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Angers Cedex 01. http://math.univ-angers.fr/∼chaumont/
E-mail address: loic.chaumont@univ-angers.fr

Department of Mathematical Sciences, The University of Bath, Claverton Down, Bath

BA2 7AY, UK http://www.maths.bath.ac.uk/∼jcpm20/
E-mail address: jcpm20@bath.ac.uk

Abstract. A Lévy forest of size s > 0 is a Poisson point process in the set of Lévy
trees which is defined on the time interval [0, s]. The total mass of this forest is
defined by the sum of the masses of all its trees. We give a realization of the stable
Lévy forest of a given size conditioned on its total mass using the path of the uncon-
ditioned forest. Then, we prove an invariance principle for this conditioned forest
by considering k independent Galton-Watson trees whose offspring distribution is
in the domain of attraction of any stable law conditioned on their total progeny
to be equal to n. We prove that when n and k tend towards +∞, under suitable
rescaling, the associated coding random walk, the contour and height processes all
converge in law on the Skorokhod space towards the first passage bridge and height
process of a stable Lévy process with no negative jumps respectively.

1. Introduction

The purpose of this work is to study some remarkable properties of stable Lévy
forests of a given size conditioned by their mass.

A Galton-Watson tree is the underlying family tree of a given Galton-Watson
process with offspring distribution µ started with one ancestor. It is well-known
that if µ is critical or subcritical, the Galton-Watson process reaches 0 in a finite
time a.s. and therefore, the corresponding Galton-Watson tree is a.s. finite. In this
case, Galton-Watson trees can be coded by two different discrete real valued pro-
cesses: the height process and the contour process. The definitions of the latter two
processes are in Section 2. Both processes describe the genealogical structure of the
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associated Galton-Watson process. They are not Markovian in general (however the
contour is a reflected random walk when the offspring distribution is geometric). In
any case, these processes can be written as functionals of a certain left-continuous
random walk, also coding the genealogy of the tree, whose jump distribution de-
pends on the offspring distribution µ. In a natural way, Galton-Watson forests are
finite or infinite collections of independent Galton-Watson trees. The size of a finite
Galton-Watson forest is just the numbers of trees that it contains and its mass is
the total number of its vertices.

Our presentation of Lévy trees owes a lot to the recent paper by Duquesne and
Le Gall (2005), which uses the formalism of R-trees that was implicit in Duquesne
(2003), Duquesne and Le Gall (2002) and Le Gall and Le Jan (1998). We may
consider Lévy trees as random variables taking values in the space of compact rooted
R-trees. Their definition bears upon the continuous analogue of the height process
of Galton-Watson trees introduced by Le Gall and Le Jan (1998) as a functional of
a Lévy process with no negative jumps. In a recent paper of Evans et al. (2006),
R-trees are studied from the point of view of measure theory. Informally an R-tree
is a metric space (T , d) such that for any two points σ and σ′ in T there is a unique
arc with endpoints σ and σ′ and furthermore this arc is isometric to a compact
interval of the real line. In Evans et al. (2006), the authors also established that
the space T of equivalent classes of (rooted) compact real trees, endowed with the
Gromov-Hausdorff metric, is a Polish space. This makes it very natural to consider
random variables or even random processes taking values in the space T. In this
work, we define Lévy forests as Poisson point processes with values in the set of
R-trees whose intensity measure is the law of the generic Lévy tree. A Lévy forest
with finite size s > 0 is then such a Poisson point process on the time interval [0, s].

The local time at level a of a Lévy tree (T , d) is a finite measure ℓa supported
on the level set T (a) = {v ∈ T : d(ρ(T ), v) = a}, where ρ(T ) is the root of T . The
total mass of T is then defined by

∫∞

0 daℓa and the total mass of a Lévy forest with
finite size is the sum of the masses of all its trees. First, we are interested in the
construction of Lévy forests of a given size conditioned by their mass. Again, in the
discrete setting this conditioning is easier to define; the conditioned Galton-Watson
forest of size k and mass n is a collection of k independent Galton-Watson trees
with total progeny equal to n. In section 4, we provide a definition of these notions
for Lévy forest. Then, in the stable case, we give a construction of the conditioned
stable Lévy forest of size s > 0 and mass 1 by “rescaling” the unconditioned forest
of a particular random mass.

In Aldous (1991), the author showed that the Brownian random tree (or contin-
uum random tree) is the limit as n increases of a rescaled critical Galton-Watson
tree conditioned to have n vertices whose offspring distribution has a finite vari-
ance. In particular, Aldous proved that the discrete height process converges on the
Skorokhod space of càdlàg paths to the normalized Brownian excursion. Recently,
Duquesne (2003) extended such results to Galton-Watson trees whose offspring
distribution is in the domain of attraction of a stable law with index α in (1, 2].
Then, Duquesne showed that the discrete height process of the Galton-Watson tree
conditioned to have a deterministic progeny, converges as this progeny tends to
infinity on the Skorokhod space to the normalized excursion of the height process
associated with the stable Lévy process.
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The other main purpose of our work is to study this convergence in the case of a
finite number of independent Galton-Watson trees, this number being an increasing
function of the progeny. More specifically, in Section 5, we establish an invariance
principle for the conditioned forest by considering k independent Galton-Watson
trees whose offspring distribution is in the domain of attraction of any stable law
conditioned on their total progeny to be equal to n. When n and k tend towards
∞, under suitable rescaling, the associated coding random walk, the contour and
height processes converge in law on the space of Skorokhod towards the first passage
bridge of a stable Lévy process with no negative jumps and its height process.

In section 2, we introduce conditioned Galton-Watson forests and their related
coding by a first passage bridge of the associated random walk, by the height process
and by the contour process. Section 3 is devoted to recalling the definitions of real
trees and Lévy trees and stating a number of important results related to these
notions.

2. Discrete trees and forests.

In this section, we first recall Ulam’s coding of rooted ordered trees, see Neveu
(1986). Then we state some preliminary results in discrete time.

In all the sequel, an element u of (N∗)n is written as u = (u1, . . . un) and we set
|u| = n. Let

U =

∞
⋃

n=0

(N∗)n,

where N∗ = {1, 2, . . .} and by convention (N∗)0 = {∅}. The concatenation of
two elements of U, let us say u = (u1, . . . un) and v = (v1, . . . , vm) is denoted by
uv = (u1, . . . un, v1, . . . , vm). A discrete rooted tree is an element τ of the set U

which satisfies:

(i) ∅ ∈ τ ,
(ii) If v ∈ τ and v = uj for some j ∈ N∗, then u ∈ τ ,
(iii) For every u ∈ τ , there exists a number ku(τ) ≥ 0, such that uj ∈ τ if and

only if 1 ≤ j ≤ ku(τ).

In this definition, ku(τ) represents the number of children of the vertex u. We
denote by T the set of all rooted trees. The total cardinality of an element τ ∈ T

will be denoted by ζ(τ), (we emphasize that the root is counted in ζ(τ)). If τ ∈ T

and u ∈ τ , then we define the shifted tree at the vertex u by

θu(τ) = {v ∈ U : uv ∈ τ} .

