
Alea 5, 47�64 (2009)Hölderian invarian
e prin
iple for linear pro
essesMindaugas Juodis, Alfredas Ra£kauskas and Charles SuquetDepartment of Mathemati
s and Informati
s, Vilnius University, Naugarduko 24, LT-2006Vilnius, Lithuania and Institute of Mathemati
s and Informati
s, Akademijos str. 4, LT-08663, Vilnius, LithuaniaE-mail address: Mindaugas.Juodis�mif.vu.ltDepartment of Mathemati
s and Informati
s, Vilnius University, Naugarduko 24, LT-2006Vilnius, Lithuania and Institute of Mathemati
s and Informati
s, Akademijos str. 4, LT-08663, Vilnius, LithuaniaE-mail address: alfredas.ra
kauskas�maf.vu.ltLaboratoire P. Painlevé, UMR 8524 CNRS Université Lille I, Bât M2, Cité S
ienti�que,F-59655 Villeneuve d'As
q Cedex, Fran
eE-mail address: Charles.Suquet�math.univ-lille1.frAbstra
t. Let (ξn)n≥1 be the polygonal partial sums pro
esses built on the linearpro
essesXn =
∑

i≥0 aiǫn−i, where (ǫi)i∈Z are i.i.d., 
entered and square integrablerandom variables with ∑i≥0 a
2
i < ∞. We investigate fun
tional 
entral limit the-orem for ξn in the Hölder spa
es Ho

α[0, 1] of fun
tions x : [0, 1] → R su
h that
|x(t + h) − x(t)| = o(hα) uniformly in t. When ∑i≥0 |ai| < ∞ (short memory
ase), we show that n−1/2ξn 
onverges weakly in Ho

α[0, 1] to some Brownian motionunder the optimal assumption that P (|ǫ0| ≥ t) = o(t−p), where 1/p = 1/2 − α.This extends the Lamperti invarian
e prin
iple for i.i.d. Xn's. When ai = ℓ(i)i−β,
1/2 < β < 1, with ℓ positive, in
reasing and slowly varying, (Xn)n≥1 has longmemory. The limiting pro
ess for ξn is then the fra
tional Brownian motion WHwith Hurst index H = 3/2 − β and the normalizing 
onstants are bn = cβn

Hℓ(n).For 0 < α < H − 1/2, the weak 
onvergen
e of b−1
n ξn to WH in Ho

α[0, 1] is ob-tained under the mild assumption that E ǫ20 <∞. For H − 1/2 < α < H , the same
onvergen
e is obtained under P (|ǫ0| ≥ t) = o(t−p), where 1/p = H − α.1. Introdu
tionIn the 
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48 M. Juodis et al.and partial sum pro
esses have been extensively studied in the literature. It wouldbe hard to 
ompile a 
omplete list. Here we only mention some representatives:Davydov (1970), Gorodetskii (1977), Hall and Heyde (1980), Philips and Solo (1992)and Hosking (1996). See referen
es therein for further ba
kground. There arebasi
ally two types of results. If the linear �lter is absolutely summable, then the
ovarian
es of (Xn) are summable and one says that (Xn) is short-range dependent(SRD). Under SRD, the normalizing 
onstant for the sum Sn := X1 + · · · + Xnis of the same order as that in the 
lassi
al CLT for i.i.d. observations. When thelinear �lter is not summable, then (Xn) is long-range dependent (LRD) and thenormalizing 
onstant for Sn is typi
ally larger than square root of n. Fra
tionalARIMA model (Hosking, 1981) is an important 
lass whi
h may exhibit LRD. Fora survey of LRD, we refer to Doukhan et al. (2003).Invarian
e prin
iples (or fun
tional 
entral limit theorems) play an importantrole in e
onometri
s and statisti
s Sto
k (1994). For example, to obtain asymp-toti
 distributions of unit root test statisti
s, resear
hers have applied invarian
eprin
iples of various forms; see Sowell (1990) and Wu (2006) among others.There is a large amount of papers whi
h provide invarian
e prin
iples for variouslinear pro
esses in the framework of the 
lassi
al fun
tion spa
es, i.e. the spa
e
C[0, 1] of 
ontinuous fun
tions or the Skorokhod spa
e D[0, 1] of 
àdlàg fun
tions.Our 
urrent 
ontribution aims to investigate invarian
e prin
iple for linear pro
essesin spa
es having a stronger topology than C[0, 1].The weak 
onvergen
e of a sequen
e of sto
hasti
 pro
esses in some fun
tionsspa
e F provides results about the asymptoti
 distribution of fun
tionals of thepaths whi
h are 
ontinuous with respe
t to the topology of F . Sin
e the Hölderspa
es are topologi
ally embedded in C[0, 1] and in D[0, 1], they support more 
on-tinuous fun
tionals. From this point of view, the alternative framework of Hölderspa
es gives fun
tional limit theorems of a wider s
ope. This 
hoi
e may be relevantas soon as the paths of sto
hasti
 pro
esses and the limit pro
ess ξ (like e.g. theBrownian motion and the Fra
tional Brownian motion) share some Hölder regular-ity, roughly speaking ξ(t + h) − ξ(t) = O(hα) for some 0 < α < 1. The �rst resultin this dire
tion seems to be Lamperti's Hölderian invarian
e prin
iple Lamperti(1962) for the polygonal partial sums pro
ess n−1/2ξn, where ξn is the polygonalline indexed by [0, 1] with verti
es (k/n, Sk), k = 0, 1, . . . , n and the underlying ran-dom variables Xi are i.i.d. with EX1 = 0 and E |X1|

q < ∞ for some q > 2. Thisinvarian
e prin
iple was extended under some weak-dependan
e assumptions on the
Xi's by Hamadou
he (2000). Both results 
ost a stronger moment assumption thanthe 
lassi
al square integrability of the Xi's, whi
h is ne
essary and su�
ient in the
C[0, 1] framework. Ra£kauskas and Suquet (2004b), found the right pri
e to be paidto obtain an Hölderian invarian
e prin
iple. They proved that for 0 < α < 1/2,
n−1/2ξn 
onverges in distribution to a Brownian motion in the Hölder spa
e Ho

α[0, 1](pre
ise de�nition is given below) if and only if
lim

t→∞
tp(α)P (|X1| > t) = 0, where p(α) =

1
1
2 − α

. (1.1)Contrastly Ra£kauskas and Suquet (2001) show how one 
an relax (1.1) in EX2
1 <

