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Abstract. Let Λ be a finite measure on the unit interval. A Λ-Fleming-Viot process
is a probability measure valued Markov process which is dual to a coalescent with
multiple collisions (Λ-coalescent) in analogy to the duality known for the classical
Fleming-Viot process and Kingman’s coalescent, where Λ is the Dirac measure in
0.

We explicitly construct a dual process of the coalescent with simultaneous multi-
ple collisions (Ξ-coalescent) with mutation, the Ξ-Fleming-Viot process with muta-
tion, and provide a representation based on the empirical measure of an exchange-
able particle system along the lines of Donnelly and Kurtz (1999). We establish
pathwise convergence of the approximating systems to the limiting Ξ-Fleming-Viot
process with mutation. An alternative construction of the semigroup based on the
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Hille-Yosida theorem is provided and various types of duality of the processes are
discussed.

In the last part of the paper a population is considered which undergoes recurrent
bottlenecks. In this scenario, non-trivial Ξ-Fleming-Viot processes naturally arise
as limiting models.

1. Introduction and main results

1.1. Motivation. One of the fundamental aims of mathematical population genetics
is the construction of population models in order to describe and to analyse certain
phenomena which are of interest for biological applications. Usually these models
are constructed such that they describe the evolution of the population under con-
sideration forwards in time. A classical and widely used model of this kind is the
Wright-Fisher diffusion, which can be used for large populations to approximate the
evolution of the fraction of individuals carrying a particular allele. On the other
hand it is often quite helpful to look from the present back into the past and to
trace back the ancestry of a sample of n individuals, genes or particles. In many
situations, the Kingman coalescent (Kingman, 1982a,b) turns out to be an appro-
priate tool to approximate the ancestry of a sample taken from a large population.
It is well known that the Wright-Fisher diffusion is dual to the block counting pro-
cess of the Kingman coalescent (Donnelly, 1986; Möhle, 2001). More general, the
Fleming-Viot process (Fleming and Viot, 1979), a measure-valued extension of the
Wright-Fisher diffusion, is dual to the Kingman coalescent.

Such and similar duality results are quite common in particular in the physics
literature on interacting particle systems (Liggett, 1985) and in the more theoretical
literature on mathematical population genetics (Alkemper and Hutzenthaler, 2007;
Athreya and Swart, 2005; Donnelly and Kurtz, 1996, 1999; Ethier and Krone, 1995;
Hiraba, 2000; Möhle, 1999, 2001). Donnelly and Kurtz (1996) established a so-called
lookdown construction and used this construction to show that the Fleming-Viot
process is dual to the Kingman coalescent. This construction and corresponding
duality results have been extended (Donnelly and Kurtz, 1999; Bertoin and Le
Gall, 2003, 2005, 2006) to the Λ-Fleming-Viot process, which is the measure-valued
dual of a coalescent process allowing for multiple collisions of ancestral lineages.
For more information on coalescent processes with multiple collisions, so-called Λ-
coalescents, we refer to Pitman (1999) and Sagitov (1999).

There exists a broader class of coalescent processes (Möhle and Sagitov, 2001;
Schweinsberg, 2000; Sagitov, 2003) in which many multiple collisions can occur
with positive probability simultaneously at the same time. These processes can
be characterized by a measure Ξ on an infinite simplex and are hence called Ξ-
coalescents. It is natural to further extend the above constructions and results to
this full class of coalescent processes and, in particular, to provide constructions
of the dual processes, called Ξ-Fleming-Viot processes. Although such extensions
have been briefly indicated in Donnelly and Kurtz (1999) and Bertoin and Le Gall
(2003), these extensions have not been carried out in detail yet. Ξ-coalescents have
also recently been applied to study population genetic problems, see Taylor and
Véber (2009); Sargsyan and Wakeley (2008).

The motivation to present this paper is hence manifold. We explicitly construct
the Ξ-Fleming-Viot process and provide a representation via empirical measures of
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an exchangeable particle system in the spirit of Donnelly and Kurtz (1996, 1999).
We furthermore establish corresponding convergence results and pathwise duality to
the Ξ-coalescent. We also provide an alternative, more classical functional-analytic
construction of the Ξ-Fleming-Viot process based on the Hille-Yosida theorem and
present representations for the generator of the Ξ-Fleming-Viot process. Our ap-
proaches include neutral mutations. The results give insights into the pathwise
structure of the Ξ-Fleming-Viot process and its dual Ξ-coalescent. Examples and
situations are presented in which certain Ξ-Fleming-Viot processes and their dual
Ξ-coalescents occur naturally.

1.2. Moran models with (occasionally) large families. Consider a population of
fixed size N ∈ N := {1, 2, . . .} and assume that each individual is of a certain
type, where the space E of possible types is assumed to be compact and Polish.
Furthermore assume that for each vector k = (k1, k2, . . .) of integers satisfying
k1 ≥ k2 ≥ · · · ≥ 0 and

∑∞
i=1 ki ≤ N a non-negative real quantity rN (k) ≥ 0 is

given. The population is assumed to evolve in continuous time as follows. Given a
vector k = (k1, . . . , km, 0, 0, . . .), where k1 ≥ · · · ≥ km ≥ 1 and k1 + · · · + km ≤ N ,
with rate rN (k) we choose randomly m groups of sizes k1, . . . , km from the present
population. Inside each of these m groups we furthermore choose randomly a ‘par-
ent’ which forces all individuals in its group to change their type to the type of that
parent. We say that a k-reproduction event occurs with rate rN (k). The classical
Moran model corresponds to rN (2, 0, 0, . . .) = N .

Except for the fact that these models are formulated in continuous time, they
essentially coincide with the class of neutral exchangeable population models with
non-overlapping generations introduced by Cannings (1974, 1975). Starting with
the seminal work of Kingman (1982a,b), the genealogy of samples taken from such
populations is well understood, in particular for the situation when the total pop-
ulation size N tends to infinity.

1.3. Genealogies and exchangeable coalescents. For neutral population models of
large, but fixed population size and finite-variance reproduction mechanism, King-
man (1982b) showed that the genealogy of a finite sample of size n can be ap-

proximately described by the so called n-coalescent (Π
δ0,(n)
t )t≥0. The n-coalescent

is a time-homogeneous Markov process taking values in Pn, the set of partitions

of {1, . . . , n}. If i and j are in the same block of the partition Π
δ0,(n)
t , then they

have a common ancestor at time t ago. Π
δ0,(n)
0 is the partition of {1, . . . , n} into

singleton blocks. The transitions are then given as follows: If there are b blocks at
present, then each pair of blocks merges with rate 1, thus the overall rate of seeing
a merging event is

(
b
2

)
. Note that only binary mergers are allowed and that at some

random time, all individuals will have a (most recent) common ancestor.
Kingman (1982b) also showed that there exists a PN-valued Markov process

(Πδ0
t )t≥0, where PN denotes the set of partitions of N. This process, the so-called

Kingman coalescent, is characterised by the fact that for each n the restriction
of (Πδ0

t )t≥0 to the first n natural numbers is the n-coalescent. The process can
be constructed by an application of the standard Kolmogoroff extension theorem,
since the restriction of every n-coalescent to {1, . . . ,m}, where 1 ≤ m ≤ n, is an
m-coalescent.
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Whereas the Kingman coalescent allows only for binary mergers, the idea of a
time-homogeneous PN-valued Markov process that evolves by the coalescence of
blocks was extended by Pitman (1999) and Sagitov (1999) to coalescents where
multiple blocks are allowed to merge at the same time, so-called Λ-coalescents,
which arise as the limiting genealogy of populations where the variance of the off-
spring distribution diverges as the population size tends to infinity. Möhle and
Sagitov (2001) and Schweinsberg (2000) introduced the even larger class of coa-
lescents with simultaneous multiple collisions, also called exchangeable coalescents
or Ξ-coalescents, which describe the genealogies of populations allowing for large
family sizes.

Schweinsberg (2000) showed that any exchangeable coalescent (ΠΞ
t )t≥0 is char-

acterised by a finite measure Ξ on the infinite simplex

∆ := {ζ = (ζ1, ζ2, . . .) : ζ1 ≥ ζ2 ≥ · · · ≥ 0,
∑∞

i=1ζi ≤ 1}.

Throughout the paper, for ζ ∈ ∆, the notation |ζ| :=
∑∞

i=1 ζi and (ζ, ζ) :=
∑∞

i=1 ζ
2
i

will be used for convenience. Note that Möhle and Sagitov (2001) provide an
alternative (though somewhat less intuitive) characterisation of the Ξ-coalescent
based on a sequence of finite symmetric measures (Fr)r∈N. Coalescent processes
with multiple collisions (Λ-coalescents) occur if the measure Ξ is concentrated on
the subset of all points ζ ∈ ∆ satisfying ζi = 0 for all i ≥ 2. The Kingman-
coalescent corresponds to the case Ξ = δ0. It is convenient to decompose the
measure Ξ into a ‘Kingman part’ and a ‘simultaneous multiple collision part’, that
is, Ξ = aδ0 + Ξ0 with a := Ξ({0}) ∈ [0,∞) and Ξ0({0}) = 0. The transition rates
of the Ξ-coalescent ΠΞ are given as follows. Suppose there are currently b blocks.
Exactly

∑r
i=1 ki blocks collide into r new blocks, each containing k1, . . . , kr ≥ 2

original blocks, and s single blocks remain unchanged, such that the condition∑r
i=1 ki + s = b holds. The order of k1, . . . , kr does not matter. The rate at which

the above collision happens is then given as (Schweinsberg, 2000, Theorem 2)

λb;k1,...,kr;s = a1{r=1,k1=2} (1.1)

+

∫

∆

s∑

l=0

(
s

l

)
(1 − |ζ|)s−l

∑

i1 6=···6=ir+l

ζk1

i1
· · · ζkr

ir
ζir+1 · · · ζir+l

Ξ0(dζ)

(ζ, ζ)
.

An intuitive explanation of (1.1) is given below in terms of Schweinsberg’s (2000)
Poisson process construction of the Ξ-coalescent. If Ξ(∆) 6= 0, then without loss of
generality it can be assumed that Ξ is a probability measure, as remarked after Eq.
(12) of Schweinsberg (2000). Otherwise simply divide each rate by the total mass
Ξ(∆) of Ξ.

1.4. Poisson process construction of the Ξ-coalescent. It is convenient to give an
explicit construction of the Ξ-coalescent in terms of Poisson processes. Indeed,
Schweinsberg (2000, Section 3) shows that the Ξ-coalescent can be constructed
from a family of Poisson processes {NK

i,j}i,j∈N,i<j and a Poisson point process MΞ0

on R+ × ∆ × [0, 1]N. The processes NK
ij have rate a = Ξ({0}) each and govern the

binary mergers of the coalescent. The process MΞ0 has intensity measure

dt⊗
Ξ0(dζ)

(ζ, ζ)
⊗ (1[0,1](t)dt)

⊗N. (1.2)



A modified lookdown construction for the Xi-Fleming-Viot process 29

These processes can be used to construct the Ξ-coalescent as follows: Assume that
before the time tm the process Π is in a state {B1, B2, . . .}. If tm is a point of
increase of one of the processes NK

i,j (and there are at least i ∨ j blocks), then we

merge the corresponding blocks Bi and Bj into a single block (and renumber). This
mechanism corresponds to the Kingman-component of the coalescent.

The non-Kingman collisions are governed by the points

(tm, ζm,um) = (tm, (ζm1, ζm2, . . .), (um1, um2, . . .)) (1.3)

of the Poisson process MΞ0 . The random vector ζm denotes the respective asymp-
totic family sizes in the multiple merger event at time tm and the um are “uniform
coins”, determining the blocks participating in the respective merger groups; see
(2.2) or Schweinsberg (2000, Section 3) for details.

1.5. Ξ-Fleming-Viot processes. An in many senses dual approach to population
genetics is to view a population of finite size as a vector of types (Y N

1 , . . . , Y N
N )

with values in EN or as an empirical measure of that vector 1
N

∑N
i=1 δY N

i
and look

at the evolution under mutation and resampling forwards in time. When N tends
to infinity one obtains the Fleming-Viot process (Fleming and Viot, 1979). This
process has been extended to incorporate other important biological phenomena
and has found wide applications, see Ethier and Kurtz (1993) for a survey.

Donnelly and Kurtz (1996) embedded an E∞-valued particle system into the
classical Fleming-Viot process, via a clever lookdown construction, and showed
that it is dual to the Kingman-coalescent. This construction and the duality has
been extended to the so-called Λ-Fleming-Viot processes, dual to the Λ-coalescents,
and investigated by several authors, see, e.g., Donnelly and Kurtz (1999); Birkner
et al. (2005); Bertoin and Le Gall (2003, 2005, 2006), or Birkner and Blath (2009)
for an overview.