A vertex w is an ancestor of u if there exists x ∈ U such that u = wx. We
denote by u ∧ v the last common ancestor of the vertices u and v according to the
lexicographical order.

Then we consider a probability measure µ on N, such that
∞
∑

k=0

kµ(k) ≤ 1 and µ(0) + µ(1) < 1 .

Let us endow T with the sigma-field P(T) of all its subsets. The law of the Galton-
Watson tree with offspring distribution µ is the unique probability measure Qµ on
(T,P(T)) such that:

(i) Qµ(k∅ = j) = µ(j), j ∈ Z+.
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(ii) For every j ≥ 1, with µ(j) > 0, the shifted trees θ1(τ), . . . , θj(τ) are inde-
pendent under the conditional distribution Qµ( · | k∅ = j) and their condi-
tional law is Qµ.

The Galton-Watson process associated to a Galton-Watson tree is the Markov chain
(Zn) indexed by the generations, such that Zn is the number of individuals in
the tree at generation n. In Neveu (1986), a construction of the law of (Zn) is
given in terms of the measure Qµ. Clearly the Galton-Watson process does not
code entirely the genealogy of the tree. In the aim of doing so, other (coding) real
valued processes have been defined. Amongst such processes one can cite the height
process, the contour process and the associated random walk which will be called
here the coding walk and which is sometimes referred to as the Luckazievicks path.

In order to define these processes, let us first denote by uτ (0) = ∅, uτ (1) =
1, . . . , uτ (ζ−1) the elements of a tree τ which are enumerated in the lexicographical
order (when no confusion is possible, we will simply write u(n) for uτ (n)). Let us
also denote by |u(n)| the rank of the generation of a vertex u(n) ∈ τ . The following
definitions may be found in Le Gall and Le Jan (1998).

Definition 2.1. The height function of a tree τ is:

Hn(τ) = |u(n)|, 0 ≤ n ≤ ζ(τ) − 1 .

Suppose that the tree τ is embedded in the half-plane in such a way that edges
have length one. Then starting at time t = 0 from the root we run along the tree
from the left to the right, moving continuously along the edges at unit speed, until
we come back to the root. For t ∈ [0, 2(ζ(τ) − 1))] the value Ct(τ) of the contour
function is the distance (on the tree) between our position at time t and the root.
Then we set Ct(τ) = 0, for t ∈ [2(ζ(τ) − 1), 2ζ(τ)].

The coding walk S(τ) is the discrete time process whose increments are:

S0 = 0 , Sn+1(τ) − Sn(τ) = ku(n)(τ) − 1, 0 ≤ n ≤ ζ(τ) − 1 .

A Galton-Watson forest with offspring distribution µ is a finite or infinite sequence
of independent Galton-Watson trees with offspring distribution µ. It will be denoted
by F = (τk). With a misuse of notation, we will denote by Qµ the law on (T)N

∗

of
a Galton-Watson forest with offspring distribution µ.

The height function of a forest F = (τk) is obtained from the concatenation of
the height functions H(τ1), H(τ2), . . . , H(τk), . . . . The same construction holds for
the contour function and the coding walk of F that are respectively denoted H(F),
C(F) and S(F). Let us give a more formal definition.

Definition 2.2. With the convention that ζ(τ0) = 0, the processes H(F), C(F)
and S(F) are defined as follows:

Hn(F) = Hn−(ζ(τ0)+···+ζ(τk−1))(τk),

if ζ(τ0) + · · · + ζ(τk−1) ≤ n ≤ ζ(τ0) + · · · + ζ(τk) − 1, for k ≥ 1.

If there are j <∞ trees in the forest, then we set Hn(F) = 0, for n ≥ ζ(τ0)+ · · ·+
ζ(τj).

Ct(F) = Ct−2(ζ(τ0)+···+ζ(τk−1))(τk),

if 2(ζ(τ0) + · · · + ζ(τk−1)) ≤ t ≤ 2(ζ(τ0) + · · · + ζ(τk)), for k ≥ 1.



Conditioned stable Lévy forests 265

If there are j <∞ trees in the forest, then we set Ct(F) = 0, for t ≥ 2(ζ(τ0)+ · · ·+
ζ(τj)).

Sn(F) = Sn−(ζ(τ0)+···+ζ(τk−1))(τk) − k + 1,

if ζ(τ0) + · · · + ζ(τk−1) ≤ n ≤ ζ(τ0) + · · · + ζ(τk), for k ≥ 1.

If there are j < ∞ trees in the forest, then we set Sn(F) = Sζ(τ0)+···+ζ(τj)(F), for
n ≥ ζ(τ0) + · · · + ζ(τj).

It is not difficult to check that each of these three processes allows us to recover
the entire structure of the forest. We say that they codes the genealogy of the forest.
Moreover, it is well known that when the number of trees is infinite, the coding
walk S(F) is a downward skip free random walk with initial value S0 = 0 and step
distribution ν(k) = µ(k + 1), k = −1, 0, 1, . . .. We may easily see on a picture that
the k-th excursion above its past minimum of S(F) corresponds to S(τk).
Let us denote H(F), C(F) and S(F) respectively byH , C and S when no confusion
is possible. In the sequel, we will have to use some path relationships between H ,
C and S that we recall now. Let us suppose that F is infinite. It is established for
instance in Duquesne and Le Gall (2002); Le Gall and Le Jan (1998) that

Hn = card
{

0 ≤ k ≤ n− 1 : Sk = inf
k≤j≤n

Sj
}

. (2.1)

This identity means that the height process at each time n can be interpreted as
the amount of time that the random walk S spends at its future minimum before
n. The following relationship between H and C is proved in Duquesne and Le Gall
(2002), set Kn = 2n−Hn:

Ct =

{

(Hn − (t−Kn))
+ , if t ∈ [Kn,Kn+1 − 1]

(Hn+1 − (Kn+1 − t))+ , if [Kn+1 − 1,Kn+1] .
(2.2)

As preliminary results, we also state two inequalities that are proved in Duquesne
and Le Gall (2002), section 2.4 and can easily be deduced from (2.2). Define the
function f : R+ → Z+ by f(t) = n if and only if t ∈ [Kn,Kn+1). For every integer
n ≥ 1,

sup
t∈[0,Kn]

|Ct −Hf(t)| ≤ 1 + sup
k≤n

|Hk+1 −Hk| ,

sup
t∈[0,Kn]

|f(t) −
t

2
| ≤

1

2
sup
k≤n

Hk + 1 . (2.3)

The starting point of our work is the observation that a Galton-Watson forest with
k trees conditioned to have n vertices can be coded by a downward skip free random
walk conditioned to first reach −k at time n. An interpretation of this result may
be found in Pitman (2006), Lemma 6.3 for instance.

