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Abstract. In a system made up of independent random walks, fluctuations of order
n1/4 from the hydrodynamic limit come from particle current across characteristics.
We show that a two-parameter space-time particle current process converges to a
two-parameter Gaussian process. These Gaussian processes also appear as the
limit for the one-dimensional random average process. The final section of this
paper looks at large deviations of the current process.

1. Introduction

It is well known that particle systems that appear different at the microscopic
level often behave almost identically at a macroscopic level. This has been observed
in the hydrodynamic limits and fluctuation results of several particle models. Con-
sequently, there is much to be gained in studying the behavior of simpler stochastic
particle systems in the hope that at the macroscopic level they will reflect the be-
havior of a universal class of systems. While the hydrodynamic limit of several
models have been studied, fluctuation results have proved elusive for many sys-
tems. In this paper we consider particle current fluctuations in the one dimensional
independent random walk model.

The hydrodynamic limit for particle distribution in typical asymmetric systems
are solutions to p.d.e’s of the form

∂tu + ∂xf(u) = 0. (1.1)

In the case of nearest neighbor Totally Asymmetric Simple Exclusion Process
(TASEP) in one dimension, the flux function f(ρ) = ρ(1 − ρ). For non-interacting
particle systems f(ρ) = v · ρ where v is the average velocity of the particles. Thus
the relevant p.d.e. for a system of independent asymmetric random walks is

∂tu + v · ∂xu = 0 (1.2)

Received by the editors June 6, 2008; accepted August 22, 2008.

2000 Mathematics Subject Classification. Primary 60K35, 60F10; secondary 60F17, 60G15.

Key words and phrases. Independent random walks, hydrodynamic limit, fluctuations, large

deviation.

307



308 Rohini Kumar

(Prop 3.1, page 15 in Kipnis and Landim, 1999).
From the transport equation (1.2) we see that in the independent random walk

model, the initial density profile shifts with velocity v. Consider an observer moving
at constant velocity v. The path of the observer is a characteristic line of the
transport equation (1.2). It is natural to expect the net current of particles across
the path of the observer to be zero. But what are the fluctuations in this particle
current? This is the question we address in this paper. It has been observed
that these current fluctuations are of order n1/4 Seppäläinen (2005). Here, n is
the scaling parameter. Typically we scale both space and time by n in asymmetric
models, this is called Euler scaling. In symmetric models we use diffusive scaling i.e.
we scale time by n and space by

√
n. There is a general belief that when f is linear

(i.e. f ′′ ≡ 0) in (1.1), the fluctuations in particle current across characteristics of
(1.1) should be of order n1/4. This has been shown for the random average process
(RAP) and for the one dimensional independent random walk model where f ′′ ≡ 0.

In this paper we study both the fluctuations and the large deviations of the
current process for independent walks. For the fluctuations we consider the current
process indexed both by time and spatial shifts of order

√
n of characteristic lines.

The
√

n order for spatial scaling is the natural one because the individual random
walks fluctuate on that scale. We extend the distributional limit of Seppäläinen
(2005) to a process limit for the space-time current process. The space-time current
process was also studied for RAP in Balázs et al. (2006) but only convergence of
finite dimensional distributions was shown without process-level tightness. The
same family of Gaussian processes arises as limits for both RAP and independent
random walks.

It is interesting to note that there are models which are not asymmetric yet
exhibit subdiffusive current fluctuations with Gaussian scaling limits. It was con-
jectured (conjecture 6.5 in Spohn, 1991) that subdiffusive fluctuations in 1 dimen-
sional nearest neighbor symmetric simple exclusion processes (SSEP) converge to
fBM with Hurst parameter 1/4. It was subsequently proved in the finite dimen-
sional distributions sense and has recently been proved in the full functional central
limit theorem sense in Peligrad and Sethuraman (2007). This says that the uni-
versality class of current fluctuations of order n1/4 contains both symmetric and
asymmetric processes. However, the symmetric and asymmetric processes differ on
the level of hydrodynamics.

This paper is organized as follows. We start with a description of the independent
random walk model and the statements of the main results in section 2. The next
three sections 3, 4 and 5 cover the proofs. Section 3 gives the convergence of finite
dimensional distributions and section 4 proves process level tightness. A note on the
tightness methods used here: since we are interested in a two-parameter process, the
standard theorems on convergence in DR[0,∞) and CR[0,∞) spaces do not apply.
We appeal to two papers, Bickel and Wichura (1971) and Dürr et al. (1985), that
provide suitable criteria for deducing tightness. Bickel and Wichura (1971) gives
the context in which we speak of convergence for two-parameter processes and a
tightness criterion. The proof of Proposition 5.7 in Dürr et al. (1985) is extended
to two dimensions to prove the tightness criterion. The last section contains proofs
of some large deviation results for the current process.
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2. Model and results

2.1. Independent random walk model. Consider particles distributed over the one
dimensional integer lattice which evolve like independent continuous-time random
walks. We are given the initial occupation variables η0 = {η0(x) : x ∈ Z} defined on
some probability space. Let Xm,j(t) denote the position at time t of the jth random
walk starting at site m. The common jump rates of the random walks are given by a
probability kernel {p(x) : x ∈ Z}. Once the initial positions of the random walks are
specified, their subsequent evolutions {Xm,j(t)−Xm,j(0) : m ∈ Z, j = 1, . . . , η0(m)}
are as i.i.d. random walks starting at the origin, on the same probability space,
independent of η0. Define

ηt(x) :=
∑

m∈Z

η0(m)
∑

j=1

1{Xm,j(t) = x}

to be number of particles on site x at time t.

Assumption 2.1. For the random walk kernel, we assume that, for some δ > 0,
∑

x∈Z

eθxp(x) < ∞ for |θ| ≤ δ (2.1)

(This assumption will enable us to calculate large deviation bounds for the random
walks.)

Throughout this paper, we assume that N denotes the set of positive integers.
Let {ηn

0 : n ∈ N} be a sequence of initial occupation variables defined on some
probability space.

Assumption 2.2. For each n, the initial occupation variables {ηn
0 (x) : x ∈ Z} are

independent. They have a uniformly bounded twelfth moment:

sup
n∈N,x∈Z

E[ηn
0 (x)12] < ∞. (2.2)

Let ρn
0 (x) = Eηn

0 (x) and vn
0 (x) = V ar[ηn

0 (x)] be the mean and variance resp. of the
initial occupation variable ηn

0 (x), x ∈ Z. Let ρ0 and v0 be two given nonnegative,
finite numbers. The means ρn

0 and variances vn
0 approximate ρ0 and v0 in the

following sense: There exist positive integers L = L(n) such that n−1/4L(n) → 0
and for any finite constant A,

lim
n→∞

sup
|m|≤A

√
n log n

n1/4
∣

∣

∣

1

L(n)

L(n)
∑

j=1

ρn
0 (m + j) − ρ0

∣

∣

∣ = 0 (2.3)

The same assumption holds when ρn
0 and ρ0 are replaced by vn

0 and v0.

As in Seppäläinen (2005), the reason for the complicated assumption (2.3) is to
accommodate both random and deterministic initial conditions. For random ηn

0 (x)
we could take ρn

0 (x) = ρ0(
x
n ) for some sufficiently regular function ρ0(·). However,

for deterministic ηn
0 (x) we cannot do this unless ρ0(x) is integer-valued. A couple

of examples illustrating random and deterministic initial configurations that satisfy
assumptions 2.1 and 2.2 can be found in Seppäläinen (2005).

Let
v =

∑

x

xp(x) and κ2 =
∑

x

x2p(x).
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The characteristics of (1.2) are straight lines with slope v. Fix T > 0 and S > 0.
For t ∈ [0, T ] and r ∈ [−S, S], we let Yn(t, r) denote the net right-to-left particle
current during time [0, nt] across the characteristic line starting at ([r

√
n], 0). More

precisely,

Yn(t, r) :=
∞
∑

m=−∞

ηn
0 (m)
∑

j=1

[

1{Xm,j(nt) ≤ [nvt] + [r
√

n]}1{m > [r
√

n]}

− 1{Xm,j(nt) > [nvt] + [r
√

n]}1{m ≤ [r
√

n]}
]

(2.4)

where Xk,j(·) is the jth random walk that starts at site k. Note that the random
walks denoted as Xk,j in the definition of Yn(t, r) should actually be Xn

k,j , but we
drop the superscript n for notational simplicity.

2.2. Distributional limit. We give a brief description of the path space of the pro-
cess Yn(·, ·). Let D2 = D2([0, T ] × [−S, S], R) be the space of 2-parameter cadlag
functions with Skorohod’s topology. Let Q := [0, T ] × [−S, S]. For any (t, r) ∈ Q,
we can divide Q into four quadrants:

Q1
(t,r) := {(s, q) ∈ Q : s ≥ t, q ≥ r}, Q2

(t,r) := {(s, q) ∈ Q : s ≥ t, q < r},

Q3
(t,r) := {(s, q) ∈ Q : s < t, q < r}, Q4

(t,r) := {(s, q) ∈ Q : s < t, q ≥ r}.
Then the precise definition of D2 is

D2 = {f : Q → R such that for any point (t, r) ∈ Q, lim
(s,q)∈Qi

(t,r)

(s,q)→(t,r)

f(s, q)

exists for i = 1, 2, 3, 4 and lim
(s,q)∈Q1

(t,r)

(s,q)→(t,r)

f(s, q) = f(t, r)}.