Let f ∈ Cb(E
p), µ ∈ M1(E) and Gf (µ) := 〈f, µ⊗p〉. The generator of the

Λ-Fleming-Viot process without mutation has the form (see Birkner et al., 2005,
Equation (1.11))

LΛGf (µ) =
∑

J⊂{1,...,p},|J|≥2

λp;|J|;p−|J|

∫ (
f(xJ) − f(x)

)
µ⊗p(dx), (1.4)

where

(xJ )i =

{
xmin(J) if i ∈ J ,

xi otherwise.
(1.5)

Note that (1.4) includes the generator of the classical Fleming-Viot process (without
mutation) if the summation is restricted to sets J satisfying |J | = 2.

Our aim in this paper is to present the modified lookdown construction for a
measure-valued process that we will call the Ξ-Fleming-Viot process with mutation,
or the (Ξ, B)-Fleming-Viot process. The symbol B stands here for an operator
describing the mutation process. We will establish its duality to the Ξ-coalescent
with mutation. The modified lookdown construction will also enable us to establish
some path properties of the (Ξ, B)-Fleming-Viot process.

1.6. A modified lookdown construction of the (Ξ, B)-Fleming-Viot process. Con-
sider a population described by a vector Y N (t) = (Y N

1 (t), . . . , Y N
N (t)) with values
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in EN , where Y N
i (t) is the type of individual i at time t. The evolution of this popu-

lation (forwards in time) has two components, namely reproduction and mutation.
During its lifetime, each particle undergoes mutation according to the bounded
linear mutation operator

Bf(x) = r

∫

E

(f(y) − f(x)) q(x, dy), (1.6)

where f is a bounded function on E, q(x, dy) is a Feller transition function on
E × B(E), and r ≥ 0 is the global mutation rate.

The resampling of the population is governed by the Poisson point process M
Ξ0 ,

which was introduced as a driving process for the Ξ-coalescent. In particular,
the resampling events allow for the simultaneous occurrence of one or more large
families. The resampling procedure is described in detail in Section 2. An important
fact is that this resampling is made such that it retains exchangeability of the
population vector.

In Section 2, we introduce another particle system XN = (XN
1 , . . . , X

N
N ) again

with values in EN . Each particle mutates according to the same generator (1.6) as
before. For the resampling event, we will use the same driving Poisson point process
M

Ξ0 , but we will use the modified lookdown construction introduced in Donnelly
and Kurtz (1999), suitably adapted to our scenario. This (Ξ, B)-lookdown process
will be introduced in Section 2.2. It is crucial that the resampling events retain
exchangeability of the population vector and that the process {XN(t)} has the

same empirical measure
∑N

i=1 δXN
i (t) as the process {Y N (t)}.

The construction of the resampling events allows us to pass to the limit as N
tends to infinity and obtain an E∞-valued particle system X = (X1, X2, . . .). Since
this particle system is also exchangeable, this procedure enables us to access the
almost sure limit of the empirical measure as N tends to infinity by the de Finetti
Theorem (which is not possible for the Y N ).

1.7. Results. Let D(B) denote the domain of the mutation generator B and let
f1, f2, . . . ∈ D(B) be uniformly bounded functions that separate points of M1(E)
in the sense that

∫
fk dµ =

∫
fk dν for all k ∈ N implies that µ = ν. Such sequences

exist, see, e.g. Section 1 (Lemma 1.1 in particular) of Donnelly and Kurtz (1996).
We use the metric d on M1(E) defined via

d(µ, ν) :=
∑

k

1

2k

∣∣∣
∫
fk dµ−

∫
fk dν

∣∣∣, µ, ν ∈ M1(E) (1.7)

and equip the topology of locally uniform convergence on DM1(E)([0,∞)) with the
metric

dp(µ, ν) :=

∫ ∞

0

e−td(µ(t), ν(t)) dt. (1.8)

Theorem 1.1. The M1(E)-valued process (Zt)t≥0, defined in terms of the ordered
particle system X = (X1, X2, . . . ) by

Zt := lim
n→∞

Zn
t = lim

n→∞

1

n

n∑

i=1

δXi(t), t ≥ 0,

is called the Ξ-Fleming-Viot process with mutation operatorB or simply the (Ξ, B)-
Fleming-Viot process. Moreover, the empirical processes (Zn

t )t≥0 converge almost
surely on the path space DM1(E)([0,∞)) to the càdlàg process (Zt)t≥0.
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Since the empirical measures of XN and Y N are identical, we arrive at the
following corollary.

Corollary 1.2. Define, for each n,

Z̃n
t :=

1

n

n∑

i=1

δYi(t), t ≥ 0,

the empirical process of the n-th unordered particle system, and assume that Z̃n
0 →

Z0 weakly as n→ ∞.
Then, (Z̃n

t )t≥0 converges weakly on the path space DM1(E)([0,∞)) to the (Ξ, B)-
Fleming-Viot process (Zt)t≥0.

The Markov process (Zt)t≥0 is characterized by its generator as follows.

Proposition 1.3. The (Ξ, B)-Fleming-Viot process (Zt)t≥0 is a strong Markov
process. Its generator, denoted by L, acts on test functions of the form

Gf (µ) :=

∫

En

f(x1, . . . , xn)µ⊗n(dx1, . . . , dxn), µ ∈ M1(E), (1.9)

where f : En → R is bounded and measurable, via

LGf (µ) := Laδ0Gf (µ) + LΞ0Gf (µ) + LBGf (µ), (1.10)

where

L
aδ0Gf (µ) := a

X

1≤i<j≤n

Z

En

“

f(x1,.., xi,.., xi,.., xn) − f(x1,.., xi,.., xj ,.., xn)
”

µ
⊗n(dx),

(1.11)

L
Ξ0Gf (µ) :=

Z

∆

Z

EN

ˆ

Gf

`

(1 − |ζ|)µ +
P∞

i=1 ζiδxi

´

− Gf (µ)
˜

µ
⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
, (1.12)

L
B

Gf (µ) := r

n
X

i=1

Z

En

Bi(f(x1, . . . , xn))µ⊗n(dx), (1.13)

and Bif is the mutation operator B, defined in (1.6), acting on the i-th coordinate
of f .

Remark 1.4. 1) In 1999, Donnelly & Kurtz established a construction and path-
wise duality for the Λ-Fleming-Viot process. In some sense, their paper works un-
der the general assumption “allow simultaneous and/or multiple births and deaths,
but we assume that all the births that happen simultaneously come from the same
parent” (p. 166), even though they very briefly in Section 2.5 mention a possible
extension to scenarios with simultaneous multiple births to multiple parents. In
essence, the present paper converts these ideas into theorems.

2) Note that in a similar direction, Bertoin and Le Gall (2003) remark briefly
on p. 277 how their construction of the Λ-Fleming-Viot process via flows of bridges
can be extended to the simultaneous multiple merger context (but leave details to
the interested reader). We are not following this approach, as it is hard to combine
with a general type space and general mutation process.

3) The Ξ-Fleming-Viot process has recently been independently constructed by
Taylor and Véber (personal communication, 2008) via Bertoin and Le Gall’s flow
of bridges (see Bertoin and Le Gall, 2003) and Kurtz and Rodriguez’ Poisson repre-
sentation of measure-valued branching processes (see Kurtz and Rodrigues, 2008).
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In this context we refer to Taylor and Véber (2009) for a larger study of structured
populations, in which Ξ-coalescents appear under certain limiting scenarios.

4) Note that the modified lookdown construction of the Λ-Fleming-Viot process
contains all information available about the genealogy of the process and therefore
also provides a pathwise embedding of the Λ-coalescent measure tree considered by
Greven et al. (2009). A similar statement holds for the Ξ-coalescent.

The rest of the paper is organised as follows: In Section 2 we use the Poisson
point process M

Ξ0 to introduce the finite unordered (Ξ0, B)-Moran model Y N and
the finite ordered (Ξ0, B)-lookdown model XN . It is shown that the ordered model
is constructed in such a way that we can let N tend to infinity and obtain a well
defined limit. We will also show that the reordering preserves the exchangeability
property, which will be crucial for the proof in Section 3. In this section, we will
introduce the empirical measures of the process Y N and XN , show that they are
identical and converge to a limiting process having nice path properties, which is
the statement of Theorem 1.1.

Section 4.2 will be concerned with the generator of the Ξ0-Fleming-Viot pro-
cess. We will give two alternative representations and show that it generates a
strongly continuous Feller semigroup. Furthermore, we will show that the process
constructed in Section 3 solves the martingale problem for this generator.

One representation of the generator will then be used in Section 5 to establish
a functional duality between the Ξ-coalescent and the Ξ-Fleming-Viot process on
the genealogical level. Due to the Poissonian construction, this duality can also be
extended to a “pathwise” duality. We will also give a function-valued dual, which
incorporates mutation.

In Section 6, we look at two examples: The first example is concerned with
a population model with recurrent bottlenecks. Here, a particular Ξ-coalescent,
which is a subordination of Kingman’s coalescent, arises as a natural limit of the
genealogical process. The second example discusses the Poisson-Dirichlet-coalescent
and obtains explicit expressions for some quantities of interest.

2. Exchangeable E∞-valued particle systems

2.1. The canonical (Ξ, B)-Moran model. We can use the Poisson process from Sec-
tion 1.4 governing the Ξ-coalescent to describe a corresponding forward population
model in a canonical way, simply reversing the construction of the coalescent by
interpreting the merging events as birth events.

Consider the points

(tm, ζm,um) = (tm, (ζm1, ζm2, . . .), (um1, um2, . . .)) (2.1)

of MΞ0 defined by (1.2). The tm denote the times of reproduction events. Define

g(ζ, u) :=

{
min{j | ζ1 + · · · + ζj ≥ u} if u ≤

∑
i∈N

ζi,

∞ else.
(2.2)

At time tm, the N particles are grouped according to the values g(ζm, uml), l =
1, . . . , N as follows: For each k ∈ N, all particles l ∈ {1, . . . , N} with g(ζm, uml) = k
form a family. Among each non-trivial family we uniformly pick a ‘parent’ and
change the others’ types accordingly. Note that although the jump times (tm) may
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be dense in R+, the condition
∫

∆

∑

i

ζ2
i

Ξ0(dζ)

(ζ, ζ)
= Ξ0(∆) < ∞

guarantees that in a finite population, in each finite time interval only finitely
many non-trivial reproduction events occur. As above, each particle follows an
independent mutation process, according to (1.6), in between reproductive events.

We describe the population corresponding to the N -particle (Ξ, B)-Moran model
at time t ≥ 0 by a random vector

Y N (t) := (Y N
1 (t), . . . , Y N

N (t)) (2.3)

taking values in EN .

Remark 2.1. Note that this model is completely symmetric, thus, for each t, the
population vector Y N (t) is exchangeable if Y N (0) is exchangeable.

2.2. The ordered model and exchangeability. We now define an ordered population
model with the same family size distribution, extending the ideas of Donnelly and
Kurtz (1999) in an obvious way. This time each particle will be attached a “level”
from {1, 2, . . .} in such a way that we obtain a nested coupling of approximating
(Ξ, B)-Moran models as N tends to infinity. It will be crucial to show that this
ordered model retains initial exchangeability, so that the limit as N → ∞ of the
empirical measures of the particle systems, at each fixed time, exists by de Finetti’s
Theorem.

We will refer to this model as the (Ξ, B)-lookdown-model. If the population size
is N , it will be described at time t by the EN -valued random vector

XN(t) := (XN
1 (t), . . . , XN

N (t)). (2.4)

The dynamics works as in the (Ξ, B)-Moran model above, including the distribution
of family sizes and the mutation processes for each particle.

In each reproduction step, for each family, a “parental” particle will be chosen,
that then superimposes its type upon its family. This time, however, the parental
particle will not be chosen uniformly among the members of each family (as in the
(Ξ, B)-Moran model). Instead, the parental particle will always be the particle with
the lowest level among the members of a family (hence each family member “looks
down” to their relative with the lowest level). The attachment of types to levels is
then rearranged as follows (see Figure 1 for an illustration):

a) All parental particles of all families (including the trivial ones) will retain
their type and level.

b) All levels of members of families will assume the type of their respective
parental particle.

c) All levels which are still vacant will assume the pre-reproduction types of
non-parental particles retaining their initial order. Once all N levels are
filled, the remaining types will be lost.

In this way, the dynamics of a particle, at level l, say, will only depend on the
dynamics of the particles with lower levels. This consistency property allows to
construct all approximating particle systems, as well as their limit as N → ∞, on
the same probability space.
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(a) Parental particles retain
type and level.

(b) Family members copy
type of parental particle.

(c) Remaining particles re-
tain their order and surplus
particles get killed.

Figure 1. An illustration of the reproduction mechanism in the
(Ξ, B)-lookdown model. The particles at levels 2 and 5 belong to
the “star” family, whereas the particles at levels 3, 6 and 8 belong
to the “triangle” family. The particles on the remaining levels
belong to no family.