Proposition 2.3. Let F = (τj) be an infinite forest with offspring distribution µ
and S be its coding walk. Let W be a random walk defined on a probability space
(Ω,F , P ) with the same law as S. Define TWi = inf{j : Wj = −i}, for i ≥ 1 and
choose k and n such that P (TWk = n) > 0.

Under the conditional law Qµ( · | ζ(τ1) + · · · + ζ(τk) = n), the process
(Sj , 0 ≤ j ≤ ζ(τ1) + · · · + ζ(τk)) has the same law as the process
(Wj , 0 ≤ j ≤ TWk ) under P ( · |TWk = n).
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In the proof of Theorem 5.1 (see section 5) condition P (TWk = n) > 0 must be
satisfied for all k and n sufficiently large such that 1 ≤ k ≤ n. We remark that this
is the case if W is aperiodic, since from Kemperman’s formula (see Pitman, 2006,
page 122) we have for any downward skip free random walk:

P (TWk = n) =
k

n
P (Wn = −k) . (2.4)

To end this section, note that the identity in law of the above proposition also
holds clearly for the triple (S,H,C), with obvious definitions for HW and CW . In
Section 4, we will present a continuous time version of this result, but before we
need to introduce the continuous time setting of Lévy trees and forests.

3. Coding real trees and forests

Discrete trees may be considered in an obvious way as compact metric spaces
with no loops. Such metric spaces are special cases of R-trees that are defined
hereafter. Similarly to the discrete case, an R-forest is any countable collection of
R-trees. In this section we keep the same notation as in Duquesne and Le Gall
(2002) and Duquesne and Le Gall (2005). The following formal definition of R-
trees is now standard and originates from T -theory. It may be found for instance
in Dress et al. (1996) or Evans (2008).

Definition 3.1. A metric space (T , d) is an R-tree if for every σ1, σ2 ∈ T ,

1. There is a unique map fσ1,σ2 from [0, d(σ1, σ2)] into T such that fσ1,σ2(0) =
σ1 and fσ1,σ2(d(σ1, σ2)) = σ2.

2. If g is a continuous injective map from [0, 1] into T such that g(0) = σ1

and g(1) = σ2, we have

g([0, 1]) = fσ1,σ2([0, d(σ1, σ2)]) .

A rooted R-tree is an R-tree (T , d) with a distinguished vertex ρ = ρ(T ) called the
root. An R-forest is any countable collection of rooted R-trees: F = {(Ti, di), i ∈
I}.

A construction of some particular cases of such metric spaces has been given by
Aldous (1991) and is described in Duquesne and Le Gall (2005) in a more general
setting. For a > 0, let f : [0, a] → [0,∞) be a continuous function such that
f(0) = f(a) = 0. For 0 ≤ s ≤ t ≤ a, we define

df (s, t) = f(s) + f(t) − 2 inf
u∈[s,t]

f(u) (3.1)

and the equivalence relation by

s ∼ t if and only if df (s, t) = 0 .

(Note that df (s, t) = 0 if and only if f(s) = f(t) = infu∈[s,t] f(u).) Then the
projection of df on the quotient space

Tf = [0, a]/ ∼

defines a distance that will also be denoted by df . The metric space (Tf , df ) is then
a compact R-tree, see for instance Duquesne and Le Gall (2005) and Evans (2008).
Denote by pf : [0, a] → Tf the canonical projection. The vertex ρ = pf (0) will be
chosen as the root of Tf .
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The space of R-trees will be denoted by Tc. It is endowed with the Gromov-
Hausdorff distance, dGH that we briefly recall now. For a metric space (E, δ) and
K, K ′ two compact subsets of E, δHaus(K,K

′) will denote the Hausdorff distance
between K and K ′, i.e. δHaus(K,K

′) = inf{r > 0 : A ⊂ Ur(B) and B ⊂ Ur(A)},
where for a subset S of E, Ur(S) = {x ∈ E : δ(x, S) < r} and δ(x, S) = inf{δ(x, y) :
y ∈ S}. Then we define the distance between two compact rooted R-trees T and
T ′ by:

dGH(T , T ′) = inf (δHaus(ϕ(T ), ϕ′(T ′)) ∨ δ(ϕ(ρ), ϕ′(ρ′))) ,

where the infimum is taken over all isometric embeddings ϕ : T → E and ϕ′ : T ′ →
E of T and T ′ into a common metric space (E, δ). We refer to Gromov (1999) for a
complete description of the Gromov-Hausdorff topology, see also Evans et al. (2006)
and Chapter 4 of Evans (2008). It is important to note that the space (Tc, dGH) is
complete and separable, see for instance Theorem 3.23 of Evans (2008) or Theorem
1 of Evans et al. (2006).

In the remainder of this section, we will recall from Duquesne and Le Gall (2005)
the definition of Lévy trees and of Lévy forests. Let (Px), x ∈ R be a family of
probability measures on the Skorokhod space D of càdlàg paths from [0,∞) to R

such that for each x ∈ R, the canonical processX is a Lévy process with no negative
jumps, starting from x, that does not drift to +∞. (Set P = P0, so Px is the law
of X + x under P.) This is equivalent to assume that the characteristic exponent
ψ of X (i.e. E(e−λXt) = etψ(λ), λ ∈ R+) is of the form

ψ(λ) = αλ+ βλ2 +

∫

(0,∞)

(e−λr − 1 + λr)π(dr) ,

(where α, β ≥ 0 and π is a σ-finite measure on (0,∞) such that
∫

(1∧r2)π(dr) <∞)
and satisfies the following condition:

∫ ∞ du

ψ(u)
<∞ . (3.2)

This condition is equivalent to the a.s. extinction of the continuous state branching
process that is associated to the branching mechanism ψ. Equivalently, the Lévy
tree that is constructed from the process X (see below) is a.s. finite. In the sequel
we will only consider the stable case where ψ(λ) = λα, with α ∈ (1, 2]. Condition
(3.2) is then obviously satisfied.

By analogy with the discrete case, the continuous time height process H̄ is the
measure (in a sense which is to be defined) of the set {s ≤ t : Xs = infs≤r≤tXr}.
A rigorous meaning to this measure is given by the following result due to Le Gall
and Le Jan (1998), see also Duquesne and Le Gall (2002). Define Ist = infs≤u≤tXu.
There is a sequence of positive real numbers (εk) which decreases to 0 such that
for any t, the limit

H̄t
(def)
= lim

k→+∞

1

εk

∫ t

0

1{Xs−Is
t<εk} ds (3.3)

exists a.s. It is also proved in Le Gall and Le Jan (1998) that under assump-
tion (3.2), H̄ is a continuous process, so that each of its positive excursions codes
a real tree in the sense of Aldous. We easily deduce from this definition that the
height process H̄ is a functional of the Lévy process reflected at its minimum, i.e.
X − I, where I := I0. The process X − I is strongly Markovian and under our
assumptions, 0 is regular for itself for this process, moreover −I is a local time at
level 0. Let us notice that when X is a scaled Brownian motion, i.e. ψ(λ) = βλ2,
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the process H̄ is almost surely equal to the scaled reflected process at its maximum:
β−1(M −X), where Mt = sups≤tXs.

