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α[0, 1] to some Brownian motionunder the optimal assumption that P (|ǫ0| ≥ t) = o(t−p), where 1/p = 1/2 − α.This extends the Lamperti invariane priniple for i.i.d. Xn's. When ai = ℓ(i)i−β,
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48 M. Juodis et al.and partial sum proesses have been extensively studied in the literature. It wouldbe hard to ompile a omplete list. Here we only mention some representatives:Davydov (1970), Gorodetskii (1977), Hall and Heyde (1980), Philips and Solo (1992)and Hosking (1996). See referenes therein for further bakground. There arebasially two types of results. If the linear �lter is absolutely summable, then theovarianes of (Xn) are summable and one says that (Xn) is short-range dependent(SRD). Under SRD, the normalizing onstant for the sum Sn := X1 + · · · + Xnis of the same order as that in the lassial CLT for i.i.d. observations. When thelinear �lter is not summable, then (Xn) is long-range dependent (LRD) and thenormalizing onstant for Sn is typially larger than square root of n. FrationalARIMA model (Hosking, 1981) is an important lass whih may exhibit LRD. Fora survey of LRD, we refer to Doukhan et al. (2003).Invariane priniples (or funtional entral limit theorems) play an importantrole in eonometris and statistis Stok (1994). For example, to obtain asymp-toti distributions of unit root test statistis, researhers have applied invarianepriniples of various forms; see Sowell (1990) and Wu (2006) among others.There is a large amount of papers whih provide invariane priniples for variouslinear proesses in the framework of the lassial funtion spaes, i.e. the spae
C[0, 1] of ontinuous funtions or the Skorokhod spae D[0, 1] of àdlàg funtions.Our urrent ontribution aims to investigate invariane priniple for linear proessesin spaes having a stronger topology than C[0, 1].The weak onvergene of a sequene of stohasti proesses in some funtionsspae F provides results about the asymptoti distribution of funtionals of thepaths whih are ontinuous with respet to the topology of F . Sine the Hölderspaes are topologially embedded in C[0, 1] and in D[0, 1], they support more on-tinuous funtionals. From this point of view, the alternative framework of Hölderspaes gives funtional limit theorems of a wider sope. This hoie may be relevantas soon as the paths of stohasti proesses and the limit proess ξ (like e.g. theBrownian motion and the Frational Brownian motion) share some Hölder regular-ity, roughly speaking ξ(t + h) − ξ(t) = O(hα) for some 0 < α < 1. The �rst resultin this diretion seems to be Lamperti's Hölderian invariane priniple Lamperti(1962) for the polygonal partial sums proess n−1/2ξn, where ξn is the polygonalline indexed by [0, 1] with verties (k/n, Sk), k = 0, 1, . . . , n and the underlying ran-dom variables Xi are i.i.d. with EX1 = 0 and E |X1|

q < ∞ for some q > 2. Thisinvariane priniple was extended under some weak-dependane assumptions on the
Xi's by Hamadouhe (2000). Both results ost a stronger moment assumption thanthe lassial square integrability of the Xi's, whih is neessary and su�ient in the
C[0, 1] framework. Ra£kauskas and Suquet (2004b), found the right prie to be paidto obtain an Hölderian invariane priniple. They proved that for 0 < α < 1/2,
n−1/2ξn onverges in distribution to a Brownian motion in the Hölder spae Ho

α[0, 1](preise de�nition is given below) if and only if
lim

t→∞
tp(α)P (|X1| > t) = 0, where p(α) =

1
1
2 − α

. (1.1)Contrastly Ra£kauskas and Suquet (2001) show how one an relax (1.1) in EX2
1 <

∞ by using selfnormalization and adaptive onstrution of the partial sums proess.These theoretial results found statistial appliations in the problem of detetionof a hanged segment in data Ra£kauskas and Suquet (2004a, 2006).



Hölderian invariane priniple 49For reent result and a survey in the domain of the invariane priniples for thelinear proesses we refer to Merlevède et al. (2006) and Peligrad and Utev (2005,2006a,b). These papers fully analyze the asymptoti properties of the partial sumsof the linear proess, and extend the results for various noise proesses, in theframework of the spaes D[0, 1] or C[0, 1]. The same holds for other approahesinvolving invariane priniples for the linear proesses (see Wu and Min, 2005; Wu,2006 with omprehensive list of bibliography).In this paper we onsider the polygonal partial sums proesses (ξn)n≥1 builton the linear proesses Xn =
∑

i≥0 aiǫn−i, where (ǫi)i∈Z are i.i.d., entered andsquare integrable random variables with ∑i≥0 a
2
i < ∞. We investigate funtionalentral limit theorem for ξn in the Hölder spaes Ho

α[0, 1]. When ∑i≥0 |ai| < ∞(short memory ase), we show that n−1/2ξn onverges weakly in Ho
α[0, 1] to someBrownian motion under the optimal assumption that P (|ǫ0| ≥ t) = o(t−p), where

1/p = 1/2−α. This extends the Lamperti invariane priniple for i.i.d. Xn's. When
ai = ℓ(i)i−β, 1/2 < β < 1, with ℓ positive, inreasing and slowly varying, (Xn)n≥1has long memory. The limiting proess for ξn is then the frational Brownianmotion WH with Hurst index H = 3/2 − β and the normalizing onstants are
bn = cβn

Hℓ(n). For 0 < α < H − 1/2, the weak onvergene of b−1
n ξn to WH in

Ho
α[0, 1] is obtained under the mild assumption that E ǫ20 < ∞, supplementing Wuand Min (2005) invariane priniple in C[0, 1]. For H − 1/2 < α < H , the sameonvergene is obtained under P (|ǫ0| ≥ t) = o(t−p), where 1/p = H − α. The ase

