x − Xj), x ∈ R.

Here kb(v) = k(v/b)/b, where k is a kernel and b is a bandwidth such that b → 0 and
nb → ∞. Pointwise and uniform convergence rates have been studied by several
authors, see for example Hall and Hart (1990), Tran (1992), Hallin and Tran (1996),
Lu (2001), Wu and Mielniczuk (2002), Bryk and Mielniczuk (2005), and Schick and
Wefelmeyer (2006).

The natural distance for densities is given by the L1-norm. Convergence of ĝ to g
in this norm has been neglected for time series. Here we study rates of convergence

Received by the editors September 28 2007, accepted March 26 2008.

2000 Mathematics Subject Classification. 62G07, 62G20, 62M05.

Key words and phrases. L1-Lipschitz, smoothness of convolutions, variance bound.

Anton Schick was supported by NSF Grant DMS 0405791.

117



118 Anton Schick and Wolfgang Wefelmeyer

in weighted L1-norms under mild assumptions on f . More specifically, we consider
the weight function V (x) = (1+|x|)γ for some non-negative γ and the corresponding
weighted L1-norm ‖h‖V =

∫

|h(x)|V (x) dx. We refer to this norm as the V -norm.
The choice γ = 0 gives the usual L1-norm. The weighted version is needed if
we estimate expectations E[v(X)] by

∫

v(x)ĝ(x) dx for functions v bounded by V ,
for example moments and absolute moments. Convergence of density estimators
in the V -norm was studied in Müller, Schick and Wefelmeyer (2005), Schick and
Wefelmeyer (2007a) and (2008). The results of the present paper play a key role in
Schick and Wefelmeyer (2008).

Let m denote a positive integer. Decompose Xt as Yt + Zt with

Yt =
m−1
∑

s=0

asεt−s and Zt =
∞
∑

s=m

asεt−s

and write fm for the density of Yt. Express ĝ − g as the sum S + T + B of three
terms, where

S(x) =
1

n

n
∑

j=1

(

kb(x − Xj) − kb ∗ fm(x − Zj)
)

, (1.1)

T (x) =
1

n

n
∑

j=1

kb ∗ fm(x − Zj) − kb ∗ g(x), (1.2)

B(x) = kb ∗ g(x) − g(x), x ∈ R. (1.3)

For m = 1 this approach was used by Wu and Mielniczuk (2002), and for arbitrary
m by Schick and Wefelmeyer (2006). We study the V -norms of the terms in (1.1)–
(1.3) individually. Let

N =
∑

s≥1

1[as 6= 0] (1.4)

denote the number of nonzero coefficients among as, s ≥ 1. If N = 0 we have i.i.d.
observations Xt = εt. If N is finite, the observations are m-dependent for some m.
In those cases, we can choose T = 0 by taking m large enough. Thus the term T
has to be dealt with only if N = ∞.

Under mild conditions on f , g and k we obtain the rates

‖S‖V = OP (n−1/2b−1/2), ‖T ‖V = OP (n−1/2), ‖B‖V = O(br)

for a positive integer r. This yields the familiar rate

‖ĝ − g‖V = OP (n−1/2b−1/2) + O(br) (1.5)

under such conditions.
For the special case V = 1 we are dealing with the usual L1-norm and have the

following results. We take a bounded kernel of order ̺ ≥ 2. We distinguish the
cases when N is finite and when N is infinite.

(i) If N is finite and f has bounded variation and a finite moment of order
greater than one, then (1.5) holds for V = 1 with r = min{̺, N + 1}.

(ii) If N is infinite, the series
∑∞

s=1 s|as| converges, f has a finite moment of
order greater than one, and the function x 7→ (1 + |x|)f(x) has bounded
variation, then (1.5) holds for V = 1 with r = ̺.
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The paper is organized as follows. In Section 2 we state the results. Sections
3, 4 and 5 treat the terms S, B and T , respectively. Relations between various
smoothness conditions for V -norms are studied in Section 6. An auxiliary result
used in Section 5 is proved in Section 7. This result is of independent interest.
Together with the generalization in Corollary 7.1 it is used in Schick and Wefelmeyer
(2007b) and (2008).