In order to define the Lévy forest, we need to introduce the local times of the
height process H̄ . It is proved in Duquesne and Le Gall (2002) that for any level
a ≥ 0, there exists a continuous increasing process (Lat , t ≥ 0) which is defined by
the approximation:

lim
ε↓0

E

(

sup
0≤s≤t

∣

∣

∣

∣

1

ε

∫ s

0

du1{a<H̄u≤a+ε} − Las

∣

∣

∣

∣

)

= 0 . (3.4)

The support of the measure dLat is contained in the set {t ≥ 0 : H̄t = a} and, as
we readily noticed, L0 = −I. Then we may define the Poisson point process of the
excursions away from 0 of the process H̄ as follows. Let Tu = inf{t : −It ≥ u} be
the right continuous inverse of the local time at 0 of the reflected process X − I (or
equivalently of H). The time Tu corresponds to the first passage time of X bellow
−u. Set T0− = 0 and for all u ≥ 0,

eu(v) =

{

H̄Tu−+v , if 0 ≤ v ≤ Tu − Tu−
0 , if v > Tu − Tu−

.

For each u ≥ 0, we define the random R-tree (Teu , deu) under P as in the beginning
of this section. We easily deduce from the Markov property of X−I that under the
probability measure P, the process {(Teu , deu), u ≥ 0} is a Poisson point process in
Tc. Let us denote by Θ(dT ) its (σ-finite) intensity measure on Tc.

Definition 3.2. The Lévy forest FH̄ is the Poisson point process

(FH̄(u), u ≥ 0)
(def)
= {(Teu , deu), u ≥ 0}

whose intensity measure under P is Θ(dT ). For each s > 0, the process

Fs
H̄

(def)
= {(Teu , deu), 0 ≤ u ≤ s}

under P will be called the Lévy forest of size s. The Lévy tree (TH̄ , dH̄) is a generic
point of FH̄ , i.e. a Tc-valued random variable with law Θ(dT ).

Such a definition of a Lévy forest has already been introduced in Pitman (2006),
Proposition 7.8 in the Brownian setting. However in this work, it is observed
that the Brownian forest may also simply be defined as the real tree coded by the
function H̄ under law P. We also refer to Pitman and Winkel (2005) where the
Brownian forest is understood in this way. Similarly, the Lévy forest with size
s may be defined as the compact real tree coded by the continuous function with
compact support (H̄u, 0 ≤ u ≤ Ts) under law P. These definitions are more natural
when considering convergence of sequences of real forests and we will make appeal
to them in section 5, see Corollary 5.3.

We will simply denote the Lévy tree and the Lévy forest respectively by TH̄ ,
FH̄ or Fs

H̄
, the corresponding distances being implicit. When X is stable, condi-

tion (3.2) is satisfied if and only if its index α satisfies α ∈ (1, 2]. We may check, as
a consequence of (3.3), that H̄ is a self-similar process with index α/(α− 1), i.e.:

(H̄t, t ≥ 0)
(d)
= (k(α−1)/αH̄kt, t ≥ 0) , for all k > 0.

(See Duquesne and Le Gall, 2002, section 3.3). In this case, the Lévy tree TH̄
associated to the stable mechanism is called the α-stable Lévy tree and its law
is denoted by Θα(dT ). This random metric space also inherits from X a scaling



Conditioned stable Lévy forests 269

property which may be stated as follows: for any a > 0, we denote by aTH̄ the
Lévy tree TH̄ endowed with the distance adH̄ , i.e.

aTH̄
(def)
= (TH̄ , adH̄) . (3.5)

Then the law of aTH̄ under Θα(dT ) is a
1

α−1 Θα(dT ). This property is stated in
Le Gall (2006) Proposition 4.3 and Duquesne and Le Gall (2006) where other
fractal properties of stable trees are considered.

4. Construction of the conditioned Lévy forest

In this section we present the continuous analogue of discrete forests introduced
in section 2. In particular, we define the total mass of the Lévy forest of a given
size s. Then we define the Lévy forest of size s conditioned by its total mass. In the
stable case, we give a construction of this conditioned forest from the unconditioned
forest.

We begin with the definition of the measure ℓa,u which represents a local time
at level a > 0 for the Lévy tree Teu . For all a > 0, u ≥ 0 and for every bounded
and continuous function ϕ on Teu , the finite measure ℓa,u is defined by:

〈ℓa,u, ϕ〉 =

∫ Tu−Tu−

0

dLaTu−+vϕ(peu(v)) , (4.1)

where we recall from the previous section that peu is the canonical projection from
[0, Tu − Tu−] onto Teu for the equivalence relation ∼ and (Lau) is the local time at
level a of H̄ . Then the mass measure mu is defined as the image of the Lebesgue
measure on [0, Tu − Tu−] under the mapping v 7→ peu(v). There exists a càdlàg
version of the mapping a 7→ ℓa,u, see Theorem 4.3 in Duquesne and Le Gall (2005),
so that from (4.1) the total mass of the Lévy tree Teu can be expressed as:

mu(Teu ) =

∫ ∞

0

da ℓa,u. (4.2)

Now we fix s > 0; the total mass of the forest of size s, Fs
H̄

is naturally given by

Ms =
∑

0≤u≤s

mu(Teu) .

The total mass mu(Teu ) of each tree Teu being Tu − Tu−, this implies that

Ts = Ms , P-a.s. (4.3)

Then we will construct processes which encode the genealogy of the Lévy forest
of size s conditioned to have a mass equal to t > 0. From the analogy with the
discrete case in Proposition 2.3, the natural candidates may informally be defined
as:

Xbr (def)
= [(Xu, 0 ≤ u ≤ Ts) |Ts = t]

H̄br (def)
= [(H̄u, 0 ≤ u ≤ Ts) |Ts = t] .

When X is the Brownian motion, the process Xbr is called the first passage bridge,
see Bertoin et al. (2003). In order to give a proper definition in the general case,
we need the additional assumption:
The semigroup of (X,P) is absolutely continuous with respect to the Lebesgue mea-
sure.
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Then denote by pt(·) the density of the semigroup ofX , by GXu
(def)
= σ{Xv, v ≤ u},

u ≥ 0 the σ-field generated by X and set p̂t(x) = pt(−x).

Lemma 4.1. The probability measure which is defined on each GXu , u ∈ [0, t) by

P(Xbr ∈ Λu) = E

(

1{X∈Λu, u<Ts}
t(s+Xu)

s(t− u)

p̂t−u(s+Xu)

p̂t(s)

)

, u < t , Λu ∈ GXu ,

(4.4)
is a regular version of the conditional law of (Xu, 0 ≤ u ≤ Ts) given Ts = t, in the
sense that for all u > 0, for λ-a.e. s > 0 and λ-a.e. t > u,

P(Xbr ∈ Λu) = lim
ε↓0

P(X ∈ Λu | |Ts − t| < ε) ,

where λ is the Lebesgue measure.

