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Abstract. Suppose that Z is a random closed subset of the hyperbolic plane H2,
whose law is invariant under isometries of H2. We prove that if the probability that
Z contains a fixed ball of radius 1 is larger than some universal constant p0 < 1,
then there is positive probability that Z contains (bi-infinite) lines.

We then consider a family of random sets in H2 that satisfy some additional
natural assumptions. An example of such a set is the covered region in the Poisson
Boolean model. Let f(r) be the probability that a line segment of length r is
contained in such a set Z. We show that if f(r) decays fast enough, then there are
a.s. no lines in Z. We also show that if the decay of f(r) is not too fast, then there
are a.s. lines in Z. In the case of the Poisson Boolean model with balls of fixed
radius R we characterize the critical intensity for the a.s. existence of lines in the
covered region by an integral equation.

We also determine when there are lines in the complement of a Poisson process
on the space of lines in H2.

1. Introduction and main results

In this paper, we are interested in the existence of hyperbolic half-lines and lines
(that is, infinite geodesic rays and bi-infinite geodesics respectively) contained in
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unbounded connected components of some continuum percolation models in the
hyperbolic plane. Our first result is quite general:

Theorem 1.1. Let Z be a random closed subset of H2, whose law is invariant
under isometries of H2, and let B denote some fixed ball of radius 1 in H2. There
is a universal constant po < 1 such that if P

[

B ⊂ Z
]

> po, then with positive
probability Z contains hyperbolic lines.

Of course, there is nothing special with taking B to be of radius 1 in 1.1; for any
radius r there is a universal constant po(r) < 1 with the claimed property. The first
result of this type was proven in Häggström (1997) for regular trees of degree at
least 3. That paper shows that for automorphism invariant site percolation on such
trees, when the probability that a site is open is sufficiently close to 1, there are
infinite open clusters with positive probability. This was subsequently generalized
to transitive nonamenable graphs Benjamini et al. (1999). The proof of Theorem
1.1 is not too difficult, and is based on a reduction to the tree case.

We conjecture that Theorem 1.1 may be strengthened by taking Z to be open
and replacing the assumption P

[

B ⊂ Z
]

> po with E
[

length(B \ Z)
]

< δ; see
Conjecture 7.1 and the discussion which follows. Here length(A) stands for the
length of the boundary of the set A.

We also obtain more refined results for random sets that satisfy a number of
additional conditions. One example of such a set is the following. Consider a
Poisson point process with intensity λ on a manifold M . In the Poisson Boolean
model of continuum percolation with parameters λ and R, balls of radius R are
centered around the points of the Poisson process. One then studies the geometry
of the connected components of the union of balls, or the connected components of
the complement. In particular, one asks for which values of the parameters there
are unbounded connected components or a unique unbounded component.

In the setting of the Poisson Boolean model in the hyperbolic plane, Kahane
(1990, 1991) showed that if λ < 1/(2 sinhR), then the set of rays from a fixed
point o ∈ H2 that are contained in the complement of the balls is non-empty
with positive probability, while if λ ≥ 1/(2 sinhR) this set is empty a.s. Lyons
(1996) generalized the result of Kahane to d-dimensional complete simply-connected
manifolds of negative curvature, and in the case of constant negative curvature also
found the exact value of the critical intensity for the a.s. existence of rays.

In this note, we find not only rays but lines in the union of balls and/or its
complement. We work mostly in the hyperbolic plane, but raise questions for other
spaces as well. Our proofs cover the results of Kahane as well, but are also valid
for a larger class of random sets. We remark that it is easy to see that in Rn, there
can never be rays in the union of balls or in the complement.

Other aspects of the Poisson Boolean model in H2 have previously been stud-
ied in Tykesson (2007). For further studies of percolation in the hyperbolic plane,
the reader may consult the papers Benjamini and Schramm (2001); Lalley (2001).
In Cannon et al. (1997), an introduction to hyperbolic geometry is found, and for an
introduction to the theory of percolation on infinite graphs see, for example, Ben-
jamini and Schramm (1996); Lyons and Peres (2007); Häggström and Jonasson
(2006).
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Let X = Xλ be the set of points in a Poisson process of intensity λ in H2. Let

B :=
⋃

x∈X

B(x,R)

denote the occupied set, where B(x, r) denotes the open ball of radius r centered
at x. The closure of the complement

W := H2 \ B

will be reffered to as the vacant set.
Let λgc = λgc(R) denote the supremum of the set of λ ≥ 0 such that for the

parameter values (R, λ) a.s. B does not contain a hyperbolic line (”gc” stands for
geodesic covered). Let λ̄gc denote the supremum of the set of λ ≥ 0 such that the
probability that a fixed point x ∈ H2 belongs to a half-line contained in B is 0.
Similarly let λgv = λgv(R) denote the infimum of the set of λ ≥ 0 such that for the
parameter values (R, λ) a.s. W does not contain a hyperbolic line (”gv” stands for
geodesic vacant). Finally, let λ̄gv denote the infimum of the set of λ ≥ 0 such that
the probability that a fixed point x ∈ H2 belongs to a half-line contained in W is
0. Later, we shall see that λgv = λ̄gv and λgc = λ̄gc. Clearly, if λ > λgv, there are
a.s. no hyperbolic lines in W and if λ < λgc there are a.s. no hyperbolic lines in B.
Let f(r) = fR,λ(r) denote the probability that a fixed line segment of length r in
H2 is contained in B.

Theorem 1.2. For every R > 0, we have 0 < λgc(R) = λ̄gc(R) < ∞, and the
following statements hold at λgc(R).

(1) A.s. there are no hyperbolic lines within B.
(2) Moreover, B a.s. does not contain any hyperbolic ray (half-line).
(3) There is a constant c = cR > 0, depending only on R, such that

c e−r ≤ f(r) ≤ e−r, ∀r > 0 . (1.1)

Furthermore, the analogous statements hold with W in place of B (with possibly
a different critical intensity).

An equation characterizing λgc follows from our results (i.e., (4.1) with α = 1).
The key geometric property allowing for geodesic percolation to occur for some λ

is the exponential divergence of geodesics. This does not hold in Euclidean space. It
is of interest to determine which homogeneous spaces admit a regime of intensities
with geodesics percolating.

With regards to higher dimensions, we show that in hyperbolic space of any
dimension d ≥ 3 and for any (R, λ) ∈ (0,∞)2, there can never be planes contained
in the covered or vacant region of the Poisson Boolean model.

We also consider a Poisson process Y on the space of lines on H2. We show that
if the intensity of Y is sufficiently small, then there are lines in the complement of
Y (when Y is viewed as a subset of H2), which means that Y is not connected. On
the other hand, if the intensity is large enough, then the complement of Y contains
no lines, which means that Y is connected. At the critical intensity, Y is connected.

Our paper ends with a list of open problems.
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Figure 2.1. A tree embedded in the hyperbolic plane, in the
Poincaré disk model. On the right appears the tree together with
some of its lines of symmetry.