In other words, D2 contains functions that are continuous from the right and above
with limits from the left and below. Skorohod’s topology in DR[0,∞) is extended to
this space in the most natural way. The space of multiparameter cadlag functions
and their topology is described in detail in Bickel and Wichura (1971). By Theorem
2 in Bickel and Wichura (1971), a sufficient criterion for the weak convergence
Xn → X in D2 is,

(1) For all finite subsets {(ti, ri)} ⊂ [0, T ]× [−S, S],

(Xn(t1, r1), · · · , Xn(tN , rN )) → (X(t1, r1), · · · , X(tN , rN ))

weakly, and
(2) limδ→0 lim supn P{wXn(δ) ≥ ǫ} = 0 for all ǫ > 0, where the modulus of

continuity is defined by

wx(δ) = sup
(s,q),(t,r)∈[0,T ]×[−S,S]

|(s,q)−(t,r)|<δ

|x(s, q) − x(t, r)|.

Clearly, {Yn(t, r) : t ∈ [0, T ], r ∈ [−S, S]} are D2-valued processes and we can use
the above criterion to prove their convergence in the weak sense.

Denote the centered Gaussian density and distribution with variance σ2 by

φσ2 (x) =
1√

2πσ2
exp{− 1

2σ2
x2} and Φσ2(x) =

∫ x

−∞
φσ2(y)dy.
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Define also

Ψσ2(x) = σ2φσ2 (x) − x(1 − Φσ2(x)).

For (s, q), (t, r) ∈ [0, T ]× [−S, S], define two covariances by

Γ0((s, q), (t, r)) = Ψκ2s(|q − r|) + Ψκ2t(|q − r|) − Ψκ2(t+s)(|q − r|) (2.5)

and

Γq((s, q), (t, r)) = Ψκ2(t+s)(|q − r|) − Ψκ2|t−s|(|q − r|). (2.6)

Theorem 2.1. Define Yn(t, r) as in (2.4). Then under Assumptions 2.1 and 2.2,
as n → ∞, the process n−1/4Yn(·, ·) converges weakly on the space D2 to the mean
zero Gaussian process Z(·, ·) with covariance

EZ(s, q)Z(t, r) = ρ0Γq((s, q), (t, r)) + v0Γ0((s, q), (t, r)). (2.7)

Note: We will show later that n−1/4EYn(t, r) → 0 as n → ∞ uniformly for
t ∈ [0, T ] and r ∈ [−S, S]. Hence, in the above theorem we can replace n−1/4Yn

with the centered current process with impunity.

Corollary 1. Under the invariant distribution where {ηn
t (x) : x ∈ Z} are i.i.d.

Poisson with mean ρ for all n, n−1/4Yn(·, ·) converges weakly in D2 to a mean-zero
Gaussian process Z(·, ·) with covariance

EZ(s, q)Z(t, r) = ρ
(

Ψκ2s(|q − r|) + Ψκ2t(|q − r|) − Ψκ2|t−s|(|q − r|)
)

.

In particular, for a fixed r the process {Z(t, r) : t ∈ [0, T ]} has covariance

EZ(s, r)Z(t, r) = ρ

√

κ2

2π

(√
s +

√
t −
√

|t − s|
)

,

i.e., process Z(·, r) is fractional Brownian motion with Hurst parameter 1/4.

The covariance (2.7) is the same as the covariance of the limiting Gaussian
process in the RAP model found in Balázs et al. (2006), with different coefficients
in front of Γq and Γ0. As in Balázs et al. (2006), we can represent the Gaussian
process Z(·, ·) as a stochastic integral:

Z(t, r) =
√

κ2ρ0

∫

[0,t]×R

φκ2(t−s)(r − z)dW (s, z)

+
√

v0

∫

R

sgn(x − r)Φκ2t(−|x − r|)dB(x).

(2.8)

The equality in (2.8) is equality in distribution. W is a two-parameter Brownian
motion defined on R+×R, B is a one-parameter Brownian motion defined on R, and
W and B are independent of each other. The stochastic integral clearly delineates
the two sources of fluctuations in the current. The first integral represents the
space-time noise created by the dynamics, and the second integral represents the
initial noise propagated by the evolution.

2.3. Large deviation results. We first state large deviation results for Yn(t, r) with
fixed r ∈ R and t > 0.

Assumption 2.3. Assume the initial occupation variables {ηn
0 (m) : m ∈ Z} are i.i.d.

Let

γ(θ) = log Eeθηn
0 (m)
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with effective domain

Dγ := {α ∈ R : γ(α) < ∞}.
Assume Dγ = R.

For λ ∈ R, define

Zλ(y) :=

{

log{Φκ2t(y) + eλ(1 − Φκ2t(y))} for y > 0

log{e−λΦκ2t(y) + 1 − Φκ2t(y)} for y ≤ 0

and

Λ(λ) :=

∫ ∞

−∞
γ(Zλ(y))dy

with effective domain

DΛ := {α ∈ R : Λ(α) < ∞}.
Λ turns out to be the limiting moment generating function of the current.

Recall

Definition 1. A convex function Λ : R → (−∞,∞] is essentially smooth if:
a) Do

Λ(interior of DΛ) is non-empty.
b) Λ(·) is differentiable throughout Do

Λ.
c) Λ(·) is steep, i.e., limn→∞ |∇Λ(λn)| = ∞ whenever {λn} is a sequence in Do

Λ

converging to a boundary point of Do
Λ.

Let γ∗(x) := supλ∈R{λ · x − γ(λ)} be the convex dual of γ(·). Let

I(x) := sup
λ∈R

{λ · x − Λ(λ)}.

Recall the usual definition of Large Deviation Principle (LDP). The sequence of
random variables {Xn} satisfies the LDP with rate function J(x) and normalization
{√n} if the following are satisfied:

(1) For any closed set F ⊂ R,

lim sup
n→∞

1√
n

log P{Xn ∈ F} ≤ − inf
x∈F

J(x)

(2) For any open set G ⊂ R,

lim inf
n→∞

1√
n

log P{Xn ∈ G} ≥ − inf
x∈G

J(x)

The rate function J is said to be a good rate function if its level sets are compact.
Let Brp(λ) := log EeλX , where X ∼Bernoulli(p), be the logarithmic moment

generating function of Bernoulli random variables. Its convex dual is

Br∗p(x) = x log
x

p
+ (1 − x) log

1 − x

1 − p

for 0 ≤ x ≤ 1. Define α(x) implicitly by

x = Λ′(α(x)). (2.9)

This definition is well defined for all x ∈ R since Λ(·) is strictly convex. For any
α ∈ R, define

Fα(y) :=
e−αΦκ2t(y)

1 − Φκ2t(y) + e−αΦκ2t(y)
for y ∈ R. (2.10)
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By (2.9) we have

x =

∫ ∞

0

γ′(Zα(x)(y))(1 − Fα(x)(y))dy −
∫ 0

−∞
γ′(Zα(x)(y))Fα(x)(y)dy. (2.11)

Define

I1(x) :=

∫ ∞

−∞
γ∗ {γ′(Zα(x)(y))

}

dy (2.12)

and

I2(x) :=

∫ ∞

−∞
γ′(Zα(x)(y))Br∗Φκ2t(y)(Fα(x)(y))dy. (2.13)

Recall that we assumed ηn
0 (·) are i.i.d. at the beginning of this section. Conse-

quently, the underlying distribution is shift invariant. The rate function in Theo-
rem 2.2 therefore does not depend on r, as the marginals of the current process,
Yn(t, r), are shift invariant.

Theorem 2.2. Let Assumptions 2.1 and 2.3 hold. For fixed real r and t > 0,
n−1/2Yn(t, r) satisfies the large deviation principle with normalization {√n} and
good, strictly convex rate function

I(x) = I1(x) + I2(x), x ∈ R. (2.14)

A few words on the rate function. I has a unique zero at zero. The rate function
I balances two costs: the cost of deviations in the initial occupation variables,
given by I1, and the cost of deviations in the probability with which particles cross
the characteristic lines, given by I2. In the macroscopic picture, 1 − Φκ2t(y) is
the a priori probability with which particles initially at distance y > 0 from the
characteristic line cross it by time t, while a particle at distance y ≤ 0 crosses the
characteristic line with probability Φκ2t(y).

An intuitive understanding of the LDP is as follows. To allow a current of size
x at time t the system deviates in such a way that its behavior is governed by a
new probability measure. Under this new probability measure the mean number
of particles initially at site y is γ′(Zα(x)(y)) and the probabilities 1 − Φκ2t(y) and
Φκ2t(y) are tilted to give new probabilities 1 − Fα(x)(y) and Fα(x)(y). The term
BrΦκ2t(y)(Fα(x)(y)) measures the cost of the deviation of the probability 1−Φκ2t(y)

(or Φκ2t(y)) to 1−Fα(x)(y) (or Fα(x)(y)). The new measure depends on α(x) which
is chosen so that the mean current under the new measure is x, this is evident from
(2.11).

The modus operandi for the proof involves using non-rigorous, intuitive ideas
for finding a candidate for the rate function and then checking if it is, in fact, the
correct rate function.

We give explicit formulas for the two simplest cases: the stationary situation
with i.i.d. Poisson occupations, and the case of deterministic initial occupations.

Corollary 2. (1) If ηn
0 (·) ∼ Poisson(ρ), then under assumptions 2.1 and 2.3,

the rate function is

I(x) = x log

(

x
√

π

ρ
√

2κ2t
+

√

1 +
x2π

2ρ2κ2t

)

− ρ

√

2κ2t

π

(

√

1 +
x2π

2ρ2κ2t
− 1

)

for x ∈ R.

(2.15)
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(2) If ηn
0 (·) ≡ 1, then under assumption 2.1 the rate function is

I(x) =

∫ ∞

−∞

[

(1 − Fα(x)(y)) log
(

1−Fα(x)(y)

1−Φκ2t(y)

)

+ Fα(x)(y) log
(

Fα(x)(y)

Φκ2t(y)

)

]

dy

where Fα(x)(y) =
e−α(x)Φκ2t(y)

1−Φκ2t(y)+e−α(x)Φκ2t(y)
with α(x) chosen so that

x =

∫ ∞

0

(1 − Fα(x)(y))dy −
∫ 0

−∞
Fα(x)(y)dy.

