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Abstract. The occupation time of an age-dependent branching particle system
in R

d is considered, where the initial population is a Poisson random field and the
particles are subject to symmetric α-stable migration, critical binary branching and
random lifetimes. Two regimes of lifetime distributions are considered: lifetimes
with finite mean and lifetimes belonging to the normal domain of attraction of a
γ-stable law, γ ∈ (0, 1). It is shown that in dimensions d > αγ for the heavy-tailed
lifetimes case, and d > α for finite mean lifetimes, the occupation time proccess
satisfies a strong law of large numbers.

1. Introduction and background

In this paper, we obtain laws of large numbers for the occupation time process of a
random population living in the d-dimensional Euclidean space R

d. The evolution
of the population is as follows. Any given individual independently develops a
spherically symmetric α-stable process during its lifetime τ , where 0 < α ≤ 2 and
τ is a random variable having a non-arithmetic distribution function, and at the
end of its life it either disappears, or is replaced at the site where it died by two
newborns, each event occurring with probability 1/2.

The population starts off from a Poisson random field having Lebesgue measure
Λ as its intensity. We postulate the usual independence assumptions in branching
systems.

Two regimes for the distribution of τ are considered: either τ has finite mean
µ > 0, or τ possesses a distribution function F such that F (0) = 0, F (x) < 1 for
all x ∈ [0,∞), and (with g(u) ∼ h(u), as u → ∞, meaning g(u)/h(u) → const, as
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u→ ∞)

F̄ (u) := 1 − F (u) ∼ u−γΓ(1 − γ)
−1

as u −→ ∞, (1.1)

where γ ∈ (0, 1) and Γ denotes the Gamma function, i.e., F belongs to the normal
domain of attraction of a γ-stable law. In particular, this allows to consider lifetimes
with infinite mean.

Let X(t) denote the simple counting measure on R
d whose atoms are the po-

sitions of particles alive at time t, and let X ≡ {X(t), t ≥ 0}. When τ has an
exponential distribution it is well known that the measure-valued process X is
Markov. In the literature there is a lot of work about the Markovian model. Our
objective here is to investigate the case when τ is not necessarily an exponential ran-
dom variable, in which case {X(t), t ≥ 0} is no longer a Markov process. Another
striking difference with respect to the case of exponential lifetimes arises when the
particle lifetime distribution satisfies (1.1). When the distribution of τ possesses
heavy tails, a kind of compensation occurs between longevity of individuals and
clumping of the population: heavy-tailed lifetimes enhance the mobility of individ-
uals, favouring in this way the spreading out of particles, and thus counteracting
the clumping of the population. Since clumping goes along with local extinction
(due to critical branching), a smaller exponent γ suits better for stability of the
population. As a matter of fact, Vatutin and Wakolbinger (1999) and Fleischmann
et al. (2002) proved that X admits a nontrivial equilibrium distribution if and only
if d ≥ γα. This contrasts with the case of finite-mean (or exponentially distributed)
lifetimes, where the necessary and sufficient condition for stability is d > α. As we
shall see, such qualitative departure from the Markovian model propagates also to
other aspects of the branching particle system, such as the large-time behavior of
its occupation time.

Recall that the occupation time of the measure-valued process X is again a
measure-valued process J ≡ {Jt, t ≥ 0}, which is defined by

〈ψ, Jt〉 :=

∫ t

0

〈ψ,Xs〉ds, t ≥ 0,

for all bounded measurable function ψ : R
d → R+, where the notation 〈ψ, ν〉 means

∫

ψ dν.
Limit theorems for occupation times of branching systems have been extensively

studied in the context of exponentially distributed lifetimes. Cox and Griffeath
(1985) proved a strong law of large numbers for the occupation time of a critical
binary branching system. Moreover, in Cox and Griffeath (1985) it is proved a
central limit-type theorem for the occupation time of the critical binary branching
Brownian motion. Méléard and Roelly (1992) extended the law of large numbers
of Cox and Griffeath (1985) to branching populations with general finite-variance
critical branching, and quasi-stable particle motions. Bojdecki et al. (2004, 2006a,b)
have investigated the limit fluctuations of the re-scaled occupation time {JT (t) :=
JtT , t ≥ 0} of branching systems, T being a parameter which tends to infinity. They
have shown that these limits are processes which exhibit long-range dependence
behavior, such as fractional Brownian motion and sub-fractional Brownian motion.
See also Birkner and Zähle (2007) for related results, where the underlying process
is a branching random walk in the d-dimensional lattice.

In this paper we will prove that, in dimensions d > αγ for heavy-tailed lifetimes,
and d > α for finite-mean lifetimes, the occupation time of the process X satisfies
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a strong law of large numbers. Namely, a.s. for any positive continuous function ψ
with compact support,

t−1〈ψ, Jt〉 −→ 〈ψ,Λ〉 as t −→ ∞.

Also, we prove that in dimensions d < αγ for heavy-tailed lifetimes, and d < α for
finite-mean lifetimes, the normalized occupation time t−1Jt converges to zero a.s.
in the sense that, with probability 1, for any ball A ⊂ R

d of finite radius,

t−1

∫ t

0

1{Xs(A)>0} ds −→ 0 as t −→ ∞. (1.2)

These results complement —and partially extend— those of Cox and Griffeath
(1985) and Méléard and Roelly (1992). We point out that dimension-dependent be-
haviors, or parameters, are a typical characteristic in this theory because properties
of the branching system treated here are highly related to the transience-recurrence
behavior of the particle motions. Notice also that, in contrast with the case of finite-
mean lifetimes, in the presence of heavy-tailed lifetimes the dimension restriction
varies according to the decay exponent of the tail. This phenomenon is reminiscent
of the interplay of population clustering and longevity of individuals quoted above.