2. Lines appearing when the marginal is large

The proof of Theorem 1.1 is based on a reduction to the tree case. We will
need the following construction of a tree embedded in H2, which is illustrated in
Figure 2.1. (This construction should be rather obvious to the readers who are
proficient in hyperbolic geometry.) Consider the hyperbolic plane in the Poincaré
disk model. Let o ∈ H2 correspond to the center of the disk. Let A0 be an arc on
the unit circle of length smaller than 2 π/3. Let Aj denote the rotation of A0 by

2 π j/3; that is Aj := e2πj/3A0, j = 1, 2. Let Lj, j = 0, 1, 2, denote the hyperbolic
line whose endpoints on the ideal boundary ∂H2 are the endpoints of Aj . Let Γ
denote the group of hyperbolic isometries that is generated by the reflections γ0, γ1

and γ2 in the lines L0, L1 and L2, respectively. If w = (w1, w2, . . . , wn) ∈ {0, 1, 2}n,
then let γw denote the composition γw1

◦ γw2
◦ · · · ◦ γwn

. We will say that w is
reduced if wj+1 6= wj for j = 1, 2, . . . , n − 1. A simple induction on n then shows
that γw(o) is separated from o by Lw1

when w is reduced and n > 0. In particular,
for reduced w 6= (), we have γw(o) 6= o and γw 6= γ(). Clearly, every γw where
w has wj = wj+1 for some j is equal to γw′ where w′ has these two consecutive
elements of w dropped. It follows that Γ acts simply and transitively on the orbit
Γo. (“Simply” means that γv = v where γ ∈ Γ and v ∈ Γo implies that γ is
the identity.) Now define a graph T on the vertex set Γo by letting each γ(o) be
connected by edges to the three points γ ◦ γj(o), j = 0, 1, 2. Then T is just the
3-regular tree embedded in the hyperbolic plane. In fact, this is a Cayley graph of
the group Γ, since we may identify Γ with the orbit Γo. (One easily verifies that Γ
is isomorphic to the free product Z2 ∗ Z2 ∗ Z2.)

We will need a few simple properties of this embedding of the 3-regular tree in
H2. It is easy to see that every simple path v0, v1, . . . in T has a unique limit point
on the ideal boundary ∂H

2. (Figure 2.1 does not lie.) Moreover, if v0 = o and
v1 = γj(o), then the limit point will be in the arc Aj . If (vj : j ∈ Z) is a bi-infinite
simple path in T with v0 = o, then its two limit points on the ideal boundary will
be in two different arcs Aj . Hence, the distance from o to the line in H2 with the
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same pair of limit points on ∂H2 is bounded by some constant R, which does not
depend on the path (vj : j ∈ Z). Invariance under the group Γ now shows that for
every bi-infinite simple path β in T , the hyperbolic line Lβ joining its limit points
passes within distance R from each of the vertices of β. It follows that there is
some constant R′ > 0 such that Lβ is contained in the R′-neighborhood of the set
of vertices of β.

We are now ready to prove our first theorem.

Proof of Theorem 1.1. We use the above construction of T , Γ and the constant
R′. Given Z, let ω ⊂ V (T ) denote the set of vertices v ∈ V (T ) such that the
ball B(v,R′) is contained in Z. Then ω is a (generally dependent) site percolation
on T and its law is invariant under Γ. Set q := P

[

o ∈ ω
]

. By Benjamini et al.
(1999), there is some p0 ∈ (0, 1) such that if q ≥ p0, then ω has infinite connected
components with positive probability. (We need to use Benjamini et al. (1999),
rather than Häggström (1997), since the group Γ is not the full automorphism group
of T .) Let N be the number of balls of radius 1 that are sufficient to cover B(o,R′).
Now suppose that P

[

B(o, 1) ⊂ Z
]

> 1− (1−p0)/(2N). Then a sum bound implies
that q > (p0 + 1)/2. Therefore, if we intersect ω with an independent Bernoulli
site percolation with marginal p > (p0 + 1)/2, the resulting percolation will still
have infinite components with positive probability, by the same argument as above.
Thus, we conclude that with positive probability ω has infinite components with
more than one end and therefore also bi-infinite simple paths. The line determined
by the endpoints on ∂H2 of such a path will be contained in Z, by the definition
of R′. The proof is thus complete. �

3. Lines in well-behaved percolation

The proofs of the statements in Theorem 1.2 concerning B are essentially the
same as the proofs concerning W . We therefore find it worthwhile to employ an
axiomatic approach, which will cover both cases.

Definition 3.1. In the following, we fix a closed disk B ⊂ H2 of radius 1. A
well-behaved percolation on H

2 is a random closed subset Z ⊂ H
2 satisfying the

following assumptions.

(1) The law of Z is invariant under isometries of H2.
(2) The set Z satisfies positive correlations; that is, for every pair g and h of

bounded increasing measurable functions of Z, we have

E
[

g(Z)h(Z)
]

≥ E
[

g(Z)
]

E
[

h(Z)
]

.

(3) There is some R0 < ∞ such that Z satisfies independence at distance R0,
namely, for every pair of closed subsets A,A′ ⊂ H2 satisfying inf{d(a, a′) :
a ∈ A, a′ ∈ A′} ≥ R0, the intersections Z ∩A and Z ∩A′ are independent.

(4) The expected number m of connected components of B \ Z is finite.
(5) The expected length ℓ of B ∩ ∂Z is finite.
(6) p0 := P

[

B ⊂ Z
]

> 0.

Invariance under isometries implies that m, ℓ and p0 do not depend on the posi-
tion of B. We say that Z is Λ-well behaved, if it is well-behaved and p0,m

−1, ℓ−1,
R−1

0 > Λ. Many of our estimates below can be made to depend only on Λ. In
the following, we assume that Z is Λ-well behaved, where Λ > 0, and use O(g)
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to denote any quantity bounded by c g, where c is an arbitrary constant that may
depend only on Λ. We remark that in condition 6 above it is not of any importance
that the radius of B is 1. If for some r > 0 we have P

[

B(o, r) ⊂ Z
]

> 0, then by

positive correlations we have P
[

B(o, r̃) ⊂ Z
]

> 0 for every r̃ > 0.

Measurability remark. It is not à priori obvious that the events mentioned in
Theorems 1.1 and 1.2, condition 1-6 above and elsewhere are measurable. (Al-
though all of these events are so natural in their formulation that the “should”
be measurable.) For the random set Z, most of the events are measurable either
by their formulation or follow from the definition of the Fell topology for random
closed sets in a fairly straightforward way. E.g. let L be a line segment and let {ak}
be a countable dense set of points of L. Then

{L ⊆ Z} = ∩k ∩n {Z ∩B(ak, 1/n) 6= ∅}.

However, conditions involving the length of ∂Z implicitly assume that the boundary
of Z a.s. has a well-defined length. For e.g. the covered region or the closure
of the vacant region of the Poisson Boolean model, this is obvious. Also, often
measurability, although not immediately obvious, follows from the proofs in that
when is is shown that a set is contained in an (obviously measurable) event of
probability 0, then the set itself is also measurable, at least after a completion of
the probability space.