α = H − 1/2 is also disussed.The paper is organized as follows. Setion 2 gives the notations and results.Setion 3 presents the proofs, starting with a general theorem on Hölderian invari-ane priniples for dependent variables whih enables us to simplify the proofs ofour main results. It may be also of independent interest. Tehnial lemmas aregathered in Setion 4.2. Results2.1. Notations. For 0 < α < 1, we denote by Ho
α[0, 1] the set of real valued ontin-uous funtions x : [0, 1] → R suh that

lim
δ→0

wα(x, δ) = 0,where
wα(x, δ) = sup

0<|t−s|<δ

|x(t) − x(s)|

|s− t|α
.The set Ho

α[0, 1] is a separable Banah spae when endowed with the norm ||x||α =
|x(0)| + wα(x, 1). Let ξn (n ≥ 1) and ξ be random elements in Ho

α[0, 1]. The weakonvergene in Ho
α[0, 1] of ξn to ξ, denoted by

ξn
Ho

α−−−−→
n→∞

ξmeans that for every fontional f : Ho
α[0, 1] → R, ontinuous with respet to thestrong topology of Ho

α[0, 1], the sequene of random variables f(ξn) onverges to
f(ξ) in distribution.



50 M. Juodis et al.For the sequene (Xn)n≥1 of random variables, put
S0 := 0, Sn :=

n∑

i=1

Xi (2.1)and de�ne the partial sums proess ξn by
ξn(t) := S[nt] + (nt− [nt])X[nt]+1, t ∈ [0, 1], (2.2)where [nt] denotes the integer part of nt. As polygonal lines, the paths of ξn belongto Ho

α[0, 1] for every α < 1.Reall that the standard frational Brownian motion WH , with the Hurst index
H is a zero mean Gaussian proess with ovariane

EWH(t)WH(s) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
, 0 ≤ s, t ≤ 1.The speial ase H = 1/2 gives the Brownian motion denoted W . The limitingproesses ξ involved in this paper are eitherW , eitherWH with positively orrelatedinrements, that is H > 1/2. Almost all paths of WH are Hölder ontinuous of anyorder α stritly less than H .The linear proesses (Xk)k≥0 onsidered throughout the paper are of the form

Xk =

∞∑

i=0

aiǫk−i, k = 0, 1, . . . , (2.3)where (ai, i ∈ Z) is a given sequene of real numbers with ai = 0 for i < 0 and
(ǫi, i ∈ Z) is a sequene of independent identially distributed random variableswith E ǫ0 = 0 and E |ǫ0|

2 < ∞. Under these assumptions, the series in (2.3)onverges in L2 and almost surely and the sequene of random variables (Xk)k≥0is stationary.2.2. Linear proesses with short memory.Theorem 2.1. Let (Xk)k≥0 be the linear proess de�ned by (2.3) and assume that
(ai)i≥0 satis�es:

(A)

∞∑

i=0

|ai| <∞ and A :=

∣∣∣∣∣

∞∑

i=0

ai

∣∣∣∣∣ > 0.Let Sn and ξn be the partial sums and partial sums proess built on (Xk)k≥0, de�nedby (2.1) and (2.2). Put b2n = A2nE ǫ20, bn > 0. Then for every 0 < α < 1/2,
b−1
n ξn

Ho
α−−−−→

n→∞
Wif

lim
t→∞

tpP (|ǫ0| > t) = 0, where p =
1

1
2 − α

. (2.4)Condition (2.4) is optimal beause the lass of linear proesses onsidered in-ludes the speial ase where Xk = ǫk and it is known that in this ase (2.4) isneessary for the weak-Ho
α[0, 1] onvergene of n−1/2ξn to W , see Ra£kauskas andSuquet (2004b).



Hölderian invariane priniple 512.3. Linear proesses with long memory. Now we onsider a lass of linear proesseswhose assoiated partial sums proess onverges to a frational Brownian motion
WH with H > 1/2.Theorem 2.2. For 1/2 < β < 1, let (Xk)k≥0 be the linear proess

Xk =

∞∑

j=0

ψjǫk−j , with ψ0 = 1, ψj =
ℓ(j)

jβ
, j ≥ 1, (2.5)where ℓ is a positive non dereasing normalized slowly varying funtion and (ǫj , j ∈

Z) is a sequene of i.i.d. random variables with E ǫ0 = 0 and E |ǫ0|
2 is �nite. Put

H :=
3

2
− β. (2.6)Let Sn and ξn be the partial sums and partial sums proess built on (Xk)k≥0, de�nedby (2.1) and (2.2). Put

bn = nHℓ(n)cβ
(
E ǫ20

)1/2
, (2.7)with

cβ := (1 − β)−2

∫ ∞

0

(
x1−β − (x− 1)1−β

+

)2
dx, where x+ := max(0;x).Then for 0 < α < H, the weak-Hölder onvergene

b−1
n ξn

Ho
α−−−−→

n→∞
WH (2.8)is obtained in the following ases.(1) For 0 < α < H − 1/2, (2.8) holds true if E ǫ20 <∞.(2) For α = H − 1/2, (2.8) holds true if

lim
t→∞

(t ln t)2P (|ǫ0| > t) = 0 (2.9)(3) For H − 1/2 < α < H, (2.8) holds true if
lim

t→∞
tpP (|ǫ0| > t) = 0, where p =

1

H − α
. (2.10)The slowly varying funtion ℓ is said normalized if for every δ positive, tδℓ(t) isultimately inreasing and t−δℓ(t) is ultimately dereasing.The variane σ2

n of Sn is asymptotially equivalent to b2n, see Wu and Min (2005,Th.2). Therefore the onvergene (2.8) holds as well with bn replaed by σn.The neessity of ondition (2.10) remains an open question. To our best knowl-edge neessary moment onditions for limit behavior of sums of long memory linearproesses are not treated in literature.Another interesting open problem was pointed out by the Referee, namely, thease β = 1/2 in Theorem 2.2. Does the onvergene to Brownian motion still holdsprovided ℓ(n) does not have subsequene tending to zero? At the moment we haveno answer to this question.