2. Results

Let V be a measurable function satisfying

V (x + y) ≤ V (x)V (y), x, y ∈ R, (2.1)

and

1 ≤ V (zx) ≤ V (x), x ∈ R, |z| ≤ 1. (2.2)

Then the V -norm of a measurable function h is defined by

‖h‖V =

∫

V (x)|h(x)| dx.

Let v(x) = 1 + |x| and Wα = V 2vα. We are mainly interested in the case when V
is a non-negative power of v, say V = vγ . In this case Wα = v2γ+α. The reason
for restricting attention to this case is that we can rely on the moment inequality
(3.2) below and can then give conditions in terms of finiteness of moments of f .

We now state some inequalities on the V -norm. An application of the Cauchy–
Schwarz inequality yields

‖h‖2
V ≤ Kα‖h

2‖Wα
(2.3)

for all α > 1, with Kα =
∫

v−α(x) dx. It follows from (2.1) that

‖h(· − t)‖V ≤ V (t)‖h‖V , t ∈ R; (2.4)

see Schick and Wefelmeyer (2007a). From this inequality we derive that
∫

V (x)
∣

∣

∣

∫

h(x − y)µ(dy)
∣

∣

∣
dx ≤ ‖h‖V

∫

V dµ (2.5)

for every measure µ such that
∫

V dµ < ∞, and every h with finite V -norm. In
particular, the V -norm of a convolution h1∗h2 of two functions with finite V -norms
satisfies the inequality

‖h1 ∗ h2‖V ≤ ‖h1‖V ‖h2‖V . (2.6)

Since (h1 ∗ h2)
2 ≤ ‖h2‖1(h

2
1 ∗ |h2|) in view of the Cauchy–Schwarz inequality, we

obtain from the last inequality that

‖(h1 ∗ h2)
2‖V ≤ ‖h2

1‖V ‖h2‖V ‖h2‖1 (2.7)

if h2
1 and h2 have finite V -norms.
To state our results we introduce the following definitions. These concepts and

their relations are studied in Section 6.

Definition 2.1. A function h is V -Lipschitz (with constant L) if
∫

V (x)|h(x − t) − h(x)| dx ≤ L|t|V (t), t ∈ R.
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A function h is V -Lipschitz of order r (with constant L) for some positive integer
r if there are functions h(1), . . . , h(r−1) such that

∫

V (x)
∣

∣

∣
h(x + t) − h(x) −

r−1
∑

i=1

ti

i!
h(i)(x)

∣

∣

∣
dx ≤ L|t|rV (t), t ∈ R.

If the functions h(1), . . . , h(r−1) also have finite V -norms, then h is strongly V -
Lipschitz of order r.

Definition 2.2. A function h has finite V -variation if there are finite measures
µ1 and µ2 satisfying µ1(R) = µ2(R) and

∫

V d(µ1 + µ2) < ∞ such that h(x) =
µ1((−∞, x])−µ2((−∞, x]) for Lebesgue-almost-all x. In this case we call µ = µ1+µ2

a measure of V -variation of h.

We need the following strengthened concept of a kernel of order ̺. For V = 1
this definition reduces to the usual definition of a kernel of order ̺ if we also assume
that

∫

x̺k(x) dx 6= 0.

Definition 2.3. A kernel k is of V -order ̺ if ̺ is an integer greater than one,
∫

xik(x) dx = 0, i = 1, . . . , ̺ − 1,

and
∫

(1 + |x|)̺V (x)|k(x)| dx is finite.

We have the following results. The first result treats the case of independent
observations and is essentially contained in Müller, Schick and Wefelmeyer (2005)
and in Schick and Wefelmeyer (2007a).

Theorem 2.1. If N = 0, f is V -Lipschitz, f and k2 have finite Wα-norms for
some α > 1, and

∫

|t|V (t)|k(t)| dt is finite, then

‖ĝ − g‖V = OP (n−1/2b−1/2) + O(b).

Proof: Since N = 0, we have g = f . If we take m = 1, we obtain T = 0 and
ĝ − g = S + B. Hence Theorem 2.1 follows from Propositions 3.1 and 4.1.

Theorem 2.2. Let N be positive and finite and let V = vγ for some γ ≥ 0. If f
has finite V -variation, f and k2 have finite moments of order β > 2γ + 1, and k is
of V -order ̺, then

‖ĝ − g‖V = OP (n−1/2b−1/2) + O(br),

where r is the minimum of N + 1 and ̺.