Proof : Let u < t, Λu ∈ GXu and ε < t − u. From the Markov property, we may
write

P(X ∈ Λu | |Ts − t| < ε) = E

(

1{X∈Λu}

1{ |Ts−t|<ε}

P(|Ts − t| < ε)

)

= E

(

1{X∈Λu,u<Ts}
PXu(|Ts − (t− u)| < ε)

P(|Ts − t| < ε)

)

.(4.5)

On the other hand, from Corollary VII.3 in Bertoin (1996) one has for λ-a.e. s > 0,

tP(Ts ∈ dt) = sp̂t(s) dt . (4.6)

Hence, for all x ∈ R, for all u > 0, for λ-a.e. s > 0 and λ-a.e. t > u,

lim
ε↓0

Px(|Ts − (t− u)| < ε)

P(|Ts − t| < ε)
=
t(s+ x)

s(t− u)

p̂t−u(s+ x)

p̂t(s)
. (4.7)

Moreover from (4.6) and the Markov property we have

E

(

1{u<Ts}
t(s+Xu)

s(t− u)

p̂t−u(s+Xu)

p̂t(s)

)

= 1 , (4.8)

for λ-a.e. t. Then (4.5), (4.7) and Fatou’s lemma imply that

lim inf
ε↓0

P(X ∈ Λu | |Ts − t| < ε) ≥ E

(

1{X∈Λu, u<Ts}
t(s+Xu)

s(t− u)

p̂t−u(s+Xu)

p̂t(s)

)

.

But replacing Λu by Λcu in the above inequality and using (4.8) gives

lim sup
ε↓0

P(X ∈ Λu | |Ts − t| < ε) ≤ E

(

1{X∈Λu, u<Ts}
t(s+Xu)

s(t− u)

p̂t−u(s+Xu)

p̂t(s)

)

,

which ends the proof of the lemma. �

From Lemma 4.1 and a monotone class argument, it follows that the law of Xbr

admits a unique extension on the σ-field GXt− and P(Xbr
t− = −s) = 1. We define

the law of Xbr on GXt , by setting Xbr
t = −s. Then note that H is a GX -adapted

process, so we can use Lemma 4.1 and (3.3) to construct the law of a height process
H̄br associated to the first passage bridge Xbr. More specifically, the law of H̄br on
each GXu , u ∈ [0, t) is given by

P(H̄br ∈ Λu) = E

(

1{H̄∈Λu, u<Ts}

t(s+Xu)

s(t− u)

p̂t−u(s+Xu)

p̂t(s)

)

, u < t , Λu ∈ GXu .
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Then we extend this law on GXt , as for Xbr and we may check that H̄br is a
continuous process such that H̄br

0 = H̄br
t = 0, a.s. From this construction, the law

of H̄br is a regular version of the conditional law of (H̄u, 0 ≤ u ≤ Ts) given Ts = t.
Call (es,tu , 0 ≤ u ≤ s) the excursion process of H̄br. In particular

(es,tu , 0 ≤ u ≤ s) has the same law as (eu, 0 ≤ u ≤ s) given Ts = t .

The following proposition is a straightforward consequence of the above definition
and identity (4.3).

Proposition 4.2. The law of the process {(Tes,t
u
, des,t

u
), 0 ≤ v ≤ s} is a regular

version of the law of the forest of size s, Fs
H̄

given Ms = t.

We will denote by (Fs,t

H̄
(u), 0 ≤ u ≤ s) a process with values in Tc whose law under

P is this of the Lévy forest of size s conditioned by Ms = t, i.e. conditioned to have
a mass equal to t.

In the remainder of this section, we will consider the case when the driving Lévy
process is stable. We suppose that its index α belongs to (1, 2] so that condition (3.2)
is satisfied. We will give a pathwise construction of the processes (Xbr, H̄br) from
the path of the original processes (X, H̄). This result leads to the following real-
ization of the Lévy forest of size s conditioned by its mass. From now on, with no
loss of generality, we suppose that t = 1.

Theorem 4.3. Assume that X is stable with index α ∈ (1, 2] and define

g = sup{u ≤ 1 : Tu1/α = s · u}.

(1) P-almost surely,
0 < g < 1 .

(2) Under P, the rescaled process

(g(1−α)/αH̄(gu), 0 ≤ u ≤ 1) (4.9)

has the same law as H̄br and is independent of g.
(3) The forest Fs,1

H̄
of size s and mass 1 may be constructed from the rescaled

process defined in (4.9), i.e. if we denote by u 7→ ǫu
(def)
= (g(1−α)/αeu(gv),

v ≥ 0) its process of excursions away from 0, then under P,

Fs,1

H̄

(d)
= {(Tǫu , dǫu), 0 ≤ u ≤ s}.

Proof : The process Tu = inf{v : Iv ≤ −u} is a stable subordinator with index 1/α.
Therefore,

Tu < suα , i.o. as u ↓ 0 and Tu > suα , i.o. as u ↓ 0.

Indeed, if un ↓ 0 then P(Tun < suαn) = P(T1 < s) > 0, so that P(lim supn{Tun <
suαn}) ≥ P(T1 < s) > 0. But T satisfies Blumenthal 0-1 law, so this probability is
1. The same arguments prove that P(lim supn{Tun > suαn}) = 1 for any sequence
un ↓ 0. Since T has only positive jumps, we deduce that Tu = suα infinitely often
as u tends to 0, so we have proved the first part of the theorem.

The rest of the proof is a consequence of the following lemma.

Lemma 4.4. The first passage bridge Xbr enjoys the following path construction:

Xbr (d)
= (g−1/αX(gu), 0 ≤ u ≤ 1) .

Moreover, the process (g−1/αX(gu), 0 ≤ u ≤ 1) is independent of g.
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Proof : First note that for any t > 0 the bivariate random variable (Xt, It) under P

is absolutely continuous with respect to the Lebesgue measure and there is a version
of its density which is continuous. Indeed from the Markov property and (4.6), one
has:

P(It ≤ y |Xt = x) = E

(

1{Ty≤t}

pt−Ty(x− y)

pt(x)

)

=

{

∫ t

0
y
s p̂s(y)

pt−s(x−y)
pt(x)

ds , if y ≤ x,

1 if y > x.

Looking at the expressions of p̂t(x) and pt(x) obtained from the Fourier inverse of
the characteristic exponent of X and −X respectively, we see that theses functions
are continuously differentiable and that their derivatives are continuous in t. It
allows us to conclude our proof.