For the process level, under the stationary distribution, we can show an abstract
LDP by applying a theorem from Feng and Kurtz (2006). But currently we do not
have an attractive representation of the rate function. The rate function is given
in terms of a variational expression in (5.14).

Theorem 2.3. If ηn
0 (·) ∼ Poisson(ρ), then under assumptions 2.1 and 2.3 the

sequence of processes {n−1/2Yn(·, 0)} in DR[0,∞) satisfies a LDP with a good rate
function.

There exist some large deviation results for independent random walk systems in
the literature Lee (1995),Cox and Durrett (1990),Cox and Griffeath (1984). These
papers essentially deal with large deviations of occupation times of sites. Lee Lee
(1995) and Cox and Durrett Cox and Durrett (1990) find LDP’s for weighted oc-
cupation times of sites under deterministic and stationary (i.i.d. Poisson) initial
distributions. Even the normalizations of the LDP’s were distinct for these two
cases. This is in contrast to our current large deviations in Theorem 2.2 where the
normalizations for the Poisson and the deterministic case were the same.

3. Weak Convergence of Finite Dimensional Distributions

We begin the proof of Theorem 2.1 by first showing weak convergence of the
finite dimensional distributions of n−1/4Yn(·, ·).

Proposition 1. Define Yn(t, r) as above. Then under assumptions 2.1 and 2.2 the
finite dimensional distributions of the processes {Yn(t, r) : (t, r) ∈ [0, T ] × [−S, S]}
converge weakly as n → ∞ to the finite-dimensional distributions of the mean zero
Gaussian process {Z(t, r) : (t, r) ∈ [0, T ]× [−S, S]} with covariance given in (2.7).

To prove convergence of finite dimensional distributions we use Lindeberg-Feller
and check the conditions of Lindeberg-Feller by brute force. We show that the
expected value of the process converges uniformly to 0 and hence we can consider
the centered process when proving convergence. We also appeal to large deviations
of random walks to control the contributions to the current process from distant
particles.

Fix N space-time points: (t1, r1), (t2, r2), . . . , (tN , rN ) where (ti, ri) 6= (tj , rj) for
i 6= j. We will prove that as n → ∞ the vector

n−1/4(Yn(t1, r1), Yn(t2, r2), ..., Yn(tN , rN ))

converges in distribution to the mean-zero Gaussian random vector

(Z(t1, r1), Z(t2, r2), ..., Z(tN , rN ))
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with covariance

EZ(ti, ri)Z(tj , rj) = ρ0Γq((ti, ri), (tj , rj)) + v0Γ0((ti, ri), (tj , rj)).

Let θ = (θ1, ..., θN ) ∈ RN be arbitrary. Recall that Xk,j(·) is the jth random
walk that starts at site k.

n
−1/4

N
X

i=1

θiYn(ti, ri)

= n
−1/4

N
X

i=1

θi

 ∞
X

m=−∞

ηn
0 (m)
X

j=1

`

1{Xm,j(nti) − Xm,j(0)≤ [nvti] + [ri

√
n] − m}1{m > [ri

√
n]}

− 1{Xm,j(nti) − Xm,j(0) > [nvti] + [ri

√
n] − m}1{m ≤ [ri

√
n]}

´

ff

Let

At,r
m,j = {Xm,j(nt) − Xm,j(0) ≤ [nvt] + [r

√
n] − m}

and

At,r = {X(nt) ≤ [nvt] + [r
√

n] − m}
where X(·) represents a random walk with rates p(x) starting at the origin. The
evolution of the random walks is independent of their initial occupation numbers
ηn
0 (x). Define

Um(t, r) :=n−1/4

ηn
0 (m)
∑

j=1

{

1{At,r
m,j}1{m > [r

√
n]} − 1{(At,r

m,j)
c}1{m ≤ [r

√
n]}
}

− n−1/4ρn
0 (m)

{

P{At,r}1{m > [r
√

n]} − P{(At,r)c}1{m ≤ [r
√

n]}
}

and

Ūm :=
N
∑

i=1

θiUm(ti, ri).

Then we can write

n−1/4
N
∑

i=1

θiYn(ti, ri) =n−1/4
N
∑

i=1

θi{Yn(ti, ri)−EYn(ti, ri)}+n−1/4
N
∑

i=1

θiEYn(ti, ri)

=

∞
∑

m=−∞
Ūm + n−1/4

N
∑

i=1

θiEYn(ti, ri).

We split
∑∞

m=−∞ Ūm into two sums S1 and S2 as follows. Choose r(n) so that

r(n) = o(
√

log n) and r(n) → ∞ slowly enough that

r(n)H(n1/8) → 0 as n → ∞,

where H(M) = supn≥1,x∈Z E[ηn
0 (x)21{ηn

0 (x) ≥ M}]. Write

n−1/4
N
∑

i=1

θi{Yn(ti, ri) − EYn(ti, ri)} =
∑

|m|≤r(n)
√

n

Ūm +
∑

|m|>r(n)
√

n

Ūm

=: S1 + S2.

We show that S2 goes to 0 in L2 and use Lindeberg-Feller for S1 to show that it
converges to a mean-zero normal distribution.
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Lemma 1. ES2
2 → 0 as n → ∞.

Proof . EUm = 0, so EŪm = 0. S2 is therefore a sum of independent mean zero
terms Ūm. By Schwarz Inequality,

ES2
2 =

∑

|m|≥[r(n)
√

n]+1

EŪ2
m ≤ ‖θ‖2

N
∑

i=1

∑

|m|≥[r(n)
√

n]+1

EU2
m(ti, ri).

Since N is fixed, it suffices to show for fixed (t, r)

lim
n→∞

∞
∑

m≥[r(n)
√

n]+1

EU2
m(t, r) = 0.

Recall that At,r
m,j = {Xm,j(nt)−Xm,j(0) ≤ [nvt]+[r

√
n]−m} and At,r = {X(nt) ≤

[nvt] + [r
√

n] − m}. If TK =
∑K

i=1 Zi is a random sum of i.i.d. summands Zi

independent of random K, then

Var[TK ] = EK · Var Z1 + (EZ1)
2 · VarK.

For fixed m, take K = ηn
0 (m) and

Zj = 1{At,r
m,j}1{m > [r

√
n]} − 1{(At,r

m,j)
c}1{m ≤ [r

√
n]}.

Then,

E[U2
m(t, r)] = Var

ˆ

n
−1/4

ηn
0 (m)
X

j=1

˘

1{At,r
m,j}1{m > [r

√
n]} − 1{(At,r

m,j)
c}1{m ≤ [r

√
n]}

¯˜

.

VarZj =P (At,r
m,j)P ((At,r

m,j)
c)1{m > [r

√
n]} + P (At,r

m,j)P ((At,r
m,j)

c)1{m ≤ [r
√

n]}
= P (X(nt) ≤ [nvt] + [r

√
n] − m)P (X(nt) > [nvt] + [r

√
n] − m).

[EZ1]
2 = P (X(nt) ≤ [nvt] + [r

√
n] − m)21{m > [r

√
n]}

+ P (X(nt) > [nvt] + [r
√

n] − m)21{m ≤ [r
√

n]}.

E[U2
m(t, r)] = n−1/2ρn

0 (m)P (At,r)P ((At,r)c) + n−1/2vn
0 (m)

[

P (At,r)21{m > [r
√

n]}
+ P ((At,r)c)21{m ≤ [r

√
n]}
]

.

Using the uniform bound (2.2) on moments we get

E[U2
m(t, r)] ≤ n−1/2C

[

P (X(nt) ≤ [nvt] + [r
√

n] − m)1{m > [r
√

n]}
+ P (X(nt) > [nvt] + [r

√
n] − m)1{m ≤ [r

√
n]}
]

.

By standard large deviation theory, for arbitrarily small δ, there is a constant
0 < K < ∞ such that when m > [r

√
n],

P (X(nt) ≤ [nvt] + [r
√

n] − m) ≤
{

e{−K(m−[r
√

n])2/nt} if |m − [r
√

n]| ≤ ntδ

e{−K|m−[r
√

n]|} if |m − [r
√

n]| > ntδ

(3.1)
and when m ≤ [r

√
n],

P (X(nt) > [nvt] + [r
√

n] − m) ≤
{

e{−K([r
√

n]−m)2/nt} if |[r√n] − m| ≤ ntδ

e{−K|[r√n]−m|} if |[r√n] − m| > ntδ.

(3.2)
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Consequently,

∞
∑

|m|=[r(n)
√

n]+1

E[U2
m(t, r)]

≤ Cn−1/2

[ntδ]
∑

m1=[r(n)
√

n]−[r
√

n]+1

e−Km2
1/nt + Cn−1/2

∞
∑

m1=[ntδ]+1

e−Km1

+ Cn−1/2

[ntδ]
∑

m1=[r(n)
√

n]+[r
√

n]+1

e−Km2
1/nt + Cn−1/2

∞
∑

m1=[ntδ]+1

e−Km1

≤ C

∫ ∞

r(n)−r

e−Kx2/tdx + C

∫ ∞

r(n)+r

e−Kx2/tdx + 2
C√
n

e−Kntδ.
1

1 − e−K
→ 0

as n → ∞ (since r(n) → ∞). Therefore, ES2
2 → 0 as n → ∞. �

Define

Γ
(2)
0 ((s, q), (t, r)) =

∫ ∞

q∨r

P (
√

κ2B(s) ≤ q − x)P (
√

κ2B(t) ≤ r − x)dx

+

∫ q∧r

−∞
P (

√
κ2B(s) > q − x)P (

√
κ2B(t) > r − x)dx

− 1{r > q}
∫ r

q

P (
√

κ2B(s) ≤ q − x)P (
√

κ2B(t) > r − x)dx

− 1{q > r}
∫ q

r

P (
√

κ2B(s) > q − x)P (
√

κ2B(t) ≤ r − x)dx

and

Γ(1)
q ((s, q), (t, r)) =

∫ ∞

−∞
{P (

√
κ2B(s) ≤ q − x)P (

√
κ2B(t) > r − x)

− P (
√

κ2B(s) ≤ q − x,
√

κ2B(t) > r − x)}dx;

B(·) is standard Brownian motion. The covariance terms (2.5) and (2.6) appear in

the calculations as Γ
(2)
0 and Γ

(1)
q resp.