Proof: Since N is finite, we can pick m so large that T = 0. It follows from
Lemma 6.5 that g is strongly V -Lipschitz of order N +1. We have v(ax) ≤ v(a)v(x)
and therefore E[Wα(aε0)] ≤ Wα(a)E[Wα(ε0)]. Hence we derive Theorem 2.2 from
Propositions 3.2 and 4.1.

Theorem 2.3. Let N be infinite and let
∑∞

j=1 j|aj| be finite. Set V = vγ for
some γ ≥ 0. Suppose that for some non-negative p and q with p + q > 2γ + 1 and
some positive integer m, the density f has a finite moment of order p + max(q, 1)
and finite vγ-variation, fm is vq-Lipschitz, and vpfm is bounded. Suppose k is a
bounded kernel of V -order r and

∫

vβ(x)|k(x)| dx is finite for some β > 2γ + 1.
Then

‖ĝ − g‖V = OP (n−1/2b−1/2) + O(br).
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Proof: It follows from Proposition 3.3 that ‖S‖V = OP (n−1/2b−1/2). The density
g is V -Lipschitz of order r by Lemma 6.5. Hence we obtain ‖B‖V = O(br) by
Proposition 4.1. Finally, Proposition 5.1 yields ‖T ‖V = OP (n−1/2).

By Lemma 6.1, the assumptions on fm in Theorem 2.3 are met if they are met
by f . By Lemma 6.2, the assumptions on fm are met if fm has finite vs-variation,
with s ≥ max(q, p). Thus, the assumptions on f and fm in Theorem 2.3 are met if
f has a finite moment of order greater than 2γ + 1 and finite vγ+1-variation. We
formulate the corresponding result in the following corollary.

Corollary 2.1. Let N be infinite and let
∑∞

j=1 j|aj | be finite. Set V = vγ for
some γ ≥ 0. Let the density f have a finite moment of order β > 2γ + 1 and finite
vγ+1-variation. Suppose k is a bounded kernel of V -order r and

∫

vβ(x)|k(x)| dx is
finite for some β > 2γ + 1. Then

‖ĝ − g‖V = OP (n−1/2b−1/2) + O(br).

Suppose we know that N is infinite. Under the assumptions of Theorem 2.3, we
can control the rate O(br) of the bias by choosing a kernel of high order r. A choice
of bandwidth b ∼ n−1/(2r+1) yields the rate

‖ĝ − g‖V = OP (n−r/(2r+1)).

Thus we can achieve a rate close to the parametric rate n−1/2. For invertible
processes, even the parametric rate n−1/2 can be achieved using the above results
and constructing estimators that exploit the linear structure of the process; see
Schick and Wefelmeyer (2007b) for the supremum norm and Schick and Wefelmeyer
(2008) for the V -norm.

Note that if vf has bounded variation, then vf is bounded, f has bounded
variation, and a simple argument shows that f is v-Lipschitz. Thus we derive from
Theorem 2.3 the following result for the case V = 1.

Corollary 2.2. Let N be infinite and let
∑∞

j=1 j|aj | be finite. Suppose f has a
finite moment of order greater than one, vf has bounded variation, and the kernel
k is bounded and of order r. Then

‖ĝ − g‖1 = OP (n−1/2b−1/2) + O(br).

3. Behavior of S

Let us first deal with the term S defined in (1.1). Since the i-th and j-th
summands of S are uncorrelated if |i − j| ≥ m, we obtain that nE[S2(x)] ≤
2mE[k2

b (x − X1)]. Using this and the inequalities (2.3) and (2.5), the latter with
Wα in place of V , we find

nE[‖S‖2
V ] ≤ Kα‖nE[S2]‖Wα

≤ 2mKα

∫

Wα(x)E[k2
b (x − X1)] dx

≤ 2mKαE[Wα(X1)]

∫

Wα(x)k2
b (x) dx

≤
2m

b
KαE[Wα(X1)]

∫

Wα(bx)k2(x) dx

for all α > 1. Thus we have the following result.
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Proposition 3.1. Suppose E[Wα(X1)] and ‖k2‖Wα
are finite for some α > 1.

Then ‖S‖V = OP (n−1/2b−1/2).

