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Abstract. We derive uniform and non–uniform error bounds in the normal ap-
proximation under a general dependence assumption. Our method is tailor made
for dynamic time series models employed in the econometric literature but it is
also applicable for many other dependent processes. Neither stationarity nor any
smoothness conditions of the underlying distributions are required. If the intro-
duced weak dependence coefficient decreases with a geometric rate then we obtain,
up to a multiplicative logarithmic factor, the same convergence rate as in the central
limit theorem for independent random variables.

1. Introduction

Let X1, X2, . . . be random variables with EXk = 0 and EX2
k < ∞. Further let

Sn = X1+· · ·+Xn and B2
n = ES2

n. One of the fundamental questions in probability
and mathematical statistics is whether such a sequence satisfies the central limit
theorem, i.e. whether

P (Sn ≤ xBn) → Φ(x) as n→ ∞, (1.1)

where Φ(x) is the standard normal distribution function. Many basic statistical
procedures require more information, such as large deviation probabilities or precise
error term estimates (see, e.g., Dufour and Hallin, 1992). Thus it is desirable to
determine the speed of convergence in (1.1). Let

∆n(x) = |P (Sn ≤ xBn) − Φ(x)|.
In this paper we give bounds for the normal approximation error ∆n(x) if the un-
derlying sample {Xk} is dependent. Our concept is tailor made for time series
studied in finance and macroeconomics. As an application we obtain fairly sharp
bounds (with an explicit constant) for ARCH/GARCH processes, threshold au-
toregressive processes, near epoch dependent (NED) sequences and linear processes
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with dependent errors, etc. Furthermore, the method is not limited to special time
series and might have some general interest.

A common way to measure dependence is to employ different mixing conditions
and, as we will show below, several bounds for ∆n(x) for mixing sequences already
exist. Despite its prominent role and its various “ready to use theorems”, mixing
theory is oftentimes of limited use for the practitioner. For example, many of the
processes studied in modern time series literature satisfy mixing conditions only
under restrictive smoothness and regularity assumptions. In the past decade this
led several authors to develop new dependence concepts which are more convenient
in applications (see, e.g., Andrews, 1988, Doukhan and Louhichi, 1999, Pötscher
and Prucha, 1997, Wu, 2005). While these new methods have been used to obtain
numerous central and empirical central limit theorems, only a few results exist for
corresponding convergence rates.

The purpose of this note is to study the convergence rate in the central limit
theorem adopting a dependence measure which is tailor made for dynamic non-
linear models, i.e. models where the data generating process {Xk} is of the form

Xk = fk(. . . , εk−1, εk, εk+1, . . .), (1.2)

where fk : R
Z → R is measurable, and {εk} are independent random variables.

(Usually εk are real valued but our theory applies if the εk take values in some
more general space.) In context of econometrics {εk} corresponds to a process of
exogenous variables or disturbances. We would like to note that while in time series
analysis the processes are often assumed to be causal, that is

Xk = fk(. . . , εk−1, εk),

non-causal processes appear in the theory of rational expectations models or in spa-
tial statistics. In most practical examples causal {Xk} are homogeneous Markov
processes obtained as stationary solutions of some stochastic recurrence equations.
Oftentimes it is then possible to obtain geometric ergodicity and β–mixing for {Xk}
by using the theory of Markov models. However, the application of this apparatus
requires restrictive smoothness and moment conditions for the innovations. For
example, to verify β-mixing for GARCH sequences Carrasco and Chen (2002) re-
quire, among others, that the {εk} have a continuous density which is positive on
the whole line and that Eε2k < ∞. More general assumptions were required by
Boussama (1998). With our method we can circumvent mixing theory. In fact, our
approach is much more general and has some further advantages over competitors:
it does not require causality or stationarity, no smoothness assumptions and is eas-
ily verifiable for processes that are given as in (1.2). We demonstrate applicability
in Section 4 below by means of various examples. The presented dependence mea-
sure is closely related to NED and Lp–approximability which play an important
role in the econometrics and financial literature.