Exchangeability of the modified (Ξ, B)-lookdown model is crucial in order to
pass to the De Finetti limit of the associated empirical particle systems. For each
N , we will show that if XN (0) is exchangeable, then XN is exchangeable at fixed
times and at stopping times. The proof will rely on an explicit construction of
uniform random permutations Θ(t) which maps XN to Y N .

Theorem 2.2. If the initial distribution of the population vector (XN
1 (0), . . . , XN

N(0))
in the (Ξ, B)-lookdown-model is exchangeable, then (XN

1 (t), . . . , XN
N (t)) is exchange-

able for each t ≥ 0.

For the rest of this section, we omit the superscript N for the population models
in an attempt not to get lost in notation.

The proof of Theorem 2.2 follows that of Theorem 3.2 in Donnelly and Kurtz
(1999). We will construct a coupling via a permutation-valued process Θ(t) such
that

(Y1(t), . . . , YN (t)) = (XΘ1(t)(t), . . . , XΘN (t)(t)) (2.5)

and Θ(t) is uniformly distributed on all permutations of {1, . . . , N} for each t and
independent of the empirical process up to time t and the “demographic informa-
tion” in the model (see (2.15) for a precise definition).

It suffices to construct the skeleton chain (θm)m∈N0 of Θ. As a guide through
the following notation, we have found it useful to occasionally remember that Θ(t)
(and its skeleton chain) is built to the following aim:

Θ maps a position of an individual in the vector Y
(the (Ξ, B)-Moran model) to the level of the corresponding individual in

the ordered vector X (the (Ξ, B)-lookdown model).

Notation and ingredients: For N > 0 let SN denote the collection of all permuta-
tions of {1, . . . , N}, let PN = P({1, . . . , N}), the set of all subsets of {1, . . . , N},
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and let PN,k ⊂ PN be the subcollection of subsets with cardinality k. For a set M ,
M(i) will denote the ith smallest element in M .

At time m (for the skeleton chain) let cm denote the total number of children.
Let am be the number of families and cim the number of children born to family i,
hence

am∑

i=1

cim = cm. (2.6)

Note that we allow cim = 0 for some, but not all i. These are the trivial families
where only the parental particle is below level N and all potential children are
above. Furthermore, we need to keep track of these “one-member families” in
order to match the rates of our model to those of the Ξ-coalescent later on.

Let θ0 be uniformly distributed over SN . For each m ∈ N, pick (independently,
and independent of θ0)

• Φm a random set, uniformly chosen from PN,cm+am
,

•
(
φ1

m, . . . , φ
am
m

)
a random (ordered) partition of Φm, such that each φi

m has

size cim + 1,
• σi

m, i = 1, . . . , am random permutations, each σi
m uniformly distributed

over Sci
m+1, independently of Φm and the φi

m.

Denote

• µi
m := minφi

m, i ∈ {1, . . . , am}, and
• write ∆m for the set of the highest cm integers from {1, . . . , N} \

⋃am

i=1 µ
i
m.

Proceeding inductively we assume that θm−1 has already been defined. We then
construct θm as follows: Let

• νi
m := θ−1

m−1(µ
i
m),

• ψm := θ−1
m−1(∆m), and

• a random ordered partition
(
ψ1

m, . . . , ψ
am
m

)
of ψm such that |ψi

m| = cim,
chosen independently of everything else.

In view of our intended application of θm to transfer from the Moran model to
the lookdown model, we will later on interpret these quantities as follows: In the
m-th event, µi

m will be the level of the parental particle of family i in the lookdown-
model, and νi

m will be the corresponding index in the (unordered) Moran model.
∆m will specify the levels in the lookdown-model at which individuals die. We do
not just pick the highest cm levels, because we wish to retain parental particles.
ψm will be the corresponding indices in the Moran model.

(
φ1

m, . . . , φ
am
m

)
describes

the family decomposition (including the respective parents) in this event in the
lookdown model, and ψi

m are the indices of the children in the i-th family in the
Moran model. Thus, θm will map φi

m to ψi
m ∪ {νi

m} (in a particular order).

Finally, define θm as follows: Put Ψm := {ν1
m, . . . , ν

am
m } ∪ ψm. On Ψm,

θm(νi
m) := φi

m(σi
m(1)), i = 1, . . . , am, (2.7)

and

θm(ψi
m(j)) := φi

m(σi
m(j + 1)) ∀j ∈ {1, . . . , cim} (2.8)

for each i ∈ {1, . . . , am} with cim 6= 0. On {1, . . . , N} \ Ψm let θm be the mapping
onto {1, . . . , N}\Φm with the same order as θm−1 restricted to {1, . . . , N}\Ψm, that
is, whenever θm−1(i) < θm−1(j) for some i, j ∈ {1, . . . , N}\Ψm, then θm(i) < θm(j)
should also hold.
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(a) Initial permuta-
tion θm−1

(b) The families are
added

(c) The completed
permutation in Ex-
ample 2.3

Figure 2. The construction of the new permutation from the old
permutation carried out in Example 2.3

Example 2.3. We consider a realisation of the m-th event of a population of size
N = 8, as illustrated in Figure 1. There are am = 2 families (depicted by “triangle”
and “star”, respectively). The first family φ1

m = {3, 6, 8} has size c1m + 1 = 3, the
second, φ2

m = {2, 5}, has size c2m + 1 = 2. Hence, the set of levels involved in this
birth event is Φm = {2, 3, 5, 6, 8}, and µ1

m = 3, µ2
m = 2 are the levels of the parental

particles. Since there is no parental particle among the highest three levels, the
particles at levels ∆m = {6, 7, 8} “die”.

Now let us assume that θm−1 is as given in Figure 2(a). Thus, ν1
m = 4, ν2

m = 1,
ψm = {3, 5, 7}. The set of indices ψm of individuals in the Moran model who will
get replaced by offspring in this event is partitioned according to the family sizes,
for example let ψ1

m = {3, 7} and ψ2
m = {5}.

We construct θm as follows: Let σ1
m =

(
1 2 3
3 1 2

)
and σ2

m =
(
1 2
2 1

)
. For the restriction

of θm to Ψm = {1, 3, 4, 5, 7}, we read from (2.7) that θm(4) = φ1
m(3) = 8, θm(1) =

φ2
m(2) = 5 and from (2.8) that θm(3) = θm(ψ1

m(1)) = φ1
m(σ1

m(1 + 1)) = φ1
m(1) = 3,

θm(7) = θm(ψ1
m(2)) = φ1

m(σ1
m(2 + 1)) = φ1

m(2) = 6 and θm(5) = θm(ψ2
m(1)) =

φ2
m(σ2

m(1 + 1)) = φ2
m(1) = 2. This leads to the partial permutation which is given

in Figure 2(b).

Restricted to the complementary set {2, 6, 8}, θm is a mapping onto {1, 4, 7}
with the same order as θm−1 restricted to {2, 6, 8}. The resulting permutation θm

is given in Figure 2(c). �

For notational convenience, let

χm := (ν1
m, ψ

1
m, . . . , ν

am
m , ψam

m ), (2.9)

which summarises the combinatorial information generated in the m-th step (name-
ly, the family structure we would observe in the Moran model).

Lemma 2.4. For each m, χ1, . . . , χm, θm are independent. Furthermore θm is
uniformly distributed over SN and

Υm :=

am⋃

i=1

{νi
m} ∪ ψi

m (2.10)

is uniformly distributed over PN,cm+am
, and each χm is, given Υm, uniformly dis-

tributed on all ordered partitions of Υm with family sizes consistent with the cim.

Proof : We prove the statement by induction. Denoting Fm = σ(θk, χk : 0 ≤ k ≤
m), we have

E[f(θm, χm) | Fm−1] = E[f(θm, χm) | θm−1], (2.11)
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since θm and χm are only based on θm−1 and additional independent random struc-
ture. This implies, for any choice of hk : ∪N

n=1

(
{1, . . . , N} × P({1, . . . , N}

)n
→R and

f :Sn→R,

E

[
f(θm)

m∏

k=1

hk(χk)

]
= E

[
E[f(θm)hm(χm) | Fm−1]

m−1∏

k=1

hk(χk)

]

= E

[
E[f(θm)hm(χm) | θm−1]

m−1∏

k=1

hk(χk)

]

= E[f(θm)hm(χm)]

m−1∏

k=1

E[hk(χk)],

where we used (2.11) in the second and the induction hypothesis in the third equal-
ity. It remains to show that θm and χm are independent and have the correct
distributions.
θm−1 is uniformly distributed by the induction hypothesis and independent of the

distributions of the parental-levels µi
m and the “death-levels” ∆m by construction.

It is immediate from the construction that Φm and Υm are uniformly distributed
over PN,cm+am

and the family structure χm is uniformly distributed among all
admissible configurations.

Furthermore, conditioning on χm and Φm, θm is uniformly distributed over all
permutations that map Υm onto Φm. This follows from the fact that Φm is uniform
on PN,cm+am

and that this set is uniformly divided into the families φi
m. Since

uniform and independent permutations σi
m are used for the construction of θm

and the non-participating levels remain uniformly distributed, θm is uniform under
these conditions.

Finally, conditioning on χm does not alter the fact that Φm is uniformly dis-
tributed over PN,cm+am

. This implies that given χm, θm is also uniformly dis-
tributed over SN . Since

L(θm|χm) = unif(SN ) = L(θm), (2.12)

θm and χm are independent of each other. �

Proof of Theorem 2.2: Suppose a realization X of the N -particle (Ξ, B)-lookdown-
model is given and let {tm} denote the times at which the birth events occur. The
families involved in the m-th birth event are denoted by φi

m. Note that by definition
of the lookdown-dynamics, the “ingredients” Φm, cm, am, c

i
m, µ

i
m,∆m introduced

earlier can be obtained from this, and that their joint distributions is as discussed
above.

Moreover, let the initial permutation θ0 be independent of X and uniformly dis-
tributed on SN . Let σi

m be independent of all other random variables and uniformly
distributed on Sci

m+1, 1 ≤ i ≤ am, m ∈ N.
Define θm as above, and

Θ(t) := θm for tm ≤ t < tm+1. (2.13)

Observe that, by Lemma 2.4,

(Y1(t), . . . , YN (t)) := (XΘ1(t)(t), . . . , XΘN (t)(t)) (2.14)
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is a version of the (Ξ, B)-Moran-model. Note that “one-member families” are in this
construction simply treated as non-participating individuals in the (Ξ, B)-Moran
model.
Y (t) depends only on Y (0), {χm}tm≤t and the evolution of the type processes

between birth and death events, so Θ(t), and hence Θ(t)−1 is independent of

Gt := σ
(
(Y1(s), . . . , YN (s)) : s ≤ t

)
∨ σ(χm : m ∈ N) (2.15)

due to Lemma 2.4. Therefore, we see from

(X1(t), . . . , XN (t)) = (YΘ−1
1 (t)(t), . . . , YΘ−1

N
(t)(t)) (2.16)

that (X1(t), . . . , XN (t)) is exchangeable. �

Corollary 2.5. Starting from the same exchangeable initial condition, the laws of
the empirical processes of the (Ξ, B)-Moran-model and the (Ξ, B)-lookdown-model
coincide.

The exchangeability property does not only hold for fixed times, but also for
stopping times.

Theorem 2.6. Suppose that the initial population vectors Y N (0) in the (Ξ, B)-
Moran-model and XN(0) in the (Ξ, B)-lookdown-model have the same exchangeable
distribution, and let τ be a stopping time with respect to (Gt)t≥0 given by (2.15).
Then, (XN

1 (τ), . . . , XN
N (τ)) is exchangeable.

Proof : We show that Θ(τ) is independent of the σ-algebra Gτ (the τ -past) and
uniformly distributed over SN .

First, assume that τ takes only countable many values tk, k ∈ N. Let A ∈ Gτ

and h : SN → R+, then

E

(
h
(
Θ(τ)

)1A

)
= E

( ∞∑

k=1

h
(
Θ(tk)

)1A∩{τ=tk}

)

=

∞∑

k=1

(
Eh

(
Θ(tk)

))(
E1A∩{τ=tk}

)

=

∫
h(Θ)U(dΘ)

∞∑

k=1

E1A∩{τ=tk}

=

∫
h(Θ)U(dΘ) E1A,

(2.17)

where U denotes the uniform distribution on SN . To see that the second equality
holds, observe that, for fixed tk, Θ(tk) is independent of Gtk

as defined in (2.15).
By approximating an arbitrary stopping time from above by a sequence of dis-

crete stopping times, we see that (2.17) holds in the general case as well. Now,
exchangeability of (XN

1 (τ), . . . , XN
N (τ)) follows as in the proof of Theorem 2.2. �

Remark 2.7. One can also define a variant of the (Ξ, B)-lookdown model which is
more in the spirit of the ‘classical’ lookdown construction from Donnelly and Kurtz
(1996), where, instead of a)–c) on page 33, at a jump time each particle simply
copies the type of that member of the family it belongs to with the lowest level
(and no types get shifted upwards). This variant, which is (up to a renaming of
levels by the points of a Poisson process on R) also the one suggested by adapting
Kurtz and Rodrigues (2008) to the ‘simultaneous multiple merger’-scenario, has
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been considered by Taylor & Véber (2008, personal communication). The same
results as above hold for this variant, with only minor modifications of the proofs.
Note that the flavour of the lookdown process described above is easily adaptable
to a set-up with time-varying total population size, which is not obvious for the
other variant.