∞ by using selfnormalization and adaptive 
onstru
tion of the partial sums pro
ess.These theoreti
al results found statisti
al appli
ations in the problem of dete
tionof a 
hanged segment in data Ra£kauskas and Suquet (2004a, 2006).
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e prin
iple 49For re
ent result and a survey in the domain of the invarian
e prin
iples for thelinear pro
esses we refer to Merlevède et al. (2006) and Peligrad and Utev (2005,2006a,b). These papers fully analyze the asymptoti
 properties of the partial sumsof the linear pro
ess, and extend the results for various noise pro
esses, in theframework of the spa
es D[0, 1] or C[0, 1]. The same holds for other approa
hesinvolving invarian
e prin
iples for the linear pro
esses (see Wu and Min, 2005; Wu,2006 with 
omprehensive list of bibliography).In this paper we 
onsider the polygonal partial sums pro
esses (ξn)n≥1 builton the linear pro
esses Xn =
∑

i≥0 aiǫn−i, where (ǫi)i∈Z are i.i.d., 
entered andsquare integrable random variables with ∑i≥0 a
2
i < ∞. We investigate fun
tional
entral limit theorem for ξn in the Hölder spa
es Ho

α[0, 1]. When ∑i≥0 |ai| < ∞(short memory 
ase), we show that n−1/2ξn 
onverges weakly in Ho
α[0, 1] to someBrownian motion under the optimal assumption that P (|ǫ0| ≥ t) = o(t−p), where

1/p = 1/2−α. This extends the Lamperti invarian
e prin
iple for i.i.d. Xn's. When
ai = ℓ(i)i−β, 1/2 < β < 1, with ℓ positive, in
reasing and slowly varying, (Xn)n≥1has long memory. The limiting pro
ess for ξn is then the fra
tional Brownianmotion WH with Hurst index H = 3/2 − β and the normalizing 
onstants are
bn = cβn

Hℓ(n). For 0 < α < H − 1/2, the weak 
onvergen
e of b−1
n ξn to WH in

Ho
α[0, 1] is obtained under the mild assumption that E ǫ20 < ∞, supplementing Wuand Min (2005) invarian
e prin
iple in C[0, 1]. For H − 1/2 < α < H , the same
onvergen
e is obtained under P (|ǫ0| ≥ t) = o(t−p), where 1/p = H − α. The 
ase

α = H − 1/2 is also dis
ussed.The paper is organized as follows. Se
tion 2 gives the notations and results.Se
tion 3 presents the proofs, starting with a general theorem on Hölderian invari-an
e prin
iples for dependent variables whi
h enables us to simplify the proofs ofour main results. It may be also of independent interest. Te
hni
al lemmas aregathered in Se
tion 4.2. Results2.1. Notations. For 0 < α < 1, we denote by Ho
α[0, 1] the set of real valued 
ontin-uous fun
tions x : [0, 1] → R su
h that

lim
δ→0

wα(x, δ) = 0,where
wα(x, δ) = sup

0<|t−s|<δ

|x(t) − x(s)|

|s− t|α
.The set Ho

α[0, 1] is a separable Bana
h spa
e when endowed with the norm ||x||α =
|x(0)| + wα(x, 1). Let ξn (n ≥ 1) and ξ be random elements in Ho

α[0, 1]. The weak
onvergen
e in Ho
α[0, 1] of ξn to ξ, denoted by

ξn
Ho

α−−−−→
n→∞

ξmeans that for every fon
tional f : Ho
α[0, 1] → R, 
ontinuous with respe
t to thestrong topology of Ho

α[0, 1], the sequen
e of random variables f(ξn) 
onverges to
f(ξ) in distribution.



50 M. Juodis et al.For the sequen
e (Xn)n≥1 of random variables, put
S0 := 0, Sn :=

n∑

i=1

Xi (2.1)and de�ne the partial sums pro
ess ξn by
ξn(t) := S[nt] + (nt− [nt])X[nt]+1, t ∈ [0, 1], (2.2)where [nt] denotes the integer part of nt. As polygonal lines, the paths of ξn belongto Ho

α[0, 1] for every α < 1.Re
all that the standard fra
tional Brownian motion WH , with the Hurst index
H is a zero mean Gaussian pro
ess with 
ovarian
e

EWH(t)WH(s) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
, 0 ≤ s, t ≤ 1.The spe
ial 
ase H = 1/2 gives the Brownian motion denoted W . The limitingpro
esses ξ involved in this paper are eitherW , eitherWH with positively 
orrelatedin
rements, that is H > 1/2. Almost all paths of WH are Hölder 
ontinuous of anyorder α stri
tly less than H .The linear pro
esses (Xk)k≥0 
onsidered throughout the paper are of the form

Xk =

∞∑

i=0

aiǫk−i, k = 0, 1, . . . , (2.3)where (ai, i ∈ Z) is a given sequen
e of real numbers with ai = 0 for i < 0 and
(ǫi, i ∈ Z) is a sequen
e of independent identi
ally distributed random variableswith E ǫ0 = 0 and E |ǫ0|

2 < ∞. Under these assumptions, the series in (2.3)
onverges in L2 and almost surely and the sequen
e of random variables (Xk)k≥0is stationary.2.2. Linear pro
esses with short memory.Theorem 2.1. Let (Xk)k≥0 be the linear pro
ess de�ned by (2.3) and assume that
(ai)i≥0 satis�es:

(A)

∞∑

i=0

|ai| <∞ and A :=

∣∣∣∣∣

∞∑

i=0

ai

∣∣∣∣∣ > 0.Let Sn and ξn be the partial sums and partial sums pro
ess built on (Xk)k≥0, de�nedby (2.1) and (2.2). Put b2n = A2nE ǫ20, bn > 0. Then for every 0 < α < 1/2,
b−1
n ξn

Ho
α−−−−→

n→∞
Wif

lim
t→∞

tpP (|ǫ0| > t) = 0, where p =
1

1
2 − α

. (2.4)Condition (2.4) is optimal be
ause the 
lass of linear pro
esses 
onsidered in-
ludes the spe
ial 
ase where Xk = ǫk and it is known that in this 
ase (2.4) isne
essary for the weak-Ho
α[0, 1] 
onvergen
e of n−1/2ξn to W , see Ra£kauskas andSuquet (2004b).