For the convenience of the reader we will recall now some well known results for
the convergence rate in the CLT if X1, X2, . . . are independent. The Berry–Esseen
theorem (Berry, 1941, Esseen, 1945; see, e.g., Petrov, 1995) states that if the Xk

have absolute third moments, then

sup
−∞<x<∞

∆n(x) ≤ CB−3
n

n
∑

k=1

E|Xk|3. (1.3)
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Here and in the sequel C will denote an absolute constant which may have different
values at different places. In case of i.i.d. random variables (1.3) implies a rate
n−1/2. Employing a symmetric Bernoulli sequence {Xk}, i.e. Xk = ±1 with prob-
ability 1/2, it can be easily seen (c.f. Petrov, 1995, p. 150) that this rate cannot be
improved without additional conditions on the distribution of the random variables.
Under the more general assumption E|Xk|p <∞ for some 2 < p ≤ 3 the following
version of (1.3) is valid (see Petrov, 1965, 1995):

sup
−∞<x<∞

∆n(x) ≤ C(p)B−p
n

n
∑

k=1

E|Xk|p. (1.4)

Here C(p) depends solely on p. In contrast to the uniform estimates (1.3) and (1.4),
there are also non–uniform estimates available, which take into account not only
the sample size, but also the value of x. Under E|X1|p < ∞ for some 2 < p ≤ 3,
Bikjalis (1966) showed that

∆n(x) ≤ C(p)B−p
n (1 + |x|)−p

n
∑

k=1

E|Xk|p for all x ∈ R. (1.5)

In what follows, we shall give a brief discussion on related results under depen-
dence. For this purpose we recall some classical mixing concepts. Let {Xk} be a
random sequence and denote by Fb

a (−∞ ≤ a < b ≤ ∞) the σ–algebra generated
by Xa, . . . , Xb. Then

α(n) = sup{|P (A ∩B) − P (A) · P (B)| : A ∈ Fk
−∞, B ∈ F∞

k+n}, (1.6)

β(n) =
1

2
sup

{

I
∑

i=1

J
∑

j=1

|P (Ai ∩Bj) − P (Ai)P (Bj)| : (1.7)

(Ai)
I
i=1 and (Bj)

J
j=1 are finite partitions of Ω with Ai ∈ Fk

−∞, Bj ∈ F∞
k+n

}

,

ρ(n) = sup{E|ξη| : ξ ∈ Fk
−∞, Eξ = 0, Eξ2 ≤ 1, η ∈ F∞

k+n, Eη = 0, Eη2 ≤ 1},
(1.8)

ϕ(n) = sup{|P (B|A) − P (B)| : A ∈ Fk
−∞, P (A) > 0, B ∈ F∞

k+n}. (1.9)

For stationary {Xk} these are independent of k, otherwise the supremum in (1.6)–
(1.9) is also taken also over k ∈ Z. If the corresponding coefficient goes to zero
for n → ∞, we say that the sequence is either α, β, ρ, or ϕ–mixing. We have
α(n) ≤ ρ(n) ≤ 2

√

ϕ(n) and 2α(n) ≤ β(n) ≤ ϕ(n) (for details see, e.g., Bradley,
2007 or Doukhan, 1994).

The following results apply to strictly stationary sequences. If α(n) or ρ(n)
is ≤ Ke−βn (K,β > 0) Tikhomirov (1981) proved that sup−∞<x<∞ ∆n(x) ≤
A(logn)p−1n1−p/2, where A depends solely on K,β and p. Here and in the sequel
the value of p ∈ (2, 3] is related to the moment assumption E|Xi|p < ∞. Under
E|X1|3 <∞, Bentkus et al. (1997) obtain a bound of order O