Our proofs use techniques from Cox and Griffeath (1985), Iscoe (1986b) and
Méléard and Roelly (1992). To prove the strong law of large numbers in case of
heavy-tailed lifetimes, we first consider the case of “intermediate dimensions” αγ <
d < 2α, and deal afterward with “large dimensions” d ≥ 2α. Aiming at applying
the Borel-Cantelli lemma, in case of intermediate dimensions we use the re-scaled
occupation time process to upper-bound the variance functional of the occupation
time. This step employs certain Fourier-transform techniques that we adapted from
Bojdecki et al. (2004). We were unable to extend this method to dimensions d ≥ 2α
due to the lack of proper upper-bounds for the variance functional of the re-scaled
occupation time. To deal with the case of large dimensions we follow the approach of
Méléard and Roelly (1992). We use a Markovianized branching system, introduced
in Section 4.1 below, which allows us to directly apply the well-known self-similarity
of the symmetric α-stable transition densities. We remark that, in order to use this
procedure, we need to assume that the lifetime distribution possesses a continuous
density function. This contrast with the case of low dimensions, where no absolute
continuity condition is required. We think, however, that the result should be true
for a general lifetime distributions.

In case of a general non-arithmetic lifetime distribution having finite mean, our
proof of the law of large numbers is carried out using estimates for the variance func-
tional of the occupation time process, as well as bounds for the α-stable transition
densities. The almost sure convergence (1.2) is proved by combining Borel-Cantelli’s
Lemma with some estimates from Vatutin and Wakolbinger (1999) related to ex-
tinction probabilities.

The analysis at the “critical dimensions” d = αγ in the heavy-tailed case, and
d = α for finite mean lifetimes, is much more difficult to carry out, as can be seen
from Fleischmann and Gärtner (1986), where the occupation time (at the criti-
cal dimension d = α/β) of the so-called (d, α, β)-superprocess is considered. The
approach there strongly relies on the classical semilinear equation characterizing
the Laplace functional of the occupation time, see Lemma 3.4 in Fleischmann and
Gärtner (1986). In our case, due to the non-exponential lifetimes, we do not have
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the above-mentioned equation. Thus, laws of large numbers for our model at critical
dimensions remain to be investigated.

2. Laws of large numbers

Following Bojdecki et al. (2004), we define the re-scaled occupation time process
{JT (t) := JtT , t ≥ 0}, i.e., for any positive bounded measurable function ϕ,

〈ϕ, JT (t)〉 :=

∫ tT

0

〈ϕ,Xs〉ds = T

∫ t

0

〈ϕ,XsT 〉ds, t ≥ 0. (2.1)

Notice that, by Fubini’s theorem,

E〈ϕ, JT (1)〉 = 〈ϕ,Λ〉T, (2.2)

since E〈ϕ,Xt〉 = 〈ϕ,Λ〉. We remark that studying the asymptotic behavior of
〈ϕ, Jt〉/t as t −→ ∞, is the same as investigating the asymptotic behavior of
〈ϕ, JT (1)〉/T as T −→ ∞.

In what follows, C+
c (Rd) denotes the space of nonnegative continuous functions

ϕ : R
d −→ R+ with compact support. The main results of this paper are the

following theorems.

Theorem 2.1. Let F be a non-arithmetic distribution function satisfying (1.1).
(a) Assume that αγ < d < 2α. Then, a.s. for any ϕ ∈ C+

c (Rd),

T−1〈ϕ, JT (1)〉 −→ 〈ϕ,Λ〉 as T −→ ∞. (2.3)

(b) Suppose that d ≥ 2α and F possesses a continuous density f . Then, a.s. for
all ϕ ∈ C+

c (Rd),

T−1〈ϕ, JT (1)〉 −→ 〈ϕ,Λ〉 as T −→ ∞. (2.4)

Our next theorem complements the law of large numbers of Cox and Griffeath
(1985) and Méléard and Roelly (1992), which were proved only in the case of
exponentially distributed lifetimes.

Theorem 2.2. Assume that d > α, and let F be a non-arithmetic distribution
function with finite mean µ > 0. Then, a.s. for any ϕ ∈ C+

c (Rd),

T−1〈ϕ, JT (1)〉 −→ 〈ϕ,Λ〉 as T −→ ∞. (2.5)

Theorem 2.3. Let F be a non-arithmetic distribution function which satisfies
(1.1), and assume that d < αγ. Then, a.s. for any ball A ⊂ R

d of finite radius,

T−1

∫ T

0

1{Xs(A)>0} ds −→ 0 as T −→ ∞. (2.6)

Remark 2.4. (a) Notice that condition αγ < d < 2α in Theorem 2.1 allows d ≤ α,
which contrasts with the classical case of exponentially distributed lifetimes, where
d > α.
(b) When the particle lifetimes have an exponential distribution with mean λ−1,
Theorem 2.2 reduces to Theorem 4 of Méléard and Roelly (1992).
(c) In case of low dimensions d < αγ, a genuine counterpart to Theorem 2.1 would
be a statement ensuring a.s. vague convergence of T−1JT (1) to the zero measure
as T → ∞. This was proved by Sawyer and Fleischmann (1979) for the occupation
time of critical branching Brownian motion (see also Iscoe, 1986b for a related
result regarding super-Brownian motion’s occupation time). For our model, here
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we prove only the slightly weaker result (2.6), which implies that, with probability
1, the proportion of time that the branching system charges any given bounded set
vanishes asymptotically as T → ∞. The specific form (2.6) of a.s. convergence was
suggested to us by an anonymous referee.
(d) The extent of dimensions in our results is narrow due to our choice of critical,
binary-branching mechanism. A less restrictive assumption, such as critical (1+β)-
branching, β ∈ (0, 1), would expand the dimension range.