52 M. Juodis et al.3. Proofs3.1. General redution. We desribe here the ommon part of the proofs of The-orems 2.1 and 2.2 whih provides a general methodology to establish the weak-
Ho

α[0, 1] onvergene of the partial sums proess. This may be of independentinterest to prove invariane priniples under various kind of dependene of the un-derlying sequene (Xn)n≥1. Classially b−1
n ξn onverges weakly to ξ in Ho

α[0, 1] ifand only ifa) the �nite dimensional distributions of b−1
n ξn onverge to those of ξ;b) the sequene (b−1

n ξn)n≥1 is tight in Ho
α[0, 1].Usually ondition a) is known to be satis�ed under mild assumptions, e.g. ifweak onvergene of b−1

n ξn is already established in C[0, 1]. This is indeed the asein the ontext of Theorems 2.1 and 2.2. So we will fouse on the tightness prob-lem. General onditions implying the tighness of a sequene of random elements in
Ho

α[0, 1] may be found in Ra£kauskas and Suquet (2001) (Prop. 7 and Rem. 8). Totranslate this result in the setting of partial sums proess ξn, write for simpliity
tk = tj,k = k2−j, k = 0, 1, . . . , 2j , j = 1, 2, . . .Then the tighness of (b−1

n ξn)n≥1 in Ho
α[0, 1] takes plae provided thati) for every t ∈ [0, 1], (b−1

n ξn(t))n≥1 is tight on R;ii) lim
J→∞

lim sup
n→∞

P
{
sup
j≥J

2jαb−1
n max

0≤k<2j
|ξn(tk+1) − ξn(tk)| ≥ ε

}
= 0.Now we are able to go a step further by proving the following theorem. It isworth notiing that nothing is assumed about the dependene struture of (Xn)n≥1in its statement.Theorem 3.1. Let ξn be the partial sums proess built on (Xk)k≥0, de�ned by (2.2).Then (b−1

n ξn)n≥1 is tight in Ho
α[0, 1] if:(1) for every t ∈ [0, 1], (b−1

n ξn(t))n≥1 is tight on R;(2) nαb−1
n max

1≤i≤n
|Xi| onverges in probability to 0;(3) lim

J→∞
lim sup

n→∞
P
{

max
J≤j≤log n

2jαb−1
n max

0≤k<2j
|S[ntk+1] − S[ntk]| ≥ ε

}
= 0for every positive ε.Here and throughout the paper, logn stands for the logarithm with basis 2, sothat 2log n = n. The following orollary suits better our needs.Corollary 3.2. Assume that the Xi's have idential distribution. Then (b−1

n ξn)n≥1is tight in Ho
α[0, 1] if Conditions 1 and 3 of Theorem 3.1 are satis�ed and

∀ε > 0, nP (|X1| ≥ εbnn
−α) −−−−→

n→∞
0. (3.1)Clearly under idential distribution of the Xi's, (3.1) implies Condition 2 inTheorem 3.1. Moreover when (3.1) is enough for (b−1

n ξn)n≥1 to satisfy the invarianepriniple in C[0, 1], then we an drop Condition 1 and onentrate on the veri�ationof (3.1) and Condition 3 to prove the invariane priniple in Ho
α[0, 1].Proof of Theorem 3.1. We have to hek ii). Denote by P0 = P0(J, n) the proba-bility appearing in Condition ii). Then P0 is bounded by P1 + P2 where

P1 := P
{

max
J≤j≤log n

2jαb−1
n max

0≤k<2j
|ξn(tk+1) − ξn(tk)| ≥ ε

}



Hölderian invariane priniple 53and
P2 := P

{
sup

j>log n
2jαb−1

n max
0≤k<2j

|ξn(tk+1) − ξn(tk)| ≥ ε
}
.Estimation of P2. As j > logn, tk+1 − tk = 2−j < 1/n and then with tk in say

[i/n, (i+ 1)/n), either tk+1 is in (i/n, (i+ 1)/n] or belongs to ((i+1)/n, (i+ 2)/n
],where 1 ≤ i ≤ n− 2 depends on k and j.In the �rst ase, noting that the slope of ξn on [i/n, (i+ 1)/n) is exatly nXi+1,we have

|ξn(tk+1) − ξn(tk)| = n|Xi+1|2
−j ≤ 2−jn max

1≤i≤n
|Xi|.If tk and tk+1 are in onseutive intervals, then

|ξn(tk+1) − ξn(tk)| ≤ |ξn(tk) − ξn((i+ 1)/n)| + |ξn((i+ 1)/n) − ξn(tk+1)|

≤ 2−j+1n max
1≤i≤n

|Xi|.With both ases taken into aount we obtain
P2 ≤ P

{
sup

j>log n
2jαb−1

n n2−j+1 max
1≤i≤n

|Xi| ≥ ε
}

= P
{
nb−1

n max
1≤i≤n

|Xi| sup
j>log n

2(α−1)j ≥
ε

2

}

≤ P
{
nαb−1

n max
1≤i≤n

|Xi| ≥
ε

2

}
,so by Condition 2, limn→∞ P2 = 0.Estimation of P1. Let uk = [ntk]. Then uk ≤ ntk ≤ 1 + uk and 1 + uk ≤ uk+1 ≤

ntk+1 ≤ 1 + uk+1. Therefore
|ξn(tk+1) − ξn(tk)| ≤ |ξn(tk+1) − Suk+1

| + |Suk+1
− Suk

| + |Suk
− ξn(tk)|.Sine |Suk

− ξn(tk)| ≤ |X1+uk
| and |ξn(tk+1) − Suk+1

| ≤ |X1+uk+1
| we obtain P1 ≤

P1,1 + P1,2, where
P1,1 := P

{
max

J≤j≤log n
2jαb−1

n max
1≤k≤2j

|Suk+1
− Suk

| ≥
ε

2

}

P1,2 := P
{

max
J≤j≤log n

2jαb−1
n max

1≤i≤n
|Xi| ≥

ε

4

}
.In P1,2, the maximum over j is realized for j = [logn], so limn→∞ P1,2 = 0 byCondition 2.Gathering all the estimates, we �nally obtain

lim
J→∞

lim sup
n→∞

P0 = lim
J→∞

lim sup
n→∞

P1,1 = 0,by Condition 3. �We now turn to the proofs of Theorems 2.1 and 2.2. To avoid disturbing themain �ow of argumentation, we deferred tehnial lemmas to subsetion 3.4.