(

(logn)δn−1/2
)

for a
general class of asymptotically normal statistics which are functions of n observa-
tions of an absolute regular sequence. Uniform bounds for ρ–mixing sequences with
polynomial rate are also given in Zuparov (1991). For ϕ–mixing sequences Grin
obtained a rate of order O

(

(log n)1/3n−1/2
)

. Convergence rates of order O(n−1/2)
so far have only been obtained under more restrictive regularity conditions. See for
example Rio (1996) or Bolthausen (1982a).
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There exist much less results for non–stationary sequences. The following relax-
ation of stationarity is due to Sunklodas (1984). Assume that {Xk} are α–mixing
with geometric rate, and that B2

n ≥ cn for some c > 0. Then

sup
−∞<x<∞

∆n(x) = O
(

max
1≤k≤n

E|Xk|p(logBn)p−1B2−p
n

)

.

One of the most seminal contributions to the theory of normal approximation
is due to Stein (1972). He provides a method going without the previous Fourier
analytic approaches, which are difficult to apply under dependence. Chen and Shao
(2004) used Stein’s method to obtain very sharp results under local dependence.
In case of m–dependent sequences they show for example

sup
−∞<x<∞

∆n(x) ≤ 75(10m+ 1)p−1B−p
n

n
∑

k=1

E|Xk|p,

(see Lemmas 5.2–5.3). Their results improve upon previous work for m–dependent
sequences, as e.g. those of Tikhomirov (1981), Heinrich (1984) or Sunklodas (1998).

Rates of convergence in the central limit theorem have also been obtained for
dependent and not necessarily mixing processes. See e.g. Hall and Heyde (1981),
Bolthausen (1982b), Rinott and Rotar′ (1998), Ouchti (2005) or El Machkouri and
Ouchti (2007) for martingales and Birkel (1988) or Dewan and Prakasa Rao (2005)
for associated sequences.

The rest of the paper is organized as follows: in Section 2 below we introduce
our dependence concept. The main theorems and several applications are stated in
Section 3–4. The proofs are given in Section 5.

2. Dependence condition

Despite their prominent role in probability theory, a major disadvantage of di-
verse mixing concepts is that their verification is difficult in practice. Hence, fre-
quently additional and more restrictive assumptions than actually necessary are
imposed on the underlying random sequence {Xk}, in order to verify a certain
mixing condition. Furthermore, in order to apply at all, mixing typically requires
strong smoothness conditions on the process. For example, for the AR(1) process

Xn =
1

2
Xn−1 + εn

with independent Bernoulli innovations {εn} even the weakest mixing assumption,
namely α–mixing, fails to hold (cf. Andrews, 1984). We shall introduce now a
dependence concept, which is on the one hand general enough to contain a fairly
large class of important processes and which, on the other hand, is easy to verify in
practice. The principal idea behind mixing and related weak dependence concepts
is the assumption of a fading memory of the process {Xk}. If the separation m
between the two sets of random variables {Xk, k ≤ n} and {Xk, k > n+m} is large,
then the mutual dependence of these sets should be small in some sense. Our idea
to formalize this heuristics is given below. We define for p ≥ 0 ‖X‖p = (E|X |p)1/p.
Hence for p ≥ 1 this is the usual Lp norm. We recall that a sequence {Zk} is
called m–dependent, if for each n the two sets of random variables {Zk, k ≤ n} and
{Zk, k > n+m} are independent.
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Definition 2.1. Let p > 0 and let {mn} be a sequence of non–decreasing natural
numbers. A random process {Xk, k ∈ Z} is called {mn}–approximable in Lp of
size {an}, if there exist m–dependent sequences {Xkm, k ∈ Z} (m = 1, 2, . . .) such
that

n
∑

k=1

‖Xk −Xkmn
‖p = o(an). (2.1)

We will write shortly {Xk} ∈ W(Lp, {mn}, {an}).