3. Some moment calculations

Let Zt(A) denote the number of individuals living in A ∈ B(Rd) at time t, in
a population starting with one particle at time t = 0. Following Kaj and Sagitov
(1998) we define

Qtϕ(x) := Ex

[

1 − e−〈ϕ,Zt〉
]

, x ∈ R
d, t ≥ 0, (3.1)

where ϕ ∈ C+
c (Rd) and Ex means that the initial particle is located at x ∈ R

d.
Since the initial population X0 is

Poissonian, we have

Ee−〈ϕ,Xt〉 = exp

(

−

∫

Ex

[

1 − e−〈ϕ,Zt〉
]

dx

)

= exp

(

−

∫

Qtϕ(x)dx

)

, ϕ ∈ C+
c (Rd). (3.2)

Let {τk, k ≥ 1} be a sequence of i.i.d. random variables with common distribu-
tion function F , and let

Nt =
∞
∑

k=1

1{Sk≤t}, t ≥ 0,

where the random sequence {Sk, k ≥ 0} is recursively defined by

S0 = 0, Sk+1 = Sk + τk, k ≥ 0.

For any p = 1, 2, . . ., 0 < tp ≤ tp−1, . . . , t1 < ∞, ϕ1, ϕ2, . . . , ϕp ∈ C+
c (Rd) and

θ1, . . . , θp ∈ R, we define t̄ = (t1, t2, . . . , tp), t̄ − s = (t1 − s, t2 − s, . . . , tp − s),
θ(p) = (θ1, . . . , θp)

′ and

Qpt̄ θ(p)(x) = Ex

[

1 − e−
Pp
j=1 θj〈ϕj ,Ztj 〉

]

.

Let {Bs, s ≥ 0} denote the spherically symmetric α-stable process in R
d, with

transition density functions {pt(x, y), t > 0, x, y ∈ R
d}, and semigroup {St, t ≥ 0}.

Our moment calculations use the following result which is borrowed from Kaj and
Sagitov (1998, Section 4.3), and which we include for convenience.

Proposition 3.1. The function Qpt̄ θ(p) satisfies

Qpt̄ θ(p)(x) = Ex

[

1 − e−
Pp
j=1 θjϕj(Btj ) −

∫ tp

0

1

2

(

Qpt̄−sθ(p)(Bs)
)2

dNs

−

p−1
∑

i=1

(

1 − e−
Pp
j=i+1 θjϕj(Btj )

)

∫ ti

ti+1

1

2

(

Qit̄−sθ(i)(Bs)
)2
dNs

]

.
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As in (3.2), since the initial population is Poissonian we have

E

[

e−
Pp
j=1 θj〈ϕj,Xtj 〉

]

= exp

(

−

∫

Ex

[

1 − e−
Pp
j=1 θj〈ϕ,Ztj 〉

]

dx

)

= exp

(

−

∫

Qpt̄ θ(p)(x)dx

)

. (3.3)

Using criticality of the branching, and that Lebesgue measure is invariant for
the semigroup of the symmetric α-stable process, it is easy to see that

m(t, ϕ) := E[〈ϕ,Xt〉] = 〈ϕ,Λ〉, t ≥ 0, ϕ ∈ C+
c (Rd). (3.4)

Lemma 3.2. Let 0 < s ≤ t <∞ and ψ, ϕ ∈ C+
c (Rd). Then,

Cx(s, ϕ; t, ψ) := Ex [〈ϕ,Zs〉〈ψ,Zt〉]

= Ex

[

ϕ(Bs)ψ(Bt) +

∫ s

0

mBr(t− r, ψ)mBr (s− r, ϕ)dNr

]

, (3.5)

where mx(t, ϕ) = Ex[〈ϕ,Zt〉].

Proof : In order to preserve the notation in Proposition 3.1, we put p = 2, t1 = t,
t2 = s, ϕ1 = ψ and ϕ2 = ϕ. Then we have

Cx(t1, ϕ1; t2, ϕ2) = −
∂2

∂θ1∂θ2
Q2
t̄θ(2)(x)

∣

∣

∣

∣

θ1=θ2=0+

,

where

∂2

∂θ1∂θ2
Q2
t̄ θ(2)(x)

= Ex

[

− ϕ1(Bt1)ϕ2(Bt2)e
−θ1ϕ(Bt1)−θ2ϕ2(Bt2 )

−

∫ t2

0

∂

∂θ2
Q2
t̄−rθ(2)(Br)

∂

∂θ1
Q2
t̄−rθ(2)(Br)dNr

−

∫ t2

0

(

Q2
t̄−rθ(2)(Br)

) ∂2

∂θ2∂θ1
Q2
t̄−rθ(2)(Br)dNr

−ϕ2(Bt2)e
−θϕ2(Bt2 )

∫ t2

t1

(

Q1
t2−rθ1(Br)

) ∂

∂θ1
Q1
t2−rθ1(Br)dNr

]

.

Evaluating at θ1 = θ2 = 0 we finish the proof. �

Proposition 3.3. Let 0 < s ≤ t <∞ and ψ, ϕ ∈ C+
c (Rd). Then,

C(s, ϕ; t, ψ) := Cov (〈ϕ,Xs〉, 〈ψ,Xt〉)

= 〈ϕSt−sψ,Λ〉 +

∫ s

0

〈(Ss−rϕ) (St−rψ) ,Λ〉 dU(r), (3.6)

where U(r) =
∑∞
k=0 F

∗k(r).
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Proof : We put p = 2 in (3.3) and use the same notations as in the proof of Lemma
3.2. Then,

E [〈ϕ1, Xt1〉〈ϕ2, Xt2〉]