Lemma 2. S1 converges to the mean-zero normal distribution with variance

σ2 =
∑

1≤i,j≤N

θiθj

{

ρ0Γ
(1)
q ((ti, ri), (tj , rj)) + v0Γ

(2)
0 ((ti, ri), (tj , rj))

}

.

Proof . We apply Lindeberg-Feller to S1. We check:

(1) For any ǫ > 0

lim
n→∞

∑

|m|≤[r(n)
√

n]

E[Ū2
m1{|Ūm| ≥ ǫ}] = 0 (3.3)

and,
(2)

lim
n→∞

∑

|m|≤[r(n)
√

n]

E[Ū2
m] = σ2. (3.4)



318 Rohini Kumar

|Um(t, s)| ≤ n−1/4ηn
0 (m) + n−1/4ρn

0 (m). By uniform bound on moments (2.2),
we get

|Ūm| ≤ Cn−1/4[ηn
0 (m) + 1].

By choice of r(n) we get (3.3):

lim
n→∞

∑

|m|≤[r(n)
√

n]

E[Ū2
m1{|Ūm| ≥ ǫ}] = 0.

We prove (3.4) from the lemma below.
∑

|m|≤r(n)
√

n

EŪ2
m =

∑

1≤i,j≤N

θiθj

∑

|m|≤r(n)
√

n

E[Um(ti, ri)Um(tj , rj)].

Let

S =
∑

|m|≤[r(n)
√

n]

E[Um(s, q)Um(t, r)].

Lemma 3.

lim
n→∞

S = ρ0Γ
(1)
q ((s, q), (t, r)) + v0Γ

(2)
0 ((s, q), (t, r)).

Proof .

E[Um(s, q)Um(t, r)]

= n−1/2 Cov

[ηn
0 (m)
∑

j=1

{

1{As,q
m,j}1{m > [q

√
n]} − 1{(As,q

m,j)
c}1{m ≤ [q

√
n]}
}

,

ηn
0 (m)
∑

j=1

{

1{At,r
m,j}1{m > [r

√
n]} − 1{(At,r

m,j)
c}1{m ≤ [r

√
n]}
}

]

.

Assume zi are i.i.d. random variables independent of the random nonnegative
integer K, then

Cov[

K
∑

i=1

f(zi),

K
∑

i=1

g(zi)] = EK · Cov[f(z1), g(z1)] + VarK · Ef(z1) · Eg(z1).

For fixed m, take K = ηn
0 (m),

f(Xm,j) = 1{As,q
m,j}1{m > [q

√
n]} − 1{(As,q

m,j)
c}1{m ≤ [q

√
n]}

and

g(Xm,j) = 1{At,r
m,j}1{m > [r

√
n]} − 1{(At,r

m,j)
c}1{m ≤ [r

√
n]}.

We now adopt the simpler notation

A = {X(ns) ≤ [nvs] + [q
√

n] − m}

and

B = {X(nt) ≤ [nvt] + [r
√

n] − m}.
A straightforward computation gives

Cov[f(Xm,1), g(Xm,1)] = P (A)P (Bc) − P (A ∩ Bc).
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Next we compute

Ef(Xm,1)Eg(Xm,1) =P (A)P (B)1{m > [q
√

n]}1{m > [r
√

n}
+ P (Ac)P (Bc)1{m ≤ [q

√
n]}1{m ≤ [r

√
n}

− P (A)P (Bc)1{m > [q
√

n]}1{m ≤ [r
√

n}
− P (Ac)P (B)1{m ≤ [q

√
n]}1{m > [r

√
n}.

Putting these computations together we get

S =n
−1/2

X

|m|≤[r(n)
√

n]



ρ
n
0 (m)

˘

P (A)P (Bc) − P (A ∩ B
c)

¯

+ v
n
0 (m)

»

P (A)P (B)1{m > [q
√

n] ∨ [r
√

n]} + P (Ac)P (Bc)1{m ≤ [q
√

n] ∧ [r
√

n}

− P (A)P (Bc)1{[q
√

n] < m ≤ [r
√

n} − P (Ac)P (B)1{[r
√

n] < m ≤ [q
√

n]}
–ff

.

X(nt) is a sum of Poisson(nt) number of independent jumps ξi, each jump dis-
tributed according to p(x). Therefore,

Var(X(nt)) = nt · Var(ξ1) + (Eξ1)
2 · (nt) = nt(κ2 − v2) + v2nt = ntκ2.

By Donsker’s Invariance Principle the process {(X(nt)− [nvt])/
√

nκ2 : t ≥ 0} con-
verges weakly to standard 1-dimensional Brownian motion. Therefore, as n → ∞,
assumption (2.3) and a Riemann sum argument together with the large deviation
bounds on X(nt) gives us

lim
n→∞

S = ρ0

∫ ∞

−∞
{P (B(κ2s) ≤ q − x)P (B(κ2t) > r − x)

− P (B(κ2s) ≤ q − x, B(κ2t) > r − x)}dx

+ v0

{∫ ∞

q∨r

P (B(κ2s) ≤ q − x)P (B(κ2t) ≤ r − x)dx

+

∫ q∧r

−∞
P (B(κ2s) > q − x)P (B(κ2t) > r − x)dx

−
∫ q∨r

q∧r

[

1{q < r}P (B(κ2s) ≤ q − x)P (B(κ2t) > r − x)

+ 1{r < q}P (B(κ2s) > q − x)P (B(κ2t) ≤ r − x)
]

}

= ρ0Γ
(1)
q ((s, q), (t, r)) + v0Γ

(2)
0 ((s, q), (t, r)).

The reasoning behind the convergence of S to the above limit is the same as in
Lemmas 4.3 and 4.4 of Seppäläinen (2005). The reader is referred to Seppäläinen
(2005) (page 778) for a more detailed explanation.

�

This verifies (3.4):

lim
n→∞

∑

|m|≤r(n)
√

n

E[Ū2
m] =

∑

1≤i,j≤N

θiθj

{

ρ0Γ
(1)
q ((ti, ri), (tj , rj)) + v0Γ

(2)
0 ((ti, ri), (tj , rj))

}

.
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We can now conclude from Lindeberg-Feller that S1 converges to mean-zero
normal distribution with

σ2 =
∑

1≤i,j≤N

θiθj

{

ρ0Γ
(1)
q ((ti, ri), (tj , rj)) + v0Γ

(2)
0 ((ti, ri), (tj , rj))

}

.

�

Lemma 4.

lim
n→∞

sup
0≤t≤T,0≤|r|≤S

n−1/4|EYn(t, r)| = 0.

Proof . The proof is similar to the proof of Lemma 4.6 in Seppäläinen (2005, page
781-783). �

Showing that

Γ(1)
q ((s, q), (t, r)) = Ψκ2(t+s)(|q − r|) − Ψκ2(|s−t|)(|q − r|) = Γq((s, q), (t, r))

and

Γ
(2)
0 ((s, q), (t, r)) = Γ0((s, q), (t, r))

is an exercise in calculus.

Proof of Proposition 1. By Lemmas 1, 2 and 4 we have, as n → ∞,

n−1/4
N
∑

i=1

θiYn(ti, ri)

converges to a mean-zero normal distribution with variance σ2, where

σ2 =
∑

1≤i,j≤N

θiθj{ρ0Γq((ti, ri), (tj , rj)) + v0Γ0((ti, ri), (tj , rj))},

for arbitrary (θ1, ..., θN ) ∈ RN . We can therefore conclude that as n → ∞ the vector
n−1/4(Yn(t1, r1), Yn(t2, r2), ..., Yn(tN , rN )) converges in distribution to the mean-
zero Gaussian random vector (Z(t1, r1), Z(t2, r2), ..., Z(tN , rN )) with covariance

EZ(ti, ri)Z(tj , rj) = ρ0Γq((ti, ri), (tj , rj)) + v0Γ0((ti, ri), (tj , rj)).

�

4. Tightness and completion of proof of Theorem 2.1

In this section we first develop a criterion for tightness for processes in D2. The
tightness criterion is in terms of a modulus of continuity. We then proceed to
check if our scaled current process satisfies the tightness criterion. The following is
an extension of Proposition 5.7 in Dürr et al. (1985) to two-parameter processes.
WLOG for simplicity we replace the region [0, T ] × [−S, S] with the unit square
[0, 1]2. For any h ∈ D2 = D2([0, 1]2, R), define

wh(δ) = sup
s,t,q,r∈[0,1]

|(s,q)−(t,r)|<δ

|h(s, q) − h(t, r)|.

Proposition 2. Suppose {Xn} is a sequence of random elements of D2=D2([0,1]2,R)
satisfying these conditions:

For all n there exists δn > 0 such that
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(1) there exist β > 0, σ > 2 , and C > 0 such that for all n sufficiently large

E(|Xn(s, q) − Xn(t, r)|β) ≤ C|(s, q) − (t, r)|σ (4.1)

for all s, t, q, r ∈ [0, 1] with |(s, q) − (t, r)| > δn, and
(2) for every ǫ > 0 and η > 0 there exists an n0 such that

P (wXn(δn) > ǫ) < η for all n ≥ n0. (4.2)

Then, for each ǫ > 0 and η > 0, there exists a δ, 0 < δ < 1, and an integer n0,
such that

P (wXn(δ) ≥ ǫ) ≤ η, for n ≥ n0.