Now consider a finite N . Since Wα inherits (2.1) and (2.2) from V , we obtain
with the aid of these inequalities the bound E[Wα(X1)] ≤ (E[Wα(aε0)])

N with
a = sup{|as| : s ≥ 0}. Hence we have the following consequence of Proposition 3.1.

Proposition 3.2. Let N be finite and suppose that E[Wα(aε0)] and ‖k2‖Wα
are

finite for some α > 1. Then ‖S‖V = OP (n−1/2b−1/2).

Now consider the case that V is a non-negative power of v. Then Wα is also a
power of v. We have

(1 + |x|)r ≤ 2r−1(1 + |x|r), x ∈ R, r ≥ 1. (3.1)

This and the Minkowski inequality give

E[vr(X1)] ≤ 2r−1
(

1 +
(

∞
∑

s=0

|as|
)r

E[|ε0|
r]

)

, r ≥ 1. (3.2)

Thus we have the following result.

Proposition 3.3. Suppose E[|ε0|
β ] and

∫

vβ(x)k2(x) dx are finite for some β >

2γ + 1 with γ ≥ 0. Then ‖S‖V = OP (n−1/2b−1/2) for V = vγ .

4. Behavior of the bias

Next we deal with the bias term B defined in (1.3). For this we shall use the
following lemma.

Lemma 4.1. Suppose h, h1, . . . , hr−1, w and U are measurable functions such that
∫

V (x)
∣

∣

∣
h(x + t) − h(x) −

r−1
∑

i=1

ti

i!
hi(x)

∣

∣

∣
dx ≤ U(t), t ∈ R,

and ci =
∫

tiw(t) dt, i = 0, . . . , r − 1, and A =
∫

U(−t)|w(t)| dt are finite. Then

∥

∥

∥
h ∗ w −

r−1
∑

i=0

(−1)ici

i!
hi

∥

∥

∥

V
≤ A. (4.1)

Proof: Let ∆ denote the left-hand side of (4.1). Then

∆ =

∫

V (x)
∣

∣

∣

∫

(

h(x − t) − h(x) −

r−1
∑

i=1

(−t)i

i!
hi(x)

)

w(t) dt
∣

∣

∣
dx

≤

∫∫

V (x)
∣

∣

∣
h(x − t) − h(x) −

r−1
∑

i=1

(−t)i

i!
hi(x)

∣

∣

∣
dx |w(t)| dt

and hence ∆ ≤ A.

Proposition 4.1. Suppose g is V -Lipschitz of order r and the kernel k is of V -
order r. Then ‖B‖V = O(br).

Proof: This follows from Lemma 4.1 applied with w = kb and U(t) = L|t|rV (t).
Note that c0 = 1 and ci = 0 for i = 1, . . . , r − 1 and

∫

U(−t)|kb(t)| dt = L

∫

|bt|rV (bt)|k(t)| dt ≤ Lbr

∫

|t|rV (t)|k(t)| dt



Convergence rates 123

for b ≤ 1.
Sufficient conditions for g to be V -Lipschitz of order r ≥ 2 are given in Section

6.

5. Behavior of T

Finally we consider the term T introduced in (1.2). As shown in the Introduction,
we need to treat only the case when N is infinite.

Proposition 5.1. Let V = vγ for some γ ≥ 0. Let p and q be non-negative
numbers with p + q > 2γ + 1. Set β = p + max(1, q) and r = max(p, q). Suppose
N is infinite,

∑∞

j=1 j|aj | is finite, f has finite vβ-norm, vpfm is bounded, fm is

vq-Lipschitz, and vrk is integrable. Then ‖T ‖V = OP (n−1/2).

Proof: In view of (2.3) it suffices to show that ‖E[nT 2]‖vp+q is bounded. For this
we apply Lemma 7.1 below with h = fm ∗ kb, cj = aj+i and Uj = εj−i, with
i = inf{j ≥ m : aj 6= 0}. Since f has finite vβ-norm, U0 has finite moment of order
β. Moreover, fm has finite vq-norm and ‖fm ∗ kb‖vq ≤ ‖fm‖vq‖kb‖vq . Since fm

is vq-Lipschitz with constant L and vpfm is bounded by C, say, we obtain from
Remark 6.1 below that fm ∗ kb is vq-Lipschitz with constant L‖kb‖vq and vpfm ∗ kb

is bounded by C‖kb‖vp . Note that ‖kb‖vs ≤ ‖kb‖vr ≤ vr(b)‖k‖vr for s ≤ r. Our
assumptions on the coefficients aj guarantee that D of Lemma 7.1 is finite. From
this lemma we obtain that ‖E[nT 2]‖vp+q = O(1), which is the desired result.