=
∂2

∂θ1∂θ2
exp

(

−

∫

Q2
t̄θ(2)(x) dx

) ∣

∣

∣

∣

θ1=θ2=0+

=

[

−
∂2

∂θ1∂θ2

∫

Q2
t̄ θ(2)(x)dx

+

∫

∂

∂θ1
Q2
t̄ θ(2)(x) dx

∫

∂

∂θ2
Q2
t̄ θ(2)(x) dx

] ∣

∣

∣

∣

θ1=θ2=0+

=

∫

Cx(t1, ϕ1; t2, ϕ2)dx +

∫

mx(t1, ϕ1)dx

∫

mx(t2, ϕ2)dx,

and from Lemma 3.2 we obtain

C(s, ϕ; t, ψ) =

∫

Rd

Ex

[

ϕ(Bs)ψ(Bt) +

∫ s

0

mBr (t− r, ψ)mBr (s− r, ϕ)dNr

]

dx,

(3.7)
which completes the proof. �

4. Markovianizing an age-dependent branching system

In this section we introduce a Markovian branching system {X̄t, t ≥ 0} which
will be used to prove Theorem 2.1 (b). Let X ≡ {Xt, t ≥ 0} be the branching
system defined in Section 1. For any t ≥ 0, let X̄t denote the population in R+×R

d

(R+ = [0,∞)) obtained by attaching to each individual δx ∈ Xt its age. Namely,
for each t ≥ 0,

X̄t =
∑

i

δ(ηit,ξit), (4.1)

where ηit and ξit denotes respectively, the age and position of the ith particle at
time t, and the summation is over all particles alive at time t. Let us assume that
X̄0 is a Poisson random field on R+ × R

d with intensity measure F × Λ. Here,
F also means the Lebesgue-Stieltjes measure corresponding to F . The probability
generating function of the branching law is denoted by Φ. Thus, for critical binary
branching, Φ(s) ≡ 1

2 (1 + s2), −1 ≤ s ≤ 1.

Given a counting measure ν on R+ × R
d, and a measurable function φ : R+ ×

R
d −→ (0, 1], we define

Gφ(ν) := exp (〈logφ, ν〉) .

It can be shown that the infinitesimal generator of {X̄t, t ≥ 0} evaluated at the
function Gφ(ν) is given by

GGφ(ν) = Gφ(ν)

〈

Lφ(∗, ·) + λ(∗)[Φ(φ(0, ·)) − φ(0, ·)]

φ(∗, ·)
, ν

〉

, (4.2)

where

λ(u) =
f(u)

1 − F (u)
, u ≥ 0, (4.3)

is the hazard rate function associated to F , and

Lφ(u, x) =
∂φ(u, x)

∂u
+ ∆αφ(u, x) − λ(u) [φ(u, x) − φ(0, x)] , (4.4)
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where the function φ is such that φ(·, x) ∈ C1
b (R+) for any x ∈ R

d, and φ(u, ·) ∈
C∞
c (Rd) for any u ∈ R+. Here C1

b (R+) denotes the set of all bounded functions with
continuous first derivative, and C∞

c (Rd) denotes the space of infinitely differentiable
functions from R

d to R, having compact support. The operator L is the infinitesimal
generator of a Markov process on R+ ×R

d whose semigroup is denoted by {T̃t, t ≥
0}, see Murillo-Salas (2008) for details.

Proposition 4.1. Let X̄ ≡ {X̄t, t ≥ 0} as before and let X̄0 be a Poisson random
field on R+ ×R

d with intensity measure F ×Λ. The joint Laplace functional of the
branching particle system X̄ and its occupation time is given by

E

[

e−〈ψ,X̄t〉−
R

t

0
〈φ,X̄s〉ds

]

= e−〈V ψt φ,F×Λ〉, t ≥ 0,

for all measurable functions ψ, φ : R+ × R
d −→ R+ with compact support, where

V ψt φ satisfies, in the mild sense, the non-linear evolution equation

∂

∂t
V ψt φ(u, x) = LV ψt φ(u, x) − λ(u)[Φ(1 − V ψt φ(0, x)) − (1 − V ψt φ(0, x))]

+φ(u, x)(1 − V ψt φ(u, x)), (4.5)

V ψ0 φ(u, x) = 1 − e−ψ(u,x).

Proof : The proof is carried out using the martingale problem for {X̄t, t ≥ 0}, and
Itô’s formula. We omit the details. �

5. Proof of Theorem 2.1

We shall prove the law of large numbers in two steps. First we show that the
result holds for intermediate dimensions αγ < d < 2α; this part of the proof relies on
the non-Markovian branching system defined in Section 1, and uses upper bounds
for the covariance functional. In the second step, we consider “large” dimensions
d ≥ 2α, and in this case we use the Markovianized branching system described in
Section 4.

5.1. Proof of Theorem 2.1 (a). In this section we assume that αγ < d < 2α.

Lemma 5.1. Suppose that the hypothesis in Theorem 2.1 hold. Then, for each
ǫ > 0 and all T > 0 large enough,

P
(∣

∣T−1〈ϕ, JT (1)〉 − 〈ϕ,Λ〉
∣

∣ > ǫ
)

≤
2

ǫ2

(

c3T
−2 + c1T

−1 + c2T
−d/α + c4T

γ−d/α
)

,

for some positive constants c1, . . . , c4.

Proof : Let ǫ > 0 be given. Then, using Chebyshev’s inequality and (2.2),

P
(∣

∣T−1〈ϕ, JT (1)〉 − 〈ϕ,Λ〉
∣

∣ > ǫ
)

≤
1

ǫ2
E

(

T−1〈ϕ, JT (1)〉 − 〈ϕ,Λ〉
)2

=
1

ǫ2T 2
Cov (〈ϕ, JT (1)〉, 〈ϕ, JT (1)〉)

=
1

ǫ2

∫ 1

0

∫ 1

0

Cov (〈ϕ,XsT 〉, 〈ϕ,XtT 〉) dt ds,
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where the last equality follows from (2.1). By changing the order of integration we
obtain that

P
(∣

∣T−1〈ϕ, JT (1)〉 − 〈ϕ,Λ〉
∣

∣ > ǫ
)

≤
2

ǫ2

∫ 1

0

dv

∫ v

0

Cov (〈ϕ,XuT 〉, 〈ϕ,XvT 〉) du.