If x, y ∈ H2, let [x, y]s denote the union of all line segments [x′, y′] where
d(x, x′) < s and d(y, y′) < s. Let A(x, y, s) be the event that there is some con-
nected component of Z ∩ [x, y]s that intersects B(x, s) as well as B(y, s), and let
Q(x, y, s) be the event that [x, y]s ⊂ Z. If d(x, y) is large, the set [x, y]s becomes
very thin, as is seen in the following lemma.

Lemma 3.2. Let 0 < ǫ < ǫ0 < ∞ and 0 < t < ∞. Let γ : R → H2 denote
a hyperbolic line parameterized by arclength. There is a constant c < ∞ which
depends only on ǫ0 such that for s ∈ (0, t) we have

d(γ(s), ∂[γ(0), γ(t)]ǫ) ≤ c ǫ e−s∧ (t−s). (3.1)

Proof. In this proof we use the Poincaré unit disc model of H2. Suppose s ∈
(0, t/2]. Without loss of generality we assume that γ runs along the real line
and that γ(s) = (0, 0), γ(0) = (x1, 0) and γ(t) = (x2, 0) where −1 < x1 < 0
and 0 < x2 < 1. Recall that hyperbolic balls are also Euclidean balls. Since
d(γ(0), (0, 0)) = s, the Euclidean radius of B(γ(0), ǫ) is given by

rǫ(γ(0)) =
kǫ(1 − tanh(s/2)2)

1 − k2
ǫ tanh(s/2)2

where kǫ = tanh(ǫ/2) and the Euclidean radius of B(γ(t), ǫ) is given by

rǫ(γ(t)) =
kǫ(1 − tanh((t− s)/2)2)

1 − k2
ǫ tanh((t− s)/2)2

.

Since tanh(x) increases to 1, tanh(x) ≤ x for x ≥ 0 and 1− tanh(x/2)2 ≤ 4 e−x we
get

rǫ(γ(0)) ≤
4 ǫ e−s

1 − k2
ǫ0

. (3.2)
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Let L be a geodesic line segment with one endpoint in B(γ(0), ǫ) and the
other in B(γ(t), ǫ). In the Poincaré disc model, any such L belongs to a circle
C = C(L) which is perpendicular to the boundary of the unit disc. Consequently,
the Euclidean distance between L and the real line is at most max(rǫ(γ(0)), rǫ(γ(t)).
Since s ≤ t − s we have rǫ(γ(0)) ≥ rǫ(γ(t)) and therefore the Euclidean distance
between γ(s) and ∂[γ(0), γ(t)]ǫ is at most rǫ(γ(0)). Thus

d(γ(s), ∂[γ(0), γ(t)]ǫ) ≤ log
1 + rǫ(γ(0))

1 − rǫ(γ(0))
≤ C1rǫ(γ(0)) (3.3)

for some C1 = C1(ǫ0) ∈ (1,∞) where the first inequality comes from the relation
between Euclidean and hyperbolic distance from the origin and the second inequal-
ity comes from the fact that ǫ ∈ (0, ǫ0]. Now (3.1) follows from (3.2) and (3.3). �

Lemma 3.3. There is a constant c = c(Λ) < ∞, which depends only on Λ, such
that for all x, y ∈ H2 satisfying d(x, y) ≥ 4 and for all ǫ > 0

P
[

Q(x, y, ǫ)
]

> (1 − c ǫ)P
[

A(x, y, ǫ)
]

. (3.4)

Proof. Observe that the expected minimal number of disks of small radius ǫ that
are needed to cover ∂Z ∩B is O(ℓ/ǫ). It follows by invariance that

P
[

B(x, ǫ) ∩ ∂Z 6= ∅
]

= O(ǫ) ℓ = O(ǫ) (3.5)

holds for x ∈ H2.
Let γ : R → H

2 denote a hyperbolic line parameterized by arclength, and let Lt

denote the hyperbolic line through γ(t) which is orthogonal to γ. Set

g(r, s) := P
[

A
(

γ(0), γ(r), s
)

\Q
(

γ(0), γ(r), s
)]

.

By invariance, we have P
[

A(x, y, s) \Q(x, y, s)
]

= g
(

d(x, y), s
)

.

Set B := B
(

γ(0), 1
)

. Fix some ǫ ∈ (0, 1/10). Let Sj denote the intersection of B

with the open strip between L2jǫ and L2(j+1)ǫ, where j ∈ J := N ∩ [0, ǫ−1/10]. Let
xj and yj denote the two points in L(2j+1)ǫ∩∂B. Let J1 denote the set of j ∈ J such
that Sj is not contained in Z but there is a connected component of Z∩Sj that joins
the two connected components of Sj ∩ ∂B. Observe that the number of connected
components of B \Z is at least |J1| − 1. Hence E

[

|J1|
]

≤ m+ 1. Let J2 denote the
set of j ∈ J such that A(xj , yj, ǫ) \Q(xj , yj , ǫ) holds. Note that if j ∈ J2 \ J1, then
∂Z is within distance O(ǫ) from xj ∪ yj . Therefore, P

[

j ∈ J2 \ J1

]

= O(ǫ) ℓ holds
for every j ∈ J , by (3.5). Consequently,

E
[

|J2|
]

≤ E
[

|J2 \ J1|
]

+ E
[

|J1|
]

≤ O(ǫ) ℓ |J | +m+ 1 = O(1) .

Thus, there is at least one j = jǫ ∈ J satisfying

P
[

A(xj , yj, ǫ) \Q(xj , yj , ǫ)
]

= P
[

j ∈ J2

]

≤ O(1)/|J | = O(ǫ) .
(3.6)

Set rǫ := d(xjǫ
, yjǫ

), and note that rǫ ∈ (1, 2]. Now suppose that x, y ∈ H
2 satisfy

d(x, y) = 2. Let x0 be the point in [x, y] at distance rǫ from y, and let y0 be the point
in [x, y] at distance rǫ from x. Observe that A(x, y, ǫ) ⊂ A(x0, y, ǫ) ∩ A(x, y0, ǫ).
Moreover, since [x, y]ǫ ⊂ [x, y0]ǫ∪[x0, y]ǫ, we haveQ(x, y, ǫ) ⊃ Q(x, y0, ǫ)∩Q(x0, y, ǫ).
Thus,

A(x, y, ǫ) \Q(x, y, ǫ) ⊂
(

A(x0, y, ǫ) \Q(x0, y, ǫ)
)

∪
(

A(x, y0, ǫ) \Q(x, y0, ǫ)
)
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and therefore (3.6) and invariance gives

g(2, ǫ) ≤ 2P
[

A(xjǫ
, yjǫ

, ǫ) \Q(xjǫ
, yjǫ

, ǫ)
]

= O(ǫ) . (3.7)

The same argument shows that

g(r′, ǫ) ≤ 2 g(r, ǫ), if 2 ≤ r < r′ ≤ 2 r . (3.8)

We will now get a bound on g(2 k, ǫ) for large k ∈ N. For j ∈ [k] := N ∩ [0, k],
let rj be the distance from γ(2 j) to the complement of [γ(0), γ(2 k)]ǫ. Let Aj :=
A
(

γ(2 j), γ(2 j+2), rj∨rj+1

)

, Qj := Q
(

γ(2 j), γ(2 j+2), rj∨rj+1

)

, where j ∈ [k−1].