Hölderian invarian
e prin
iple 512.3. Linear pro
esses with long memory. Now we 
onsider a 
lass of linear pro
esseswhose asso
iated partial sums pro
ess 
onverges to a fra
tional Brownian motion
WH with H > 1/2.Theorem 2.2. For 1/2 < β < 1, let (Xk)k≥0 be the linear pro
ess

Xk =

∞∑

j=0

ψjǫk−j , with ψ0 = 1, ψj =
ℓ(j)

jβ
, j ≥ 1, (2.5)where ℓ is a positive non de
reasing normalized slowly varying fun
tion and (ǫj , j ∈

Z) is a sequen
e of i.i.d. random variables with E ǫ0 = 0 and E |ǫ0|
2 is �nite. Put

H :=
3

2
− β. (2.6)Let Sn and ξn be the partial sums and partial sums pro
ess built on (Xk)k≥0, de�nedby (2.1) and (2.2). Put

bn = nHℓ(n)cβ
(
E ǫ20

)1/2
, (2.7)with

cβ := (1 − β)−2

∫ ∞

0

(
x1−β − (x− 1)1−β

+

)2
dx, where x+ := max(0;x).Then for 0 < α < H, the weak-Hölder 
onvergen
e

b−1
n ξn

Ho
α−−−−→

n→∞
WH (2.8)is obtained in the following 
ases.(1) For 0 < α < H − 1/2, (2.8) holds true if E ǫ20 <∞.(2) For α = H − 1/2, (2.8) holds true if

lim
t→∞

(t ln t)2P (|ǫ0| > t) = 0 (2.9)(3) For H − 1/2 < α < H, (2.8) holds true if
lim

t→∞
tpP (|ǫ0| > t) = 0, where p =

1

H − α
. (2.10)The slowly varying fun
tion ℓ is said normalized if for every δ positive, tδℓ(t) isultimately in
reasing and t−δℓ(t) is ultimately de
reasing.The varian
e σ2

n of Sn is asymptoti
ally equivalent to b2n, see Wu and Min (2005,Th.2). Therefore the 
onvergen
e (2.8) holds as well with bn repla
ed by σn.The ne
essity of 
ondition (2.10) remains an open question. To our best knowl-edge ne
essary moment 
onditions for limit behavior of sums of long memory linearpro
esses are not treated in literature.Another interesting open problem was pointed out by the Referee, namely, the
ase β = 1/2 in Theorem 2.2. Does the 
onvergen
e to Brownian motion still holdsprovided ℓ(n) does not have subsequen
e tending to zero? At the moment we haveno answer to this question.



52 M. Juodis et al.3. Proofs3.1. General redu
tion. We des
ribe here the 
ommon part of the proofs of The-orems 2.1 and 2.2 whi
h provides a general methodology to establish the weak-
Ho

α[0, 1] 
onvergen
e of the partial sums pro
ess. This may be of independentinterest to prove invarian
e prin
iples under various kind of dependen
e of the un-derlying sequen
e (Xn)n≥1. Classi
ally b−1
n ξn 
onverges weakly to ξ in Ho

α[0, 1] ifand only ifa) the �nite dimensional distributions of b−1
n ξn 
onverge to those of ξ;b) the sequen
e (b−1

n ξn)n≥1 is tight in Ho
α[0, 1].Usually 
ondition a) is known to be satis�ed under mild assumptions, e.g. ifweak 
onvergen
e of b−1

n ξn is already established in C[0, 1]. This is indeed the 
asein the 
ontext of Theorems 2.1 and 2.2. So we will fo
use on the tightness prob-lem. General 
onditions implying the tighness of a sequen
e of random elements in
Ho

α[0, 1] may be found in Ra£kauskas and Suquet (2001) (Prop. 7 and Rem. 8). Totranslate this result in the setting of partial sums pro
ess ξn, write for simpli
ity
tk = tj,k = k2−j, k = 0, 1, . . . , 2j , j = 1, 2, . . .Then the tighness of (b−1

n ξn)n≥1 in Ho
α[0, 1] takes pla
e provided thati) for every t ∈ [0, 1], (b−1

n ξn(t))n≥1 is tight on R;ii) lim
J→∞

lim sup
n→∞

P
{
sup
j≥J

2jαb−1
n max

0≤k<2j
|ξn(tk+1) − ξn(tk)| ≥ ε

}
= 0.Now we are able to go a step further by proving the following theorem. It isworth noti
ing that nothing is assumed about the dependen
e stru
ture of (Xn)n≥1in its statement.Theorem 3.1. Let ξn be the partial sums pro
ess built on (Xk)k≥0, de�ned by (2.2).Then (b−1

n ξn)n≥1 is tight in Ho
α[0, 1] if:(1) for every t ∈ [0, 1], (b−1

n ξn(t))n≥1 is tight on R;(2) nαb−1
n max

1≤i≤n
|Xi| 
onverges in probability to 0;(3) lim

J→∞
lim sup

n→∞
P
{

max
J≤j≤log n

2jαb−1
n max

0≤k<2j
|S[ntk+1] − S[ntk]| ≥ ε

}
= 0for every positive ε.Here and throughout the paper, logn stands for the logarithm with basis 2, sothat 2log n = n. The following 
orollary suits better our needs.Corollary 3.2. Assume that the Xi's have identi
al distribution. Then (b−1

n ξn)n≥1is tight in Ho
α[0, 1] if Conditions 1 and 3 of Theorem 3.1 are satis�ed and

∀ε > 0, nP (|X1| ≥ εbnn
−α) −−−−→

n→∞
0. (3.1)Clearly under identi
al distribution of the Xi's, (3.1) implies Condition 2 inTheorem 3.1. Moreover when (3.1) is enough for (b−1

n ξn)n≥1 to satisfy the invarian
eprin
iple in C[0, 1], then we 
an drop Condition 1 and 
on
entrate on the veri�
ationof (3.1) and Condition 3 to prove the invarian
e prin
iple in Ho
α[0, 1].Proof of Theorem 3.1. We have to 
he
k ii). Denote by P0 = P0(J, n) the proba-bility appearing in Condition ii). Then P0 is bounded by P1 + P2 where

P1 := P
{

max
J≤j≤log n

2jαb−1
n max

0≤k<2j
|ξn(tk+1) − ξn(tk)| ≥ ε

}
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e prin
iple 53and
P2 := P

{
sup

j>log n
2jαb−1

n max
0≤k<2j

|ξn(tk+1) − ξn(tk)| ≥ ε
}
.Estimation of P2. As j > logn, tk+1 − tk = 2−j < 1/n and then with tk in say