(5.1)
Therefore, from Proposition 3.3 we deduce that

P
(∣

∣T−1〈ϕ, JT (1)〉 − 〈ϕ,Λ〉
∣

∣ > ǫ
)

≤ (I) + (II), (5.2)

with

(I) :=
2

ǫ2

∫ 1

0

dv

∫ v

0

du〈ϕST (v−u)ϕ,Λ〉

and

(II) :=
2

ǫ2

∫ 1

0

dv

∫ v

0

du

∫ u

0

dU(Tr)〈ϕST (v+u−2r)ϕ,Λ〉,

where, to obtain (II), we used self-adjointness of St with respect to Λ, t ≥ 0. Our
next goal is to derive useful upper bounds for the two integrals (I) and (II). Firstly,
by performing the change of variables s = (v − u)T and t = vT , we get that

ǫ2

2
(I) =

1

T 2

∫ T

0

dt

∫ t

0

ds〈ϕSsϕ,Λ〉

=
1

T 2

∫ A

0

dt

∫ t

0

ds〈ϕSsϕ,Λ〉 +
1

T 2

∫ T

A

dt

∫ t

0

ds〈ϕSsϕ,Λ〉

for any A > 0, where
∫ t

0

〈ϕSsϕ,Λ〉ds =

∫ t

0

∫

Rd

∫

Rd

ϕ(x)ps(x− y)ϕ(y)dy dx ds

=

∫

Rd

∫

Rd

ϕ(x)ϕ(y)

∫ t

0

ps(x− y)ds dy dx

≤

∫

Rd

∫

Rd

ϕ(x)ϕ(y)const.
(

|x− y|α−d + t1−d/α
)

dy dx

since
∫ t

0

ps(x − y)ds ≤ const.
(

|x− y|α−d + t1−d/α
)

due to self-similarity of the α-stable transition densities. Notice that
∫

Rd

∫

Rd

ϕ(x)ϕ(y)|x − y|α−ddy dx <∞,

which, for d > α, follows from Lemma 5.3 in Iscoe (1986b). Hence,
∫ T

A

dt

∫ t

0

〈ϕSsϕ,Λ〉 ds

≤ const.

∫

Rd

∫

Rd

ϕ(x)ϕ(y)

∫ T

A

(

|x− y|α−d + t1−d/α
)

dt dy dx

= c1(T −A) + c2(T
1−d/α −A1−d/α)

for some constants c1, c2 > 0. Therefore,

(I) ≤
2

ǫ2

(

c3
T 2

+ c1
T

T 2
+ c2

T 2−d/α

T 2

)

, (5.3)



124 José Alfredo López-Mimbela and Antonio Murillo-Salas

where

c3 =

∫ A

0

dt

∫ t

0

〈ϕSsϕ,Λ〉ds.

Before estimating the integral (II), we recall that U(t) ∼ tγ/Γ(1 + γ) as t→ ∞
because of F̄ (t) ∼ t−γ/Γ(1 − γ), see Bingham et al. (1989, p. 361). Then, writing
ϕ̂ for the Fourier transform of ϕ, we obtain

ǫ2

2
(II) =

∫ 1

0

dv

∫ v

0

du

∫ u

0

dU(Tr)
1

(2π)d

∫

Rd

dy|ϕ̂(y)|2e−T (v+u−2r)|y|α

=
1

(2π)d

∫ 1

0

dv

∫ v

0

du

∫

Rd

dy|ϕ̂(y)|2
∫ u

0

dU(Tr)e−T (v+u−2r)|y|α

∼
γT γ

Γ(1 + γ)(2π)d

∫ 1

0

dv

∫ v

0

du

∫

Rd

dy|ϕ̂(y)|2
∫ u

0

e−T (v+u−2r)|y|αrγ−1dr,

and, after the change of variables z = (T (v + u− 2r))1/αy, we conclude that

ǫ2

2
(II) ∼

γT γ

Γ(1 + γ)(2π)d

∫ 1

0

dv

∫ v

0

du

∫

Rd

dz

∫ u

0

T−d/α(v + u− 2r)−d/α

×|ϕ̂(T−d/α(v + u− 2r)−d/αz)|2e−|z|αrγ−1dr

≤
γT γ−d/α〈ϕ,Λ〉2

Γ(1 + γ)(2π)d

∫

Rd

dze−|z|α
∫ 1

0

dv

∫ v

0

du

∫ u

0

(v + u− 2r)−d/αrγ−1dr,

where to obtain the last inequality we have used the well known fact that |ϕ̂(z)| ≤
(2π)−d〈|ϕ|,Λ〉 for any L1-function ϕ.

Changing the order of integration into the above expression yields

=
γT γ−d/α〈ϕ,Λ〉2

Γ(1 + γ)(2π)d

∫

Rd

dze−|z|α
∫ 1

0

dv

∫ v

0

rγ−1

∫ v

r

du(u+ v − 2r)−d/αdr

=
γT γ−d/α〈ϕ,Λ〉2

Γ(1 + γ)(2π)d

·

∫

Rd

dze−|z|α
∫ 1

0

dv

∫ v

0

rγ−1 21−d/α(v − r)1−d/α − (v − r)1−d/α

1 − d/α
dr

=
γT γ−d/α〈ϕ,Λ〉2

Γ(1 + γ)(2π)d
21−d/α − 1

1 − d/α

∫

Rd

dze−|z|α
∫ 1

0

dv

∫ v

0

rγ−1(v − r)1−d/α dr.