Also set Ā := A
(

γ(0), γ(2 k), ǫ
)

. Then

Q
(

γ(0), γ(2 k), ǫ
)

⊃
k−1
⋂

j=0

Qj .

Hence,

g(2 k, ǫ) ≤
k−1
∑

j=0

P
[

Ā \Qj

]

. (3.9)

We now claim that

P
[

Ā \Qj

]

= O(1)P
[

Ā
]

P
[

Aj \Qj

]

, (3.10)

where the implied constant depends only on p0 and R0. Let j′ := ⌊j−R0/2−2⌋ and
j′′ := ⌈j + R0/2 + 3⌉. Suppose first that j′ > 0 and j′′ < k. Let Ā′(j) denote the
event that Z ∩ [γ(0), γ(2 k)]ǫ contains a connected component that intersects both
B
(

γ(0), ǫ
)

and B
(

γ(2 j′), ǫ
)

, and let Ā′′(j) denote the event that Z ∩ [γ(0), γ(2 k)]ǫ
contains a connected component that intersects both B

(

γ(2 j′′), ǫ
)

and B
(

γ(2 k), ǫ
)

.

Then Ā ⊂ Ā′(j) ∩ Ā′′(j) ∩Aj . Independence at distance R0 therefore gives

P
[

Ā \Qj

]

≤ P
[

Ā′(j) ∩ Ā′′(j)
]

P
[

Aj \Qj

]

.

Now note that |j′ − j′′| = O(1). Consequently, d(γ(2j′), γ(2j′′)) < C where C =
O(1). Let Q be the event that the ball of radius C centered at γ(2j′) is contained
in Z. Positive correlations and condition 6 imply that P

[

Q
]

≥ 1/O(1) where O(1)
depends only on p0. By positive correlations, we have

P [Ā′(j) ∩ Ā′′(j) ∩Q] ≥ P [Ā′(j) ∩ Ā′′(j)]P [Q].

Since Ā ⊃ Ā′(j) ∩ Ā′′(j) ∩Q, we get

P
[

Ā′(j) ∩ Ā′′(j)
]

≤ O(1)P
[

Ā
]

.

Thus, we get (3.10) in the case that j′ > 0 and j′′ < k. The general case is easy
to obtain (one just needs to drop Ā′(j) or Ā′′(j) from consideration). Now, (3.9)
and (3.10) give

g(2 k, ǫ) ≤ O(1)P
[

Ā
]

k−1
∑

j=0

g(2, rj ∨ rj+1) . (3.11)

By Lemma 3.2, there is a universal constant a ∈ (0, 1) such that

rj ≤ a|j|∧|k−j| O(ǫ).

Hence, we get by (3.7) and (3.11) that g(2 k, ǫ) ≤ O(1)P
[

Ā
]

ǫ, where the implied
constant may depend on ℓ,m,R0 and p0. This proves (3.4) in the case where
d(x, y) is divisible by 2. The general case follows using (3.8) with r′ = d(x, y) and
r = 2 ⌊r′/2⌋. �
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Let f(r) denote the probability that a fixed line segment of length r is contained
in Z. Clearly,

P
[

Q(x, y, s)
]

≤ f(length[x, y]) ≤ P
[

A(x, y, s)
]

,

and Lemma 3.3 shows that for s sufficiently small the upper and lower bounds are
comparable.

Lemma 3.4. There is a unique α ≥ 0 (which depends on the law of Z) and some
c(Λ) > 0 (depending only on Λ) such that

c e−αr ≤ f(r) ≤ e−αr (3.12)

holds for every r ≥ 0.

Proof. Since the uniqueness statement is clear, we proceed to prove existence.
Positive correlations imply that

f(r1 + r2) ≥ f(r1) f(r2) , (3.13)

that is, f is supermultiplicative. Therefore, − log f(r) is subadditive, and Fekete’s
Lemma says that we must have

α := lim
r→∞

− log f(r)

r
= inf

r>0

− log f(r)

r
.

Since for every r we have α ≤ − log
(

f(r)
)

/r, the right inequality in (3.12) follows.
On the other hand, if we fix some R > R0, then independence at distance larger

than R0 gives

f(r1) f(r2) ≥ f(r1 +R+ r2)
(3.13)

≥ f(r1 + r2) f(R) .

Dividing by f(R)2, we find that the function r 7→ f(r)/f(R) is submultiplicative.
Thus, by Fekete’s lemma again,

lim
r→∞

log
(

f(r)/f(R)
)

r
= inf

r>0

log
(

f(r)/f(R)
)

r
.

The left hand side is equal to −α, and we get for every r > 0

−α ≤
log
(

f(r)/f(R)
)

r
.

By positive correlations, there is some c = c(Λ) > 0 such that f(R) ≥ c, which
implies the left inequality in (3.12). �

Lemma 3.5. If α ≥ 1 (where α is defined in Lemma 3.4), then a.s. there are no
half-lines contained in Z.

Proof. Fix a basepoint o ∈ H2. Let s = (2c)−1, where c is the constant in (3.4).
Then

P
[

A(x, y, s)
]

/2 ≤ P
[

Q(x, y, s)
]

≤ f
(

d(x, y)
)

≤ e−d(x,y) (3.14)

holds for every x, y ∈ H
2 satisfying d(x, y) ≥ 4. For every integer r ≥ 4 let V (r) be

a minimal collection of points on the circle ∂B(o, r) such that the disks B(z, s) with
z ∈ V cover that circle. Let Xr be the set of points z ∈ V (r) such that A(o, z, s)
holds. By (3.14)

E
[

|Xr|
]

≤ 2 |V (r)| f(r) = O(1) s−1 length
(

∂B(o, r)
)

e−r = O(1) , (3.15)

since we are treating s as a constant and the length of ∂B(o, r) is O(er).
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The rest of the argument is quite standard, and so we will be brief. By (3.15)
and Fatou’s lemma, we have lim infr→∞ |Xr| < ∞ a.s. Now fix some large r and
let r′ ∈ N satisfy r′ > r + R0 + 2. Since Z \ B(o, r + R0 + 1) is independent from
Z ∩B(o, r), positive correlations implies that

P
[

Xr′ = ∅
∣

∣ Z ∩B(o, r)
]

≥ p|Xr |, (3.16)

where p > 0 is a constant (which we allow to depend on the law of Z). Since
lim infr→∞ |Xr| < ∞ a.s., it follows by (3.16) that infr |Xr| = 0 a.s., which means
that max{r : Xr 6= ∅} < ∞ a.s. Therefore, a.s. there is no half-line that intersects
B(o, s). Since H2 can be covered by a countable collection of balls of radius s, the
lemma follows. �

Lemma 3.6. Suppose that α < 1. Then (i) a.s. Z contains hyperbolic lines, (ii)
for every fixed x ∈ H2, there is a positive probability that Z contains a half-line
containing x, and (iii) for every fixed point x in the ideal boundary ∂H2 there is
a.s. a geodesic line passing through x whose intersection with Z contains a half-line.