2.3. The limiting population. We now construct the limiting E∞-valued particle
system X = (X1, X2, . . .) by formulating a stochastic differential equation for each
level l. These exist for each level and are well defined, since the equation for level
l needs only information about lower levels.

The generator (1.6) of a pure jump process can be written in the form

Bf(x) = r

∫ 1

0

(
f(m(x, u)) − f(x)

)
du,

where r is the global mutation rate and m : E × [0, 1] → E transforms a uniformly
distributed random variable on [0, 1] into the jump distribution q(x, dy) of the
process. The random times and uniform “coins” for the mutation process at each
level l are given by a Poisson point process NMut

l on R+ × [0, 1] with intensity
measure rdt ⊗ du.

As in Section 2.1, denote by

(tm, ζm,um) = (tm, (ζm1, ζm2, . . .), (um1, um2, . . .))

the points of the Poisson point process M
Ξ0 and recall the definition (2.2) of the

“colour” function g. Based on this, define

Ll
J(t) :=

∑

m:tm≤t

∏

j∈J

1{g(ζm,umj)<∞}

∏

j∈{1,...,l}\J

1{g(ζm,umj)=∞}, (2.18)

for J ⊂ {1, . . . , l} with |J | ≥ 2 . Ll
J(t) counts how many times, among the levels in

{1, . . . , l}, exactly those in J were involved in a birth event up to time t. Moreover,
let

Ll
J,k(t) :=

∑

m:tm≤t

∏

j∈J

1{g(ζm,umj)=k}

∏

j∈{1,...,l}\J

1{g(ζm,umj) 6=k}. (2.19)

Ll
J,k(t) counts how many times, among the levels in {1, . . . , l}, exactly those in J

were involved in a birth event up to time t and additionally assumed “colour” k.
To specify the new levels of the individuals not participating in a certain birth

event, we construct a function Jm as follows:
Denote by µk

m := min{l ∈ N | g(ζm, uml) = k} the level of the parental particle of
family number k and by Mm := {µk

m}k∈N the set of all levels of parental particles
involved in the m-th birth event. Furthermore Um := {l ∈ N | g(ζm, uml) = ∞}
denotes the set of the levels not participating in the birth event m. Define the
mapping

Jm : Um → N \Mm (2.20)

that maps the i-th smallest element of the set Um to the i-th smallest element of
the set N \Mm for all i.

Assuming for the moment that E is an Abelian group, the (infinite) vector
describing the types in the (Ξ, B)-lookdown-model is defined as the (unique) strong
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solution of the following system of stochastic differential equations. The lowest
individual on level 1 just evolves according to mutation, i.e.,

X1(t) :=

∫

[0,t]×[0,1]

(m(X1(s−), u) −X1(s−)) dNMut
1 (s, u). (2.21)

The individuals above level one can look down during birth events. Thus, for l ≥ 2,
define

Xl(t) :=Xl(0) +

∫

[0,t]×[0,1]

(
m(Xl(s−), u) −Xl(s−)

)
dNMut

l (s, u)

+
∑

1≤i<l

∫ t

0

(Xi(s−) −Xl(s−)) dNK
il (s)

+
∑

1≤i<j<l

∫ t

0

(Xl−1(s−) −Xl(s−)) dNK
ij (s)

+
∑

k∈N

∑

K⊂{1,...,l},l∈K

∫ t

0

(Xmin(K)(s−) −Xl(s−)) dLl
K,k(s)

+
∑

K⊂{1,...,l},l/∈K

∫ t

0

(XJm(l)(s−) −Xl(s−)) dLl
K(s).

(2.22)

The second and third lines describe the “Kingman events”, where only pairs of
individuals are involved. The first part copies the type from level i when l looks
down to this level, because it is involved in a birth event and the parental particle
is at level i. The second part handles the event that the parental particle places a
child on a level below l. In this case, l has to copy the type from the level l − 1,
since the new individual is inserted at some level below l and pushes all particles
above that level one level up.

The fourth and fifth lines describe the change of types for a birth event with
large families in a similar way. If the particle at level l is involved in the family k,
it copies the type from the parental particle which resides at the lowest level of the
family. If level l is not involved in any family, then Jm(l) (≤ l) gives the level from
where the type is copied (which comes from shifting particles not involved in the
lookdown event upwards).

Since the equation for Xl involves only X1, . . . , Xl and finitely many Poisson
processes, it is immediate that there exists a unique strong solution of (2.21)–(2.22).

In the case where E has no group structure, one may still construct suitable
jump-hold processesXi, using the driving Poisson processes in an obvious extension
of (2.21)–(2.22).

These stochastic differential equations determine an infinitely large population
vector

X(t) := (X1(t), X2(t), . . .) (2.23)

in a consistent way, and for each N ∈ N, the dynamics of (X1, . . . , XN) is identical
to that defined in Section 2.2. In particular, we see from Theorem 2.2 that, for
each t ≥ 0, X(t) is exchangeable and the empirical distribution

Z(t) := lim
l→∞

Z l(t) := lim
l→∞

1

l

l∑

i=1

δXi(t) (2.24)
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exists almost surely. Let F be the set of bounded measurable functions ϕ : [0,∞)×
[0, 1]N × [0, 1]∞ → R such that ϕ(t, ζ,u) does not depend on u, and put

Ht := σ

((
Z(s) : s ≤ t

)
,
(∫

ϕdMΞ0 : ϕ ∈ F
))

. (2.25)

Corollary 2.8. Let τ be a stopping time with respect to (Ht)t≥0. Then

X(τ) = (X1(τ), X2(τ), . . .) (2.26)

is exchangeable.

Proof : We claim that for t ≥ 0, A ∈ Ht with P{A} > 0 and n ∈ N,

(X1(t), . . . , Xn(t)) is exchangeable under P{·|A}. (2.27)

Observe that, taking A = {τ = tk}, (2.27) immediately implies the result for
discrete stopping times τ , from which the general case can be deduced by approxi-
mation as in the proof of Theorem 2.6.

Obviously, (2.27) is equivalent to

P
{
A ∩ {(X1(t), . . . , Xn(t)) ∈ C}

}
= P

{
A ∩ {(Xσ(1)(t), . . . , Xσ(n)(t)) ∈ C}

}

∀C ⊂ En, σ ∈ Sn. (2.28)

As the collection of sets A from Ht satisfying (2.28) is a Dynkin system, it suffices
to verify (2.28) for events of the form

A = {Z(s1) ∈ B1, . . . , Z(sk) ∈ Bk} ∩H
′, (2.29)

where H ′ ∈ σ
( ∫

ϕdMΞ0 : ϕ ∈ F
)
, k ∈ N, s1 < · · · < sk ≤ t, Bi ∈ B(si) for

i ∈ {1, . . . , k}, and B(si) is a ∩-stable generator of BM1(E) with the property that
P{Z(si) ∈ ∂B′} = 0 for all B′ ∈ B(si).

For A as given in (2.29), ε > 0 and n ∈ N, σ ∈ Sn, C ⊂ En appearing in (2.28),
by (2.24) there exists l (l ≫ n) such that

Al := {Z l(s1) ∈ B1, . . . , Z
l(sk) ∈ Bk} ∩H

′

satisfies P{(A \ Al) ∪ (Al \ A)} ≤ ε. By the arguments given in the proof of
Theorem 2.6, (2.28) holds with A replaced by Al. Finally, take ε→ 0 to conclude.

�

3. Pathwise convergence: Proof of Theorem 1.1

Recall the empirical processes Z l, and their limit Z, from (2.24). Obviously, for
each l ∈ N, the process (Z l(t))t≥0 has càdlàg paths. To verify the corresponding
property for Z, we introduce the following auxiliary (Lévy) process U , derived from
the Poisson point process MΞ0 which governs the large family birth events of the
population X : If

{
(tm, ζm,um)

}
are the points of the process M

Ξ0 , we define

U(t) :=
∑

tm≤t

v2
m, (3.1)

where vm :=
∑∞

i=1 ζmi. The jumps of U := (U(t))t≥0 are the squared total fractions
of the population which are replaced in large birth events. The generator of U is
given by

Df(u) =

∫ 1

0

(f(u+ v2) − f(u)) ν(dv), (3.2)
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where the measure ν on [0, 1], defined via

ν(A) :=

∫

∆

1{
P

∞
i=1 ζi∈A}

Ξ(dζ)

(ζ, ζ)
, (3.3)

governs the jumps.
We need the following version of Lemma A.2 from Donnelly and Kurtz (1999).

Lemma 3.1. a) Let e1, e2, . . . be exchangeable and suppose there exists a constant
K such that |ei| ≤ K almost surely. Define

Mk :=
1

k

k∑

i=1

ei (3.4)

and let M∞ be the almost sure limit of (Mk)k∈N, whose existence is guaranteed by
the de Finetti Theorem. Let ε > 0. Then there exists η1 > 0 depending only on K
and ε, such that, for l < n ∈ N ∪ {∞},

P{|Mn −Ml| ≥ ε} ≤ 2e−η1(K,ε)l. (3.5)

b) Let (ei(t))t∈[0,1] be centered martingales such that supi∈N,t∈[0,1] |ei(t)| ≤ K

almost surely and (e1(1), e2(1), . . .) is exchangeable. Put

Mk(t) :=
1

k

k∑

i=1

ei(t).

Let ε > 0. Then there exists η2 > 0 depending only on K and ε, such that, for
l ∈ N

P{ sup
t∈[0,1]

|Mk(t)| ≥ ε} ≤ 2e−η2(K,ε)l. (3.6)

Proof : The proof of part a) is a straightforward extension of that of Lemma A.2
from Donnelly and Kurtz (1999), which employs the fact that an infinite exchange-
able sequence is conditionally i.i.d. together with standard arguments based on the
moment generating function.

For part b) observe that by Doob’s submartingale inequality,

P

{
sup

0≤t<1
|Mk(t)| ≥ ε

}
≤ inf

λ>0

1

eελ
Eeλ|Mk(1)| ≤ inf

λ>0

1

eελ
E exp

(λ
k

k∑

i=1

|ei(1)|
)
.

(3.7)
Now proceed as in part a). �

The following lemma provides the technical core of the argument and replaces
Lemma 3.4 and Lemma 3.5 in Donnelly and Kurtz (1999). The proof given below
follows closely the arguments of Donnelly and Kurtz (1999).

Lemma 3.2. In the setting of Theorem 1.1, for all c, T, ǫ > 0 and f ∈ D(B) (the
domain of the mutation generator) there exists a sequence δl such that

∑∞
l=1 δl <∞

and

P

{
sup

0≤t≤T

∣∣〈f, Z(t)〉 − 〈f, Zl(t)〉
∣∣ ≥ 11ǫ, U(T ) ≤ c

}
≤ δl. (3.8)



A modified lookdown construction for the Xi-Fleming-Viot process 43

Proof : By Lemma 3.1 and the exchangeability properties of X , we have

P{|〈f, Z(α)〉 − 〈f, Zl(α)〉| ≥ ǫ} ≤ 2e−ηl, (3.9)

if α is a stopping time with respect to H̃ := (H̃t)t≥0 :=
(
σ(U(s) : s ≥ 0) ∨ σ(Z(s) :

0 ≤ s ≤ t)
)

t≥0
(observe that H̃t ⊂ Ht, where Ht is defined in (2.25)).

Now fix l and ǫ. Define the H̃-stopping times

α1 := inf

{
t : U(t) >

1

l4

}
∧

1

l4
(3.10)

and

αo+1 := inf

{
t : U(t) > U(αo) +

1

l4

}
∧

(
αo +

1

l4

)
, o = 1, 2, . . . , (3.11)

which yield a decomposition of the interval [0, T ]. Remark that on the event{
U(T ) ≤ c

}
there exist at most

ol := 2(c+ T )l4 (3.12)

such αo, i.e., we have

P
{
αol

< T,U(αol
) < c,U(T ) ≤ c

}
= 0. (3.13)

We define a second kind of H̃-stopping times depending on αo via

α̃o := inf{t > αo : |〈f, Z(t)〉 − 〈f, Z(αo)〉| ≥ 6ǫ}. (3.14)

We see from (3.9) that

Ho := |〈f, Z(αo)〉 − 〈f, Zl(αo)〉| ∨ |〈f, Z(α̃o)〉 − 〈f, Zl(α̃o)〉| (3.15)

satisfies

P

{
sup
o≤ol

Ho ≥ ε, U(T ) ≤ c
}
≤

ol∑

o=1

P {Ho ≥ ε, U(T ) ≤ c} ≤ 8(c+ T )l4e−ηl. (3.16)

It remains to estimate the variation of Z l and Z in between the stopping times
αo. For u ∈ [αo, αo+1) let βjo(u) denote the smallest index of a descendant of
Xj(αo), let the stopping time γjo be the time when the smallest descendant of
Xj(αo) is shifted above the level l. Put

X̃j(u) =

{
Xβjo(u)(u) if u < γjo,

Xβjo(γjo−)(γjo−) if u ≥ γjo.