Notice that in the above calculations we have implicitly assumed that d 6= α.
The case d = α can be treated in a similar way (and renders the same conclusion
(5.4)). Changing again the order of integration we get

=
γT γ−d/α〈ϕ,Λ〉2

Γ(1 + γ)(2π)d
21−d/α − 1

1 − d/α

∫

Rd

dze−|z|α
∫ 1

0

rγ−1

∫ 1

r

dv(v − r)1−d/αdr

=
γT γ−d/α〈ϕ,Λ〉2

Γ(1 + γ)(2π)d
21−d/α − 1

(1 − d/α)(2 − d/α)

∫

Rd

dze−|z|α
∫ 1

0

rγ−1(1 − r)2−d/αdr,

where the last equality is finite since by assumption d < 2α. Hence, for T large
enough

(II) ≤
2

ǫ2
c4T

γ−d/α. (5.4)
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Therefore,

P
(

|T−1〈ϕ, JT (1)〉 − 〈ϕ,Λ〉| > ǫ
)

≤
2

ǫ2

(

c3T
−2 + c1T

−1 + c2T
−d/α + c4T

γ−d/α
)

.

�

Proof of Theorem 2.1 (a): Let ǫ > 0 and a > 1 be given constants, and let
Tn = an for n = 1, 2, . . . . Then,

∞
∑

n=1

P
(

|T−1
n 〈ϕ, JTn(1)〉 − 〈ϕ,Λ〉| > ǫ

)

≤
2

ǫ2

∞
∑

n=1

(

c3T
−2
n + c1T

−1
n + c2T

−d/α
n + c4T

γ−d/α
n

)

<∞

due to the assumption d > γα. Therefore, for any given ϕ ∈ C+
c (Rd), a.s.,

T−1
n 〈ϕ, JTn(1)〉 −→ 〈ϕ,Λ〉 as n −→ ∞.

Now we observe that, for each T > 1, there exists some non-negative integer n(T )
such that an(T ) ≤ T ≤ an(T )+1, and that n(T ) −→ ∞ as T −→ ∞. Hence,

〈ϕ, Jan(T )(1)〉

an(T )+1
≤

〈ϕ, JT (1)〉

T
≤

〈ϕ, Jan(T )+1(1)〉

an(T )
,

and
〈ϕ,Λ〉

a
≤ lim inf

T→∞

〈ϕ, JT (1)〉

T
≤ lim sup

T→∞

〈ϕ, JT (1)〉

T
≤ 〈ϕ,Λ〉a,

these inequalities being true for any a > 1. Letting a→ 1 yields that

lim
T−→∞

T−1〈ϕ, Jt(1)〉 = 〈ϕ,Λ〉

a.s., where the null set (where the limit may not exist) depends upon ϕ. Nonethe-
less, a null set can be chosen not to depend on ϕ as is the proof of Theorem 1 in
Iscoe (1986a). �

5.2. Proof of Theorem 2.1 (b). Throughout this section we assume that d ≥ 2α.
The proof of part (b) in Theorem 2.1 follows, as in part (a), from Chebyshev’s
inequality

P

{

|〈φ, Jt〉 − 〈φ,Λ〉|

t
> ǫ

}

≤
1

t2ǫ2
Var〈φ, Jt〉, t ≥ 0, ǫ > 0 (5.5)

and Lemma 5.2 below. Recall that λ is defined in (4.3).

Lemma 5.2. i) Let φ : R
d → R+ be a measurable function with compact support.

Then, for each t ≥ 0,

E〈φ, Jt〉 = 〈φ,Λ〉t, (5.6)

and

Var〈φ, Jt〉 ≤ 〈λ, F 〉Const(φ)(t + t3−d/α) + 2Const(φ)(t + t2−d/α). (5.7)

Proof : First we prove (5.6). For the given function φ we define the extended
function φ̄(u, x) ≡ φ(x), (u, x) ∈ R+ × R

d. Then, for any k ≥ 0 we define

Lt(kφ̄) = E

[

e−k
R

t

0
〈φ̄,X̄s〉ds

]

= e−〈Vt(kφ̄),F×Λ〉,
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where Vt(kφ̄) satisfies (4.5) with φ̄ substituted by kφ̄, and ψ ≡ 0. Notice that

E〈φ, Jt〉 = −
d

dk
E

[

exp−〈kφ̄, Jt〉
]

|k=0+

=

〈

d

dk
V 0
t (kφ̄), F × Λ

〉

exp
(

−
〈

V 0
t (kφ̄), F × Λ

〉)

∣

∣

∣

∣

k=0+

.

Thus, putting V̇tφ̄ := d
dkV

0
t (kφ̄) |k=0+ and recalling that V 0

t (0φ̄) = 0, we obtain

∂
∂t V̇tφ̄(u, x) = LV̇tφ̄(u, x) + φ̄(u, x)

V̇0φ̄(u, x) = 0,

or

V̇tφ̄(u, x) =

∫ t

0

T̃t−sφ̄(u, x)ds =

∫ t

0

St−sφ(x)ds. (5.8)

Consequently, using that Λ is invariant for the α-stable semigroup,

E〈φ̄, Jt〉 = 〈V̇tφ̄, F × Λ〉 =

〈
∫ t

0

St−sφds,Λ

〉

= 〈φ,Λ〉 t.

This proves (5.6).
The proof of (5.7) goes as follows. Define φ̄ as before. Differentiating Vt(kφ̄)

with respect to k and using equation (4.5), we obtain

∂2

∂t∂k
Vt(kφ̄)(u, x)

= L
∂

∂k
Vt(kφ̄)(u, x) + φ̄(u, x)(1 − Vt(kφ̄)(0, x)) − kφ̄(u, x)

∂

∂k
Vt(kφ̄)(u, x)

−λ(u)

[

−Φ′(1 − Vt(kφ̄(0, x))
∂

∂k
Vt(kφ̄)(0, x) +

∂

∂k
Vt(kφ̄)(0, x)

]

,

and

∂3

∂t∂k2
Vt(kφ̄)(u, x)

= L
∂2

∂k2
Vt(kφ̄)(u, x) − 2φ̄(u, x)

∂

∂k
Vt(kφ̄)(u, x) − kφ̄(u, x)

∂2

∂k2
Vt(kφ̄)(u, x)

−λ(u)

[

Φ′′
(

1 − Vt(kφ̄)(0, x)
)

(

∂

∂k
Vt(kφ̄)(u, x)

)2

−Φ′(1 − Vt(kφ̄)(0, x))
∂2

∂k2
Vt(kφ̄)(0, x) +

∂2

∂k2
Vt(kφ̄)(0, x)

]

.