Proof. We first prove (ii) using the second moment method. Fix some point
o ∈ H2. Let A denote a closed half-plane with o ∈ ∂A, and let I := A ∩ ∂B(o, 1).
For r > 1 and x ∈ ∂B(o, 1), let Lr(x) denote the line segment which contains x,
has length r and has o as an endpoint. Set Yr := {x ∈ I : Lr(x) ⊂ Z}, and let yr

denote the length of Yr. Then we have

E
[

yr

]

= length(I) f(r) .

The second moment is given by

E
[

y2
r

]

=

∫

I

∫

I

P
[

x, x′ ∈ Yr

]

dx dx′ .

Now note that if r2 > r1 > 0, then the distance from Lr2
(x′) \ Lr1

(x′) to Lr2
(x) is

at least (d(x, x′) er1 ∧ r1)/O(1). Consequently, by independence on sets at distance
larger than R0, we have

P
[

x, x′ ∈ Yr

]

≤ f(r) f
(

(r + log d(x, x′) +O(1)) ∨ 0
)

.

Now applying the above and (3.12) gives

E
[

y2
r

]

E[yr]
2 ≤ O(1)

∫

I

∫

I

exp
(

−α log d(x, x′)
)

dx dx′

= O(1)

∫

I

∫

I

d(x, x′)−α dx dx′ = O(1) ,

since α < 1. Therefore, the Paley-Zygmund inequality (see Paley and Zygmund,
1932) implies that

inf
r>1

P
[

yr > 0
]

> 0 .

Since yr is monotone non-increasing, it follows that

P
[

∀r>1 yr > 0
]

> 0 .

By compactness, on the event that yr > 0 for all r > 1 we have
⋂

r>1 Yr 6= ∅.
If x ∈

⋂

Yr, then the half-line with endpoint o passing through x is contained in
Z ∩A. This proves (ii).

We now prove (i). Fix s = 1/(2 c), where c is given by Lemma 3.3. For x ∈
∂B(o, 1) let zr(x) denote the endpoint of Lr(x) that is different from o and let Y ′

r
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be the set of points x ∈ I such that [z, zr(x)] ⊂ Z holds for every z ∈ B(o, s). Let
y′r denote the length of Y ′

r . Then Y ′
r ⊂ Yr and therefore y′r ≤ yr. By the choice of

s, we have E
[

y′r
]

≥ E
[

yr

]

/2. On the other hand, E
[

(y′r)
2
]

≤ E
[

y2
r

]

= O(1)E
[

yr

]2
.

As above, this implies that with positive probability Y ′
∞ :=

⋂

r>1 Y
′
r 6= ∅. Suppose

that x ∈ Y ′
∞. Let x̃ denote the endpoint on the ideal boundary ∂H2 of the half-line

starting at o and passing through x. Then for every z ∈ B(o, s) the half-line [z, x̃)
is contained in Z. By invariance and positive correlations, for every ǫ > 0 there
is positive probability that Y ′

∞ is within distance ǫ from each of the two points in
∂A ∩ I. If x′ and x′′ are two points in Y ′

∞ that are sufficiently close to the two
points in ∂A ∩ I, then the hyperbolic line joining the two endpoints at infinity of
the corresponding half-lines through o intersects B(o, s). In such a case, this line
will be contained in Z. Thus, we see that for every line L (in this case ∂A) for
every point o ∈ L and for every ǫ > 0, there is positive probability that Z contains
a line passing within distance ǫ of the two points in ∂B(o, 1) ∩ L. Now (i) follows
by invariance and by independence at a distance.

The proof of (iii) is similar to the above, and will be omitted. �

Remark 3.7. Let o ∈ H2. Let Y denote the set of points z in in the ideal boundary
∂H2 such that the half-line [o, z) is contained in Z. It can be concluded from the first
and second moments computed in the proof of Lemma 3.6 and a standard Frostman
measure argument that the essential supremum of the Hausdorff dimension of Y is
given by

‖ dimH(Y )‖∞ = 1 − α .

We conjecture that dimH(Y ) = 1 − α a.s. on the event that Y 6= ∅.
A modification of the above arguments shows that there is positive probability

that Z contains a line through o if and only if α < 1/2. In case α < 1/2, the
essential supremum of the Hausdorff dimension of the set of lines in Z through o
is 1 − 2α.

We believe that the Hausdorff dimension of the union of the lines in Z is a.s.
3 − 2α when α ∈ [1/2, 1).

4. Boolean occupied and vacant percolation

Recall the definition of B and W . First, we show that B and W are well-behaved.

Proposition 4.1. Fix a compact interval I ⊂ (0,∞). Then there is some Λ =
Λ(I) > 0 such that if λ,R ∈ I, then B and W are Λ-well behaved.

Proof. It is well known that B and W satisfy positive correlations. For W , m is
bounded by the expected number of points in X that fall in the R-neighborhood of
B. Observe that each connected component of W ∩B, with the possible exception
of one, has on its boundary an intersection point of two circles of radius R centered
at points in X . Since the second moment of the number of points in X that fall
inside the R-neighborhood of B is finite, it follows that m is also bounded for B.
The remaining conditions are easily verified and left to the reader. �

We are now ready to prove one of our main theorems.

Proof of Theorem 1.2. We start by considering B. Fix some R ∈ (0,∞). If
we let λ ր ∞, then f(1) ր 1 and by (3.12) α ց 0. Thus, Lemma 3.6 implies
that λgc < ∞. (We could alternatively prove this from Theorem 1.1.) It is also
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clear that λgc > 0, since for λ sufficiently small a.s. B has no unbounded connected
component.

Since the constant c in Lemma 3.4 depends only on Λ, that lemma implies that
α is continuous in (λ,R) ∈ (0,∞)2. In particular, Lemmas 3.5 and 3.6 show that
when λ = λgc(R), we have α = 1 and that there are a.s. no half-lines in B. Also,
we get (1.1) from (3.12). Finally, it follows from Lemma 3.5 and Lemma 3.6 (ii)
that λgc = λ̄gc. The proof for W is similar. �

Next, we calculate α for B and W .

Lemma 4.2. The value of α for line percolation in W is given by

α = 2λ sinhR .

Proof. Consider a line γ : R → H2, parameterized by arclength, and let r > 0.
A.s. the interval γ[0, r] is contained in W if and only if the R-neighborhood of the
interval does not contain any points of X . Let N denote this neighborhood, and
let A denote its area. Then f(r) = e−λA. For each point z ∈ H2, let tz denote
the t minimizing the distance from z to γ(t). Then N = N0 ∪ N1 ∪ N2, where
N0 := {z ∈ H2 : d(z, γ(tz)) < R, tz ∈ [0, r]}, N1 := {z ∈ B(γ(0), R) : tz < 0} and
N2 := {z ∈ B(γ(r), R) : tz > r}. Observe that N1 and N2 are two half-disks of
radiusR, so that their areas are independent of r. We can conveniently calculate the
area of N0 explicitly in the upper half-plane model for H2, for which the hyperbolic
length element is given by |ds|/y, where |ds| is the Euclidean length element. We
choose γ(t) = (0, et). Recall that the intersection of the upper half-plane with the
Euclidean circles orthogonal to the real line are lines in this model. It is easy to see
that for z = (ρ cos θ, ρ sin θ), we have γ(tz) = (0, ρ). Moreover, the distance from
z to γ is

∣

∣

∣

∫ π/2

θ

ρ dψ

ρ sinψ

∣

∣

∣
=
∣

∣log tan(θ/2)
∣

∣.