Observe that

〈f, Z
l(u)〉 − 〈f, Z

l(αo)〉 = 〈f, Z
l(u)〉 −

1

l

l
X

j=1

f(X̃j(u)) +
1

l

l
X

j=1

“

f(X̃j(u)) − f(X̃j(αo))
”

.

(3.17)

It will be useful to treat the two parts of the sum separately. Define

K1 := max
o≤ol

sup
u∈[αo,αo+1)

∣∣∣∣〈f, Z
l(u)〉 −

1

l

l∑

j=1

f(X̃j(u))

∣∣∣∣

and

K2 := max
o≤ol

sup
u∈[αo,αo+1)

∣∣∣∣
1

l

l∑

j=1

(
f(X̃j(u)) − f(X̃j(αo))

)∣∣∣∣.



44 Matthias Birkner et al.

Note that the law of K2 depends only on the mutation mechanism, since X̃j(u)

follows the line of the individual X̃j(αo) = Xj(αo) and thus only evolves indepen-
dently according to a mutation process with generator B.

Begin with K1 and note that, for u ∈ [αo, αo+1),

〈f, Z
l(u)〉 −

1

l

l
X

j=1

f(X̃j(u)) =
1

l

“

l
X

j=1

f(Xj(u)) −

l
X

j=1

f(X̃j(u))
”

≤
2‖f‖

l
N

l[αo, αo+1),

(3.18)

where N l[αo, αo+1) is the total number of births occurring in the time interval
[αo, αo+1) with index less than or equal to l. To see this note that at time αo the
two sums in the second expression cancel. A birth event in the interval [αo, αo+1)
means that one type is removed from the second sum and another one is added,
thus the expression can be altered by up to 2||f ||/l.

There are two mechanisms which can increaseN l[αo, αo+1). It can either increase
during a large birth event given by a “jump” of MΞ0 or during a small birth event
which is given by one of the “Kingman-related” Poisson processes NK

ij .

We first consider large birth events. Let (vi) be the jumps of U in the interval
[αo, αo+1), and condition on this configuration for the rest of this paragraph. At
the time of the m-th jump, a Binomial(l, vm)-distributed number of levels ≤ l
participates in this event, hence km, the total number of children below level l in
the m-th birth event, satisfies

km ≤ (bm − 1)+,

where bm is Binomial(l, vm)-distributed. Note that we can subtract 1 from the
binomial random variable, since at least one of the levels participating in the birth
event must be a mother. This subtraction will be crucial later on.

By elementary calculations with Binomial distributions, involving fourth mo-
ments, similar to Donnelly and Kurtz (1999, p. 186), we can estimate

P

{∑

m

km > ǫl
}
≤ P

{∑

m

(bm − 1)+ > ǫl
}
≤
C1

l6
(3.19)

for some 0 < C1 <∞.

As we mentioned before, N l[αo, αo+1) and thus K1 can also be increased by
the Kingman part of the birth process, but only if the parental particle and its
offspring are placed below level l. The number of times this happens in the interval
[αo, αo+1) is stochastically dominated by a Poisson distributed random variable R

with parameter
(

l
2

)
l−4 since the length of the interval is bounded by l−4. So, the

probability that 2‖f‖
l N l[αo, αo+1) exceeds 2ǫ due to this mechanism is bounded by

the probability that R exceeds lǫ
‖f‖ . By elementary estimates on the tails of Poisson

random variables, we have

P

{
R >

lǫ

‖f‖

}
≤ e−η1l, (3.20)

for some η1 > 0 and l large enough.
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Combining (3.19) and (3.20), we obtain

P
˘

K1 > 2ǫ, U(T ) ≤ c
¯

=P

n

max
o≤ol

sup
u∈[αo,αo+1)

˛

˛〈f, Z
l(u)〉−

1

l

l
X

j=1

f(X̃j(u))
˛

˛ > 2ǫ, U(T ) ≤ c
o

≤ ol

“C1

l6
+ e

−η1l
”

,

(3.21)

for l large enough. This controls the increments of 〈f, Z l〉 in the intervals [αo, αo+1).
We now consider K2. Observe that

1

l

l
X

j=1

(f(X̃j(u)) − f(X̃j(αo))) =
1

l

l
X

j=1

„

f(X̃j(u)) − f(X̃j(αo)) −

Z u

αo

Bf(X̃j(s))ds

«

+
1

l

l
X

j=1

Z u

αo

Bf(X̃j(s))ds, (3.22)

and that, for u ≥ αo and each o,

Mlo(u∧αo+1) :=
1

l

l
X

j=1

„

f(X̃j(u∧αo+1))− f(X̃j(αo))−

Z u∧αo+1

αo

Bf(X̃j(s))ds

«

(3.23)

is a martingale. For l large enough so that l−4‖Bf‖ ≤ ε, we have

P
˘

K2 ≥ 2ε, U(T ) ≤ c
¯

≤

ol−1
X

o=0

P

n

sup
αo≤u<αo+1

|Mlo(u)

+
1

l

l
X

j=1

Z u

αo

Bf(X̃j(s))ds| ≥ 2ε, U(T ) ≤ c
o

≤

ol−1
X

o=0

P

n

sup
αo≤u<αo+1

|Mlo(u)| + l
−4‖Bf‖ ≥ 2ε, U(T ) ≤ c

o

≤

ol−1
X

o=0

P

n

sup
αo≤u<αo+1

|Mlo(u)| ≥ ε, U(T ) ≤ c
o

.

(3.24)

We now need to bound each summand. Using the notation

Mlo(u) =
1

l

l∑

j=1

ej(u),

where

ej(u) := f(X̃j(αo+1∧u))−f(X̃j(αo))−

∫ αo+1∧u

αo

Bf(X̃j(s))ds, u ∈ [0, 1], (3.25)

each (ej(u))u is a martingale with Eej(u) = 0 and |ej(u)| ≤ 2‖f‖ + ‖Bf‖/l4 =: K
almost surely. Moreover, the ej(u) are exchangeable. We obtain from Lemma 3.1

P

{
sup

αo≤u<αo+1

|Mlo(u)| ≥ ε
}
≤ 2e−η2l, (3.26)

for some η2 > 0.
Combining this result with (3.24), we arrive at

P
{
K2 ≥ 2ε, U(T ) ≤ c

}
≤ olC2e

−η2l. (3.27)
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Now observe that if maxo≤ol
Ho < ǫ, K1 < 2ǫ and K2 < 2ǫ, then α̃o ≥ αo+1.

This can easily be seen by contradiction. Indeed, if we assume that α̃o < αo+1, this
would imply

|〈f, Z(αo)〉 − 〈f, Z(α̃o)〉| ≥ 6ǫ, (3.28)

according to (3.14). But on the other hand we know that

|〈f, Z(αo)〉 − 〈f, Zl(αo)〉| < ǫ and |〈f, Z(α̃o)〉 − 〈f, Zl(α̃o)〉| < ǫ ∀o (3.29)

due to our bound on Ho. Since the distance between 〈f, Z〉 and 〈f, Z l〉 was at most
ǫ at the beginning of the interval and 〈f, Zl〉 can only have moved by at most 4ǫ
on the event {K1 ≤ 2ǫ} ∩ {K2 ≤ 2ǫ} ∩ {maxo≤ol

Ho ≤ ǫ},

|〈f, Z(αo)〉 − 〈f, Zl(α̃o)〉| < 5ǫ (3.30)

must hold if α̃o ≤ αo+1. But equation (3.28) states that 〈f, Z(α̃o)〉 is more than
6ǫ away from its starting point, so this contradicts that it can only be ǫ away from
〈f, Zl(α̃o)〉 which is ensured by our condition on Ho. Thus α̃o has to be greater
than αo+1 which in turn implies that

sup
αo≤u<αo+1

{∣∣〈f, Z(u)〉 − 〈f, Z(αo)〉
∣∣
}
≤ 6ǫ (3.31)

holds on the event {K1 ≤ 2ǫ} ∩ {K2 ≤ 2ǫ} ∩ {maxo≤ol
Ho ≤ ǫ}.

Putting observations (3.16) and (3.31), the bound (3.27) and the bound (3.21)
together, we finally obtain

P

{
sup

0≤t≤T

∣∣〈f, Z(t)〉 − 〈f, Zl(t)〉
∣∣ ≥ 11ǫ, U(T ) ≤ c

}
≤ δl (3.32)

with

δl := 8(c+ T )l4e−ηl + olC1l
−6 + ole

−η1l + olC2e
−η2l, (3.33)

which is the statement of the lemma since due to equation (3.12) ol ∼ l4 holds and
therefore the δl are summable. �

Proof of Theorem 1.1: Almost sure convergence of Z l to Z with respect to the met-
ric (1.8) follows directly from Lemma 3.2 and the Borel-Cantelli Lemma, completing
the proof of Theorem 1.1. �

4. The Hille-Yosida approach

In this section we provide two alternative representations of the Ξ0-Fleming-Viot
generator, leading to the distributional duality to the Ξ-coalescent discussed in
Section 5, and we show that they generate a Markov semigroup on M1(E), hence
leading to a classical construction of the Ξ0-Fleming-Viot process as a Markov
process.

4.1. Two representations of the Ξ0-Fleming-Viot generator. Recall that if the type
space E is a compact Polish space (which is assumed in this paper), then the
set M1(E) of all probability measures on E, equipped with the weak topology, is
again a Polish space. We briefly recall the notation from Section 1. For f : En → R

bounded and measurable consider the test function

Gf (µ) :=

∫

En

f(x1, . . . , xn)µ⊗n(dx1, . . . , dxn), µ ∈ M1(E). (4.1)
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The linear operator LΞ0 was defined via

LΞ0Gf (µ) =

∫

∆

∫

EN

[
Gf

(
(1 − |ζ|)µ+

∑∞
i=1 ζiδxi

)
−Gf (µ)

]
µ⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
.

(4.2)
This operator is the Ξ0-Fleming-Viot generator from Proposition 1.3. The following
representation will be useful to establish the duality with the Ξ0-coalescent. Note
that if Ξ is concentrated on {ζ ∈ ∆ : ζi = 0 for all i ≥ 2}, i.e., if the corresponding
coalescent is a Λ-coalescent, then this result has already been obtained by Bertoin
and Le Gall (2003, Eqs. (16) and (17)).

For convenience, we will denote the transition rates by

λ(k1, . . . , kp) = λb;k1,...,kr ;s, (4.3)

where k1 ≥ · · · ≥ kr ≥ 2, p− r = s and kr+1 = . . . = kp = 1. Furthermore, define
for p, n1, . . . , np ∈ N such that n1 + · · · + np > p (⇔ not all ni = 1)

λ(n1, . . . , np) := λ(k1, . . . , kp), (4.4)

where k1 ≥ · · · ≥ kp is the re-arrangement of n1, . . . , np in decreasing order.

Lemma 4.1. The operator LΞ0 has the alternative representation

LΞ0Gf (µ) =
∑

π={A1,...,Ap}∈Pn
not all singletons

λ(|A1|, . . . , |Ap|)

∫

En

(
f
(
x[π]

)
− f(x)

)
µ⊗n(dx1, . . . , dxn),

(4.5)
where x[{A1, . . . , Ap}] ∈ En has entries

(x[{A1, . . . , Ap}])i := xminAj
if i ∈ Aj, i = 1, . . . , n.

Remark 4.2. Note that (4.5) basically boils down to (1.4), if |Ai| = 1 for all but
one Ai.

Proof of Lemma 4.1: First note that for fixed ζ and x,

Gf

`

(1 − |ζ|)µ +
P∞

i=1 ζiδxi

´

=
X

φ:{1,...,n}→Z+

(1 − |ζ|)a(φ)
Y

j≤n :φ(j)>0

ζφ(j)

Z

Ea(φ)

f
`

η(φ,x,y)
´

µ
⊗a(φ)(dy1, . . . , dya(φ)),

(4.6)

where a(φ) := #{1 ≤ j ≤ n : φ(j) = 0} and η(φ,x,y) ∈ En is given by

η(φ,x,y)j =

{
xφ(j) if φ(j) > 0,

yk if φ(j) = 0, where k = #{1 ≤ j′ ≤ j : φ(j′) = 0}.