Letting V̈tφ̄ = ∂2

∂k2 Vt(kφ̄)|k=0+ we get that

∂

∂t
V̈tφ(u, x) = LV̈tφ̄(u, x) − λ(u)Φ′′(1)

(

V̇tφ̄(0, x)
)2

− 2φ̄(u, x)V̇tφ̄(u, x). (5.9)

From (5.8) and (5.9) we obtain

V̈tφ̄(u, x) =

∫ t

0

T̃s

[

−λ(u)

(
∫ s

0

T̃rφ̄(u, x)dr

)2

− 2φ̄(u, x)

∫ s

0

T̃rφ̄(u, x)dr

]

ds.
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Note that Var〈φ, Jt〉 = −〈V̈tφ̄(∗, •), F × Λ〉. Therefore,

Var〈φ̄, Jt〉

=

〈

∫ t

0

T̃s

[

λ(∗)

(
∫ s

0

T̃rφ̄(∗, •)dr

)2

+ 2φ̄(∗, •)

∫ s

0

T̃rφ̄(∗, •) dr

]

ds, F × Λ

〉

=

∫ t

0

〈

λ(∗)

(
∫ s

0

T̃rφ̄(∗, •)dr

)2

, F × Λ

〉

ds

+2

∫ t

0

〈

φ̄(∗, •)

∫ s

0

T̃rφ̄(∗, •)dr, F × Λ

〉

ds

=: (A) + (B). (5.10)

Notice that, under the choice of φ̄, T̃tφ̄(u, x) = Stφ(x) for all t ≥ 0, and that
〈λ, F 〉 < ∞. In fact, using that λ(u) ∼ u−1 and f(u) ∼ u−γ−1, we get that, for
A > 0 sufficiently large,

〈λ, F 〉 =

∫ ∞

0

λ(u)f(u)du

=

∫ A

0

λ(u)f(u)du +

∫ ∞

A

λ(u)f(u)du

∼

∫ A

0

λ(u)f(u)du +

∫ ∞

A

u−1u−γ−1du

< ∞.

Now,

(A) =

∫ t

0

〈

λ(∗)

(
∫ s

0

Srφ(•) dr

)2

, F × Λ

〉

ds = 〈λ, F 〉

∫ t

0

〈

(
∫ s

0

Srφdr

)2

,Λ

〉

ds.

Also, it can be shown that

∫ t

0

〈

(
∫ s

0

Srφdr

)2

,Λ

〉

ds ≤ Const(φ2)(t+ t3−d/α),

and consequently,

(A) ≤ 〈λ, F 〉Const(φ2)(t+ t3−d/α).

Similarly, for the second term in (5.10)

(B) = 2

∫ t

0

〈

φ̄(∗, •)

∫ s

0

T̃rφ̄(∗, •) dr, F × Λ

〉

ds = 2

∫ t

0

〈
∫ s

0

Srφdr,Λ

〉

ds,

where
∫ t

0

〈
∫ s

0

Srφdr,Λ

〉

ds ≤ Const(φ)(t + t2−d/α),

hence,

(B) ≤ 2Const(φ)(t + t2−d/α).

Finally, combining the bounds for (A) and (B) we obtain the result. �
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6. Proof of Theorem 2.2

Suppose that F is a non-arithmetic distribution function supported on the non-
negative real line and having finite mean µ > 0, and let d > α. As in the proof of
Lemma 5.1, we have that

P
(

|T−1〈ϕ, JT (1)〉 − 〈ϕ,Λ〉| > ǫ
)

≤
2

ǫ2

∫ 1

0

dv

∫ v

0

Cov (〈ϕ,XuT 〉, 〈ϕ,XvT 〉) du.

(6.1)
Therefore, due to Proposition 3.3,

P
(

|T−1〈ϕ, JT (1)〉 − 〈ϕ,Λ〉| > ǫ
)

≤ (I) + (II), (6.2)

where

(I) :=
2

ǫ2

∫ 1

0

dv

∫ v

0

du〈ϕST (v−u)ϕ,Λ〉,

and

(II) :=
2

ǫ2

∫ 1

0

∫ v

0

∫ Tu

0

〈(STu−rϕ)(STv−rϕ),Λ〉dU(r)du dv.

We recall the bound (5.3) for (I). It remains to upper-bound (II). Performing
the change of variables h = r/T in (II), and using the elementary renewal theorem
(see e.g. Karlin and Taylor, 1975, p. 188), we have that, for T large enough,

(II) =
2

ǫ2

∫ 1

0

∫ v

0

∫ u

0

〈(ST (u−h)ϕ)(ST (v−h)ϕ),Λ〉d

[

U(Th)

Th
Th

]

du dv

∼
2T

ǫ2µ

∫ 1

0

∫ v

0

∫ u

0

〈(ST (u−h)ϕ)(ST (v−h)ϕ),Λ〉dh du dv

=
2T

ǫ2µ

∫ 1

0

∫ v

0

∫ v

h

〈(ST (u−h)ϕ)(ST (v−h)ϕ),Λ〉du dh dv.