To prove this proposition we require the following lemma.

Lemma 5. Let 0 ≤ k0 ≤ k. If points (s, q) and (t, r) lie on the 2−k grid i.e.

s = i
2k , q = j

2k , t = i′

2k , r = j′

2k , and | i
2k − i′

2k | ≤ 2−k0 , | j
2k − j′

2k | ≤ 2−k0 , then

(1) it is possible to move from (s, q) to (t, r) in steps of size 2−h, k0 ≤ h ≤ k,
moving one co-ordinate at a time, where a step of size 2−h, for any h,
occurs at most 4 times;

(2) also, we can choose our steps in such a way that we make a jump of size
2−h only if we lie in the 2−h grid.

Proof . We fix k0 and prove the lemma by induction on k. When k = k0, (s, q),

(t, r) ∈ 2−k0N × 2−k0N. We are given that | i
2k0

− i′

2k0
| ≤ 2−k0 , | j

2k0
− j′

2k0
| ≤ 2−k0 .

So, either both points coincide or there is a difference of 2−k0 in one co-ordinate or
both co-ordinates between these points. We can therefore move from (s, q) to (t, r)
in at most 2 steps, each of size 2−k0 , moving one co-ordinate at a time. Clearly
condition (2) also holds as the only jumps possible here are of size 2−k0 and we lie
in the 2−k0 grid.

Let k > k0, (s, q) = ( i
2k , j

2k ), (t, r) = ( i′

2k , j′

2k ) ,| i
2k − i′

2k | ≤ 2−k0 and | j
2k − j′

2k | ≤
2−k0 . Either the points (s, q) and (t, r) already lie on the 2−(k−1) grid, or if not,
the points (s, q) and (t, r) are each at most two jumps of size 2−k away from the
2−(k−1)-grid. We can therefore move both (s, q) and (t, r) closer to each other and
onto the 2−(k−1)-grid in at most four jumps of size 2−k.

By the induction hypothesis and by our choice of jumps, we are done. �

Proof of Proposition 2. We may assume without loss of generality that δn =
2−k for some k = k(n) ≥ 0 depending on n. This is because if we have P (wXn(δn) >
ǫ) < η for some δn > 0, then we can find a k(n) > 0 with 2−k(n)−1 < δn < 2−k(n)

such that wXn(2−k(n)) ≤ 2wXn(δn). So P (wXn(2−k(n)) > 2ǫ) ≤ P (wXn(δn) > ǫ) <
η. Therefore it is sufficient to prove the theorem for δn = 2−k(n) for k(n) ≥ 0.

Given n and δ, if δ ≤ δn, then wXn(δ) ≤ wXn(δn). If δn < δ, then for any two
points (s, q), (t, r) with 0 ≤ |t − s|, |q − r| ≤ δ, we have

|h(s, q) − h(t, r)| ≤ |h(s, q) − h(s′, q′)| + |h(t, r) − h(t′, r′)| + |h(s′, q′) − h(t′, r′)|,
where s′, t′, q′, r′ ∈ δnN, 0 ≤ |s′− t′|, |q′−r′| ≤ δ and 0 ≤ |t− t′|, |s−s′|, |r−r′|, |q−
q′| ≤ δn. Thus for any δn < δ,

wh(δ) ≤ 2wh(δn) + sup
t,s,q,r∈(δnN)

T

[0,1]
|t−s|,|r−q|≤δ

|h(s, q) − h(t, r)|.



322 Rohini Kumar

Therefore by (4.2), we only need to show that for any ǫ > 0 and η > 0, there exists
a δ > 0 such that for all n sufficiently large

P (w
(n)
Xn

(δ) > ǫ) < η, (4.3)

where

w
(n)
h (δ) = sup

t,s,q,r∈(δnN)
T

[0,1]
|t−s|,|r−q|≤δ

|h(s, q) − h(t, r)|.

This follows from (4.1) by the following “dyadic argument”:
Choose a λ such that 2(2−σ) < λβ < 1. Given n for which (4.1) is satisfied, let

Gk =
{∣

∣Xn( i
2k , j

2k ) − Xn( i+1
2k , j

2k )
∣

∣ ≤ λk for i = 0, 1, . . . , 2k − 1,

j = 0, 1, . . . , 2k
}

and

Hk =
{∣

∣Xn( i
2k , j

2k ) − Xn( i
2k , j+1

2k )
∣

∣ ≤ λk for i = 0, 1, . . . , 2k,

j = 0, 1, . . . , 2k − 1
}

where k ≤ k(n) .

P (Gc
k ∪ Hc

k) ≤ 2k(2k + 1)λ−kβ2−kσ + 2k(2k + 1)λ−kβ2−kσ

by Markov inequality and (4.1) as k ≤ k(n)

≤ c(2(2−σ)λ−β)k

= cγk where γ = 2(2−σ)λ−β < 1.

Given ǫ > 0 and η > 0, choose k0 such that

c
∑

k≥k0

γk < η and 4
∑

k≥k0

λk < ǫ.

Choose δ = 2−k0 . If δ < δn for some n ≥ n0, then wXn(δ) < wXn(δn) and we
have P (wXn(δ) > ǫ) < η by (4.2). A little more work is required to show that
(4.3) holds in the δn ≤ δ, i.e. k0 ≤ k(n), case. Pick any (s, q), (t, r) ∈ δnN × δnN

where δn = 2−k(n), such that |s − t|, |q − r| < δ. We can find a sequence of points
(s, q) = (s1, q1), (s2, q2)...(sm, qm) = (t, r) (refer to lemma 5) such that on the event
⋂

k0≤k≤k(n)(Gk ∩ Hk) we have

|Xn(s, q) − Xn(t, r)| ≤
m−1
∑

i=1

|Xn(si, qi) − Xn(si+1, qi+1)| ≤ 4
∑

k≥k0

λk < ǫ.

Now

P
(

⋃

k0≤k≤k(n)

(Gc
k ∪ Hc

k)
)

≤ c
∑

k0≤k≤k(n)

γk < η.

Therefore,

P (w
(n)
Xn

(δ) ≤ ǫ) ≥ P (
⋂

k0≤k≤k(n)

(Gk ∩ Hk)) ≥ 1 − η.

Thus (4.3) is satisfied with δ = 2−k0 . �

We now apply Proposition 2 to processes Xn = n−1/4Ȳn(t, r) where Ȳn(t, r) =
Yn(t, r) − EYn(t, r).
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4.1. Verifying the first tightness condition. We check that (4.1) holds for

n−1/4Ȳn(t, r).

Let α > 0 and

5/4 + α < β < 3/2. (4.4)

We show that there exist constants σ > 2 and 0 < C < ∞ independent of n, such
that with δn = n−β , for all n (sufficiently large)

E
(

n−1/4|Ȳn(s, q) − Ȳn(t, r)|
)12

≤ C|(s, q) − (t, r)|σ (4.5)

for all (s, q), (t, r) ∈ [0, T ]× [−S, S] with |(s, q) − (t, r)| > δn.
We can assume WLOG that s ≤ t in the following calculations. Define

Am,j =
{

Xm,j(ns) ≤ [q
√

n ] + [nvs], Xm,j(nt) > [r
√

n ] + [nvt]
}

and

Bm,j =
{

Xm,j(ns) > [q
√

n ] + [nvs], Xm,j(nt) ≤ [r
√

n ] + [nvt]
}

.

If q ≤ r then

Yn(s, q) − Yn(t, r) =
∑

m>[r
√

n]

ηn
0 (m)
∑

j=1

1{Xm,j(ns) ≤ [q
√

n] + [nvs]} (4.6)

+

[r
√

n]
∑

m=[q
√

n]+1

ηn
0 (m)
∑

j=1

1{Xm,j(ns) ≤ [q
√

n] + [nvs]} (4.7)

−
∑

m≤[q
√

n]

ηn
0 (m)
∑

j=1

1{Xm,j(ns) > [q
√

n] + [nvs]} (4.8)

−
∑

m>[r
√

n]

ηn
0 (m)
∑

j=1

1{Xm,j(nt) ≤ [r
√

n] + [nvt]} (4.9)

+

[r
√

n]
∑

m=[q
√

n]+1

ηn
0 (m)
∑

j=1

1{Xm,j(nt) > [r
√

n] + [nvt]} (4.10)

+
∑

m≤[q
√

n]

ηn
0 (m)
∑

j=1

1{Xm,j(nt) > [r
√

n] + [nvt]} (4.11)

Combining (4.6) and (4.9), (4.7) and (4.10), (4.8) and (4.11) and adding and sub-
tracting

[r
√

n]
∑

m=[q
√

n]+1

ηn
0 (m)
∑

j=1

1{Xm,j(ns) > [q
√

n] + [nvs], Xm,j(nt) ≤ [r
√

n] + [nvt]}

we get

Ȳn(s, q) − Ȳn(t, r) =
∑

m∈Z

Gm +

[r
√

n ]
∑

m=[q
√

n ]+1

[

ηn
0 (m) − ρn

0 (m)
]
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where

Gm =

ηn
0 (m)
∑

j=0

(1Am,j − 1Bm,j ) − ρn
0 (m)(P (Am,1) − P (Bm,1)). (4.12)

Similarly, when q > r

Ȳn(s, q) − Ȳn(t, r) =
∑

m∈Z

Gm −
[q
√

n ]
∑

m=[r
√

n ]+1

[

ηn
0 (m) − ρn

0 (m)
]

.

Using the identity (a + b)k ≤ 2k(ak + bk), we get

E
(

n−1/4(Ȳn(s, q) − Ȳn(t, r))
)12

≤ 212

n3

(

EA12 + EB12
)

(4.13)

where
A =

∑

m∈Z

Gm

and

B =

[(r∨q)
√

n ]
∑

m=[(r∧q)
√

n ]+1

[

ηn
0 (m) − ρn

0 (m)
]

.