54 M. Juodis et al.3.2. Short memory.Proof of Theorem 2.1. We need to hek the onvergene of �nite dimensional dis-tributions and tightness. Put σ2
n := ES2

n. By a lassial omputation
σ2

n

n
= E ǫ20

∞∑

i,k=0

aiak

(
1 −

|i− k|

n

)
+
.Due to assumption (A), ∑∞

i,k=0 |aiak| is �nite, so by the bounded onvergenetheorem for the series
σ2

n

n
−−−−→
n→∞

E ǫ20

∞∑

i,k=0

aiak = A2
E ǫ20, (3.2)realling that A :=

∣∣∑∞
i=0 ai

∣∣. In what follows we assume without loss of generalitythat E ǫ20 = 1. As bn and σn are asymptotially equivalent, the C[0, 1] or Ho
α[0, 1]onvergenes of b−1

n ξn and σ−1
n ξn are equivalent. The onvergene of the �nitedimensional distributions of b−1
n ξn to those of the standard Brownian motion Wfollows of the weak onvergene in C[0, 1] of σ−1

n ξn to W . Suh an invarianepriniple may be found for instane in Wu and Min (2005), Theorem 1. Thattheorem involves more general linear �lters and ondition (A) is just a speial ase(see also Remark 4 in Wu and Min, 2005). As a by-produt of this invarianepriniple, Condition 1 in Theorem 3.1 is automatially satis�ed.To hek the tightness, we use Corollary 3.2. First we note that our assump-tion (2.4) implies via Lemma 3.7 below that
lim

t→∞
tpP (|X0| ≥ t) = 0.As bn = An1/2 and 1/p = 1/2−α, we dedue immediately (3.1) from the above limit.So it remains only to hek Condition 3 of Theorem 3.1, that is limJ→∞ lim supn→∞

P1(J, n, ε) = 0, with
P1(J, n, ε) = P

{
max

J≤j≤log n
2jαb−1

n max
0≤k<2j

|Suk+1
− Suk

| ≥ ε
}
, (3.3)where uk = [ntk] = [nk2−j].Let us �x an arbitrary δ > 0, put ∆n := δn1/p and de�ne

ǫ̂l := ǫl1{|ǫl| ≤ ∆n} − E ǫl1{|ǫl| ≤ ∆n}, (3.4)
ǫ̃l := ǫl1{|ǫl| > ∆n} − E ǫl1{|ǫl| > ∆n}. (3.5)Sine E ǫl = 0, ǫl = ǫ̂l + ǫ̃l and we have

uk+1∑

i=uk

Xi =

∞∑

l=−∞

(
uk+1∑

i=uk

ai−l

)
ǫl = Z

(1)
j,k + Z

(2)
j,k ,where

Z
(1)
j,k =

∞∑

l=−∞

(
uk+1∑

i=uk

ai−l

)
ǫ̂l and Z

(2)
j,k =

∞∑

l=−∞

(
uk+1∑

i=uk

ai−l

)
ǫ̃l. (3.6)Hene, we have to prove both

lim
J→∞

lim sup
n→∞

P
(i)
1 (J, n, ε) = 0, i = 1, 2, (3.7)



Hölderian invariane priniple 55where for i = 1, 2,
P

(i)
1 (J, n, ε) := P

{
max

J≤j≤log n
2αj max

0≤k<2j

∣∣Z(i)
j,k

∣∣ > bn
ε

2

}
.To estimate P (2)

1 (J, n, ε), �rst apply Chebyshev inequality to obtain
P

(2)
1 (J, n, ε) ≤

∑

J≤j≤log n

22αjb−2
n 4ε−2

∑

0≤k<2j

E

∣∣Z(2)
j,k

∣∣2. (3.8)Next, observe that by stationarity, ∑∞
l=−∞

∣∣∑uk+1

i=uk
ai−l

∣∣2E ǫ20 = σ2
uk+1−uk

, wheneit follows via (3.2) that for some onstant c,
∞∑

l=−∞

∣∣∣∣∣

uk+1∑

i=uk

ai−l

∣∣∣∣∣

2

≤ c(uk+1 − uk). (3.9)This gives
E
∣∣Z(2)

j,k

∣∣2 =

∞∑

l=−∞

(
uk+1∑

i=uk

ai−l

)2

E |ǫ̃l|
2 ≤ c(uk+1 − uk)E |ǫ̃0|

2 ≤ 2n2−jcE |ǫ̃0|
2.Now using inequality (3.23) in Lemma 3.4 and realling that ∆n = δn1/p, b2n = A2nand 1/p = 1/2 − α, we obtain

P
(2)
1 (J, n, ε) ≤

8cpδ2−p

(p− 2)ε2

∑

J≤j≤log n

22αjb−2
n 2jn2−jn2/p−1 sup

t≥∆n

tpP (|ǫ0| > t)

=
8cpδ2−p

(p− 2)A2ε2
n2/p−1 sup

t≥∆n

tpP (|ǫ0| > t)

log n∑

j=J

22αj

≤
8cpδ2−p

(p− 2)A2ε2
n2/p−1 sup

t≥∆n

tpP (|ǫ0| > t)
22αn2α

22α − 1

≤
16cpδ2−p

(p− 2)A2ε2(22α − 1)
sup

t≥∆n

tpP (|ǫ0| > t).Thus (2.4) gives
lim

n→∞
P

(2)
1 (J, n, ε) = 0. (3.10)To estimate P (1)