Identity (4.6) can be understood as follows: Expanding the n-fold product of (1 −
|ζ|)µ+

∑∞
i=1 ζiδxi

, we put φ(j) = 0 if in the j-th factor, we use (1 − |ζ|)µ, and we
put φ(j) = i if we use ζiδxi

in the j-th factor.
Each φ : {1, . . . , n} → Z+ is uniquely described by a partition π={A1, . . . , Ap} ∈

Pn with labels ℓ1, . . . , ℓp ∈ Z+ by defining j ∼φ j
′ if and only if φ(j) = φ(j′) > 0
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and putting ℓi := φ(Ai), i = 1, . . . , p. Note that for a given partition {A1, . . . , Ap},
any vector (ℓ1, . . . , ℓp) ∈ Z

p
+ of labels with the properties

ℓi = 0 ⇒ |Ai| = 1 and i 6= j, ℓi, ℓj 6= 0 ⇒ ℓi 6= ℓj

is admissible. Thus we have

∫

EN

Gf

(
(1 − |ζ|)µ +

∑∞
i=1 ζiδxi

)
µ⊗N(dx)

=
∑

π={A1,...,Ap}∈Pn

∑

(ℓ1,...,ℓp)

admissible

(1 − |ζ|)#{1≤i≤p:ℓi=0}

p∏

i=1
ℓi>0

ζ
|Ai|
ℓi

∫

En

f(x[π])µ⊗n(dx).

(4.7)

Note that, for a given partition with p blocks, the integration appearing in the
last line runs effectively only over Ep. For further simplification assume that the
blocksA1, . . . , Ap of π = {A1, . . . , Ap} ∈ Pn are enumerated according to decreasing
block size, and write s(π) for the number of singleton blocks of the partition π =
{A1, . . . , Ap}. Then, for a given π = {A1, . . . , Ap} ∈ Pn, the last sum in (4.7) can
be written as

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈N

all distinct

ζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

∫

En

f
(
x[π]

)
µ⊗n(dx).

Furthermore, for any ζ ∈ ∆ and n ∈ N,

1 =
((

1 − |ζ|
)

+
∑∞

i=1ζi

)n

=
∑

π={A1,...,Ap}∈Pn

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈N

all disticnt

ζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l
.

This allows us to re-express the inner integral in (4.2) as

∑

π={A1,...,Ap}∈Pn

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l ×

∑

i1,...,ip−s(π)+l∈N

all distinct

ζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

∫

En

[f
(
x[π]

)
− f(x)]µ⊗n(dx)

=
∑

π={A1,...,Ap}∈Pn
not all singletons

s(π)∑

l=0

(
s(π)

l

)
(1 − |ζ|)s(π)−l

∑

i1,...,ip−s(π)+l∈N

all distinct

ζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

×

∫

En

[f
(
x[π]

)
− f(x)]µ⊗n(dx),

because x[{{1}, . . . , {n}}] = x. Integrating this equation over ∆ with respect to
the measure (ζ, ζ)−1Ξ0 yields (4.5).
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Note that (see also Sagitov, 2003, p. 844)

X

π={A1,...,Ap}∈Pn
not all singletons

s(π)
X

l=0

 

s(π)

l

!

(1 − |ζ|)s(π)−l
X

i1,...,ip−s(π)+l∈N

all distinct

ζ
|A1|
i1

· · · ζ
|Ap−s(π)+l|

ip−s(π)+l

≤
X

π={A1,...,Ap}∈Pn
not all singletons

“

∞
X

i1=1

ζ
2
i1

”

s(π)
X

l=0

 

s(π)

l

!

(1 − |ζ|)s(π)−l

×
X

ip−s(π)+1,...,ip−s(π)+l∈N

ζip−s(π)+1
· · · ζip−s(π)+l

=
X

π={A1,...,Ap}∈Pn
not all singletons

(ζ, ζ)

s(π)
X

l=0

 

s(π)

l

!

(1 − |ζ|)s(π)−l|ζ|l = (|Pn| − 1) (ζ, ζ)

to verify that there is no singularity near ζ = 0. �

4.2. Construction of the Markov semigroup and proof of Proposition 1.3. The fol-
lowing proposition ensures that there exists a Markov process attached to the Ξ0-
Fleming-Viot generator.

Proposition 4.3. The closure of

{(Gf , L
Ξ0Gf ) : n ∈ N, f : En → R bounded and measurable}

generates a Markov semigroup on M1(E).

Proof : We write G instead of Gf for convenience. By the Hille-Yosida Theorem
(see, for example, Ethier and Kurtz, 1986, p. 165, Theorem 2.2) it is sufficient to
verify that

(i) the domain D is dense in C(M1(E)),
(ii) the operator LΞ0 satisfies the positive maximum principle, i.e., LΞ0G(µ) ≤ 0

for all G ∈ D, µ ∈ M1(E) with supν∈M1(E)G(ν) = G(µ) ≥ 0, and that

(iii) the range of λ− LΞ0 is dense in C(M1(E)) for some λ > 0.

In order to verify (i) and (iii) we mimic the proof of Proposition 3.5 in Chapter 1
of Ethier and Kurtz (1986) and construct a suitable sequence D1, D2, . . . of finite-
dimensional subspaces ofC(M1(E)) such thatD :=

⋃
k∈N

Dk is dense in C(M1(E))

and LΞ0 : Dk → Dk for all k ∈ N as follows. For n ∈ N and f : En → R bounded
and measurable let Df denote the set of all linear combinations of elements from
the set

{G : G(µ) =
∫
f(x[π])µ⊗n(dx), π ∈ Pn}.

Since |Pn| < ∞, it is easily seen that Df is a finite-dimensional subspace of
C(M1(E)). From (4.5) it follows that LΞ0 : Df → Df . For each n ∈ N let
{gnm : m ∈ N} ⊂ C(En) be dense, and let {fk : k ∈ N} be an enumeration of
{gnm : n,m ∈ N}. Then, Dk := Dfk

, k ∈ N, has the desired properties. Note that
D :=

⋃
k∈N

Dk is dense in C(M1(E)) (Stone-Weierstrass), i.e. condition (i) holds.

We have (λ − LΞ0)(Dk) = Dk for all λ not belonging to the set of eigenvalues
of LΞ0 |Dk

, i.e., for all but at most finitely many λ > 0. Thus, (λ − LΞ0)(D) =
(λ − LΞ0)(

⋃
k∈N

Dk) =
⋃

k∈N
Dk = D is dense in C(M1(E)) for all but at most

countably many λ > 0. In particular, condition (iii) is satisfied.
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Condition (ii) follows from the fact that the expression inside the integrals in
(1.12) satisfies

G((1 − |ζ|)µ+
∑∞

i=1 ζiδxi
) −G(µ) ≤ sup

ν∈M1(E)

G(ν) −G(µ) = G(µ) −G(µ) = 0

for all x=(x1, x2, . . .)∈EN, ζ ∈ ∆, G ∈ D and µ ∈ M1(E) with supν∈M1(E)G(ν) =

G(µ).

Thus, the Hille-Yosida Theorem ensures that the closure LΞ0 of LΞ0 on C(M1(E))
is single-valued and generates a strongly continuous, positive, contraction semi-

group {Tt}t≥0 on M1(E). Note that from (iii) it follows that D is a core for LΞ0

(Ethier and Kurtz, 1986, p. 166). The operator LΞ0 maps constant functions to
the zero function, i.e., LΞ0 is conservative. Thus, {Tt}t≥0 is a Feller semigroup and
corresponds to a Markov process with sample paths in DM1(E)([0,∞)). �

Remark 4.4. i) If the finite measure Ξ on ∆ allows for some mass a := Ξ({0})
at zero, then LΞ0 has to be replaced by LΞ := LΞ0 + Laδ0, where LΞ0 is defined as
before and Laδ0 is the generator of the classical Fleming-Viot process (Fleming and
Viot, 1979) given by (1.11). The existence of a Markov process Z = (Zt)t≥0 with
generator LΞ can be deduced as in the proof of Proposition 4.3 via the Hille-Yosida
Theorem.
ii) The construction of the Markov process attached to the ‘full’ generator L, in-
cluding the Kingman component (1.11) and the mutation component (1.13), works
via the standard Trotter approach.
iii) Note that

∫
(LΞ)Gdδδx

= 0, x ∈ E, where δν ∈ M1(M1(E)) denotes the unit
mass at ν ∈ M1(E). Thus, see Ethier and Kurtz (1986, p. 239, Proposition 9.2),
the states δx, x ∈ E, are absorbing for the Ξ-Fleming-Viot process.

We now turn to the proof of Proposition 1.3. Indeed, we verify the following

Claim: The distribution of the measure valued Markov process with generator L,
as defined in Remark 4.4 ii), coincides with the distribution of the (Ξ, B)-Fleming-
Viot process, as defined in Theorem 1.1.

It suffices to verify the following lemma.

Lemma 4.5. The (Ξ, B)-Fleming-Viot process defined in Theorem 1.1 solves the
martingale problem for the generator L given in (1.10).

To prepare this, let us concentrate on the case when there is no mutation and
no Kingman-component (L = LΞ0). Fix l and suppose we are at the m-th birth
event. As in the previous section, let {φ1

m, . . . , φ
am
m } denote the assignments of the

levels to one of the am families. So φi
m ⊂ {1, . . . , l} and φi

m ∩ φi
m 6= ∅ for all i, j.

Furthermore, we again denote by Φm :=
⋃am

i=1 φ
i
m all individuals participating in the

birth event. Note, that this can be a strict subset of {0, . . . , l}, and {φ1
m, . . . , φ

am
m }

holds all information about what is going on at the birth event. The function
g(ζ, u) is defined as in (2.2). We introduce a Poisson process counting the number
of times a specific birth event {φ1

m, . . . , φ
am
m } happens. With (tm, ζm,um) denoting

the points of the Poisson point process MΞ0 we define

L{φ1
m,...,φ

am
m }(t) :=

X

tm≤t

X

b1,...,bam∈N

all distinct

am
Y

i=1

Y

j∈φi
m

1{g(ζm,umj)=bi}

Y

j∈{1,...,l}\Φm

1{g(ζm,umj)=∞}.

(4.8)
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To describe the effect of the birth event {φ1
m, . . . , φ

am
m } on the population vector

x ∈ El we introduce the function T defined by

(
T{φ1

m,...,φam
m }(x)

)
i
:=

{
xmin(φj

m) if k ∈ φj
m,

xJm(i) else
(4.9)

for all k ∈ {1, . . . , l}, where Jm is the function defined in (2.20) that holds the
information on where the non-participating particles should look down to.

With this notation we can use equation (2.22) and the dependence between the
Ll

J,k and Ll
J to show that

X l(t) := X l(0)+
∑

{φ1
m,...,φ

am
m },

˙Sφi
m⊂{1,...,l}

∫ t

0

(
T{φ1

m,...,φam
m }

(
X l(s−)

)
−X l(s−)

)
dL{φ1

m,...,φam
m }(s)

(4.10)
describes the evolution of the first l levels X l ∈ El, if we assume no mutation and
no Kingman part. Note that for simplicity we use the notation X l = (X1, . . . , Xl).

Since the L{φ1
m,...,φam

m }(t) are Poisson processes derived from the Poisson point

process MΞ0 it is straightforward to verify that their rates are given by

r
(
{φ1

m, . . . , φ
am
m }

)
:=

∑

i1,...,iam
all distinct

∫

∆

ζ
k1

m+1
i1

· · · ζ
kr

m+1
ir

ζir+1 · · · ζiam
(1−|ζ|)(l−|Φ|) Ξ0(dζ)

(ζ, ζ)
,

(4.11)
where ki

m+1 = |φi
m| as before and the sets are ordered, such that k1

m ≥ · · · ≥ kr
m ≥ 1

and kr+1
m = · · · = kam

m = 0 hold. Assume that at least k1
m ≥ 1 holds, because

otherwise T is the identity. Note that under this assumption the integral in (4.11)
is finite (c.f. Schweinsberg, 2000 or Sagitov, 2003).

We now turn to the actual proof of the lemma.

Proof of Lemma 4.5: We will prove the result for the generator LΞ0 . The full result
can then be obtained in analogy to the proof of Theorem 2.4 in Donnelly and Kurtz
(1996).