Thus, if we choose θ ∈ (0, π/2) such that tan(θ/2) = e−R, then N0 consists of the
set
{

(ρ cosψ, ρ sinψ) : ρ ∈ [1, er], ψ ∈ (θ, π − θ)
}

. Thus,

area(N0) =

∫ π−θ

θ

∫ er

1

ρ dρ dψ

ρ2 sin2 ψ
= 2 r cot θ = r(cot θ

2
− tan θ

2
) = 2 r sinhR .

The result follows. �

From Lemma 4.2 we see that for W we have α = 1 when λ = 1/(2 sinh(R)),
which means λgv(R) = 1/(2 sinh(R)).

Remark 4.3. Let λc(R) be the infimum of the set of intensities λ ≥ 0 such that B
contains unbounded components a.s. Proposition 4.7 in Tykesson (2007) says that
for R large, λc(R) ≤ Ke−2R for some constant K which means λgv(R) > λc(R) for
R large. Theorem 4.2 in Tykesson (2007), therefore implies that for R large, there
are intensities for which there are lines in W , but also infinitely many unbounded
components in both W and B. On the other hand, by Lemma 4.6 in Tykesson
(2007) we have λc(R) ≥ 1/(2π(cosh(2R) − 1)). Therefore, for R small enough, we
have λc(R) > λgv(R). So for R small, there are no intensities for which lines in
W coexist with unbounded components in B. Moreover, Theorem 4.2 in Tykesson
(2007) says that when there are no unbounded components in B, there is a unique
unbounded component in W . Therefore, for R small, there are intensities for which
there is a unique unbounded component in W , but still no lines in W .
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Lemma 4.4. In the setting of line percolation in B, α is the unique solution of the
equation

1 =

∫ 2R

0

eαtH ′
R,λ(t) dt , (4.1)

where

HR,λ(t) := − exp

(

−4λ

∫ t/2

0

sinh

(

cosh−1

(

coshR

cosh s

))

ds

)

.

Proof. Consider a line γ : R → H2, parameterized by arclength. Recall that X is
the underlying Poisson process. We now derive an integral equation satisfied by

f(r) = P
[

γ[0, r] ⊂ B
]

.

For a point x in the R-neighborhood of γ, let u+(x) := sup{s : γ(s) ∈ B(x,R)}
and u−(x) := inf{s : γ(s) ∈ B(x,R)}. Let X0 := {x ∈ X : u−(x) < 0 < u+(x)}.
This is the set of x ∈ X such that γ(0) ∈ B(x,R). Also set

S :=

{

inf{u+(x) : x ∈ X0} X0 6= ∅,

−∞ X0 = ∅ .

Assume that r ≥ 2R. A.s., if S = −∞, then γ[0, r] is not contained in B. On the
other hand, if we condition on S = s, where s ∈ (0, 2R) is fixed, then γ[0, s) ⊂ B
and the conditional distribution of γ[s, r] ∩ B is the same as the unconditional
distribution. (Of course, S = s has probability zero, and so this conditioning
should be understood as a limit.) Therefore, we get

P
[

γ[0, r] ⊂ B
∣

∣ S
]

= f(r − S), (4.2)

where, of course, f(∞) = 0.
Let G(t) := P

[

S ∈ (0, t)
]

. Shortly, we will show that G(t) = HR,λ(t) + 1. But
presently, we just assume that G′(t) is continuous and derive (4.1) with G in place of
H . Since the probability density for S in (0, 2R) is given by G′(t), we get from (4.2)

f(r) =

∫ 2R

0

f(r − s)G′(s) ds . (4.3)

Suppose that β > 0 satisfies

1 =

∫ 2R

0

eβsG′(s) ds . (4.4)

Since
∫ 2R

0 G′(s) ds = P
[

S > 0
]

< 1, continuity implies that there is some such β.

Suppose that there is some r > 0 such that f(r) ≤ e−βr f(2R), then let r0 be the
infimum of all such r. Clearly, r0 ≥ 2R. By the definition of r0 and (4.3), we get

f(r0) >

∫ 2R

0

e−β(r0−s) f(2R)G′(s) ds
(4.4)
= e−βr0 f(2R) .

Since f(r) is continuous on (0,∞), this contradicts the definition of r0. A similar
contradiction is obtained if one assumes that there is some r > 0 satisfying f(r) ≥
e−β(r−2R). Hence e−βr f(2R) ≤ f(r) ≤ e−β(r−2R), which gives α = β.

It remains to prove that G(t) = HR,λ(t) + 1. Let Qt := B
(

γ(0), R
)

\B
(

γ(t), R
)

.
Observe that

G(t) = P
[

X ∩Qt 6= ∅
]

= 1 − P
[

X ∩Qt = ∅
]

= 1 − e−λ area(Qt). (4.5)
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γ(t)γ(0) γ

Figure 4.2. Calculating the area of Qt. The set Qt is the left
ball minus the right ball. The area is calculated by first exchanging
the left cap by its “shift”.

Hence, we want to calculate area(Qt). For z ∈ H2 let u(z) denote the t ∈ R that
minimizes d

(

z, γ(t)
)

, and let φ(t, y) denote the point in H2 satisfying u(z) = t which
is at distance y to the left of γ if y ≥ 0, or −y to the right of γ otherwise. Observe
that

{

z ∈ B
(

γ(0), R
)

: u(z) < −t/2
}

is isometric to (see Figure 4.2)
{

z ∈ B
(

γ(t), R
)

: u(z) < t/2
}

=
{

z ∈ B
(

γ(0), R
)

: u(z) < t/2
}

\Qt .

Therefore,

area(Qt) = area
{

z ∈ B
(

γ(0), R
)

: u(z) ∈ [−t/2, t/2]
}

. (4.6)

By the hyperbolic Pythagorean theorem, we have

coshd
(

γ(0), φ(s, y)
)

= cosh s cosh y .

Hence, the set on the right hand side of (4.6) is
{

φ(s, y) : s ∈ [−t/2, t/2], coshy ≤ coshR/ cosh s
}

. (4.7)

At the end of the proof of Lemma 4.2, we saw that the area of a set of the form
{

φ(s, y) : s ∈ [0, r], |y| ≤ R
}

is 2 r sinhR. Hence, the area of (4.7) (and also the
area of Qt) is given by

∫ t/2

−t/2

2 sinh
(

cosh−1(coshR/ cosh s)
)

ds .