We now bound E[A12] and E[B12].
To bound EB12, we use the following lemma which is a slight modification of

Lemma 8 in March and Seppäläinen (1997).

Lemma 6. Let Yi be independent random variables with E[|Yi|2r] < c < ∞ and
EYi = 0 for all i and for some fixed r > 0. There is a constant C < ∞ such that,
for any n ,

E

{

(

Y1 + Y2 + · · · + Yn

)2r
}

≤ C(2r)!nr .

Proof . Since EYi = 0,

E

{(

Y1 + Y2 + · · · + Yn

)2r}

=
∑′ (2r)!

r1!r2! · · · rn!
EY r1

1 EY r2
2 · · ·EY rn

n

where
∑′

extends over all n-tuples of integers r1, r2, . . . rn ≥ 0 such that each ri 6= 1
and r1 + · · · + rn = 2r.
|EY r1

1 EY r2
2 · · ·EY rn

n | ≤ c by the bounded moment assumption and Hölder’s in-

equality. The number A =
∑′

(r1! · · · rn!)−1 is the coefficient of x2r in

Fn(x) =
(

∑

j≥0
j 6=1

xj

j!

)n

and consequently A ≤ Fn(x)
x2r for x > 0. But

∑

j≥0
j 6=1

xj

j! ≤ 1 + x2 for x ≤ 1, so taking

x = n−1/2 gives A ≤ nr(1 + (1/n))n ≤ Cnr. �

Recall that ηn
0 (x), x ∈ Z are independent with mean ρn

0 (x). Let C denote a
constant that varies from line to line in the string of inequalities below. Applying
Lemma 6 to the term E[B12] in equation (4.13) with r = 6 and by the moment
assumption on ηn

0 , we get

E[B12] ≤ C(12)!|[r
√

n] − [q
√

n]|6 ≤ C(|r − q|6n3 + 1). (4.14)
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We use the following lemma to bound E[A12].

Lemma 7. There exists a constant C such that for each positive integer 1 ≤ k ≤ 12
and for all m,

E[|Gm|k] ≤ Dm

where Dm = C{P (Am,1) + P (Bm,1)}.

Proof . The proof is the same as in Lemma 4.7 (pages 784-785) of Seppäläinen
(2005). �

Lemma 8. There exists a c > 0 such that

E[A12] ≤ c







1 +

(

∑

m

Dm

)6






. (4.15)

Proof . A =
∑

m∈Z
Gm. Note that EGm = 0 for all m and the Gm’s are indepen-

dent. Let
∑(k)

denote the sum over all k-tuples of integers r1, r2, . . . , rk ≥ 2 such
that r1 + · · · + rk = 12.

E[A12] =
∑

m1,...,m12∈Z

E[Gm1Gm2 · · ·Gm12 ]

≤
6
∑

k=1

∑(k) 12!

r1! · · · rk!

∑

m1 6=m2 6=···mk

E|Gm1 |r1E|Gm2 |r2 · · ·E|Gmk
|rk

≤
6
∑

k=1

∑(k) 12!

r1!r2! · · · rk!

∑

m

E|Gm|r1

∑

m

E|Gm|r2 · · ·
∑

m

E|Gm|rk .

(4.16)

Since E|Gm|l ≤ Dm for all m ∈ Z and 1 ≤ l ≤ 12 we get, for all 1 ≤ k ≤ 6,

∑

m

E|Gm|r1

∑

m

E|Gm|r2 · · ·
∑

m

E|Gm|rk ≤ max{1, (
∑

m

Dm)6} ≤ {1 + (
∑

m

Dm)6}.

Thus

E[A12] ≤ c







1 +

(

∑

m

Dm

)6






. (4.17)

�

We evaluate
∑

m∈Z
Dm below. Recall that

∑

m∈Z

Dm = C

(

∑

m∈Z

P (Am,1) +
∑

m∈Z

P (Bm,1)

)

.
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∑

m∈Z

P (Am,1) =
∑

m∈Z

P (X(ns) ≤ [q
√

n] + [nvs] − m, X(nt) > [r
√

n] + [nvt] − m)

=
∑

m∈Z

∑

l≥m

{P (X(ns) = [q
√

n] + [nvs] − l)

× P (X(nt) − X(ns) > [nvt] − [nvs] + [r
√

n] − [q
√

n] + l − m)}
=
∑

l∈Z

∑

k≥0

{P (X(ns) = [q
√

n] + [nvs] − l)

× P (X(n(t − s)) > [nvt] − [nvs] + [r
√

n] − [q
√

n] + k)}
≤
∑

k≥0

P (X(n(t − s)) − [nv(t − s)] > [r
√

n] − [q
√

n] + k)

(4.18)

Similarly,
∑

m∈Z

P (Bm,1) ≤
∑

k<0

P (X(n(t − s)) − [nv(t − s)] ≤ [r
√

n] − [q
√

n] + k + 1) (4.19)

Together,
∑

m∈Z

P (Am,1) +
∑

m∈Z

P (Bm,1) ≤ E
∣

∣X(n(t − s)) − [nv(t − s)] + [q
√

n] − [r
√

n]
∣

∣

≤ E
∣

∣X(n(t − s)) − [nv(t − s)]
∣

∣+ |r − q|
√

n + 1

≤ c{
√

n(t − s) + |r − q|
√

n + 1}.

Consequently, (4.15) becomes

E[A12] ≤ c{1 + (n(t − s))3 + |r − q|6n3}. (4.20)

Putting (4.14) and (4.20) together in (4.13) we get

E[{n−1/4(Ȳn(s, q) − Ȳn(t, r))}12] ≤ c
(

n−3 + (t − s)3 + |r − q|6
)

Using β < 3/2, |r − q| ≤ 2S < ∞ and t − s ≤ T < ∞, we can find constants c > 0
and σ > 2 such that

E[{n−1/4(Ȳn(s, q) − Ȳn(t, r))}12 ] ≤ c( |r − q|σ + |t − s|σ),

if |r − q| > n−β or t − s > n−β. This verifies the first tightness condition (4.1).

4.2. Verifying the second tightness condition. To verify (4.2) for n−1/4Ȳn(t, r), it is
sufficient to show

Lemma 9. For any 0 < T, S < ∞ and ǫ > 0,

lim
n→∞

P



[

0≤k1≤[Tnβ ]

[−nβS]≤k2≤[nβS]

»

sup
k1n−β≤t≤(k1+1)n−β

k2n−β≤r≤(k2+1)n−β

|Yn(t, r) − Yn(n−β
k1, n

−β
k2)| ≥ n

1/4
ǫ

–ff

=0.

(4.21)

Proof . Recall from (4.4) that 5/4+α < β < 3/2, α > 0. We first show that parti-
cles starting at a distance of n1/2+α or more from the interval ([−(S+1)

√
n], [S

√
n])

do not contribute to Yn(·, r) during time interval [0, T ], r ∈ [−S, S], in the n → ∞
limit.
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Lemma 10. Let

N1 =
∑

m≤[−(S+1)
√

n]−n1/2+α

ηn
0 (m)
∑

j=1

1{Xm,j(nt) ≥ −[(S + 1)
√

n] + [nvt]

for some 0 ≤ t ≤ T }

+
∑

m≥[S
√

n]+n1/2+α

ηn
0 (m)
∑

j=1

1{Xm,j(nt) ≤ [S
√

n] + [nvt]

for some 0 ≤ t ≤ T }.

(4.22)

Then EN1 → 0 as n → ∞.

Proof . Choose a positive integer M large enough so that 1/2 − α(2M − 1) < 0.
The expectation of the first sum in (4.22) is bounded by

C
∑

m≤[−(S+1)
√

n]−n1/2+α

P ( sup
0≤t≤T

(X(nt) − nvt) ≥ −[(S + 1)
√

n] − 1 − m)

≤ C
∑

l≥n1/2+α

P ( sup
0≤t≤T

(X(nt) − nvt) ≥ l − 1)

≤ C
∑

l≥n1/2+α

l−2ME[(X(nT )− nvT )2M
+ ]

by application of Doob’s inequality to the martingale X(t) − vt

≤ C
∑

l≥n1/2+α

l−2MnM

as E[(X(nT ) − nvT )2M
+ ] is O(nM )

≤ Cn1/2−α(2M−1) → 0 as n → ∞.

Similarly the expectation of the other sum goes to 0 as n → ∞. �

Let

N2 =

([S
√

n])+n1/2+α

∑

m=[−(S+1)
√

n]−n1/2+α;
m∈Z

ηn
0 (m).

be the number of particles initially within n1/2+α distance of the interval (−[(S +
1)
√

n], [S
√

n]). Fix a constant c so that

lim
n→∞

P (N2 ≥ cn1/2+α) = 0. (4.23)

Consider the event
⋃

0≤k1≤[Tnβ ]

[−nβS]≤k2≤[nβS]

{

sup
k1n−β≤t≤(k1+1)n−β

k2n−β≤r≤(k2+1)n−β

|Yn(t, r)−Yn(n−βk1, n
−βk2)| ≥ n1/4ǫ

}

. (4.24)

If t0 = n−βk1 and r0 = n−βk2, then

|Yn(t, r) − Yn(t0, r0)| ≤ |Yn(t, r) − Yn(t0, r)| + |Yn(t0, r) − Yn(t0, r0)|.
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Figure 4.1. Two characteristic lines at distance δn = n−β apart.

For fixed k1 and k2, the event in braces in (4.24) is contained in the following union
of two events:

{

sup
t0≤t≤t0+n−β

sup
r0≤r≤r0+n−β

|Yn(t, r) − Yn(t0, r)| ≥
1

2
ǫn1/4

}

(4.25a)

⋃

{

sup
r0≤r≤r0+n−β

|Yn(t0, r) − Yn(t0, r0)| ≥
1

2
ǫn1/4

}

(4.25b)

The first event (4.25a) implies that at least one of the following two things happen:

(1) At least 1
4ǫn1/4 particles cross the discretized characteristic

s 7→ [r
√

n] + [nvs]

for some r ∈ [r0, r0+n−β ], during time interval s ∈ [t0, (t0+n−β)] by jump-
ing. On the event {N1 = 0}, these particles must be among the N2 par-
ticles initially within n1/2+α distance of the interval (−[(S + 1)

√
n], [S

√
n]).