[i/n, (i+ 1)/n), either tk+1 is in (i/n, (i+ 1)/n] or belongs to ((i+1)/n, (i+ 2)/n
],where 1 ≤ i ≤ n− 2 depends on k and j.In the �rst 
ase, noting that the slope of ξn on [i/n, (i+ 1)/n) is exa
tly nXi+1,we have

|ξn(tk+1) − ξn(tk)| = n|Xi+1|2
−j ≤ 2−jn max

1≤i≤n
|Xi|.If tk and tk+1 are in 
onse
utive intervals, then

|ξn(tk+1) − ξn(tk)| ≤ |ξn(tk) − ξn((i+ 1)/n)| + |ξn((i+ 1)/n) − ξn(tk+1)|

≤ 2−j+1n max
1≤i≤n

|Xi|.With both 
ases taken into a

ount we obtain
P2 ≤ P

{
sup

j>log n
2jαb−1

n n2−j+1 max
1≤i≤n

|Xi| ≥ ε
}

= P
{
nb−1

n max
1≤i≤n

|Xi| sup
j>log n

2(α−1)j ≥
ε

2

}

≤ P
{
nαb−1

n max
1≤i≤n

|Xi| ≥
ε

2

}
,so by Condition 2, limn→∞ P2 = 0.Estimation of P1. Let uk = [ntk]. Then uk ≤ ntk ≤ 1 + uk and 1 + uk ≤ uk+1 ≤

ntk+1 ≤ 1 + uk+1. Therefore
|ξn(tk+1) − ξn(tk)| ≤ |ξn(tk+1) − Suk+1

| + |Suk+1
− Suk

| + |Suk
− ξn(tk)|.Sin
e |Suk

− ξn(tk)| ≤ |X1+uk
| and |ξn(tk+1) − Suk+1

| ≤ |X1+uk+1
| we obtain P1 ≤

P1,1 + P1,2, where
P1,1 := P

{
max

J≤j≤log n
2jαb−1

n max
1≤k≤2j

|Suk+1
− Suk

| ≥
ε

2

}

P1,2 := P
{

max
J≤j≤log n

2jαb−1
n max

1≤i≤n
|Xi| ≥

ε

4

}
.In P1,2, the maximum over j is realized for j = [logn], so limn→∞ P1,2 = 0 byCondition 2.Gathering all the estimates, we �nally obtain

lim
J→∞

lim sup
n→∞

P0 = lim
J→∞

lim sup
n→∞

P1,1 = 0,by Condition 3. �We now turn to the proofs of Theorems 2.1 and 2.2. To avoid disturbing themain �ow of argumentation, we deferred te
hni
al lemmas to subse
tion 3.4.



54 M. Juodis et al.3.2. Short memory.Proof of Theorem 2.1. We need to 
he
k the 
onvergen
e of �nite dimensional dis-tributions and tightness. Put σ2
n := ES2

n. By a 
lassi
al 
omputation
σ2

n

n
= E ǫ20

∞∑

i,k=0

aiak

(
1 −

|i− k|

n

)
+
.Due to assumption (A), ∑∞

i,k=0 |aiak| is �nite, so by the bounded 
onvergen
etheorem for the series
σ2

n

n
−−−−→
n→∞

E ǫ20

∞∑

i,k=0

aiak = A2
E ǫ20, (3.2)re
alling that A :=

∣∣∑∞
i=0 ai

∣∣. In what follows we assume without loss of generalitythat E ǫ20 = 1. As bn and σn are asymptoti
ally equivalent, the C[0, 1] or Ho
α[0, 1]
onvergen
es of b−1

n ξn and σ−1
n ξn are equivalent. The 
onvergen
e of the �nitedimensional distributions of b−1
n ξn to those of the standard Brownian motion Wfollows of the weak 
onvergen
e in C[0, 1] of σ−1

n ξn to W . Su
h an invarian
eprin
iple may be found for instan
e in Wu and Min (2005), Theorem 1. Thattheorem involves more general linear �lters and 
ondition (A) is just a spe
ial 
ase(see also Remark 4 in Wu and Min, 2005). As a by-produ
t of this invarian
eprin
iple, Condition 1 in Theorem 3.1 is automati
ally satis�ed.To 
he
k the tightness, we use Corollary 3.2. First we note that our assump-tion (2.4) implies via Lemma 3.7 below that
lim

t→∞
tpP (|X0| ≥ t) = 0.As bn = An1/2 and 1/p = 1/2−α, we dedu
e immediately (3.1) from the above limit.So it remains only to 
he
k Condition 3 of Theorem 3.1, that is limJ→∞ lim supn→∞

P1(J, n, ε) = 0, with
P1(J, n, ε) = P

{
max

J≤j≤log n
2jαb−1

n max
0≤k<2j

|Suk+1
− Suk

| ≥ ε
}
, (3.3)where uk = [ntk] = [nk2−j].Let us �x an arbitrary δ > 0, put ∆n := δn1/p and de�ne

ǫ̂l := ǫl1{|ǫl| ≤ ∆n} − E ǫl1{|ǫl| ≤ ∆n}, (3.4)
ǫ̃l := ǫl1{|ǫl| > ∆n} − E ǫl1{|ǫl| > ∆n}. (3.5)Sin
e E ǫl = 0, ǫl = ǫ̂l + ǫ̃l and we have

uk+1∑

i=uk

Xi =

∞∑

l=−∞

(
uk+1∑

i=uk

ai−l

)
ǫl = Z

(1)
j,k + Z

(2)
j,k ,where

Z
(1)
j,k =

∞∑

l=−∞

(
uk+1∑

i=uk

ai−l

)
ǫ̂l and Z

(2)
j,k =

∞∑

l=−∞

(
uk+1∑

i=uk

ai−l

)
ǫ̃l. (3.6)Hen
e, we have to prove both

lim
J→∞

lim sup
n→∞

P
(i)
1 (J, n, ε) = 0, i = 1, 2, (3.7)
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e prin
iple 55where for i = 1, 2,
P

(i)
1 (J, n, ε) := P

{
max

J≤j≤log n
2αj max

0≤k<2j

∣∣Z(i)
j,k

∣∣ > bn
ε

2

}
.To estimate P (2)