1 (J, n, ε), let us �x some q > p and apply the Markov inequalityof order q to start with:
P

(1)
1 (J, n, ε) ≤

2q

εqbqn

∑

J≤j≤log n

∑

0≤k<2j

2qαj
E
∣∣Z(1)

j,k

∣∣q. (3.11)By Rosenthal's inequality, see (3.19) in Lemma 3.3 below,
E

∣∣Z(1)
j,k

∣∣q ≤ Rq

(
∞∑

l=−∞

∣∣∣∣∣

uk+1∑

i=uk

ai−l

∣∣∣∣∣

2

E |ǫ̂l|
2

)q/2

+Rq

∞∑

l=−∞

∣∣∣∣∣

uk+1∑

i=uk

ai−l

∣∣∣∣∣

q

E |ǫ̂l|
q. (3.12)As the series ∑∞

i=0 |ai| onverges, we have
A0 := sup

I⊂N

∣∣∣∣∣
∑

i∈I

ai

∣∣∣∣∣ <∞.



56 M. Juodis et al.Thus from (3.9) we get ∑∞
l=−∞

∣∣∑uk+1

i=uk
ai−l

∣∣q ≤ cAq−2
0 (uk+1 − uk) ≤ 2cAq−2

0 n2−j.From now on, we denote by C a onstant whih may depend of ε, q, α, c, A, A0and of the distribution of ǫ0. Its expliit value is allowed to vary from one lineto another. Going bak to Rosenthal inequality with the above estimate and theinequalities (3.22) and (3.25), we get for n large enough:
E

∣∣Z(1)
j,k

∣∣q ≤ C
(
nq/22−jq/2 + δq−pnq/p2−j

)
.Thus we an bound P (1)

1 (J, n, ε) by
P

(1)
1 (J, n, ε) ≤ C

∑

J≤j≤log n

2(1−q/2+qα)j + Cδq−pnq(1/p−1/2)
∑

J≤j≤log n

2qαj

≤ Cn1−q(1/2−α) + Cδq−p,realling that 1/p− 1/2 + α = 0. Moreover, as q > p = (1/2 − α)−1, we get
lim sup

n→∞
P

(1)
1 (J, n, ε) ≤ Cδq−p.This together with (3.10) leads to

lim sup
n→∞

P1(J, n, ε) ≤ Cδq−p.As this last limsup does not depend on δ and δ may be hoosen arbitrarily small,we onlude that lim supn→∞ P1(J, n, ε) = 0, whene Condition 3 of Theorem 3.1is satis�ed. �3.3. Long memory. We now prove Theorem 2.2. For notational simpli�ations, weassume without loss of generality that E ǫ20 = 1. Realling that by Wu and Min(2005, Th.2), ES2
n is asymptotially equivalent to b2n, one an �nd a onstant κsuh that for every n ≥ 1,

σn = (ES2
n)1/2 ≤ κbn. (3.13)By the same referene, the square integrability of ǫ0 is enough to imply the weak-

C[0, 1] onvergene to WH of σ−1
n ξn or equivalently of b−1

n ξn. So, aording tothe remark after Corollary 3.2, we only need to hek (3.1) and Condition 3 ofTheorem 3.1 to obtain the weak Ho
α[0, 1] onvergene of b−1

n ξn to WH .Proof of the ase 0 < α < H − 1/2 in Theorem 2.2. The onvergene (3.1) followsimmediately from Chebyshev inequality:
nP
(
|X1| ≥ εbnn

−α
)
≤
n2α+1

ε2b2n
EX2

1 = O
(
n2α+1−2Hℓ(n)−2

)
,sine α < H − 1/2.Let us keep the same notation P1(J, n, ε) as in (3.3) for the probability involvedin Condition 3. By stationarity of (Xi)i∈N and (3.13), we have

E
(
Suk+1

− Suk

)2
= ES2

uk+1−uk
≤ κ2c2β(2n2−j)2Hℓ(2n2−j)2.



Hölderian invariane priniple 57In view of this estimate, applying Chebyshev inequality leads to
P1(J, n, ε) ≤

4Hκ2

ε2

∑

J≤j≤log n

ℓ(2n2−j)2

ℓ(n)2
2(2α+1−2H)j

≤
4Hκ2M2

ε2(1 − 22α+1−2H)
2(2α+1−2H)J ,noting that 2α+ 1 − 2H < 0 and that by slow variation of ℓ

M := sup
n≥1

ℓ(2n)

ℓ(n)
<∞. (3.14)This entails limJ→∞ lim supn→∞ P1(J, n, ε) = 0, so the proof of the ase α < H −

1/2 is omplete. �Proof of the ase H − 1/2 < α < H in Theorem 2.2. To hek onvergene (3.1),it su�es to show that for any positive ε, nP (|X1| ≥ εnH−αℓ(n)) = o(1). ByLemma 3.7 below, the hypothesis (2.10) enables us to write P (|X1| ≥ t) = t−pg(t),with limt→∞ g(t) = 0. Therefore
nP
(
|X1| ≥ εnH−αℓ(n)

)
= ε−pn1−p(H−α)ℓ(n)−pg

(
εnH−αℓ(n)

)

= ε−pℓ(n)−pg
(
εnH−αℓ(n)

)
= o(1),sine p = (H − α)−1 and α < H . So (3.1) is satis�ed.In order to hek Condition 3 of Theorem 3, we use the same trunation tehnisas in the short memory ase, with the same level ∆n = δn1/p but with 1/p = H−αinstead of 1/2 − α. With obvious adaptations, we also keep the same notations(3.4)�(3.6) and P (i)