Therefore, conditioned on {N1 = 0}, the probability of this event is bounded
by the probability that N2 independent rate 1 random walks altogether ex-
perience at least 1

4ǫn1/4 jumps in time interval of length n1−β .

(2) At least 1
4ǫn1/4 particles cross the discretized characteristic

s 7→ [r
√

n] + [nvs]

for some r ∈ [r0, r0 + n−β], during time interval [t0, (t0 + n−β)] by staying
put while the characteristic crosses the location of these particles. These
particles must lie in the interval J at time nt0, where

J =
[

[r0

√
n ] + [nvt0], [(r0 + n−β)

√
n ] + [nv(t0 + n−β)]

]

,
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(refer to figure 4.1). For large enough n, the distance between the endpoints
of J is at most 2. So these 1

4 ǫn1/4 particles must sit on at most 2 sites, say

x1
k1,k2

and x2
k1,k2

.

The second event (4.25b) implies that at least 1
2ǫn1/4 particles either lie in the inter-

val
[

[r0
√

n]+[nvt0], [r
√

n]+[nvt0]
]

at time nt0, or lie in the interval
[

[r0
√

n], [r
√

n]
]

at time 0. Since
[

[r0

√
n] + [nvt0], [r

√
n] + [nvt0]

]

⊆ J

and
[

[r0

√
n], [r

√
n]
]

⊆ I

where I =
[

[r0
√

n ], [(r0 + n−β)
√

n ]
]

(refer to figure 4.1), this event implies that at

least 1
4ǫn1/4 particles lie in interval J at time nt0 or at least 1

4ǫn1/4 particles lie in
interval I at time 0. For large enough n, the distance between the endpoints of I is
at most 1, so the 1

4ǫn1/4 particles lying in interval I at time 0 must sit on a unique

site x0
0,k2

say.

Let Π(cn3/2+α−β) denote a mean cn3/2+α−β Poisson random variable that rep-
resents the total number of jumps among cn1/2+α independent particles during a
time interval of length n1−β . Then,

P ( event in (4.21))

≤ P (N1 ≥ 1) + P
(

N2 ≥ cn1/2+α
)

+

[Tnβ ]
∑

k1=0

[Snβ]
∑

k2=[−Snβ ]

{

P
(

Π(cn3/2+α−β) ≥ 1
4ǫn1/4

)

+ P
(

ηn
0 (x0

0,k2
) ≥ 1

4ǫn1/4
)

+ 2
{

P
(

ηn
n1−βk1

(x1
k1,k2

) ≥ 1
8ǫn1/4

)

+ P
(

ηn
n1−βk1

(x2
k1,k2

) ≥ 1
8ǫn1/4

)

}

}

.

(4.26)

The probabilities P (N1 ≥ 1) and P (N2 ≥ cn1/2+α) vanish as n → ∞ by
lemma 10 and (4.23). Π(cn3/2+α−β) is stochastically bounded by a sum of Mn =
[cn3/2+α−β] + 1 i.i.d. mean 1 Poisson variables, and so a standard large deviation
estimate gives

P
(

Π(cn3/2+α−β) ≥ 1
4ǫn1/4

)

≤ exp
{

−MnI(1
4M−1

n ǫn1/4)
}

,

where I is the Cramér rate function for the Poisson(1) distribution. By the choice
of α and β, Mn ≥ nα, while M−1

n n1/4 → ∞. Consequently, there are constants
0 < C0, C1 < ∞ such that

[Tnβ ]
∑

k1=0

[Snβ ]
∑

k2=[−Snβ]

P
(

Π(cn3/2+α−β) ≥ 1
4ǫn1/4

)

≤ C0n
2β exp{−C1n

α} → 0.

By Lemma 4.10 in Seppäläinen (2005), we have

sup
x∈Z,t≥0

E[ηt(x)12] < ∞. (4.27)
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So,

[Tnβ ]
∑

k1=0

[Snβ ]
∑

k2=[−Snβ ]

P (ηn
k1n1−β (xi

k1,k2
) ≥ 1

8ǫn1/4)

≤ (Tnβ + 1)(2Snβ + 1)812ǫ−12n−3 sup
x,t,n

E[ηn
t (x)12]

vanishes as n → ∞ by (4.27) and because 2β − 3 < 0 .
Similarly for the other probability in (4.26).

�

Since the two conditions of Theorem 2 hold for the sequence of processes {n−1/4Ȳn},
we can conclude that

lim
δ↓0

lim sup
n

P{wn−1/4Ȳn
(δ) ≥ ǫ} = 0 for all ǫ > 0. (4.28)

4.3. Weak Convergence. Finally, we use the theorem about weak convergence in
D2 from Bickel and Wichura (1971). By Theorem 2 in Bickel and Wichura (1971)
we have Xn converges weakly to X in D2 if,

(1) (Xn(t1, r1), · · ·, Xn(tN , rN )) converges weakly to (X(t1, r1), · · ·, X(tN , rN ))
for all finite subsets {(ti, ri)} ∈ [0, T ]× [−S, S], and

(2) limδ→0 lim supn P{wXn(δ) ≥ ǫ} = 0 for all ǫ > 0, where

wx(δ) = sup
(s,q),(t,r)∈[0,T ]×[−S,S]

|(s,q)−(t,r)|<δ

|x(s, q) − x(t, r)|.

This, together with (4.28) and the convergence of finite-dimensional distributions
of {n−1/4/barYn(·, ·)} give us weak convergence of {n−1/4Ȳn(·, ·)} as n → ∞. Since
the expectations n−1/4EYn(t, s) vanish uniformly over 0 ≤ t ≤ T , 0 ≤ |s| ≤ S by
lemma 4, we conclude that the process {n−1/4Yn(·, ·)} converges weakly as n → ∞.

5. Proof of large deviation results

Proof of Theorem 2.2 and Corollary 2. Assume that ηn
0 (m), m ∈ Z are i.i.d.

Fix r ∈ R and t > 0.We prove that n−1/2Yn(t, r) satisfies the LDP with a good rate
function. We start with some preliminary calculations.

Yn(t, r) =

∞
∑

m=−∞

ηn
0 (m)
∑

j=1

[

1{Xm,j(nt) ≤ [nvt] + [r
√

n]}1{m > [r
√

n]}

− 1{Xm,j(nt) > [nvt] + [r
√

n]}1{m ≤ [r
√

n]}
]

=

∞
∑

m=−∞

ηn
0 (m)
∑

j=1

[f
n,(1)
m,j (t, r) − f

n,(2)
m,j (t, r)].

(5.1)

Define

Mn
m(λ) = Eeλ[f

n,(1)
m,1 (t,r)−f

n,(2)
m,1 (t,r)]. (5.2)
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If m > [r
√

n] then

Mn
m(λ) = Eeλf

n,(1)
m,1 (t,r) = E





∑

k≥0

(λf
n,(1)
m,1 (t, r))k

k!





= 1 + (eλ − 1)E[f
n,(1)
m,1 (t, r)]

= 1 + (eλ − 1)P (X(nt) ≤ [nvt] + [r
√

n] − m)

(5.3)

where X(·) represents a random walk with rates p(x) starting at the origin. Simi-
larly, if m ≤ [r

√
n] then

Mn
m(λ) = Ee−λf

n,(2)
m,1 (t,r) = E





∑

k≥0

(−λ · fn,(2)
m,1 (t, r))k

k!





= 1 + (e−λ − 1)P (X(nt) > [nvt] + [r
√

n] − m).

(5.4)

We now calculate the logarithmic moment generating function for Yn(t, r).

log Ee
λYn(t,r) =

X

|m−[r
√

n]|≤[ntδ]

log E exp

8

<

:

λ

ηn
0 (m)
X

j=1

[f
n,(1)
m,j (t, r) − f

n,(2)
m,j (t, r)]

9

=

;

+
X

|m−[r
√

n]|>[ntδ]

log E exp

8

<

:

λ

ηn
0 (m)
X

j=1

[f
n,(1)
m,j (t, r) − f

n,(2)
m,j (t, r)]

9

=

;

(By large deviation bounds on X(nt) (3.1) and (3.2) , the second term is of o(
√

n))

=
X

|m−[r
√

n]|≤[ntδ]

log E exp

8

<

:

λ

ηn
0 (m)
X

j=1

[f
n,(1)
m,j (t, r) − f

n,(2)
m,j (t, r)]

9

=

;

+ o(
√

n)

lim
n→∞

1√
n

log Ee
λYn(t,r) = lim

n→∞
1√
n

X

|m−r
√

n]|≤[ntδ]

log E

»

e
λ

Pηn
0 (m)

j=1 [f
n,(1)
m,j (t,r)−f

n,(2)
m,j (t,r)]

–

= lim
n→∞

1√
n

X

|m−r
√

n]|≤[ntδ]

log
X

k≥0

P (ηn
0 (m) = k)(Mn

m(λ))k

(Recall that γ(α) = log Eeαηn
0 (·))

= lim
n→∞

1√
n

X

|m−r
√

n]|≤[ntδ]

γ(log M
n
m(λ)).

(5.5)

Using (5.3), (5.4), (5.5), applying Central Limit Theorem and a Riemann sum
argument we get,

Λ(λ) = lim
n→∞

1√
n

log Ee
λYn(t,r)

=

Z ∞

0

γ(log{1 + (eλ − 1)Φκ2t(−x)})dx +

Z 0

−∞
γ(log{1 + (e−λ − 1)Φκ2t(x)})dx.