1 (J, n, ε), �rst apply Chebyshev inequality to obtain
P

(2)
1 (J, n, ε) ≤

∑

J≤j≤log n

22αjb−2
n 4ε−2

∑

0≤k<2j

E

∣∣Z(2)
j,k

∣∣2. (3.8)Next, observe that by stationarity, ∑∞
l=−∞

∣∣∑uk+1

i=uk
ai−l

∣∣2E ǫ20 = σ2
uk+1−uk

, when
eit follows via (3.2) that for some 
onstant c,
∞∑

l=−∞

∣∣∣∣∣

uk+1∑

i=uk

ai−l

∣∣∣∣∣

2

≤ c(uk+1 − uk). (3.9)This gives
E
∣∣Z(2)

j,k

∣∣2 =

∞∑

l=−∞

(
uk+1∑

i=uk

ai−l

)2

E |ǫ̃l|
2 ≤ c(uk+1 − uk)E |ǫ̃0|

2 ≤ 2n2−jcE |ǫ̃0|
2.Now using inequality (3.23) in Lemma 3.4 and re
alling that ∆n = δn1/p, b2n = A2nand 1/p = 1/2 − α, we obtain

P
(2)
1 (J, n, ε) ≤

8cpδ2−p

(p− 2)ε2

∑

J≤j≤log n

22αjb−2
n 2jn2−jn2/p−1 sup

t≥∆n

tpP (|ǫ0| > t)

=
8cpδ2−p

(p− 2)A2ε2
n2/p−1 sup

t≥∆n

tpP (|ǫ0| > t)

log n∑

j=J

22αj

≤
8cpδ2−p

(p− 2)A2ε2
n2/p−1 sup

t≥∆n

tpP (|ǫ0| > t)
22αn2α

22α − 1

≤
16cpδ2−p

(p− 2)A2ε2(22α − 1)
sup

t≥∆n

tpP (|ǫ0| > t).Thus (2.4) gives
lim

n→∞
P

(2)
1 (J, n, ε) = 0. (3.10)To estimate P (1)

1 (J, n, ε), let us �x some q > p and apply the Markov inequalityof order q to start with:
P

(1)
1 (J, n, ε) ≤

2q

εqbqn

∑

J≤j≤log n

∑

0≤k<2j

2qαj
E
∣∣Z(1)

j,k

∣∣q. (3.11)By Rosenthal's inequality, see (3.19) in Lemma 3.3 below,
E

∣∣Z(1)
j,k

∣∣q ≤ Rq

(
∞∑

l=−∞

∣∣∣∣∣

uk+1∑

i=uk

ai−l

∣∣∣∣∣

2

E |ǫ̂l|
2

)q/2

+Rq

∞∑

l=−∞

∣∣∣∣∣

uk+1∑

i=uk

ai−l

∣∣∣∣∣

q

E |ǫ̂l|
q. (3.12)As the series ∑∞

i=0 |ai| 
onverges, we have
A0 := sup

I⊂N

∣∣∣∣∣
∑

i∈I

ai

∣∣∣∣∣ <∞.



56 M. Juodis et al.Thus from (3.9) we get ∑∞
l=−∞

∣∣∑uk+1

i=uk
ai−l

∣∣q ≤ cAq−2
0 (uk+1 − uk) ≤ 2cAq−2

0 n2−j.From now on, we denote by C a 
onstant whi
h may depend of ε, q, α, c, A, A0and of the distribution of ǫ0. Its expli
it value is allowed to vary from one lineto another. Going ba
k to Rosenthal inequality with the above estimate and theinequalities (3.22) and (3.25), we get for n large enough:
E

∣∣Z(1)
j,k

∣∣q ≤ C
(
nq/22−jq/2 + δq−pnq/p2−j

)
.Thus we 
an bound P (1)

1 (J, n, ε) by
P

(1)
1 (J, n, ε) ≤ C

∑

J≤j≤log n

2(1−q/2+qα)j + Cδq−pnq(1/p−1/2)
∑

J≤j≤log n

2qαj

≤ Cn1−q(1/2−α) + Cδq−p,re
alling that 1/p− 1/2 + α = 0. Moreover, as q > p = (1/2 − α)−1, we get
lim sup

n→∞
P

(1)
1 (J, n, ε) ≤ Cδq−p.This together with (3.10) leads to

lim sup
n→∞

P1(J, n, ε) ≤ Cδq−p.As this last limsup does not depend on δ and δ may be 
hoosen arbitrarily small,we 
on
lude that lim supn→∞ P1(J, n, ε) = 0, when
e Condition 3 of Theorem 3.1is satis�ed. �3.3. Long memory. We now prove Theorem 2.2. For notational simpli�
ations, weassume without loss of generality that E ǫ20 = 1. Re
alling that by Wu and Min(2005, Th.2), ES2
n is asymptoti
ally equivalent to b2n, one 
an �nd a 
onstant κsu
h that for every n ≥ 1,

σn = (ES2
n)1/2 ≤ κbn. (3.13)By the same referen
e, the square integrability of ǫ0 is enough to imply the weak-

C[0, 1] 
onvergen
e to WH of σ−1
n ξn or equivalently of b−1

n ξn. So, a

ording tothe remark after Corollary 3.2, we only need to 
he
k (3.1) and Condition 3 ofTheorem 3.1 to obtain the weak Ho
α[0, 1] 
onvergen
e of b−1

n ξn to WH .Proof of the 
ase 0 < α < H − 1/2 in Theorem 2.2. The 
onvergen
e (3.1) followsimmediately from Chebyshev inequality:
nP
(
|X1| ≥ εbnn

−α
)
≤
n2α+1

ε2b2n
EX2

1 = O
(
n2α+1−2Hℓ(n)−2

)
,sin
e α < H − 1/2.Let us keep the same notation P1(J, n, ε) as in (3.3) for the probability involvedin Condition 3. By stationarity of (Xi)i∈N and (3.13), we have

E
(
Suk+1

− Suk

)2
= ES2

uk+1−uk
≤ κ2c2β(2n2−j)2Hℓ(2n2−j)2.
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e prin
iple 57In view of this estimate, applying Chebyshev inequality leads to
P1(J, n, ε) ≤

4Hκ2

ε2

∑

J≤j≤log n

ℓ(2n2−j)2

ℓ(n)2
2(2α+1−2H)j

≤
4Hκ2M2

ε2(1 − 22α+1−2H)
2(2α+1−2H)J ,noting that 2α+ 1 − 2H < 0 and that by slow variation of ℓ

M := sup
n≥1

ℓ(2n)

ℓ(n)
<∞. (3.14)This entails limJ→∞ lim supn→∞ P1(J, n, ε) = 0, so the proof of the 
ase α < H −