Now let us consider the two dimensional self-similar strong Markov process Y
(def)
=

(X, I) with state space {(u, v) ∈ R2 : v ≤ u}. From our preceding remark, the semi-
group qt((x, y), (dx

′, dy′)) = P(Xt + x ∈ dx′, y ∧ (It + x) ∈ dy′) of Y is absolutely
continuous with respect to a σ-finite measure and there is a version of its density
which is continuous on the set {(u, v) ∈ R2 : v ≤ u}. Denote by qt((x, y), (x

′, y′))
this version. We derive from (4.6), which may also be written as tP(−It ∈ ds) =
sp̂t(s) ds, that for all −s ≤ x,

qt((x, y), (−s,−s)) = 1{y≥−s}
1

t
p̂t(s+ x) . (4.10)

Then we may apply a result due to Fitzsimmons et al. (1993) which asserts that
the inhomogeneous Markov process on [0, t], whose law is defined by

E

(

F (Yu, v ≤ u)
qt−u(Yu, (x

′, y′))

qt((x, y), (x′, y′))

∣

∣

∣

∣

∣

Y0 = (x, y)

)

, 0 ≤ u < t , (4.11)

where F is a measurable functional on C([0, u],R2), is a regular version of the
conditional law of (Yv, 0 ≤ v ≤ t) given Yt = (x′, y′), under P( · |Y0 = (x, y)).
This law is called the law of the bridge of Y from (x, y) to (x′, y′) with length t.
Then from (4.10), the law which is defined in (4.11), when specifying it on the first
coordinate and for (x, y) = (0, 0) and (x′, y′) = (−s,−s), corresponds to the law of
the first passage bridge which is defined in (4.4).

It remains to apply another result which may also be found in Fitzsimmons et al.
(1993): observe that g is a backward time for Y in the sense of Fitzsimmons et al.
(1993). Indeed we may check that g = sup{u ≤ 1 : Xu = −su1/α, Xu = Iu}, so that
for all u > 0, {g > u} ∈ σ(Yv : v ≥ u). Then from Corollary 3 in Fitzsimmons et al.
(1993), conditionally on g, the process (Yu, 0 ≤ u ≤ g) under P( · |Y0 = (0, 0)) has
the law of a bridge from (0, 0) to Yg with length g. (This result has been obtained
and studied in a greater generality in Chaumont and Uribe, 2009.) But from the
definition of g, we have Yg = (−sg1/α,−sg1/α), so from the self-similarity of Y ,
under P the process

(g−1/αY (g · u) , 0 ≤ u ≤ 1)

has the law of the bridge of Y from (0, 0) to (−s,−s) with length 1. The lemma
follows by specifying this result on the first coordinate. �
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The second part of the theorem is a consequence of Lemma 4.4, the construction
of H̄br from Xbr and the scaling property of H̄ . The third part follows from the
definition of the conditioned forest Fs,1

H̄
in Proposition 4.3 and the second part of

this theorem. �

5. Invariance principles

We know from Lamperti (1967) that the only possible limits of sequences of
re-scaled Galton-Watson processes are continuous state branching processes. Then
a question which arises is: when can we say that the whole genealogy of the tree
or the forest converges? In particular, do the height process, the contour process
and the coding walk converge after a suitable re-scaling? This question has been
completely solved by Duquesne and Le Gall (2002). Then one may ask the same
for the trees or forests conditioned by their mass. In Duquesne (2003), the author
proved that when the law ν is in the domain of attraction of a stable law, the
height process, the contour process and the coding excursion of the corresponding
Galton-Watson tree converge in law in the Skorokhod space of càdlàg paths. This
work generalizes the main result in Aldous (1991) which concerns the Brownian
case. In this section we will prove that in the stable case, an invariance principle
also holds for sequences of Galton-Watson forests conditioned by their mass.

Recall from section 2 that for an offspring distribution µ we have set ν(k) =
µ(k + 1), for k = −1, 0, 1, . . . . We make the following assumption:

(H)







µ is aperiodic and there is an increasing sequence (an)n≥0

such that an → +∞ and Sn/an converges in law as n→ +∞
toward the law of a non-degenerated r.v. θ.

Note that we are necessarily in the critical case, i.e.
∑

k kµ(k) = 1, and that the law
of θ is stable. Moreover, since ν(−∞,−1) = 0, the support of the Lévy measure of
θ is [0,∞) and its index α is such that 1 < α ≤ 2. Also (an) is a regularly varying
sequence with index α. Under hypothesis (H), it has been proved by Grimvall
(1974) that if Z is the Galton-Watson process associated to a tree or a forest with
offspring distribution µ, then

(

1

an
Z[nt/an], t ≥ 0

)

⇒ (Zt, t ≥ 0) , as n→ +∞,

where (Zt, t ≥ 0) is a continuous state branching process. Here and in the sequel, ⇒
will stand for the weak convergence in the Skorokhod space of càdlàg trajectories.
Recall from section 2 the definition of the discrete process (S,H,C). Under the
same hypothesis, it is proved in Duquesne and Le Gall (2002), Corollary 2.5.1 that
[(

1

an
S[nt],

an
n
H[nt],

an
n
C2nt

)

, t ≥ 0

]

⇒
[

(Xt, H̄t, H̄t), t ≥ 0)
]

, as n→ +∞,

(5.1)
where X is a stable Lévy process with law θ and H̄ is the associated height process,
as defined in section 3.

Again we fix a real s > 0 and we consider a sequence of positive integers (kn)
such that

kn
an

→ s , as n→ +∞. (5.2)
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Recall the notations of section 2. For any n ≥ 1, let (Xbr,n, H̄br,n, Cbr,n) be the
process whose law is this of

[(

1

an
S[nt],

an
n
H[nt],

an
n
C2nt

)

, 0 ≤ t ≤ 1

]

,

under Qµ( · | ζ(τ1) + · · · + ζ(τkn) = n). We emphasize that since µ is aperiodic,
Qµ(ζ(τ1) + · · · + ζ(τkn) = n) > 0, for all sufficiently large n. Note that we could
also define this three dimensional process over the whole half-line [0,∞), rather
than on [0, 1]. However, from the definitions in section 2, H̄br,n and Cbr,n would
simply vanish over [1,∞) and Xbr,n would be constant. The next theorem is the
conditional version of the invariance principle that we have recalled in (5.1).

Theorem 5.1. Under assumption (H), the following weak convergence

(Xbr,n, H̄br,n, Cbr,n) =⇒ (Xbr, H̄br, H̄br)

holds on the space D3, as n tends to +∞.

Remark 5.2. : By a classical time reversal argument, the weak convergence of the
first coordinate in Theorem 5.1 implies the main result of Bryn-Jones and Doney
(2006) and this of Caravenna and Chaumont (2008) in the spectrally positive case.
Indeed, when X has no negative jumps, it is well known that the returned first
passage bridge (s+Xbr

1−u, 0 ≤ u ≤ 1) is the bridge of a the dual process conditioned
to stay positive from 0 to s with length 1. Similarly, the returned discrete first
passage bridge whose law is this of (kn + Sn−i, 0 ≤ i ≤ n) under P( · |Tkn = n) has
the same law as (Si, 0 ≤ i ≤ n) given Sn = kn and conditioned to stay positive.
Then integrating with respect to the terminal values and applying Theorem 5.1
gives the result contained in Bryn-Jones and Doney (2006) and Caravenna and
Chaumont (2008).