By Lemma 6.2, if fm has finite vq-variation, then vqfm is bounded and fm is
vq-Lipschitz. Thus, taking γ < p < γ + 1 = q, we arrive at the following result.

Corollary 5.1. Let V = vγ for some γ ≥ 0, and let β > 2γ + 1. Suppose N is
infinite,

∑∞

j=1 j|aj| is finite, f has finite vβ-norm, fm has finite vγ+1-variation,

and vγ+1k is integrable. Then ‖T ‖V = OP (n−1/2).

6. Smoothness in the V -norm

Here we study finite V -variation and the V -Lipschitz property and their relations.
Our first lemma shows that these properties are preserved under convolutions with
a measure ν for which

∫

V dν is finite.

Lemma 6.1. Let ν be a measure with
∫

V dν finite. Let h be a function for which

h∗(x) =

∫

h(x − y)ν(dy), x ∈ R,

is well-defined. Then the following are true.

(1) If h has finite V -norm, then the V -norm of h∗ is bounded by ‖h‖V

∫

V dν.
(2) If h is V -Lipschitz with constant L, then h∗ is V -Lipschitz with constant

L
∫

V dν.
(3) If h is strongly V -Lipschitz of order r with constant L, then h∗ is strongly

V -Lipschitz of order r with constant L
∫

V dν.
(4) If h has finite V -variation with measure of variation µ, then h∗ has finite

V -variation with measure of variation µ ∗ ν.
(5) If V h is bounded by C, then V h∗ is bounded by C

∫

V dν.
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Proof: Conclusion (1) is a consequence of (2.5). Conclusion (2) follows from the
bound

∫

V (x)|h∗(x − t) − h∗(x)| dx ≤

∫∫

V (x)|h(x − t − y) − h(x − y)| dx ν(dy)

≤

∫

V (x)|h(x − t) − h(x)| dx

∫

V (y) ν(dy).

To verify (3), take h
(i)
∗ (x) =

∫

h(i)(x − y)ν(dy). Then, by (2.5), the functions

h
(1)
∗ , . . . , h

(r−1)
∗ have finite V -norms, and
∫

V (x)
∣

∣

∣
h∗(x + t) − h∗(x) −

r−1
∑

i=1

ti

i!
h

(i)
∗ (x)

∣

∣

∣
dx

≤

∫

V dν

∫

V (x)
∣

∣

∣
h(x + t) − h(x) −

r−1
∑

i=1

ti

i!
h(i)(x)

∣

∣

∣
dx,

and (3) follows. To verify (4) we may assume that h(x) = µ1((−∞, x])−µ2((−∞, x])
for all x ∈ R, where µ1 and µ2 are finite measures with µ1(R) = µ2(R) and

∫

V dµ1

and
∫

V dµ2 finite. We now derive h∗(x) = (µ1 − µ2) ∗ ν((−∞, x]) and hence (4).
Finally, (5) follows from the bound |V (x)h∗(x)| ≤

∫

V (y)V (x−y)|h(x−y)|ν(dy) ≤
C

∫

V dν.

Remark 6.1. Let h and u be measurable functions with h∗u well-defined and ‖u‖V

finite. Then the conclusions of Lemma 6.1 hold with h∗ replaced by h ∗ u and
ν(dx) = |u(x)| dx so that

∫

V dν becomes ‖u‖V . To see this, write u = u+ − u−,
where u+ and u− are the positive and negative part of u, and apply Lemma 6.1
with ν(dx) = u+(x) dx and ν(dx) = u−(x) dx.

Remark 6.2. An integrable function of bounded variation has finite 1-variation.
Hence densities of bounded variation are 1-Lipschitz. Moreover, an integrable ab-
solutely continuous function h with ‖h′‖V finite has finite V -variation (with µ1

having density h′
+ = max(h′, 0) and µ2 having density h′

− = max(−h′, 0)).

The next lemma gives consequences of finite V -variation.