1/2 is 
omplete. �Proof of the 
ase H − 1/2 < α < H in Theorem 2.2. To 
he
k 
onvergen
e (3.1),it su�
es to show that for any positive ε, nP (|X1| ≥ εnH−αℓ(n)) = o(1). ByLemma 3.7 below, the hypothesis (2.10) enables us to write P (|X1| ≥ t) = t−pg(t),with limt→∞ g(t) = 0. Therefore
nP
(
|X1| ≥ εnH−αℓ(n)

)
= ε−pn1−p(H−α)ℓ(n)−pg

(
εnH−αℓ(n)

)

= ε−pℓ(n)−pg
(
εnH−αℓ(n)

)
= o(1),sin
e p = (H − α)−1 and α < H . So (3.1) is satis�ed.In order to 
he
k Condition 3 of Theorem 3, we use the same trun
ation te
hni
sas in the short memory 
ase, with the same level ∆n = δn1/p but with 1/p = H−αinstead of 1/2 − α. With obvious adaptations, we also keep the same notations(3.4)�(3.6) and P (i)

1 (J, n, ε). We have again to prove (3.7).To estimate P (2)
1 (J, n, ε), going ba
k to (3.8), we need some bound for E |Z

(2)
j,k |

2.Write X̂k, X̃k, Ŝn, S̃n, for the linear pro
esses obtained by substituting ǫ by ǫ̂ or ǫ̃respe
tively and their 
orresponding partial sums. Then we have
Z

(2)
j,k = S̃uk+1

− S̃ukwhen
e by stationarity and (3.13),
E

∣∣Z(2)
j,k

∣∣2 = E S̃2
uk+1−uk

≤ κ2c2β(uk+1 − uk)2Hℓ2(uk+1 − uk)E ǫ̃0
2

≤ 4κ2c2βn
2H2−2Hjℓ2(2n2−j)E ǫ̃0

2.Putting γ := 1 + 2α− 2H and pluging the above estimate into (3.13) leads to
P

(2)
1 (J, n, ε) ≤

16κ2

ε2
E ǫ̃0

2
∑

J≤j≤log n

2γj ℓ
2(2n2−j)

ℓ2(n)
(3.15)

≤
32M2κ2

ε2(2γ − 1)
E ǫ̃0

2nγ . (3.16)Observing that γ = 1 + 2α − 2H = 1 − 2/p and estimating E ǫ̃0
2 by the inequal-ity (3.23) in Lemma 3.4 provides

P
(2)
1 (J, n, ε) ≤

32M2κ2p

ε2(2γ − 1)(p− 2)
sup

t≥∆n

tpP (|ǫ| > t).
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lim

n→∞
P

(2)
1 (J, n, ε) = 0. (3.17)To estimate P (1)

1 (J, n, ε), looking ba
k at (3.11) and (3.12), we see that the onlyreal 
hange is in the 
ontrol of ∣∣∑uk+1

i=uk
ψi−l

∣∣q. To this end, let us observe that
sup
k≥0

∣∣∣∣∣

k∑

i=k−n+1

ψi

∣∣∣∣∣ = sup
k≥0

∣∣∣∣∣
∑

1+(k−n)+<i≤k

ℓ(i)

iβ

∣∣∣∣∣

≤ sup
k≥0

ℓ(k)

∫ k

(k−n)+

dt

tβ

= sup
k≥0

ℓ(k)
(
k1−β − (k − n)1−β

+

)

= sup
k≥n

ℓ(k)
(
k1−β − (k − n)1−β

)
,where the last equality relies on the in
reasingness on [0, n] of the fun
tion t 7→

ℓ(t)
(
t1−β − (t− n)1−β

+

). Using Lemma 3.6 below leads to
sup
k≥0

∣∣∣∣∣

k∑

i=k−n+1

ψi

∣∣∣∣∣ ≤ cn1−βℓ(n),with a 
onstant c depending on β and ℓ. Now we have
∣∣∣∣∣

uk+1∑

i=uk

ψi−l

∣∣∣∣∣

q

≤ cq−2(uk+1 − uk)(q−2)(1−β)ℓq−2(uk+1 − uk)σ2
uk+1−uk

≤ 2qκ2cq−2(n2−j)q(H−1/2)+1ℓq(2n2−j).From now on, we denote by C a 
onstant whi
h may depend of ε, q, p, α, c, H , κand of the distribution of ǫ0. Its expli
it value is allowed to vary from one line toanother. Going ba
k to Rosenthal inequality (3.12) with the above estimate andthe inequalities (3.22) and (3.25), we get for n large enough:
E

∣∣Z(1)
j,k

∣∣q ≤ C
(
nqH2−qHjℓq(2n2−j) + δq−pnq(H−1/2+1/p)2−(qH−q/2+1)jℓq(2n2−j)

)
.Pluging this estimate into (3.11), we obtain

P
(1)
1 (J, n, ε) ≤

C

nHqℓq(n)

∑

J≤j≤log n

nqH2(1−qH+qα)jℓq(2n2−j)

+
Cδq−p

nHqℓq(n)

∑

J≤j≤log n

nq(H−1/2+1/p)2q(α−H+1/2)jℓq(2n2−j)

≤C
∑

J≤j≤log n

2(1−qH+qα)j + Cδq−pnq(−1/2+1/p)
∑

J≤j≤log n

2q(α−H+1/2)j

≤C2(1−qH+qα)J + Cδq−p.From this bound we get
lim

J→∞
lim sup

n→∞
P

(1)
1 (J, n, ε) ≤ Cδq−p.
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e prin
iple 59Together with (3.17), this gives
lim

J→∞
lim sup

n→∞
P1(J, n, ε) ≤ Cδq−p.As this last limit does not depend on δ and δ may be 
hoosen arbitrarily small,we 
on
lude that limJ→∞ lim supn→∞ P1(J, n, ε) = 0, when
e Condition 3 of The-orem 3.1 is satis�ed. �Proof of the 
ase α = H − 1/2 in Theorem 2.2. The proof of this spe
ial 
ase is ob-tained by an adaptation of the proof of the 
ase H − 1/2 < α < H . We shall justmention the relevant modi�
ations in the above arguments. Now p = 2 and we
hoose as trun
ation level ∆n = n1/2. First going ba
k to (3.15), we note that