(5.6)
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By Assumption 2.3 we get Λ(λ) < ∞ for λ ∈ R. It is also easy to check that
Λ(λ) is strictly convex and essentially smooth on R. By Theorem 2.3.6 in Dembo
and Zeitouni (1993) (Gärtner-Ellis theorem) I(·), the convex dual of Λ(λ), is the
good rate function. We now find the explicit expression for the rate function.

If ηn
0 (m) ∼ Poisson(ρ), then γ(α) = ρ(eα − 1). Therefore,

Λ(λ) = ρ(eλ − 1)

∫ ∞

0

Φκ2t(−x)dx + ρ(e−λ − 1)

∫ 0

−∞
Φκ2t(x)dx

= ρ

√

κ2t

2π
(eλ + e−λ − 2).

The convex dual of this is:

I(x) = sup
λ∈R

{xλ − Λ(λ)}

= x log

(

x
√

π

ρ
√

2κ2t
+

√

1 +
x2π

2ρ2κ2t

)

− ρ

√

2κ2t

π

(

√

1 +
x2π

2ρ2κ2t
− 1

)

for x ∈ R.

This proves (2.15).
To prove Theorem 2.2 we first check that I(·) given by (2.14) is the convex dual

of Λ(·) and then outline how to get the expression in (2.14). Elementary but tedious
computations give

I ′(Λ′(λ)) = λ. (5.7)

It can be shown that Λ′ is continuous and strictly increasing. Therefore, I ′ is
defined on the whole real line by (5.7). By Theorem 26.5 in Rockafellar (1970)
(page 258), I must be Λ∗ plus a constant. But I(0) = 0 = Λ∗(0), so I = Λ∗. This
proves that I given by (2.14) is the convex dual of Λ and hence the rate function.
Since Λ′ is continuous and strictly increasing, I ′ must be strictly increasing from
(5.7) and hence I must be strictly convex. This completes the proof of Theorem
2.2. Corollary 2 comes as a special case of (2.14).

For the reader’s benefit, here is an indication of how the expression in (2.14)
is derived non-rigorously. We first approximate the integral in Λ(·) by a Riemann
sum.

Λ(λ) = lim
δ→0

∑

k

Λ̃δ
k(λ)

where

Λ̃δ
k(λ) :=

{

δγ
(

Br1−Φκ2t(kδ)(λ)
)

for k > 0

δγ
(

BrΦκ2t(kδ)(−λ)
)

for k ≤ 0.
(5.8)

The function Brp(λ) denotes the log moment generating function for Bernoulli
random variables as defined in section 2.3. Observe that the summands (5.8) are
a composition of two functions. Using the definition of convex dual, it is easy to
prove the identity

(f ◦ g)∗(x) = f ′(g(λ))g∗(g′(λ)) + f∗(f ′(g(λ))) (5.9)

where λ is such that
x = f ′(g(λ)) · g′(λ). (5.10)

We use this identity to get the convex dual of the summands (5.8).
For small δ

Λ(λ) ≈
∑

|k|≤[1/δ]

Λ̃δ
k(λ).
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The convex dual of the sum is then given as an infimal convolution.

Λ∗(x) ≈





∑

|k|≤[1/δ]

Λ̃δ
k





∗

(x) = inf
P

|k|≤[1/δ] xk=x

∑

|k|≤[1/δ]

(

Λ̃δ
k

)∗
(xk)

now using (5.9) we get

= inf
P

|k|≤[1/δ]

xk=x

{

δ

[1/δ]
∑

k=1

[

γ′
(

Br1−Φκ2t(kδ)(λk)
)

Br∗1−Φκ2t(kδ)(Br′1−Φκ2t(kδ)(λk))

+ γ∗
(

γ′(Br1−Φκ2t(kδ)(λk))
)]

+ δ
0
∑

k=−[1/δ]

[

γ′
(

BrΦκ2t(kδ)(−λk)
)

Br∗Φκ2t(kδ)(Br′Φκ2t(kδ)(−λk))

+ γ∗
(

γ′(BrΦκ2t(kδ)(−λk))
)]

}

(5.11)

where

xk =







δγ′
(

Br1−Φκ2t(kδ)(λk)
)

Br′1−Φκ2t(kδ)(λk) for k > 0

−δγ′
(

BrΦκ2t(kδ)(−λk)
)

Br′Φκ2t(kδ)(−λk) for k ≤ 0.

Note that

Br1−Φκ2t(y)(λ) = Zλ(y) for y > 0 , BrΦκ2t(y)(−λ) = Zλ(y) for y ≤ 0 (5.12)

Br′1−Φκ2t(y)(λ) = 1 − Fλ(y) for y > 0 , Br′Φκ2t(y)(−λ) = Fλ(y) for y ≤ 0. (5.13)

Taking the limit as δ → 0 of (5.11) we get the constrained variational problem

Λ∗(x) = inf

{λ :

∞
∫

−∞

∂
∂λ(y)

[

γ
(

Zλ(y)(y)
)]

dy = x}

[

∫ ∞

−∞
γ∗ {γ′(Zλ(y)(y))

}

dy

+

∫ ∞

−∞
γ′(Zλ(y)(y))Br∗Φκ2t(y)(Fλ(y)(y))dy

]

.

Solving the above variational problem using standard functional analysis techniques
we get λ(y) ≡ α(x) minimizes the above functional and α(x) satisfies the constraint
(2.11). �

Proof of Theorem 2.3. Let Yn(t) = Yn(t, 0). Under the assumption ηn
0 (m) ∼

Poisson(ρ) we can show that {n−1/2Yn(·)} satisfies the large deviation principle in
DR[0,∞).

Fix k time points 0 ≤ t1 < t2 < · · · < tk. Define the k-vectors with 0, 1 entries
by

~Fm,j =
(

1{Xm,j(nt1) ≤ [nvt1]}, . . . ,1{Xm,j(ntk) ≤ [nvtk]}
)

and
~Gm,j =

(

1{Xm,j(nt1) > [nvt1]}, . . . ,1{Xm,j(ntk) > [nvtk]}
)

.
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Then

(

Yn(t1), . . . , Yn(tk)
)

=

∞
∑

m=1

ηn
0 (m)
∑

j=1

~Fm,j −
0
∑

m=−∞

ηn
0 (m)
∑

j=1

~Gm,j .

Let ~u := (u(1), . . . , u(k)) ∈ {0, 1}k be a k-vector with ~u 6= ~0. Define

N1
n(~u) :=

∞
∑

m=1

ηn
0 (m)
∑

j=1

1{ ~Fm,j = ~u}

and

N2
n(~u) :=

0
∑

m=−∞

ηn
0 (m)
∑

j=1

1{ ~Gm,j = ~u}.

If ηn
0 (·) are i.i.d. Poisson(ρ) random variables, then N1

n(~u) is a Poisson random
variable with rate

∞
∑

m=1

ρP (

k
⋂

i=1

Cu(i)

m,i ) < ∞,

where C1
m,i = {X(nti) ≤ [nvti] − m}, C0

m,i = {X(nti) > [nvti] − m}, and N2
n(~u) is

a Possion random variable with rate
0
∑

m=−∞
ρP (

k
⋂

i=1

Du(i)

m,i ) < ∞,

where D1
m,i = {X(nti) > [nvti] − m}, D0

m,i = {X(nti) ≤ [nvti] − m}. We use the
bounds (3.1) and (3.2) on the large deviations of random walks to justify the rates
being finite.

We can write

(Yn(t1), . . . , Yn(tk)) =
∑

~u6=~0

(N1
n(~u) − N2

n(~u))~u.

Let ~uj = (u
(1)
j , . . . , u

(k)
j ), j = 1, . . . , 2k − 1 denote the {0, 1}-valued k-vectors, ex-

cluding the zero vector. By the contraction principle (Theorem 4.2.1 in Dembo and
Zeitouni (1993)) we can conclude that (Yn(t1), . . . , Yn(tk)) satisfies the LDP with
good rate function given by

It1,...,tk
(~x) := inf J(y1, . . . , y2k−1, z1, . . . , z2k−1)

for any ~x = (x1, . . . , xk).
The inf here is taken over the set {(y1, . . . , y2k−1, z1, . . . , z2k−1) : ~x =

∑

~uj 6=~0(yj −
zj)~uj}. J(y1, . . . , y2k−1, z1, . . . , z2k−1) is the good rate function for the sequence of
vectors {(N1

n( ~u1), . . . , N
1
n(~u2k−1), N

2
n( ~u1), . . . , N

2
n(~u2k−1))}n of 2k+1 − 2 indepen-

dent Poisson random variables. Define for x ≥ 0,

C1
x,j = {B(κ2tj) ≤ −x}, C0

x,j = {B(κ2tj) > −x},

D1
x,j = {B(κ2tj) > x} and D0

x,j = {B(κ2tj) ≤ x},
where B(·) is standard Brownian motion.

J(y1, . . . , y2k−1, z1, . . . , z2k−1) =
2k−1
∑

i=1

[

yi log
yi

αi
+zi log

zi

βi
−αi(

yi

αi
−1)−βi(

zi

βi
−1)

]
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where

αi = lim
n→∞

1√
n

EN1
n(~ui) = ρ

∫ ∞

0

P





k
⋂

j=1

Cui
(j)

x,j



 dx

and

βi = lim
n→∞

1√
n

EN2
n(~ui) = ρ

∫ ∞

0

P





k
⋂

j=1

Dui
(j)

x,j



 dx.

We now apply Theorem 4.30 in Feng and Kurtz (2006) to {n−1/2Yn(·)}. This
gives us the large deviation principle for {n−1/2Yn(·)} in DR[0,∞) with good rate
function

I(x) = sup
{ti}

It1,...,tm(x(t1), . . . , x(tm)). (5.14)

�
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