In order to give a sense to the convergence of the Lévy forest, we may consider the
trees T br,n and T br which are coded respectively by the continuous processes with
compact support, Cbr,nu and H̄br

u , in the sense given at the beginning of section 3
(here we suppose that these processes are defined on [1,∞) and both equal to 0
on this interval). Roughly speaking the trees T br,n and T br are obtained from the
original (conditioned) forests by rooting all the trees of these forests at a same root.

Corollary 5.3. The sequence of trees T br,n converges weakly in the space Tc en-
dowed with the Gromov-Hausdorff topology towards T br.

Proof : This results is a consequence of the weak convergence of the contour function
Cbr,n toward H̄br and the inequality

dGH(Tg, Tg′) ≤ 2‖g − g′‖ ,

which is proved in Duquesne and Le Gall (2005), see Lemma 2.3. (We recall that
dGH the Gromov-Hausdorff distance which has been defined in Section 3.) �

A first step for the proof of Theorem 5.1 is to obtain the weak convergence of
(Xbr,n, H̄br,n) restricted to the Skorokhod space D([0, t]) for any t < 1. Then we
will derive the convergence on D([0, 1]) from an argument of cyclic exchangeability.
The convergence of the third coordinate Cbr,n is a consequence of its particular
expression as a functional of the process H̄br,n. In the remainder of the proof,
we suppose that S is defined on the same probability space as X and has step
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distribution ν under P. Then H and C are given respectively by (2.1) and (2.2).
Define also Tk = inf{i : Si = −k}, for all integers k ≥ 0, so that the process
(Xbr,n, H̄br,n, Cbr,n) has the same law as

[(

1

an
S[nt],

an
n
H[nt],

an
n
C2nt

)

, 0 ≤ t ≤ 1

]

,

under the conditional probability P( · |Tkn = n).

Lemma 5.4. For any t < 1, as n tends to +∞, we have
[

(Xbr,n
u , H̄br,n

u ), 0 ≤ u ≤ t
]

=⇒
[

(Xbr
u , H̄

br
u ), 0 ≤ y ≤ t

]

.

Proof : Let F be any bounded and continuous functional on D([0, t]). By the
Markov property at time [nt] and identity (2.4),

E[F (Xbr,n
u , H̄br,n

u ; 0 ≤ u ≤ t)] = E

[

F

(

1

an
S[nu],

an
n
H[nu]; 0 ≤ u ≤ t

)

|Tkn = n

]

= E

(

1{[nt]≤Tkn}

PS[nt]
(Tkn = n− [nt])

P(Tkn = n)
× F

(

1

an
S[nu],

an
n
H[nu]; 0 ≤ u ≤ t

))

= E

(

1{ 1
an
S[nt]≥− kn

an
}

n(kn + S[nt])

kn(n− [nt])

PS[nt]
(Sn−[nt] = −kn)

P(Sn = −kn)
(5.3)

×F

(

1

an
S[nu],

an
n
H[nu]; 0 ≤ u ≤ t

))

,

where Sk = infi≤k Si. To simplify the computations in the remainder of this proof,

we set P (n) for the law of the process
(

1
an
S[nu],

an

n H[nu];u ≥ 0
)

and P will stand for

the law of the process (Xu, H̄u;u ≥ 0). Then Y = (Y 1, Y 2) is the canonical process
of the coordinates on the Skorokhod space D2 of càdlàg paths from [0,∞) into R2.
We will also use special notations for the densities introduced in (4.4) and (5.3):

Dt = 1{Y 1
t≥−s}

s+ Y 1
t

s(1 − t)

p̂1−t(Y
1
t + s)

p̂1(s)
, and

D
(n)
t = 1{Y 1

[nt]
≥− kn

an
}

n(kn + anY
1
[nt])

kn(n− [nt])

PanY 1
[nt]

(Sn−[nt] = −kn)

P(Sn = −kn)
,

where Y 1
t = infu≤t Y

1
u . Put also Ft for F (Yu, 0 ≤ u ≤ t). To obtain our result, we

have to prove that

lim
n→+∞

|E(n)(FtD
(n)
t ) − E(FtDt)| = 0 . (5.4)

Let M > 0 and set IM (x)
(def)
= 1[−s,M ](x). By writing

E(n)(FtD
(n)
t ) = E(n)(FtD

(n)
t IM (Y 1

t )) + E(n)(FtD
(n)
t (1 − IM (Y 1

t ))

and by doing the same for E(FtDt), we have the following upper bound for the
term in (5.4)

|E(n)(FtD
(n)
t ) − E(FtDt)| ≤ |E(n)(FtD

(n)
t IM (Y 1

t )) − E(FtDtIM (Y 1
t ))|

+CE(n)(D
(n)
t (1 − IM (Y 1

t ))) + CE(Dt(1 − IM (Y 1
t ))) ,
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where C is an upper bound for the functional F . But since Dt and D
(n)
t are

densities, E(n)(D
(n)
t ) = 1 and E(Dt) = 1, hence

|E(n)(FtD
(n)
t ) − E(FtDt)| ≤ |E(n)(FtD

(n)
t IM (Y 1

t )) − E(FtDtIM (Y 1
t ))| (5.5)

+C[1 − E(n)(D
(n)
t IM (Y 1

t ))] + C[1 − E(DtIM (Y 1
t ))] .

Now it remains to prove that the first term of the right hand side of the inequal-
ity (5.5) tends to 0, i.e.

|E(n)(FtD
(n)
t IM (Y 1

t )) − E(FtDtIM (Y 1
t ))| → 0 , (5.6)

as n → +∞. Indeed, suppose that (5.6) holds, then by taking Ft ≡ 1, we see that
the second term of the right hand side of (5.5) converges towards the third one.
Moreover, E(DtIM (Y 1

t )) tends to 1 as M goes to +∞. Therefore the second and
the third terms in (5.5) tend to 0 as n and M go to +∞.

Let us prove (5.6). From the triangle inequality and the expression of the den-

sities Dt and D
(n)
t , we have

|E(n)(FtD
(n)
t IM (Y 1

t )) − E(FtDtIM (Y 1
t ))| ≤ sup

x∈[−s,M ]

|gn(x) − g(x)| +

|E(n)(FtDtIM (Y 1
t )) − E(FtDtIM (Y 1

t ))| , (5.7)

where gn(x) = n(kn+x)
kn(n−[nt])

Px(Sn−[nt]=−kn)

P(Sn=−kn) and g(x) = s+x
s(1−t)

p1−t(x,−s)
p1(0,−s) . But thanks

to Gnedenko local limit theorem, see Gnedenko and Kolmogorov (1954), Chap. 9,
and the fact that kn/an → s, we have

lim
n→+∞

sup
x∈[−s,M ]

|gn(x) − g(x)| = 0 .