γ = 0, so we have to repla
e the bound (3.16) by
P

(2)
1 (J, n, ε) ≤

16κ2

ε2
E ǫ̃0

2 logn.Under the assumption (2.9), it follows from inequality (3.27) in Lemma 3.5 belowthat E ǫ̃0
2 = o((log n)−1), so we get again lim supn→∞ P

(2)
1 (J, n, ε) = 0.Next, 
hoosing q > 3 and applying (3.27) in Lemma 3.5, the previous estimateof E |Z

(1)
j,k |

q be
omes (with the same 
onvention on the 
onstant C)
E

∣∣Z(1)
j,k

∣∣q ≤ C
(
nqH2−qHjℓq(2n2−j) + nqH(lnn)−22−(qH−q/2+1)jℓq(2n2−j)

)
,whi
h leads to

P
(1)
1 (J, n, ε) ≤ C

∑

J≤j≤log n

2(1−qH+qα)j +
C

(lnn)2

∑

J≤j≤log n

2−jq(H−1/2−α)

≤ C2−J/2 + C
logn

(lnn)2
.Hen
e lim supn→∞ P

(1)
1 (J, n, ε) ≤ C2−J/2 and limJ→∞ lim supn→∞ P1(J, n, ε) = 0,whi
h 
ompletes the proof. �3.4. Mis
ellaneous te
hni
al tools. We give now a version of Rosenthal inequalityfor linear pro
esses. Re
all �rst the 
lassi
al Rosenthal inequality of order q > 2.It states that for any �nite set I of independent random variables Yi (i ∈ I) su
hthat E |Yi|

q <∞ (for every i ∈ I), the sum SI :=
∑

i∈I Yi satis�es
E

∣∣SI

∣∣q ≤ Rq

(
(
VarSI)

q/2 +
∑

i∈I

E |Yi|
q

)
, (3.18)where Rq is a universal 
onstant depending only on q.Lemma 3.3. Let X be the series

X =

∞∑

i=0

aiǫi, with ∞∑

i=0

a2
i <∞,where the random variables ǫi are i.i.d., E ǫ0 = 0 and E |ǫ0|

q < ∞ for some q > 2.Then the series ∑∞
i=0 aiǫi 
onverges in Lq sense and

E |X |q ≤ Rq

(
(
E ǫ20

)q/2

(
∞∑

i=0

a2
i

)q/2

+ E |ǫ0|
q

∞∑

i=0

|ai|
q

)
, (3.19)



60 M. Juodis et al.where Rq is the universal 
onstant of the Rosenthal inequality (3.18).Proof . Rosenthal inequality (3.18) applied to the random variables Yi = aiǫi withany non empty subset I of N reads
E

∣∣∣∣∣
∑

i∈I

aiǫi

∣∣∣∣∣

q

≤ Rq

(
(
E ǫ20

)q/2

(
∑

i∈I

a2
i

)q/2

+ E |ǫ0|
q

∞∑

i∈I

|ai|
q

)
.It follows immediately that the series ∑∞

i=0 aiǫi ful�ls the Cau
hy 
riterion in Lqand hen
e 
onverges in this spa
e. Now (3.19) follows, taking I = {0, 1, . . . , n} inthe above inequality and letting n go to in�nity. �Lemma 3.4. Let Y be a random variable su
h that
Λp(Y ) := sup

t>0
tpP (|Y | > t) <∞ for some p > 2. (3.20)For any positive T , write

Ŷ := Y 1{|Y | ≤ T }, Ỹ := Y 1{|Y | > T }.Write also Ŷ ′ := Ŷ − E Ŷ and Ỹ ′ := Ỹ − E Ỹ . Then the following estimates arevalid with any q > p.
E
∣∣Ŷ
∣∣q ≤

Λp(Y )

q − p
T q−p, (3.21)

Var Ŷ ≤ EY 2, (3.22)
Var Ỹ ≤

p

p− 2
T 2−p sup

t≥T
tpP (|Y | > t). (3.23)If moreover EY = 0, then

∣∣E Ŷ
∣∣ ≤ p

p− 1
T 1−p sup

t≥T
tpP (|Y | > t), (3.24)

E
∣∣Ŷ ′
∣∣q ≤

2qΛp(Y )

q − p
T q−p for T ≥ T0, (3.25)where T0 depends of p, q and of the distribution of Y .Proof . To 
he
k (3.21), write

E

∣∣Ŷ
∣∣q =

∫ ∞

0

qsq−1P (
∣∣Ŷ
∣∣ > s) ds =

∫ T

0

qsq−1P (
∣∣Ŷ
∣∣ > s) ds

≤

∫ T

0

qsq−1P (|Y | > s) ds

≤ sup
t>0

tpP (|Y | > t)

∫ T

0

qsq−p−1 ds

=
T q−p

q − p
sup
t>0

tpP (|Y | > t).
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e prin
iple 61Next, (3.22) is obvious sin
e Var Ŷ ≤ E Ŷ 2 ≤ EY 2. For (3.23), noting that
P (|Ỹ | > s) = P (|Y | > max(s, T )), we get

Var Ỹ ≤ E Ỹ 2 =

∫ T

0

2sP (|Y | > T ) ds+

∫ ∞

T

2sP (|Y | > s) ds

= T 2P (|Y | > T ) +

∫ ∞

T

2s1−pspP (|Y | > s) ds

≤ T 2−p sup
t≥T

tpP (|Y | > t) +
2

p− 2
T 2−p sup

t≥T
tpP (|Y | > t),whi
h establishes (3.23).Similarly, if EY = 0, then E Ŷ = −E Ỹ and we get

∣∣E Ŷ
∣∣ ≤ E

∣∣Ỹ
∣∣ =

∫ T

0

P (|Y | > T ) ds+

∫ ∞

T

P (|Y | > s) ds

= TP (|Y | > T ) +

∫ ∞

T

s−p
(
spP (|Y | > s)

)
ds

=

(
T 1−p +

T 1−p

p− 1

)
sup
t≥T

tpP (|Y | > t),whi
h gives (3.24).By 
onvexity, E ∣∣Ŷ ′
∣∣q ≤ 2q−1

(
E
∣∣Ŷ
∣∣q +

∣∣E Ŷ
∣∣q). By (3.24), ∣∣E Ŷ

∣∣q goes to 0 when
T goes to in�nity, when
e (3.25) follows. �Lemma 3.5. With the notations of lemma 3.4, assume that

sup
t>1

(t ln t)2P (|Y | > t) <∞. (3.26)Then with r(T ) := supt≥T (t ln t)2P (|Y | > t),
Var Ỹ ≤