1 (J, n, ε). We have again to prove (3.7).To estimate P (2)
1 (J, n, ε), going bak to (3.8), we need some bound for E |Z

(2)
j,k |

2.Write X̂k, X̃k, Ŝn, S̃n, for the linear proesses obtained by substituting ǫ by ǫ̂ or ǫ̃respetively and their orresponding partial sums. Then we have
Z

(2)
j,k = S̃uk+1

− S̃ukwhene by stationarity and (3.13),
E

∣∣Z(2)
j,k

∣∣2 = E S̃2
uk+1−uk

≤ κ2c2β(uk+1 − uk)2Hℓ2(uk+1 − uk)E ǫ̃0
2

≤ 4κ2c2βn
2H2−2Hjℓ2(2n2−j)E ǫ̃0

2.Putting γ := 1 + 2α− 2H and pluging the above estimate into (3.13) leads to
P

(2)
1 (J, n, ε) ≤

16κ2

ε2
E ǫ̃0

2
∑

J≤j≤log n

2γj ℓ
2(2n2−j)

ℓ2(n)
(3.15)

≤
32M2κ2

ε2(2γ − 1)
E ǫ̃0

2nγ . (3.16)Observing that γ = 1 + 2α − 2H = 1 − 2/p and estimating E ǫ̃0
2 by the inequal-ity (3.23) in Lemma 3.4 provides

P
(2)
1 (J, n, ε) ≤

32M2κ2p

ε2(2γ − 1)(p− 2)
sup

t≥∆n

tpP (|ǫ| > t).



58 M. Juodis et al.Now from hypothesis (2.10) we get
lim

n→∞
P

(2)
1 (J, n, ε) = 0. (3.17)To estimate P (1)

1 (J, n, ε), looking bak at (3.11) and (3.12), we see that the onlyreal hange is in the ontrol of ∣∣∑uk+1

i=uk
ψi−l

∣∣q. To this end, let us observe that
sup
k≥0

∣∣∣∣∣

k∑

i=k−n+1

ψi

∣∣∣∣∣ = sup
k≥0

∣∣∣∣∣
∑

1+(k−n)+<i≤k

ℓ(i)

iβ

∣∣∣∣∣

≤ sup
k≥0

ℓ(k)

∫ k

(k−n)+

dt

tβ

= sup
k≥0

ℓ(k)
(
k1−β − (k − n)1−β

+

)

= sup
k≥n

ℓ(k)
(
k1−β − (k − n)1−β

)
,where the last equality relies on the inreasingness on [0, n] of the funtion t 7→

ℓ(t)
(
t1−β − (t− n)1−β

+

). Using Lemma 3.6 below leads to
sup
k≥0

∣∣∣∣∣

k∑

i=k−n+1

ψi

∣∣∣∣∣ ≤ cn1−βℓ(n),with a onstant c depending on β and ℓ. Now we have
∣∣∣∣∣

uk+1∑

i=uk

ψi−l

∣∣∣∣∣

q

≤ cq−2(uk+1 − uk)(q−2)(1−β)ℓq−2(uk+1 − uk)σ2
uk+1−uk

≤ 2qκ2cq−2(n2−j)q(H−1/2)+1ℓq(2n2−j).From now on, we denote by C a onstant whih may depend of ε, q, p, α, c, H , κand of the distribution of ǫ0. Its expliit value is allowed to vary from one line toanother. Going bak to Rosenthal inequality (3.12) with the above estimate andthe inequalities (3.22) and (3.25), we get for n large enough:
E

∣∣Z(1)
j,k

∣∣q ≤ C
(
nqH2−qHjℓq(2n2−j) + δq−pnq(H−1/2+1/p)2−(qH−q/2+1)jℓq(2n2−j)

)
.Pluging this estimate into (3.11), we obtain

P
(1)
1 (J, n, ε) ≤

C

nHqℓq(n)

∑

J≤j≤log n

nqH2(1−qH+qα)jℓq(2n2−j)

+
Cδq−p

nHqℓq(n)

∑

J≤j≤log n

nq(H−1/2+1/p)2q(α−H+1/2)jℓq(2n2−j)

≤C
∑

J≤j≤log n

2(1−qH+qα)j + Cδq−pnq(−1/2+1/p)
∑

J≤j≤log n

2q(α−H+1/2)j

≤C2(1−qH+qα)J + Cδq−p.From this bound we get
lim

J→∞
lim sup

n→∞
P

(1)
1 (J, n, ε) ≤ Cδq−p.



Hölderian invariane priniple 59Together with (3.17), this gives
lim

J→∞
lim sup

n→∞
P1(J, n, ε) ≤ Cδq−p.As this last limit does not depend on δ and δ may be hoosen arbitrarily small,we onlude that limJ→∞ lim supn→∞ P1(J, n, ε) = 0, whene Condition 3 of The-orem 3.1 is satis�ed. �Proof of the ase α = H − 1/2 in Theorem 2.2. The proof of this speial ase is ob-tained by an adaptation of the proof of the ase H − 1/2 < α < H . We shall justmention the relevant modi�ations in the above arguments. Now p = 2 and wehoose as trunation level ∆n = n1/2. First going bak to (3.15), we note that

γ = 0, so we have to replae the bound (3.16) by
P

(2)
1 (J, n, ε) ≤

16κ2

ε2
E ǫ̃0

2 logn.Under the assumption (2.9), it follows from inequality (3.27) in Lemma 3.5 belowthat E ǫ̃0
2 = o((log n)−1), so we get again lim supn→∞ P

(2)
1 (J, n, ε) = 0.Next, hoosing q > 3 and applying (3.27) in Lemma 3.5, the previous estimateof E |Z

(1)
j,k |

q beomes (with the same onvention on the onstant C)
E

∣∣Z(1)
j,k

∣∣q ≤ C
(
nqH2−qHjℓq(2n2−j) + nqH(lnn)−22−(qH−q/2+1)jℓq(2n2−j)