Moreover, recall that from Corollary 2.5.1 of Duquesne and Le Gall (2002),

P (n) ⇒ P ,

as n→ +∞, where ⇒ stands for the weak convergence of measures on D2. Finally,
note that the discontinuity set of the functional FtDtIM (Y 1

t ) is negligible for the
probability measure P so that the last term in (5.7) tends to 0 as n goes to +∞. �

Next we will prove the tightness of the sequence, (Xbr,n, H̄br,n). Define the height
process associated with any downward skip free chain x = (x0, x1, . . . , xn, . . . ), i.e.
x0 = 0 and xi − xi−1 ≥ −1, as follows:

Hx
n = card

{

i ∈ {0, . . . , n− 1} : xk = inf
i≤j≤n

xj
}

.

Let also t(k) be the first passage time of x by t(k) = inf{i : xi = −k} and for n ≥ k,
when t(k) <∞, define the shifted chain:

θt(k)(x)i =

{

xi+t(k) + k, if i ≤ n− t(k)
xt(k)+i−n + xn + k, is n− t(k) ≤ i ≤ n

, i = 0, 1, . . . , n ,

which consists in inverting the pre-t(k) and the post-t(k) parts of x and sticking
them together.

Lemma 5.5. For any k ≥ 0, we have almost surely

Hθt(k)(x) = θt(k)(H
x) .

Proof : It is just a consequence of the fact that t(k) is a zero of Hx. �
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Lemma 5.6. Let νn be a random variable which is uniformly distributed over
{0, 1, . . . , kn} and independent of S. Under P( · |Tkn = n), the first passage time
Tνn is uniformly distributed over {0, 1, . . . , n}.

Proof : . It follows from elementary properties of random walks that for all k ∈
{0, 1, . . . , kn}, under P( · |Tkn = n), the chain θTk

(S) has the same law as (Si, 0 ≤
i ≤ n). As a consequence, for all j ∈ {0, 1, . . . , n},

P(Tk = j |Tkn = n) = P(Tkn−k = n− j |Tkn = n) ,

which allows us to conclude. �

Lemma 5.7. The family of processes (Xbr,n, H̄br,n), n ≥ 1 is tight.

Proof : Let D([0, t]) be the Skorokhod space of càdlàg paths from [0, t] to R. In
Lemma 5.4 we have proved the weak convergence of (Xbr,n, H̄br,n) restricted to the
space D([0, t]) for each t > 0. Therefore, from Theorem 15.3 of Billingsley (1999),
it suffices to prove that for all δ ∈ (0, 1) and η > 0,

lim
δ→0

lim sup
n→+∞

P

(

sup
s,t∈[1−δ,1]

|Xbr,n
t −Xbr,n

s | > η, sup
s,t∈[1−δ,1]

|H̄br,n
t − H̄br,n

s | > η

)

= 0 .

(5.8)

From Lemma 5.6 the r.v. Vn := inf{t : Xbr,n
t = − k

n} is uniformly distributed over
{0, 1/n, . . . , 1 − 1/n, 1} and we have for any ε < 1 − δ,

P

(

sup
s,t∈[1−δ,1]

|Xbr,n
t −Xbr,n

s | > η, sup
s,t∈[1−δ,1]

|H̄br,n
t − H̄br,n

s | > η

)

≤ ε+ δ +

P

(

Vn ∈ [ε, 1 − δ], sup
s,t∈[1−δ,1]

|Xbr,n
t −Xbr,n

s | > η,

sup
s,t∈[1−δ,1]

|H̄br,n
t − H̄br,n

s | > η

)

.

Now for a càdlàg path ω defined on [0, 1] and t ∈ [0, 1], define the shift:

θt(ω)u =

{

ωs+t + u, if s ≤ 1 − t
ωt+u−1 + ωu + k, is 1 − t ≤ s ≤ 1

, u ∈ [0, 1] ,

which consists in inverting the paths (ωu, 0 ≤ u ≤ t) and (ωu, t ≤ u ≤ 1) and
sticking them together. We can check on a picture the inclusion:

{Vn ∈ [ε, 1 − δ], sup
s,t∈[1−δ,1]

|Xbr,n
t −Xbr,n

s | > η, sup
s,t∈[1−δ,1]

|H̄br,n
t − H̄br,n

s | > η} ⊂

{ sup
s,t∈[0,1−ε]

|θVn(Xbr,n)t − θVn(Xbr,n)s| > η,

sup
s,t∈[0,1−ε]

|θVn(H̄br,n)t − θVn(H̄br,n)s| > η} .

From Lemma 5.5 and the straightforward identity in law Xbr,n (d)
= θVn(Xbr,n),

we deduce the two dimensional identity in law (Xbr,n, H̄br,n)
(d)
= (θVn(Xbr,n),
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θVn(H̄br,n)). Hence from the above inequality and inclusion,

P

(

sup
s,t∈[1−δ,1]

|Xbr,n
t −Xbr,n

s | > η, sup
s,t∈[1−δ,1]

|H̄br,n
t − H̄br,n

s | > η

)

≤ ε+ δ +

P

(

sup
s,t∈[0,1−ε]

|Xbr,n
t −Xbr,n

s | > η, sup
s,t∈[0,1−ε]

|H̄br,n
t − H̄br,n

s | > η

)

.

But from Lemma 5.4 and Theorem 15.3 in Billingsley (1999), we have

lim
δ→0

lim sup
n→+∞

P

(

sup
s,t∈[0,1−ε]

|Xbr,n
t −Xbr,n

s | > η, sup
s,t∈[0,1−ε]

|H̄br,n
t − H̄br,n

s | > η

)

= 0 .

which yields (5.8). �

Proof of Theorem 5.1: Lemma 5.4 shows that the sequence (Xbr,n, H̄br,n) con-
verges toward (Xbr, H̄br) in the sense of finite dimensional distributions. Moreover
tightness of this sequence has been proved in Lemma 5.7, so we conclude from
Theorem 15.1 of Billingsley (1999). The convergence of the two first coordinates in
Theorem 5.1 is proved, i.e. (Xbr,n, H̄br,n) =⇒ (Xbr, H̄br). Then we may deduce the
functional convergence of the third coordinate from this convergence in law, using
inequalities (2.3) and following similar arguments as in Theorem 2.4.1 of Duquesne
and Le Gall (2002) or in Theorem 3.1 of Duquesne (2003). �
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B.V. Gnedenko and A.N. Kolmogorov. Limit distributions for sums of independent
random variables. Addison-Wesley Publishing Company, Inc., Cambridge, Mass.
(1954). MR0233400.

A. Grimvall. On the convergence of sequences of branching processes. Ann. Probab.
2, 1027–1045 (1974). MR0362529.

M. Gromov. Metric structures for Riemannian and non-Riemannian spaces.
Progress in Mathematics, 152. Birkhäuser Boston, MA. (1999). MR1699320.
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