Lemma 6.2. If h has finite V -variation, then V h is bounded by
∫

V dµ and h is
V -Lipschitz with constant

∫

V dµ, where µ is a measure of V -variation of h. If h
has finite vV -variation, then h has finite V -norm ‖h‖V ≤

∫

vV dµ.

Proof: We may assume that h(x) = µ1((−∞, x]) − µ2((−∞, x]) for all x ∈ R,
where µ1 and µ2 are finite measures with µ1(R) = µ2(R). Then we have h(x) =
µ2((x,∞)) − µ1((x,∞)) for all x. By (2.2), we have V (x) ≤ V (y) for |x| ≤ |y|.
Then, with µ = µ1 + µ2, we obtain for x ≥ 0 the inequalities

V (x)|h(x)| ≤ V (x)

∫

x≤y

µ(dy) ≤

∫

x≤y

V (y)µ(dy)

and
∫ ∞

0

V (x)|h(x)| dx ≤

∫∫

0≤x≤y

V (y)µ(dy) dx ≤

∫ ∞

0

yV (y)µ(dy).

For x ≤ 0, we obtain the inequalities

V (x)|h(x)| ≤ V (x)

∫

y≤x

µ(dy) ≤

∫

y≤x

V (y)µ(dy)



Convergence rates 125

and
∫ 0

−∞

V (x)|h(x)| dx ≤

∫ 0

−∞

|y|V (y)µ(dy).

Thus V h is bounded by
∫

V dµ, and ‖h‖V ≤
∫

vV dµ. The arguments in the proof
of Lemma 8 of Schick and Wefelmeyer (2007a) show that a function with finite
V -variation is V -Lipschitz with constant

∫

V dµ.
We now give sufficient conditions for a function to be V -Lipschitz of order r ≥ 2.

For this we make the following definitions.

Definition 6.1. A function h is absolutely continuous of order r if h is (r−1)-times
differentiable and if its (r − 1)-th derivative h(r−1) is absolutely continuous with
almost everywhere derivative h(r).

Definition 6.2. A function h is V -regular of order r if h is absolutely continuous
of order r−1 and h(r−1) is V -Lipschitz. If also h(1), . . . , h(r−1) have finite V -norms,
we call h strongly V -regular of order r.

Lemma 6.3. If h is (strongly) V -regular of order r ≥ 2, then h is (strongly)
V -Lipschitz of the same order.

Proof: Let

∆(x, t) = h(x + t) − h(x) −

r−1
∑

i=1

ti

i!
h(i)(x).

We have

∆(x, t) = tr−1

∫ 1

0

(1 − u)r−2

(r − 2)!

(

h(r−1)(x + ut) − h(r−1)(x)
)

du.

Since h(r−1) is V -Lipschitz and V (ut) ≤ V (t) for |u| ≤ 1,
∫

V (x)|∆(x, t)| dx ≤ L|t|rV (t)

∫ 1

0

(1 − u)r−2

(r − 2)!
du. (6.1)

The desired results are now immediate.

Remark 6.3. In the case of strong V -regularity, the bound (6.1) can be replaced by
∫

V (x)|∆(x, t)| dx ≤ 2Λ
|t|r

1 + |t|
V (t)

∫ 1

0

(1 − u)r−2

(r − 2)!
du,

with Λ = max(L, 2‖h(r−1)‖V ). This follows from the fact that the map x 7→ x/(1+
x) is increasing on the interval (0,∞) and the following lemma. This alternative
bound is better if |t| is large.

Lemma 6.4. If h has finite V -norm and is V -Lipschitz with constant L, then

‖h(· − t) − h‖V ≤ 2Λ
|t|

1 + |t|
V (t), t ∈ R,

where Λ = max(L, 2‖h‖V ).

Proof: The statement is clear if |t| ≤ 1, and it follows from the bound

‖h(· − t) − h‖V ≤ (V (t) + 1)‖h‖V ≤ 2V (t)‖h‖V

for |t| > 1.
Sufficient condition for V -regularity of g are given next.
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Lemma 6.5. Suppose f has finite V -norm and finite V -variation for V = vγ with
γ ≥ 0. Let N ≥ p. Then g is strongly V -regular of order p + 1 and hence strongly
V -Lipschitz of that order.