The result follows by (4.4) and (4.5), since α = β. �

5. No planes in higher dimensions

It is natural to ask for high dimensional variants. Fix some d ∈ N, d > 2. Let
λ,R > 0. Let B :=

⋃

x∈X B(x,R), where X is a Poisson point process of intensity

λ in H
d. Let W be the closure of H

d \ B. The Grassmannian of planes in H
d is the

space of all planes in Hd. To the Grassmannian it is possible to assign an invariant
measure (a volume measure), which will be denoted by Φ. We assume that Φ is
normalized so that the set of planes that intersect B(o, 2) has Φ-measure 1. If L
is a plane that contains o, then the probability that L ∩ B(o, r) is contained in
B (or W) decays much faster than the probability that a line segment of length
r is contained in B (or W). Therefore, it is reasonable to guess that every plane
intersects both B and W .

Proposition 5.1. For every d ∈ N ∩ [3,∞), λ,R > 0, a.s. there are no 2-
dimensional planes in Hd that are contained in B. Similarly, there are no 2-
dimensional planes in Hd that are contained in W.
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Proof. Let Z be B. Fix some o ∈ Hd, and let r > 0 be large. Let Yr be the set
of planes L intersecting the ball B(o, 2) such that L ∩ B(o, r) is contained in the
1-neighborhood of Z. Let Zr be the set of planes L intersecting B(o, 1) such that
L ∩ B(o, r) ⊂ Z. If L ∈ Zr, then Yr contains the set of planes L′ such that the
Hausdorff distance between L∩B(o, r) and L′∩B(o, r) is less than 1. Consequently,

E[Φ(Yr)|Zr 6= ∅] ≥ exp
(

−O(r)
)

. (5.1)

Now fix a plane L that intersectsB(o, 2). If the points x, y fulfill d(x, y) ≥ 2R+4, the
event that x belongs to the 1-neighborhood of Z is independent of the corresponding
event for y. Since there are order er points in L ∩ B(o, r) such that the distance
between any two is larger than 2R+ 4, we get that

P
[

L ∈ Yr

]

≤ exp(−c er)

for some constant c = c(d,R, λ) > 0. This means that

E[Φ(Yr)] ≤ exp(−c er). (5.2)

From (5.1) and (5.2) we see that P[Zr 6= ∅] → 0 as r → ∞. Since Hd can be covered
by a countable collection of balls of radius 1, it follows that a.s. there are no planes
contained in Z. The case Z = W is proved in the same way. �

6. Connectivity of lines

In this section, we consider a somewhat different model using a Poisson process
on the Grassmannian G of lines in H2. For this purpose, we first recall the form of
an isometry-invariant measure on G. Consider the upper half-plane model for H

2.
Let R̂ = R∪{∞} = ∂H2 denote the boundary at infinity of H2. To each unoriented
line L ⊂ H2 we may associate the pair of points of L on the boundary at infinity
R̂. This defines a bijection between G and

M :=
{

{x, y} : x, y ∈ R̂, x 6= y
}

.

(Though we will not use this fact, M is an open Möbius band, or a punctured
projective plane.) In the following, we often identify M and G via this bijection,
and will not always be careful to distinguish between them.

The set M inherits a locally Euclidean metric coming from the 2 to 1 projection

from R̂ × R̂ \ diagonal. Let Φ be the measure on M whose density at a point
{x, y} ∈ M such that x, y 6= ∞ with respect to the Euclidean area measure is

dΦ =
dx dy

(x− y)2
,

and Φ
({

{x,∞} : x ∈ R
})

= 0. An isometry ψ : H2 → H2 induces a map G 7→ G.
In the upper half plane coordinate system, each such ψ is a transformation of the
form z 7→ (a z + b)/(c z + d), with a, b, c, d ∈ R and a d − b c 6= 0. Moreover, ψ

extends to a self-homeomorphism of R̂, and therefore there is an induced map from
M to M. It is easy to verify using the integration change of variables formula that
ψ preserves the measure Φ. Hence, Φ is an isometry-invariant measure on G.

Let Y be a Poisson point process of intensity λ on G with respect to Φ. With a
slight abuse of notation, we will also write Y for the union of all lines in Y , when
viewed as a subset of H2. Let Z be the complement of Y . Observe that Y is
connected if Z contains no half-lines and disconnected if Z contains lines.
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Figure 6.3. A realization of a Poisson process on the Grassman-
nian of lines in H2 in the Poincaré disk model.

Proposition 6.1. If λ ≥ 1 then Z contains no half-lines a.s. If λ < 1 then Z
contains lines a.s.

One motivation for this model comes from long range percolation on Z. Fix
some c < 1. For each pair x, y ∈ Z, let there be an edge between x and y with
probability c (independently for different pairs) if there is a line in Y with one
endpoint in [x, x + 1] and the other in [y, y + 1]. Then a calculation shows that if
λ = 1 (which is the critical value), the probability that there is an edge between x
and y is asymptotic to c/|x − y|2 as |x − y| → ∞, that is, we have recovered the
standard long range percolation model on Z with critical exponent 2 (see Benjamini
and Berger, 2001). The critical case of long range percolation is not well understood
and it might be of interest to further study the connection between it and the line
process.

Observe that Z is not a well-behaved percolation (in the sense of our defini-
tion 3.1), since there is no independence at any distance, and moreover, Z is open.
Therefore, several statements in Section 3 cannot be used directly to prove Propo-
sition 6.1. Nevertheless, it is possible to adapt the proofs without much difficulty.

Proof. First, we calculate f(r). Let γ(t) = (0, et) ∈ H2, where we think of H2 in
the upper half plane model. Let Ar be the set of lines that intersect γ[0, r]. Then
it is easy to see that under the identification G = M,

Ar =
{

{x, y} : 1 ≤ −xy ≤ e2r
}

.

An easy calculation shows that Φ(Ar) = r. Therefore, f(r) = e−λΦ(Ar) = e−λr.
It will now be convenient to use the Poincaré disk model. An unoriented line in

H2 in the Poincaré disk model corresponds to an unordered pair of distinct points
on the unit circle, x, y ∈ ∂H2. Thus, the measure we have on the Grassmannian
induces a measure on (∂H

2)2. By using an isometry between the hyperbolic plane
in the upper half plane model and the hyperbolic plane in the Poincaré disk model
it is easy to verify that the density of this measure is again given locally by |x−y|−2

times the product of the length measure on the circle with itself.
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Suppose that 0 < λ < 1. For θ ∈ [0, 2 π) and r > 0 let Lr(θ) denote the geodesic
ray of hyperbolic length r started from 0 whose continuation meets ∂H2 at eiθ. Let
Kr be the set of θ ∈ [0, 2 π) such that Lr(θ) ⊂ Z. Then P

[

θ ∈ Kr

]

= e−λr. To

apply the second moment method, we need to estimate P
[

θ, θ′ ∈ Kr

]

from above for
θ, θ′ ∈ [0, 2 π). Suppose first that θ′ = 0 and θ ∈ [0, π]. Let L(θ) be the hyperbolic
line L∞(θ) ∪ L∞(θ + π), which contains Lr(θ). The set of pairs {x, y} ∈ (∂H

2)2

such that the line connecting them intersects both L(θ) and L(θ′) is precisely that
set of pairs that are separated by these two lines. The measure of this set is

∫ θ

0

∫ π+θ

π

+

∫ π

θ

∫ 2π

π+θ

∣

∣eiα − eiβ
∣

∣

−2
dα dβ = −2 log

sin θ

2
.