)
,whih leads to

P
(1)
1 (J, n, ε) ≤ C

∑

J≤j≤log n

2(1−qH+qα)j +
C

(lnn)2

∑

J≤j≤log n

2−jq(H−1/2−α)

≤ C2−J/2 + C
logn

(lnn)2
.Hene lim supn→∞ P

(1)
1 (J, n, ε) ≤ C2−J/2 and limJ→∞ lim supn→∞ P1(J, n, ε) = 0,whih ompletes the proof. �3.4. Misellaneous tehnial tools. We give now a version of Rosenthal inequalityfor linear proesses. Reall �rst the lassial Rosenthal inequality of order q > 2.It states that for any �nite set I of independent random variables Yi (i ∈ I) suhthat E |Yi|

q <∞ (for every i ∈ I), the sum SI :=
∑

i∈I Yi satis�es
E

∣∣SI

∣∣q ≤ Rq

(
(
VarSI)

q/2 +
∑

i∈I

E |Yi|
q

)
, (3.18)where Rq is a universal onstant depending only on q.Lemma 3.3. Let X be the series

X =

∞∑

i=0

aiǫi, with ∞∑

i=0

a2
i <∞,where the random variables ǫi are i.i.d., E ǫ0 = 0 and E |ǫ0|

q < ∞ for some q > 2.Then the series ∑∞
i=0 aiǫi onverges in Lq sense and

E |X |q ≤ Rq

(
(
E ǫ20

)q/2

(
∞∑

i=0

a2
i

)q/2

+ E |ǫ0|
q

∞∑

i=0

|ai|
q

)
, (3.19)



60 M. Juodis et al.where Rq is the universal onstant of the Rosenthal inequality (3.18).Proof . Rosenthal inequality (3.18) applied to the random variables Yi = aiǫi withany non empty subset I of N reads
E

∣∣∣∣∣
∑

i∈I

aiǫi

∣∣∣∣∣

q

≤ Rq

(
(
E ǫ20

)q/2

(
∑

i∈I

a2
i

)q/2

+ E |ǫ0|
q

∞∑

i∈I

|ai|
q

)
.It follows immediately that the series ∑∞

i=0 aiǫi ful�ls the Cauhy riterion in Lqand hene onverges in this spae. Now (3.19) follows, taking I = {0, 1, . . . , n} inthe above inequality and letting n go to in�nity. �Lemma 3.4. Let Y be a random variable suh that
Λp(Y ) := sup

t>0
tpP (|Y | > t) <∞ for some p > 2. (3.20)For any positive T , write

Ŷ := Y 1{|Y | ≤ T }, Ỹ := Y 1{|Y | > T }.Write also Ŷ ′ := Ŷ − E Ŷ and Ỹ ′ := Ỹ − E Ỹ . Then the following estimates arevalid with any q > p.
E
∣∣Ŷ
∣∣q ≤

Λp(Y )

q − p
T q−p, (3.21)

Var Ŷ ≤ EY 2, (3.22)
Var Ỹ ≤

p

p− 2
T 2−p sup

t≥T
tpP (|Y | > t). (3.23)If moreover EY = 0, then

∣∣E Ŷ
∣∣ ≤ p

p− 1
T 1−p sup

t≥T
tpP (|Y | > t), (3.24)

E
∣∣Ŷ ′
∣∣q ≤

2qΛp(Y )

q − p
T q−p for T ≥ T0, (3.25)where T0 depends of p, q and of the distribution of Y .Proof . To hek (3.21), write

E

∣∣Ŷ
∣∣q =

∫ ∞

0

qsq−1P (
∣∣Ŷ
∣∣ > s) ds =

∫ T

0

qsq−1P (
∣∣Ŷ
∣∣ > s) ds

≤

∫ T

0

qsq−1P (|Y | > s) ds

≤ sup
t>0

tpP (|Y | > t)

∫ T

0

qsq−p−1 ds

=
T q−p

q − p
sup
t>0

tpP (|Y | > t).



Hölderian invariane priniple 61Next, (3.22) is obvious sine Var Ŷ ≤ E Ŷ 2 ≤ EY 2. For (3.23), noting that
P (|Ỹ | > s) = P (|Y | > max(s, T )), we get

Var Ỹ ≤ E Ỹ 2 =

∫ T

0

2sP (|Y | > T ) ds+

∫ ∞

T

2sP (|Y | > s) ds

= T 2P (|Y | > T ) +

∫ ∞

T

2s1−pspP (|Y | > s) ds

≤ T 2−p sup
t≥T

tpP (|Y | > t) +
2

p− 2
T 2−p sup

t≥T
tpP (|Y | > t),whih establishes (3.23).Similarly, if EY = 0, then E Ŷ = −E Ỹ and we get

∣∣E Ŷ
∣∣ ≤ E

∣∣Ỹ
∣∣ =

∫ T

0

P (|Y | > T ) ds+

∫ ∞

T

P (|Y | > s) ds

= TP (|Y | > T ) +

∫ ∞

T

s−p
(
spP (|Y | > s)

)
ds

=

(
T 1−p +

T 1−p

p− 1

)
sup
t≥T

tpP (|Y | > t),whih gives (3.24).By onvexity, E ∣∣Ŷ ′
∣∣q ≤ 2q−1

(
E
∣∣Ŷ
∣∣q +

∣∣E Ŷ
∣∣q). By (3.24), ∣∣E Ŷ

∣∣q goes to 0 when
T goes to in�nity, whene (3.25) follows. �Lemma 3.5. With the notations of lemma 3.4, assume that

sup
t>1

(t ln t)2P (|Y | > t) <∞. (3.26)Then with r(T ) := supt≥T (t ln t)2P (|Y | > t),
Var Ỹ ≤