After performing several changes of variables one can see that, for all T large
enough,

(II) ∼
2

ǫ2µT 2

∫ T

0

∫

Rd

∫ v

0

∫ t

0

(Ssϕ)(x)(Stϕ)(x)ds dt dx dv

≤
2

ǫ2µT 2

∫ T

0

∫

Rd

∫ v

0

∫ v

0

(Ssϕ)(x)(Stϕ)(x)ds dt dx dv

=
2

ǫ2µT 2

∫ T

0

∫

Rd

∫

Rd

ϕ(y)ϕ(z)

∫ v

0

∫ v

0

pt+s(y − z)ds dt dy dz dv.

On the other hand, one can show, as in Méléard and Roelly (1992), that

∫ v

0

∫ v

0

pt+s(y − z)ds dt ≤ c
(

|y − z|2α−d + v2−d/α
)
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for some constant c > 0. Hence, for any fixed A > 0, and all T large enough,

(II) ≤
2

ǫ2µT 2

∫ A

0

∫

Rd

∫

Rd

ϕ(y)ϕ(z)

∫ v

0

∫ v

0

pt+s(y − z)ds dt dy dz dv

+
2

ǫ2µT 2
c

∫

Rd

∫

Rd

ϕ(y)ϕ(z)|y − z|2α−ddy dz(T −A)

+
2

ǫ2µT 2
c

∫

Rd

∫

Rd

ϕ(y)ϕ(z)dy dz
(T 3−d/α −A3−d/α)

3 − d/α

≤
2

ǫ2µT 2

∫ A

0

∫

Rd

∫

Rd

ϕ(y)ϕ(z)

∫ v

0

∫ v

0

pt+s(y − z)ds dt dy dz dv

+
2

ǫ2µT
c

∫

Rd

∫

Rd

ϕ(y)ϕ(z)|y − z|2α−ddy dz

+
2

ǫ2µ
c

∫

Rd

∫

Rd

ϕ(y)ϕ(z)dy dz
(T 1−d/α −A3−d/αT−2)

3 − d/α
.

The proof concludes with an application of Borel-Cantelli’s Lemma, using that
d/α > 1, (6.2), and the bounds for (I) and (II).

7. Proof of Theorem 2.3

In this section we assume that d < αγ, and that F is a distribution function
satisfying (1.1). Arguing similarly as at the end of the proof of Theorem 2.1, Lemma
7.1 below yields the theorem.

Lemma 7.1. Let A ⊂ R
d be a ball. Then, for all ǫ > 0, and for all t sufficiently

large,

P

(

t−1

∫ t

0

1{Xs(A)>0}ds > ǫ

)

≤ (1 − e−ǫ)−1
(

ct−(d/α+γ)/2+(1+δ)d/α + c1t
−1

)

,

(7.1)
for some positive constants c and c1.

Proof : Notice that, by Markov’s inequality,

P

(

t−1

∫ t

0

1{Xs(A)>0}ds > ǫ

)

≤ (1 − e−ǫ)−1
E

[

1 − exp

{

t−1

∫ t

0

1{Xs(A)>0}ds

}]

.

(7.2)
Moreover, since the initial population is Poissonian,

E

[

e−t
−1

R

t

0
1{Xs(A)>0} ds

]

= E

[

e−
R 1
0

1{Xst(A)>0}ds
]

= exp

{

−

∫

Rd

Ex

[

1 − e−
R

1
0

1{Zst(A)>0}ds
]

dx

}

. (7.3)

Now, since 1 − e−x ≤ x, for all x ≥ 0, we have that

1 − e−
R 1
0

1{Zst(A)>0}ds ≤

∫ 1

0

1{Zst(A)>0}ds.

Therefore,

Ex

[

1 − e−
R

1
0

1{Zst(A)>0}ds
]

≤ Ex

∫ 1

0

1{Zst(A)>0} ds =

∫ 1

0

Px (Zst(A) > 0) ds.

(7.4)
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Due to (7.3) and (7.4), inequality (7.2) can be written as

P

(

t−1

∫ t

0

1{Xs(A)>0}ds > ǫ

)

≤ (1 − e−ǫ)−1

[

1 − exp

{

−

∫ 1

0

∫

Rd

Px (Zst(A) > 0)dx ds

}]

, (7.5)

where
∫ 1

0

∫

Rd

Px (Zst(A) > 0) dx ds =

∫ 1

0

∫

D(st,δ)

Px (Zst(A) > 0) dx ds

+

∫ 1

0

∫

D(st,δ)c
Px (Zst(A) > 0) dx ds (7.6)

with

D(t, δ) := {x ∈ R
d : |x| ≤ t(1+δ)/α}, δ > 0.

Using the inequality
∫

D(st,δ)

Px (Zst(A) > 0)dx ≤ K(st)−(d/α+γ)/2+(1+δ)d/α,

which holds for some positive constantK (see Lemma 5 in Vatutin and Wakolbinger,
1999), we deduce that

∫ 1

0

∫

D(st,δ)

Px (Zst(A) > 0) dx ds ≤ K

∫ 1

0

(st)−(d/α+γ)/2+(1+δ)d/αds

= ct−(d/α+γ)/2+(1+δ)d/α,

where we used that 1−(d/α+ γ)/2 + (1 + δ)d/α > 0. On the other hand, following
closely the proof of Lemma 5 in Vatutin and Wakolbinger (1999) one can see that,
for sufficiently large t,

∫ 1

0

∫

Rd\D(st,δ)

Px (Zst(A) > 0) dx ds ≤ c1

∫ 1

0

P

(

‖B0
1‖ ≥

1

2
(st)δ/α

)

ds ≤ c1t
−1.

In this way, (7.6) yields the inequality
∫ 1

0

∫

Rd

Px (Zst(A) > 0) dx ds ≤ ct−(d/α+γ)/2+(1+δ)d/α + c1t
−1, (7.7)

which is valid for all t large enough, and renders (7.1). Notice that −(d/α+γ)/2 +
(1 + δ)d/α < 0 for sufficiently small δ. �
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