Proof: Let α1, . . . , αp denote the first p nonzero numbers among as, s ≥ 1. Let gp

denote the density of ε0 +
∑p

i=1 αiεi. Then g(x) = E[gp(x − Z)], x ∈ R, for some
random variable Z with E[V (Z)] < ∞. Thus by (3) of Lemma 6.1 it suffices to
show that gp is strongly V -regular of order p + 1. This is true for p = 0. In this
case, g0 equals f , and the latter is V -Lipschitz with constant

∫

V dµ by Lemma 6.2.
The desired result now follows by induction using the following lemma. Keep in
mind that the density of aε0 inherits the properties of the density f for non-zero a.

Lemma 6.6. Suppose the functions h1 and h2 have finite V -norms, h1 is V -
Lipschitz with constant L and h2 has finite V -variation. Then h = h1 ∗ h2 is
absolutely continuous and h′ has finite V -norm ‖h′‖V ≤ ‖h1‖V

∫

V dµ and is V -
Lipschitz with constant L

∫

V dµ, where µ is a measure of V -variation. Hence h is
strongly V -Lipschitz of order 2.

Proof: We may assume that h2(x) = µ1((−∞, x]) − µ2((−∞, x]) for all x, where
µ1 and µ2 are measures such that

∫

V d(µ1 + µ2) is finite. For i = 1, 2, set qi(x) =
∫

h1(x−y)µi(dy), x ∈ R. By Lemma 6.1, qi has finite V -norm and qi is V -Lipschitz.
Since q1−q2 is an almost everywhere derivative of h, as shown in Lemma 1 of Schick
and Wefelmeyer (2006), we obtain the desired result.

7. A bound

Consider a linear process

St =

∞
∑

s=0

csUt−s, t ∈ Z,

with independent and identically distributed innovations Ut, t ∈ Z, with finite
mean and summable coefficients c0, c1, . . . with c0 6= 0. For a bounded measurable
function h, set

H(x) = n−1/2
n

∑

j=1

(

h(x − Sj) − E[h(x − Sj)]
)

, x ∈ R.

In this section we derive bounds for
∫

vr(x)E[H2(x)] dx with r ≥ 0. For this we set

‖c‖ =

∞
∑

j=0

|cj | and D =

∞
∑

j=0

(j + 1)|cj |.

To simplify notation, we abbreviate U0 by U . Also, let us set

A(α, β) = 2β−1(1 + αβE[|U |β ]), α ≥ 0, β ≥ 1.

Lemma 7.1. Let p and q be non-negative and q∗ = max(q, 1). Suppose h has finite
vq-norm and is vq-Lipschitz with constant L, vph is bounded, and U has a finite
moment of order p + q∗. Let D be finite. Then

∫

vp+q(x)E[H2(x)] dx ≤ 8Λ‖vph‖∞DA4,

where Λ = max(L, 2‖h‖vq) and A = A
(

max(1, 2‖c‖), p + q∗
)

.
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Proof: Let β = p + q∗. For j = 0, 1, . . . , let

Qj =

∞
∑

s=0

|csUj−s|, Tj =

j−1
∑

s=0

csUj−s, Rj = Sj − Tj =

∞
∑

s=j

csUj−s,

and hj(x) = E[h(x − Tj)], x ∈ R. Note that T0 = 0, R0 = S0 and h0 = h. The
absolute values of Tj and Rj are bounded by Qj so that for non-negative t and all
j = 0, 1, . . . ,

E[vt(Tj)] ≤ E[vt(Qj)] and E[vt(Rj)] ≤ E[vt(Qj)]. (7.1)

Let Q = Q0. The argument leading to (3.2) yields that, for every t ∈ [0, β] and
every j = 0, 1, . . . ,

E[vt(Q)] ≤ E[vβ(Q)] ≤ A and E[vt(Q + Qj)] ≤ E[vβ(Q + Qj)] ≤ A. (7.2)

Using stationarity and a conditioning argument, we obtain

E[H2(x)] = Var(h(x − S0)) +
2

n

n−1
∑

j=1

(n − j)Cov(h(x − S0), h(x − Sj))

= Var(h0(x − R0)) +
2

n

n−1
∑

j=1

(n − j)Cov(h0(x − R0), hj(x − Rj)).