3r(T )

lnT
, for T ≥ e. (3.27)If moreover EY = 0, then for any q > 3,

E
∣∣Ŷ ′
∣∣q = O

(
T q−2(ln T )−2

)
. (3.28)Proof . For every T > 1, we 
an write

Var Ỹ ≤ E Ỹ 2 = T 2P (|Y | > T ) +

∫ ∞

T

2sP (|Y | > s) ds

≤
r(T )

(ln T )2
+

∫ ∞

T

2

s(ln s)2
s2(ln s)2P (|Y | > s) ds

≤
r(T )

(ln T )2
+ r(T )

∫ ∞

T

2

s(ln s)2
ds

=

(
1

(lnT )2
+

2

lnT

)
r(T ),when
e (3.27) follows.To 
he
k (3.28), we note �rst that (3.24) remains valid with p = 2 and pro-vides the estimate |E Ŷ |q = o(T−q). Hen
e it is enough to show that E |Ŷ |q =

O
(
T q−2(lnT )−2

). To do that, re
all that E

∣∣Ŷ
∣∣q ≤

∫ T

0 qsq−1P (|Y | > s) ds andsplit this integral in ∫ T0

0 +
∫ T

T0
, for T > T0 where T0 := exp( 2

q−3 ) > 1 is 
hoosen
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h that sq−3(ln s)−2 in
reases on [T0,∞). This 
learly redu
es the problem tothe following elementary estimation of ∫ T

T0
:

∫ T

T0

qsq−1P (|Y | > s) ds =

∫ T

T0

qsq−3

(ln s)2
(s ln s)2P (|Y | > s) ds

≤ (T − T0)
qT q−3

(lnT )2
sup
t≥T0

(t ln t)2P (|Y | > t).

�Lemma 3.6. If ℓ is non de
reasing and normalized slowly varying, then for any
0 < β < 1, there is a 
onstant C = C(β, ℓ) su
h that for every n ≥ 1,

sup
k≥n

ℓ(k)
(
k1−β − (k − n)1−β

)
≤ Cn1−βℓ(n). (3.29)Proof . First as 1 − β < 1, we 
learly have k1−β ≤ (k − n)1−β + n1−β for every

k ≥ n, from whi
h we get
max

n≤k≤2n
ℓ(k)

(
k1−β − (k − n)1−β

)
≤ ℓ(2n)n1−β. (3.30)As ℓ is slowly varying, there is a 
onstant C1 = C1(ℓ) su
h that ℓ(2n) ≤ C1ℓ(n).Next, by 
on
avity of the fun
tion t1−β on [0,∞), we have for every t > n

t1−β − (t− n)1−β ≤ (1 − β)(t− n)−βn. (3.31)Now for every t ≥ 2n,
(t− n)−βℓ(t) = t−βℓ(t)

( t

t− n

)β

≤ 2βt−βℓ(t).Sin
e ℓ is normalized slowly varying, t−βℓ(t) is ultimately de
reasing, so for largeenough n, t−βℓ(t) realizes its maximum on [2n,∞) at t = 2n. So going ba
k to(3.31), we 
an �nd a 
onstant C2 depending on β and ℓ su
h that for every k > 2n,
ℓ(k)

(
t1−β − (t− n)1−β

)
≤ C2n

1−βℓ(n) (3.32)Now the 
on
lusion follows from (3.30) and (3.32). �Lemma 3.7. It holds
lim

t→∞
tpP (|X0| ≥ t) = 0 (3.33)if and only if

lim
t→∞

tpP (|ǫ0| ≥ t) = 0. (3.34)Proof . To prove the su�
ien
y of (3.34) for (3.33), let us �x an arbitrary positive
δ and de�ne
ǫ̂j := ǫj1{|ǫj| ≤ δt} − E ǫj1{|ǫj| ≤ δt}, ǫ̃j := ǫj1{|ǫj| > δt} − E ǫj1{|ǫj| > δt}.Noting that ǫj = ǫ̂j + ǫ̃j , we have

tpP (|X0| ≥ 2t) ≤ tpP1 + tpP2,where
P1 := P

(
∞∑

j=0

aj ǫ̂j ≥ t

)
, P2 := P

(
∞∑

j=0

aj ǫ̃j ≥ t

)
.



Hölderian invarian
e prin
iple 63To estimate P2, we apply Chebyshev's inequality 
ombined with inequality (3.23)in Lemma 3.4. Puting c =
∑∞

j=0 a
2
j and cp = pc/(p− 2), this gives:

P2 ≤
1

t2
E

(
∞∑

j=0

aj ǫ̃j

)2

=
c

t2
E |ǫ̃0|

2 ≤ cpδ
2−pt−p sup

s≥δt
spP (|ǫ0| ≥ s).To estimate P1, we 
ombine Markov and Rosenthal inequalities of order q > pwith inequalities (3.22) and (3.25) in Lemma 3.4. This gives

P1 ≤ t−q
E

∣∣∣∣∣

∞∑

j=0

aj ǫ̂j

∣∣∣∣∣

q

≤ Rqt
−q

[(
∞∑

i=0

|ai|
2
E |ǫ0|

2

)q/2

+

∞∑

i=0

|ai|
q
E |ǫ̂0|

q

]

≤ Ct−q
(
1 + δq−ptq−p

)
= C

(
t−q + δq−pt−p

)
,where the 
onstant C depends on p, q, the sequen
e (ai) and the distribution of ǫ0.Gathering the estimates of P1 and P2 gives

tpP (|X0| > 2t) ≤ cpδ
2−p sup

s≥δt
spP (|ǫ0| ≥ s) + C(t−q+p + δq−p),when
e

lim sup
t→∞

tpP (|X0| > 2t) ≤ Cδq−p.As δ may be 
hoosen arbitrarily small, as q > p and C does not depend on δ, thesu�
ien
y of (3.34) follows.Let us prove the ne
essity of (3.34). We have
X0 = a0ǫ0 +

∞∑

i=1

aiǫ−i = a0ǫ0 + Z.If t0 > 0 is su
h that P (|Z| ≤ t0) ≥ 1/2, we have for t > t0

P (|X0| ≥ t) ≥ P (|a0||ǫ0| ≥ t+ to)P (|Z| ≤ t0) ≥
1

2
P (|a0||ǫ0| ≥ t+ t0)due to independen
e of ǫ0 and Z and the ne
essity follows. �Referen
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