The measure of the set of lines that intersect both Lr(θ) and Lr(0) is bounded
by the measure of the set of lines that intersect both L∞(0) and L∞(θ), which is
bounded by half the measure calculated above. The measure of the set of lines that
intersect Lr(θ) ∪ Lr(0) is the sum of the measures of the lines intersecting each of
these segments minus the measure of the set of lines intersecting both. Thus, it is
at least

2 r + log
sin θ

2
.

This gives

P
[

θ, θ′ ∈ Kr

]

≤
( 2

sin |θ − θ′|

)λ

e−2λr ,

and by symmetry this will also hold if we drop the assumptions that θ′ = 0 and
θ ∈ [0, π]. Since sin−λ θ is integrable when λ < 1, this facilitates the second
moment argument, which shows that infr>0 P

[

Kr 6= ∅
]

> 0. Let K :=
⋂

r>0Kr.

Then P
[

K 6= ∅
]

= infr>0 P
[

Kr 6= ∅
]

> 0, because Kr ⊃ Kr′ when r′ > r. Now

note that a.s. ∂Kr ∩Kr′ = ∅ when r′ > r. (The set ∂Kr consists of points in the
intersection of Y with the circle of hyperbolic radius r about 0.) Hence K ⊂ Kr

holds a.s. for each r > 0. Thus, with positive probability there will be some ray
L∞(θ) that is contained in Z. Clearly, this implies that with positive probability
there are at least three rays corresponding to angles θ ∈ (0, π). Since the interior
of the convex hull of the union of such rays is in Z, it follows that Z contains lines
with positive probability. Since the Poisson line process Y is ergodic (which is easy
to verify), any event which is determined by Y and is invariant under Isom(H2) has
probability 0 or 1. Consequently there are lines in Z a.s. when λ < 1.

We now consider the case λ ≥ 1 and show that in this case there are a.s. no
half-lines contained in Z. In that case, we can follow the proof of Lemma 3.5 with
only minor modifications. For x, y ∈ H2 and s > 0 let Ā(x, y, s) be the event that
there is some line in Z which intersects both B(x, s) and B(y, s). For x, y ∈ H2 with
d(x, y) ≥ 4 it is not hard to show that the set of lines that separate the hyperbolic
1-ball around x from the hyperbolic 1-ball around y has Φ-measure d(x, y)−O(1).
Each such line will obviously intersect any line meeting both these balls. Thus, the
probability that there is a line in Z meeting both these balls is e−d(x,y)+O(1). This
means that for d(x, y) ≥ 4 we have

P[Ā(z, z′, 1)] = e−d(x,y)+O(1). (6.1)

Equation (6.1) is the analog of (3.14).
The next detail requiring modification is that in the proof of (3.16) independence

at a distance was mentioned. Let r be large and let x ∈ ∂B(o, r). Let L(o, x) be
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the set of lines that pass through both B(o, 1) and B(x, 1). Let r′ > r + 4. It is
easy to see that set of lines that are disjoint from B(o, r) and intersect every line
in L(o, x) somewhere in B(o, r′) \B(o, r+ 1) has Φ-measure bounded away from 0.
The lines in Y that intersect B(o, r+1) are independent of the set of lines in Y that
do not intersect B(o, r+1). Consequently, if Z contains geodesic line segments that
intersect both B(o, 1) and B(x, 1), there is probability bounded away from 0 that
none of these line segments can be extended to a line segment which also reaches
∂B(o, r′) without hitting some line in Y . From this, we can deduce that the analog
of (3.16) holds in our setting. With the analogs of (3.14) and (3.16) established,
the argument is then completed as in Lemma 3.5. �

7. Further Problems

We first consider a generalization of Theorem 1.1.

Conjecture 7.1. Let B ⊂ H2 be some fixed open ball of radius 1. There is a
constant δ > 0 such that if Z ⊂ H2 is any open random set with isometry-invariant
law and E

[

length(B \ Z)
]

< δ, then with positive probability Z contains a hyperbolic
line.

It is easy to verify that the conjecture implies the theorem. Indeed, if P
[

B ⊂ Z
]

is close to 1, then one can show that there is a union of unit circles whose law is
isometry invariant, where the interiors cover the complement of Z, and where the
expected length of the intersection of the circles with B is small.

Next, we consider quantitative aspects of Theorem 1.1.

Conjecture 7.2. Fix some o ∈ H2. For every r > 0 let pr be the least p ∈ [0, 1]
such that for every random closed Z ⊂ H2 with an isometry-invariant law and
P
[

B(o, r) ⊂ Z
]

> p there is positive probability that Z contains a hyperbolic line.
Theorem 1.1 implies that pr < 1 for every r > 0. We conjecture that lim suprց0(1−
pr)/r <∞.

It is easy to see that lim infrց0(1− pr)/r > 0; for example, take a Poisson point
process X ⊂ H2 with intensity λ sufficiently large and let Z be the complement of
the ǫ-neighborhood of

⋃

x∈X ∂B(x, 1), where 0 < ǫ < r.

Problem 7.3. Does the limit limrց0(1 − pr)/r exist? If it does, what is its value?

The behavior of pr as r → ∞ seems to be an easier problem, though potentially
of some interest as well.

We now move on to problems related to Theorem 1.2 and its proof.

Question 7.4. For either W or B, is there some pair (λ,R) for which there is with
positive probability a percolating ray such that every other percolating ray with the
same endpoint at infinity is contained in it? (Note, such a ray must be exceptional
among the percolating rays.)

Question 7.5. Is it true that when B (or W) has a unique infinite connected com-
ponent, the union of the lines in B (or W) is connected as well? We believe that
there is some pair (λ,R) such that B contains a unique infinite component but no
lines (we know this for W , see Remark 4.3).
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Question 7.6. For which homogenous spaces W or B a.s. contain infinite geodesics
for some parameters (λ,R)?

Note that since H2 × R contains H2, it follows that for every R there is some λ
such that W on H

2×R contains lines within an H
2 slice, and the same holds for B.

Question 7.7. Let V be the orbit of a point x ∈ H2 under a group of isometries Γ.
Suppose that V is discrete and H2/Γ is compact. (E.g., V is a co-compact lattice
in H2.) Let WV (R) := H2 \

⋃

v∈V B(v,R), and let RV
c denote the supremum of

the set of R such that WV (R) contains uncountably many lines. Does WV (RV
c )

contain uncountably many lines?

It might be interesting to determine the value of RV
c for some lattices V .

Problem 7.8. It is not difficult to adapt our proof to show that in H
d, d ≥ 2, for

every R > 0 when λ is critical for the existence of lines in W , there are a.s. no lines
inside W . This should also be true for B, but we presently do not know a proof. It
seems that what is missing is an analog of Lemma 3.3.
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