3r(T )

lnT
, for T ≥ e. (3.27)If moreover EY = 0, then for any q > 3,

E
∣∣Ŷ ′
∣∣q = O

(
T q−2(ln T )−2

)
. (3.28)Proof . For every T > 1, we an write

Var Ỹ ≤ E Ỹ 2 = T 2P (|Y | > T ) +

∫ ∞

T

2sP (|Y | > s) ds

≤
r(T )

(ln T )2
+

∫ ∞

T

2

s(ln s)2
s2(ln s)2P (|Y | > s) ds

≤
r(T )

(ln T )2
+ r(T )

∫ ∞

T

2

s(ln s)2
ds

=

(
1

(lnT )2
+

2

lnT

)
r(T ),whene (3.27) follows.To hek (3.28), we note �rst that (3.24) remains valid with p = 2 and pro-vides the estimate |E Ŷ |q = o(T−q). Hene it is enough to show that E |Ŷ |q =

O
(
T q−2(lnT )−2

). To do that, reall that E

∣∣Ŷ
∣∣q ≤

∫ T

0 qsq−1P (|Y | > s) ds andsplit this integral in ∫ T0

0 +
∫ T

T0
, for T > T0 where T0 := exp( 2

q−3 ) > 1 is hoosen



62 M. Juodis et al.suh that sq−3(ln s)−2 inreases on [T0,∞). This learly redues the problem tothe following elementary estimation of ∫ T

T0
:

∫ T

T0

qsq−1P (|Y | > s) ds =

∫ T

T0

qsq−3

(ln s)2
(s ln s)2P (|Y | > s) ds

≤ (T − T0)
qT q−3

(lnT )2
sup
t≥T0

(t ln t)2P (|Y | > t).

�Lemma 3.6. If ℓ is non dereasing and normalized slowly varying, then for any
0 < β < 1, there is a onstant C = C(β, ℓ) suh that for every n ≥ 1,

sup
k≥n

ℓ(k)
(
k1−β − (k − n)1−β

)
≤ Cn1−βℓ(n). (3.29)Proof . First as 1 − β < 1, we learly have k1−β ≤ (k − n)1−β + n1−β for every

k ≥ n, from whih we get
max

n≤k≤2n
ℓ(k)

(
k1−β − (k − n)1−β

)
≤ ℓ(2n)n1−β. (3.30)As ℓ is slowly varying, there is a onstant C1 = C1(ℓ) suh that ℓ(2n) ≤ C1ℓ(n).Next, by onavity of the funtion t1−β on [0,∞), we have for every t > n

t1−β − (t− n)1−β ≤ (1 − β)(t− n)−βn. (3.31)Now for every t ≥ 2n,
(t− n)−βℓ(t) = t−βℓ(t)

( t

t− n

)β

≤ 2βt−βℓ(t).Sine ℓ is normalized slowly varying, t−βℓ(t) is ultimately dereasing, so for largeenough n, t−βℓ(t) realizes its maximum on [2n,∞) at t = 2n. So going bak to(3.31), we an �nd a onstant C2 depending on β and ℓ suh that for every k > 2n,
ℓ(k)

(
t1−β − (t− n)1−β

)
≤ C2n

1−βℓ(n) (3.32)Now the onlusion follows from (3.30) and (3.32). �Lemma 3.7. It holds
lim

t→∞
tpP (|X0| ≥ t) = 0 (3.33)if and only if

lim
t→∞

tpP (|ǫ0| ≥ t) = 0. (3.34)Proof . To prove the su�ieny of (3.34) for (3.33), let us �x an arbitrary positive
δ and de�ne
ǫ̂j := ǫj1{|ǫj| ≤ δt} − E ǫj1{|ǫj| ≤ δt}, ǫ̃j := ǫj1{|ǫj| > δt} − E ǫj1{|ǫj| > δt}.Noting that ǫj = ǫ̂j + ǫ̃j , we have

tpP (|X0| ≥ 2t) ≤ tpP1 + tpP2,where
P1 := P

(
∞∑

j=0

aj ǫ̂j ≥ t

)
, P2 := P

(
∞∑

j=0

aj ǫ̃j ≥ t

)
.



Hölderian invariane priniple 63To estimate P2, we apply Chebyshev's inequality ombined with inequality (3.23)in Lemma 3.4. Puting c =
∑∞

j=0 a
2
j and cp = pc/(p− 2), this gives:

P2 ≤
1

t2
E

(
∞∑

j=0

aj ǫ̃j

)2

=
c

t2
E |ǫ̃0|

2 ≤ cpδ
2−pt−p sup

s≥δt
spP (|ǫ0| ≥ s).To estimate P1, we ombine Markov and Rosenthal inequalities of order q > pwith inequalities (3.22) and (3.25) in Lemma 3.4. This gives

P1 ≤ t−q
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+

∞∑
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E |ǫ̂0|

q

]

≤ Ct−q
(
1 + δq−ptq−p

)
= C

(
t−q + δq−pt−p

)
,where the onstant C depends on p, q, the sequene (ai) and the distribution of ǫ0.Gathering the estimates of P1 and P2 gives

tpP (|X0| > 2t) ≤ cpδ
2−p sup

s≥δt
spP (|ǫ0| ≥ s) + C(t−q+p + δq−p),whene

lim sup
t→∞

tpP (|X0| > 2t) ≤ Cδq−p.As δ may be hoosen arbitrarily small, as q > p and C does not depend on δ, thesu�ieny of (3.34) follows.Let us prove the neessity of (3.34). We have
X0 = a0ǫ0 +

∞∑

i=1

aiǫ−i = a0ǫ0 + Z.If t0 > 0 is suh that P (|Z| ≤ t0) ≥ 1/2, we have for t > t0

P (|X0| ≥ t) ≥ P (|a0||ǫ0| ≥ t+ to)P (|Z| ≤ t0) ≥
1

2
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