Indeed, we have to show that for each function Gf ∈ D(LΞ0) of the form

Gf (µ) = 〈f, µ⊗l〉, (4.12)

for µ ∈ M1(E) and f : El → R bounded and measurable,

Gf (Z(t)) −Gf (Z(0)) −

∫ t

0

(LΞ0Gf )(Z(s)) ds (4.13)

is a martingale with respect to the natural filtration of the Poisson point process
MΞ0 given by

{Jt}t≥0 :=
{
σ
(
M

Ξ0

∣∣∣
[0,t]×∆×[0,1]N

)}

t≥0
. (4.14)

Note that

E

[
f
(
X1(s), . . . , Xl(s)

)∣∣∣Jt

]
= E

[〈
f, Z(s)⊗l

〉∣∣∣Jt

]
(4.15)

holds for all s, t ≥ 0, which will be crucial in the following steps.
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We start by observing that, for 0 ≤ w ≤ t, the representation (4.10) leads to

0 = E

[
f
(
X l(t)

)
− f

(
X l(w)

)
−

∑

{φ1
m,...,φ

am
m },

˙Sφi
m⊂{1,...,l}

∫ t

w

(
f
(
T{φ1

m,...,φam
m }

(
X l(s)

))

− f
(
X l(s)

))
r
(
{φ1

m, . . . , φ
am
m }

)
ds

∣∣∣Jw

]
, (4.16)

since this is a martingale.
Using the definition of the rates (4.11) and the fact that due to the exchangeabil-

ity of X l, the action of T{φ1
m,...,φam

m } and the [π] operation under the expectation is

the same, we can now rewrite the last term (without the substraction of f(X l(s))
from the integrand) as

E

[ ∫ t

w

∑

{φ1
m,...,φ

am
m },

˙Sφi
m⊂{1,...,l}

r
(
{φ1

m, . . . , φ
am
m }

)
f
(
T{φ1

m,...,φam
m }

(
X l(s)

))
ds

∣∣∣∣Jw

]

= E

[ ∫ t

w

∑

π={A1,...,Ap}∈Pn

∑

(r1,...,rp)

admissible

∫

∆

(1 − |ζ|)#{ri=0}

×

p∏

i=1
ri>0

ζ|Ai|
ri

Ξ0(dζ)

(ζ, ζ)
f
((
X l(s)

)
[π]

)
ds

∣∣∣∣Jw

]

= E

[ ∫ t

w

∫

∆

∑

π={A1,...,Ap}∈Pn

∑

(r1,...,rp)

admissible

(1 − |ζ|)#{ri=0}

×

p∏

i=1
ri>0

ζ|Ai|
ri

〈f ◦ [π], Z(s)⊗l〉
Ξ0(dζ)

(ζ, ζ)
ds

∣∣∣∣Jw

]

= E

[ ∫ t

w

∫

∆

∫

EN

Gf

(
(1 − |ζ|)Z(s) +

∑∞
i=1 ζiδxi

)
Z(s)⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
ds

∣∣∣∣Jw

]
,

(4.17)

since the sum about the configurations {φ1
m, . . . , φ

am
m } and the distinct indices

i1, . . . , iam
can be rewritten as the sum about the partitions π and the admissi-

ble vectors (r1, . . . , rp). The last equality holds due to equation (4.7).
Combining equation (4.16) with equation (4.17) we see that

0 = E

[
f
(
X l(t)

)
− f

(
X l(w)

)

−

∫ t

w

∫

∆

∫

EN

(
Gf

(
(1 − |ζ|)Z(s) +

∑∞
i=1 ζiδxi

)

−Gf (Z(s))
)
Z(s)⊗N(dx)

Ξ0(dζ)

(ζ, ζ)
ds

∣∣∣∣Jw

]

= E

[
〈f, Z(t)⊗l〉 − 〈f, Z(w)⊗l〉 −

∫ t

w

(LΞ0Gf )(Z(s)) ds

∣∣∣∣Jw

]

= E

[
Gf

(
Z(t)

)
−Gf

(
Z(w)

)
−

∫ t

w

(LΞ0Gf )(Z(s)) ds

∣∣∣∣Jw

]
(4.18)
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holds, where we use (4.15) in the second equality. Thus, (4.13) is a martingale. �

5. Dualities

5.1. Distributional duality versus pathwise duality. We first establish a distribu-
tional duality in the classical sense of Liggett (1985). Indeed, (4.5) and results
about the classical Fleming-Viot process bring forth the following duality between
a Ξ-coalescent Π = (Πt)t≥0 and a Ξ-Fleming-Viot process Z = (Zt)t≥0.

Lemma 5.1. (Duality) For n ∈ N, f : En → R bounded and measurable, µ ∈
M1(E), π ∈ Pn and t ≥ 0,

E
µ
[ ∫

En

f
(
x[π]

)
Z⊗n

t (dx)
]

= E
π
[ ∫

En

f
(
x[Π

(n)
t ]

)
µ⊗n(dx)

]
, (5.1)

where Π
(n)
t is the restriction of Πt to Pn.

To obtain a pathwise duality, we use the driving Poisson processes of the modified
lookdown construction to construct realisation-wise a Ξ-coalescent embedded in the
Ξ-Fleming-Viot process.

More explicitly, recall the Poisson processes Ll
J and Ll

J,k from equation (2.18)

and (2.19) in Section 2.3 and the Poisson process N
K
ij defined in Section 1.3. For

each t ≥ 0 and l ∈ N, let N l
t(s), 0 ≤ s ≤ t, be the level at time s of the ancestor of

the individual at level l at time t. In terms of the Ll
J and Ll

J,k, the process N l
t(·)

solves, for 0 ≤ s ≤ t,

N l
t (s) = l −

∑

1≤i<j<l

∫ t

s−

1{N l
t(u+)>j} dN

K
ij (u)

−
∑

1≤i<j<l

∫ t

s−

(j − i)1{N l
t(u+)=j} dN

K
ij (u)

−
∑

K⊂{1,...,l}

∫ t

s−

(N l
t (u+) − Jm(N l

t(u+)))1{N l
t(u+)/∈K} dL

l
K(u)

−
∑

k∈N

∑

K⊂{1,...,l}

∫ t

s−

(N l
t (u+) − min(K))1{N l

t(u+)∈K} dL
l
K,k(u), (5.2)

where Jm(·) = Jm(u)(·) is defined by (2.20) and m(u) is the index of the jump at

time u. Fix 0 ≤ T and, for t ≤ T , define a partition ΠT
t of N such that k and l

are in the same block of ΠT
t if and only if N l

T (T − t) = Nk
T (T − t). Thus, k and l

are in the same block if and only if the two levels k and l at time T have the same
ancestor at time T − t. Then (Donnelly and Kurtz, 1999, Section 5),

the process (ΠT
t )0≤t≤T is a Ξ-coalescent run for time T . (5.3)

Note that by employing a natural generalisation of the lookdown construction us-
ing driving Poisson processes on R and e.g. using T = 0 above, one can use the
same construction to find an Ξ-coalescent with time set R+. We would like to em-
phasise that the lookdown construction provides a realisation-wise coupling of the
type distribution process (Zt)t≥0 and the coalescent describing the genealogy of a
sample, thus extending (5.1), which is merely a statement about one-dimensional
distributions.
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5.2. The function-valued dual of the (Ξ, B)-Fleming-Viot process. The duality be-
tween the Ξ-Fleming-Viot process and the Ξ-coalescent established in Section 5.1
worked only on the genealogical level, the mutation was not taken into account.
However, it is possible to define a function-valued dual to the (Ξ, B)-Fleming-Viot
process such that not only the genealogical structure, but also the mutation is part
of the duality. This kind of duality is well known for the classical Fleming-Viot
process, see, e.g., Etheridge (2000, Chapter 1.12).

First note that due to Lemma 4.1 we can rewrite the generator of the (Ξ, B)-
Fleming-Viot process given by equation (1.10) to obtain

LGf(µ) := a
∑

1≤i<j≤n

∫

En

(
f(x1,.., xi,.., xi,.., xn) − f(x1,.., xi,.., xj ,.., xn)

)
µ⊗n(dx)

+
∑

π={A1,...,Ap}∈Pn
not all singletons

λ(|A1|, . . . , |Ap|)

∫

En

(
f
(
x[π]

)
− f(x)

)
µ⊗n(dx),

+ r
n∑

i=1

∫

En

Bi(f(x1, . . . , xn))µ⊗n(dx). (5.4)

We can now reinterpret the function Gf (µ) acting on measures as a function Gµ(f)
acting on the functions Cb(E

n). This reinterpretation transfers the operator L act-
ing on C

(
M1(E)

)
to an operator L∗ acting on Cb

(
Cb(E

n)
)
. Let C :=

⋃∞
n=1 Cb(E

n).
A C-valued Markov process (ρt)t≥0 solving the martingale problem for L∗ can then
be constructed as follows:

• If ρt(x) ∈ Cb(E
n) and n ≥ 2, then the process (ρt)t≥0 jumps to ρt

(
x[π]

)

with rate λ(|A1|, . . . , |Ap|) + a1{∃!|Ai|=2;∀j 6=i:|Aj |=1}, ∀π = {A1, . . . , Ap} ∈
Pn, where |Aj | ≥ 1 for at least one j.

• If ρt ∈ Cb(E), that is it is a function of a single variable, then no further
jumps occur.

• Between jumps the process evolves deterministically according to the “heat
flow” generated by the mutation operator (1.6), independently for each
coordinate.

Note that this process is not literally a coalescent, but has coalescent-like features.
The duality relation between ρt and Zt immediately follows from (5.4) and can

be written in integrated form as

EZ0 〈ρ0, Z
⊗n
t 〉 = Eρ0〈ρt, Z

⊗n
0 〉. (5.5)

It can be used for example to show uniqueness of the martingale problem for L
via the existence of (ρt)t≥0 or to calculate the moments of the (Ξ, B)-Fleming-Viot
process.

5.3. The dual of the block counting process. In this section, we specialise to the
case where the type space E consists of two types only, say E = {0, 1}. Define the
real-valued process Y = (Yt)t≥0 via Yt := Zt({1}), t ≥ 0. Define g : M1(E) → [0, 1]
via g(µ) := µ({1}). The generator A of Y is then given by Af(x) = (LΞ(f ◦ g))(µ),
f ∈ C2([0, 1]), where µ depends on x ∈ [0, 1] and can be chosen arbitrary, as long
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as g(µ) = x. Thus,

Af(x) = a
x(1 − x)

2
f ′′(x)

+

∫

∆

∫

{0,1}N

(
f((1 − |ζ|)x+

∑∞
i=1ζiyi) − f(x)

)
(B(1, x))⊗N(dy)

Ξ0(dζ)

(ζ, ζ)
, (5.6)

x ∈ [0, 1], f ∈ C2([0, 1]), where B(1, x) denotes the Bernoulli distribution with
parameter x. For x ∈ [0, 1] let V1(x), V2(x), . . . be a sequence of independent and
identically B(1, x)-distributed random variables. Then,

Af(x) = a
x(1 − x)

2
f ′′(x) +

∫

∆

∫

[0,1]

(
f((1 − |ζ|)x + y) − f(x)

)
Q(ζ, x, dy)

Ξ0(dζ)

(ζ, ζ)
,

where Q(ζ, x, .) denotes the distribution of
∑∞

i=1 ζiVi(x). Hence the process can
be considered as a Wright-Fisher diffusion with jumps. The situation where Ξ
is concentrated on [0, 1] × {0}N, i.e., when the underlying Ξ-coalescent is a Λ-
coalescent, has been studied in Bertoin and Le Gall (2005).

Note that Af ≡ 0 for f(x) = x, so Y is a martingale. Furthermore, the boundary
points 0 and 1 are obviously absorbing.

In analogy to Lemma 5.1 it follows that Y is dual to the block counting process
D = (Dt)t≥0 of the Ξ-coalescent with respect to the duality function H : [0, 1]×N →
R, H(x, n) := xn (see, e.g., Liggett, 1985), i.e.,

E
y [Y n

t ] = E
n[yDt ], n ∈ N, y ∈ [0, 1], t ≥ 0.

Thus, the moments of the ‘forward’ variable Yt can be computed via the generat-
ing function of the ‘backward’ variable Dt and vice versa. Such and closely related
moment duality relations are well known from the literature (Alkemper and Hutzen-
thaler, 2007; Athreya and Swart, 2005; Möhle, 1999). The duality can be used to
relate the accessibility of the boundaries of Y and the existence of an entrance law
for D with D0+ = ∞. Note that by the Markov property and the structure of the
jump rates, we always have

P
∞(Dt = 1 eventually) ∈ {0, 1} (5.7)

and either P
∞(

⋂
t≥0{Dt = ∞}) = 1 (if the probability in (5.7) equals 0) or

limt→∞ P
∞(Dt = 1) = 1 (if the probability in (5.7) equals 1).

Proposition 5.2. limt→∞ P
∞(Dt = 1) = 1 if and only if Y , the dual of its block

counting process, hits the boundary {0, 1} in finite time almost surely, starting from
any y ∈ (0, 1).