Thus
∫

vp+q(x)E[H2(x)] dx ≤ 2

∞
∑

j=0

Γj

where

Γj =

∫

vp+q(x)E[|h(x − R0) − E[h(x − R0)]||hj(x − Rj) − hj(x)|] dx.

Since vph is bounded and v(x + y) ≤ v(x)v(y), we derive the bound

vp(x)|h(x − R0)| ≤ vp(x − R0)v
p(R0)|h(x − R0)| ≤ ‖vph‖∞vp(Q)

which implies

vp(x)|E[h(x − R0)]| ≤ ‖vph‖∞E[vp(Q)] ≤ ‖vph‖∞A.

Using these bounds and v ≥ 1 and A ≥ 1, we obtain for j ≥ 0,

Γj ≤ 2A‖vph‖∞E
[

vp(Q)

∫

vq(x)|hj(x − Rj) − hj(x)| dx
]

.

Note that ‖hj‖vq ≤ ‖h‖vqE[vq(Tj)] and hj is vq-Lipschitz with constant Lj =
LE[vq(Tj)]. Thus, by Lemma 6.4 and the inequalities (7.1) and (7.2), we obtain
the bound

∫

vq(x)|hj(x − Rj) − hj(x)| dx ≤ 2ΛA
(

vq∗−1(Qj)|Rj |
)

.

Since vs(x)vt(y) ≤ (v(x + y))s+t for non-negative s, t, x, y, the above shows that

Γj ≤ 4ΛA2‖vph‖∞E[vβ−1(Q + Qj)|Rj |].
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Using v(x + y) ≤ v(x)v(y) and the independence of U−i and Qj,i = Q + Qj −
|ciU−i| − |cj+iU−i| for i ≥ 0, we obtain

E[vβ−1(Q + Qj)|Rj |] ≤ E
[

∞
∑

s=j

|csUj−s|v
β−1(Q + Qj)

]

≤

∞
∑

s=j

|cs|E[|Uj−s|v
β−1((|cs−j | + |cs|)Uj−s)]E[vβ−1(Qj,s−j)]

≤

∞
∑

s=j

|cs|E[vβ(αU)]E[vβ(Q + Qj)],

with α = max(1, 2‖c‖). We have E[vβ(αU)] ≤ A by (3.1). Using inequality (7.2)
again, we obtain the bound

Γj ≤ 4Λ‖vph‖∞A4
∞
∑

s=j

|cs|, j ≥ 0.

Note also that
∞
∑

j=0

∞
∑

s=j

|cs| =

∞
∑

s=0

(1 + s)|cs| = D.

The desired result is now immediate.
Using the inequality ‖hj(· − t) − hj‖vq ≤ AL|t|vq(t) instead of the inequality

provided by Lemma 6.4, we can avoid the assumption that h has finite vq-norm at
the price of (possibly) increasing the moment condition from p + q∗ to p + q + 1.
More precisely, we have the following result.

Lemma 7.2. Let p and q be non-negative. Suppose h is vq-Lipschitz with constant
L, vph is bounded, and U has a finite moment of order β = p + q + 1. Let D be
finite. Then

∫

vp+q(x)E[H2(x)] dx ≤ 4LA4‖vph‖∞D,

where now A = A(max(1, 2‖c‖), p + q + 1).

Repeating the above proof with vp = vq = 1, we obtain the following result.

Lemma 7.3. Suppose h is bounded and 1-Lipschitz with constant L. Let D be
finite. Then E[H2(x)] ≤ 4‖h‖∞Γ(x) for all x, and ‖Γ‖1 ≤ DE[|U |], where

Γ(x) =

∞
∑

j=0

E[|h(x − Rj) − h(x)|], x ∈ R.

Consequently,
∫

E[H2(x)] dx ≤ 4L‖h‖∞DE[|U |].

If we take h(x) = 1[0 ≤ x], then H becomes the empirical process

Dn(x) = n−1/2
n

∑

j=1

(1[St ≤ x] − P (St ≤ x)), x ∈ R.

This choice of h is bounded by 1 and 1-Lipschitz with constant L = 1. Thus we
have the following result.



Convergence rates 129

Corollary 7.1. Let D be finite. Then there exists an integrable function Ψ with
‖Ψ‖1 ≤ 4DE[|U |] such that E[D2

n(x)] ≤ Ψ(x) for all n and x.
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