Proof : Fix y ∈ (0, 1), T > 0. Construct (Zt) starting from yδ1 + (1 − y)δ0 and
no mutations, Bf ≡ 0, (and hence Y starting from y) by using the lookdown con-
struction from Section 2.3: Let X1(0), X2(0), . . . be independent B(1, y)-distributed
random variables which are independent of the driving Poisson processes, and let
Xn(t), t > 0, n ∈ N, be the solution of (2.22). Let

D′
t := |{Nn

T (T − t) : n ∈ N}|,

where Nn
T (s) solves (5.2). By (5.3), the law of (D′

t)0≤t≤T is that of the block count-
ing process of the (standard-)Ξ-coalescent run for time T . Then by construction
(as there is no mutation),

Xn(T ) = XNn
T

(0)(0),
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implying

{D′
T = 1} ⊂ {YT ∈ {0, 1}} and {D′

T = ∞} ⊂ {0 < YT < 1} almost surely,

which easily yields the claim. �

This is related to the so-called ‘coming down from infinity’-property of the stan-
dard Ξ-coalescent (i.e., the property that starting from D0 = ∞, Dt < ∞ almost
surely for all t > 0). Recall Schweinsberg (2000, p. 39f), that a Ξ-coalescent
may have infinitely many classes for a positive amount of time and then sud-
denly jumps to finitely many classes. This can occur if Ξ has positive mass on
∆f := {u = (u1, u2, . . .) ∈ ∆ : u1 + · · · + un = 1 for some n ∈ N}. On the other
hand by Lemma 31 of Schweinsberg (2000), if Ξ(∆f ) = 0, then the Ξ-coalescent
either comes down from infinity immediately or always has infinitely many classes.
Combining this with Proposition 5.2 we obtain

Remark 5.3. Assume that Ξ(∆f ) = 0. Then the Ξ-coalescent comes down from
infinity if and only if the dual of its block counting process hits the boundary {0, 1}
in finite time almost surely.

In general, there seems to be no ‘simple’ criterion to check whether a Ξ-coalescent
comes down from infinity (see the discussion in Section 5.5 of Schweinsberg (2000)).
On the other side, there seems to be also no ‘handy’ criterion for accessibility of
the boundary of a process with jumps (and with values in [0, 1]), but at least
Proposition 5.2 allows to transfer any progress from one side to the other and vice
versa.

We conclude this section with a simple toy example for which most quantities of
interest, in particular the generator A, can be computed explicitly.

Example 5.4. Fix l ∈ N. If the measure Ξ is concentrated on ∆l := {ζ ∈ ∆ :
ζ1 + · · · + ζl = 1}, then (5.6) reduces to

Af(x) =

∫

∆

∑

y1,...,yl∈{0,1}

xy1+···+yl(1− x)l−(y1+···+yl)
(
f(

∑l
i=1 ζiyi)− f(x)

)Ξ(dζ)

(ζ, ζ)
.

For example, assume that the measure Ξ assigns its total mass Ξ(∆) := 1/l to the
single point (1/l, . . . , 1/l, 0, 0, . . .) ∈ ∆l. Then,

Af(x) =

l∑

k=0

(
l

k

)
xk(1 − x)l−kf(k/l)− f(x) =

∫
(f(y/l)− f(x))B(l, x)(dy),

where B(l, x) denotes the binomial distribution with parameters l and x. Note that
the corresponding Ξ-coalescent never undergoes more than l multiple collisions at
one time. The rates (4.3) are

λ(k1, . . . , kp) =

∫

∆

∑

i1,...,ip∈N

all distinct

ζk1

i1
· · · ζ

kp

ip

Ξ(dζ)

(ζ, ζ)
=

(l)p

ln
,

where (l)p := l(l − 1) · · · (l − p + 1) and n := k1 + · · · + kp. The block counting
process D has rates

gnp =
n!

p!

∑

m1,...,mp∈N

m1+···+mp=n

λ(m1, . . . ,mp)

m1! · · ·mp!
= S(n, p)

(l)p

ln
, 1 ≤ p < n,
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where the S(n, p) denote the Stirling numbers of the second kind. The total rates

are gn =
∑n−1

p=1 gnp = 1− (l)n/l
n, n ∈ N. Note that the corresponding Ξ-coalescent

stays infinite for a positive amount of time (‘Case 2’ on top of Schweinsberg, 2000,
p. 39 with Ξ2 ≡ 0). The dual of its block counting process hits the boundary in
finite time. �

6. Examples

The first of the two examples in this section presents a model where the popu-
lation size varies substantially due to recurrent bottlenecks. It is shown that the
Ξ-coalescent appears naturally as the limiting genealogy of this model. In the sec-
ond example we present the Poisson-Dirichlet-coalescent by choosing a particular
measure for Ξ which has a density with respect to the Poisson-Dirichlet distribution.
We provide explicit expressions for several quantities of interest.

6.1. An example involving recurrent bottlenecks. Consider a population, say with
non-overlapping generations, in which the population size has undergone occasional
abrupt changes in the past. Specifically, we assume that ‘typically’, each generation
containsN individuals, but at several instances in the past, it has been substantially
smaller for a certain amount of time, and then the population has quickly re-grown
to its typical size N . This is related to the models considered by Jagers and Sagitov
(2004), but we assume occasional much more radical changes in population size than
Jagers and Sagitov (2004). Let us assume that the demographic history is described
by three sequences of positive real numbers (si)i∈N, (li,N )i∈N and (bi,N )i∈N, where
0 < bi,N ≤ 1 holds for all i, and the population size t generations before the present
is given by G(t), where

G(t) =

{
bm,NN if N

( ∑m−1
i=1 (si + li,N ) + sm

)
< t ≤ N

∑m
i=1(si + li,N ), m ∈ N,

N otherwise.

Thus, back in time the population stays at size N for some time siN . Then the size
is reduced to bi,NN for the time li,NN . Thereafter it is again given by N , until the
next bottleneck occurs after time si+1N . Note that for simplicity, we have assumed
‘instantaneous’ re-growth after each bottleneck. Furthermore, we assume that the
reproduction behaviour is given by the standard Wright-Fisher dynamics, so each
individual chooses its parent uniformly at random from the previous generation,
independently of the other individuals. This is the case in every generation, also
during the bottleneck and at the transitions between the bottleneck and the typical
size.

We now want to keep track of the genealogy of a sample of n individuals from
the present generation, and describe its dynamics in the limit N → ∞. Denote by
Π(N,n)(t) the ancestral partition of the sample t generations before the present.

Lemma 6.1. Fix (si)i∈N and assume that bi,N → 0 and that li,N → 0 as N → ∞.
Furthermore assume that bi,NN → ∞ and that li,N/bi,N → γi > 0. Then

Π(N,n)(Nt) → Πδ0,(n)(Rt)

weakly as N → ∞ on DPn
([0,∞)), where Rt := t+

∑
i:s1+···+si≤t γi.

Note that we assume li,N → 0 as N → ∞, so the duration of the bottleneck
is negligible on the timescale of the ‘normal’ genealogy. We also assume bi,N → 0
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but Nbi,N → ∞, i.e., in the pre-limiting scenario, the population size during a
bottleneck should be tiny compared to the normal size, but still large in absolute
numbers. The ratio li,N/bi,N is sometimes called the severity of the (i-th) bottleneck
in the population genetic literature.

Sketch of proof: Given sequences (si), (bi,N ) and (li,N ), classical convergence results
for samples of size n can be applied for the time-intervals between bottlenecks
and “inside” the bottlenecks. Since bi,NN → ∞, the probability that any of the
ancestral lines of the sample converge exactly at the transition to a bottleneck is
O((bi,NN)−1) = o(1), so that näıve “glueing” is feasible. �

Remark 6.2. Note that bottleneck events with γi = 0 become invisible in the limit,
whereas in a bottleneck with γi = +∞ the genealogy necessarily comes down to only
one lineage (and thus, all genetic variability is erased).

Since we fixed the si and γi, the limiting process described in Lemma 6.1 is
not a homogeneous Markov process and thus does not fit literally into the class
of exchangeable coalescent processes considered in this paper. Assume that the
waiting intervals si are exponentially distributed, say with parameter β, and that
the γi are independently drawn from a certain law Lγ . Thus, in the pre-limiting
N -particle model forwards in time, in each generation there is a chance of ∼ β/N
that a ‘bottleneck event’ with a randomly chosen severity begins. In this situation,
the genealogy of an n-sample from the population at present is (approximately)
described by

Πδ0,(n)(St), t ≥ 0, (6.1)

where (St)t≥0 is a subordinator (in fact, a compound Poisson process with Lévy
measure βLγ and drift 1).

Proposition 6.3. Let Nγ be the number of lineages at time γ > 0 in the standard
Kingman coalescent starting with N0 = ∞, and let Dj be the law of the re-ordering
of a (j-dimensional) Dirichlet(1, . . . , 1) random vector according to decreasing size,
padded with infinitely many zeros. The process defined in (6.1) is the Ξ-coalescent
restricted to {1, . . . , n}, where

Ξ(dζ) = δ0(dζ) + (ζ, ζ)

∫

(0,∞)

∞∑

j=1

P(Nσ = j)Dj(dζ)βLγ(dσ).

Proof : Recall that the number of families of the classical Fleming-Viot process
without mutation after σ time units is Nσ. Given Nσ = j, the distribution of the
family sizes is a uniform partition of [0, 1], hence Dirichlet(1, . . . , 1). Size-ordering
thus leads to the above formula for Ξ. �

6.2. The Poisson-Dirichlet case. The Poisson-Dirichlet distribution PDθ with pa-
rameter θ > 0 is a distribution concentrated on the subset ∆∗ of points ζ ∈ ∆
satisfying |ζ| = 1. It can, for example, be obtained via size-ordering of the nor-
malized jumps of a Gamma-subordinator at time θ. For more information on this
distribution we refer to Kingman (1975) or Arratia et al. (1999). Sagitov (2003)
considered the Poisson-Dirichlet coalescent Π = (Πt)t≥0 with parameter θ > 0,
where (by definition) the measure Ξ has density ζ 7→ (ζ, ζ) with respect to PDθ.
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As the measure PDθ is concentrated on ∆∗, the rates (4.3) reduce to

λ(k1, . . . , kj) =

∫

∆∗

∑

i1,...,ij∈N

all distinct

ζk1

i1
· · · ζ

kj

ij
PDθ(dζ).

From the calculations of Kingman (1993) it follows that the Poisson-Dirichlet coa-
lescent has rates

λ(k1, . . . , kj) =
θj

[θ]k

j∏

i=1

(ki − 1)!,

k1, . . . , kj ∈ N with k := k1 + · · · + kj > j, where [θ]k := θ(θ + 1) . . . (θ + k − 1).
Möhle and Sagitov (2001) characterised exchangeable coalescents via a sequence

(Fj)j∈N of symmetric finite measures. For each j ∈ N, the measure Fj lives on the
simplex ∆j := {(ζ1, . . . , ζj) ∈ [0, 1]j : ζ1 + · · ·+ ζj ≤ 1} and is uniquely determined
via its moments

λ(k1, . . . , kj) =

∫

∆j

ζk1−2
1 · · · ζ

kj−2
j Fj(dζ1, . . . , dζj), k1, . . . , kj ≥ 2.

For the Poisson-Dirichlet coalescent, an application of Liouville’s integration for-
mula shows that the measure Fj has density fj(ζ1, . . . , ζj) := θjζ1 · · · ζj(1−

Pj

i=1 ζi)
θ−1

with respect to the Lebesgue measure on ∆j .
As Ξ is concentrated on ∆∗, it follows that

∫

∆

|ζ|

(ζ, ζ)
Ξ(dζ) =

∫

∆

1

(ζ, ζ)
Ξ(dζ) =

∫

∆∗

PDθ(dζ) = 1 < ∞. (6.2)

By Schweinsberg (2000, Proposition 29), the Poisson-Dirichlet coalescent is a jump-
hold Markov process with bounded transition rates and step function paths. By
Schweinsberg (2000, Proposition 30), for arbitrary but fixed t > 0, Πt does not
have proper frequencies.

The block counting process D := (Dt)t≥0, where Dt := |Πt| denotes the number
of blocks of Πt, is a decreasing process with rates

gnk =
n!

k!

∑

n1,...,nk∈N

n1+···+nk=n

λ(n1, . . . , nk)

n1! · · ·nk!
=

θk

[θ]n

n!

k!

∑

n1,...,nk∈N

n1+···+nk=n

1

n1 · · ·nk
=

θk

[θ]n
s(n, k),

k, n ∈ N with k < n, where the s(n, k) are the absolute Stirling numbers of the first
kind. The total rates are

gn :=

n−1∑

k=1

gnk = 1 −
θn

[θ]n
, n ∈ N.

Note that gnk = P{Kn = k}, k < n, where Kn is a random variable taking values
in {1, . . . , n} with distribution

P{Kn = k} =
θk

[θ]n
s(n, k), k ∈ {1, . . . , n}.

We have

γn :=

n−1∑

k=1

(n− k)gnk =

n−1∑

k=1

(n− k)P{Kn = k} = n− EKn ≤ n.
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In particular,
∑∞

n=2 γ
−1
n ≥

∑∞
n=2 1/n = ∞. Together with (6.2) and Ξ(∆f ) = 0,

where ∆f := {ζ ∈ ∆ | ζ1 + · · · + ζn = 1 for some n}, it follows from Schweinsberg
(2000, Proposition 33) that the Poisson-Dirichlet coalescent stays infinite.

If we assume no mutation, then the generator LΞ (defined in Remark 4.4) of the
corresponding Fleming-Viot process reduces to

LΞGf (µ) =

∫

∆∗

∫

EN

[
Gf

(∑∞
i=1 ζiδxi

)
−Gf (µ)

]
µ⊗N(dx)PDθ(dζ).
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