Remark 2.2. By Lyapounov’s inequality it follows for 0 < q ≤ p that ‖Xk −
Xkmn

‖q ≤ ‖Xk − Xkmn
‖p. Hence, if an = O(a′n) and mn ≤ m′

n, then it follows
that W(Lp, {mn}, {an}) ⊂ W(Lq, {m′

n}, {a′n}).

Remark 2.3. In this paper the most important case is when an = Bn. Then we
shall solely write {Xk} ∈ W(Lp, {mn}).

This alternative method to describe dependence is in the spirit of similar concepts
as those in Ibragimov (1962), Billingsley (1968) or McLeish (1975b,a). The crucial
idea behind these methods is to approximate the original process with auxiliary
processes whose asymptotic is known. In our case m–dependent processes (where
m = mn) are used. Martingale approximations have for example been used by
Gordin (1969) or Wu (2007). If the approximation error is small enough, then the
properties of the auxiliary processes carry over. For example Barbour et al. (2000)
showed how iterates of expanding maps can be closely tied to an m–dependent
sequence. Their construction also allows to obtain error bounds in the normal
approximation for these specific processes.

In order to apply our method, we need a simple way to construct m–dependent
approximations for the original sequence. As it has been outlined in the introduction
many important processes in the literature have a representation of the form

Xk = fk(. . . , εk−1, εk, εk+1, . . .), (2.2)

where {εk, k ∈ Z} is a sequence of independent random variables and where fk :
R

Z → R are Borel–measurable. (See also Section 4 for several examples.) Provided
E|Xk| <∞, a natural definition for the approximations is

Xkm = E[Xk|Fk+m
k−m ], (2.3)

where Fb
a = σ(εa, . . . , εb). The so defined Xkm can be represented as

Xkm = fkm(εk−m, . . . , εk, . . . εk+m),

where fkm : R
2m+1 → R is measurable and consequently, by the independence

of {εk} the sequences {Xkm, k ∈ Z} are 2m–dependent. (Note that if Xkm are
2m–dependent, then X ′

km = Xkm′ with m′ = ⌊m/2⌋ are m–dependent. Thus, Defi-

nition 2.1 formally applies.) In fact, for p ≥ 1 the conditional mean E[Xk|Fk+m
k−m ] is

(up to a constant multiplicative factor) the best possible approximation in Lp norm

of all Fk+m
k−m measurable random variables. To see this, we note that if a random

variable X ∈ Lp(Ω,A, P ) then for every M ⊂ A we have by Jensen’s inequality

E|X |p = E
[

E[|X |p|M]
]

≥ E
[

|E[X |M]|p
]

. Thus by the Fk+m
k−m measurability of

Xkm it follows that

‖Xkm − E[Xk|Fk+m
k−m ]‖p = ‖E[Xkm −Xk|Fk+m

k−m ]‖p ≤ ‖Xkm −Xk‖p.
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Therefore by the triangular inequality ‖Xk −E[Xk|Fk+m
k−m ]‖p ≤ 2‖Xk −Xkm‖p. For

non–linear functionals the computation of the conditional mean in (2.3) might be
difficult, and it is therefore convenient to allow for a more general definition ofXkm.
A simple alternative construction is

Xkm = fk(. . . , 0, 0, εk−m, . . . , εk, . . . εk+m, 0, 0, . . .), (2.4)

provided this functional is still well defined. (Of course any other constants could
be chosen instead of 0 in the above construction.)

Another very useful method to obtain Xkm in (2.1) is the following coupling

method. For each ℓ ∈ Z we define an independent sequence {ε(ℓ)k , k ∈ Z} with

ε
(ℓ)
k

L
= εk such that the sequences (εk), (ε

(ℓ)
k ), ℓ ∈ Z, are mutually independent.

This is always possible by enlarging the original probability space. Now set

Xkm = fk(. . . , ε
(k)
k−m−1, εk−m, . . . , εk, . . . , εk+m, ε

(k)
k+m+1, . . .). (2.5)

Obviously the Xkm are again 2m–dependent. However, they are no longer Fk+m
k−m

measurable and thus formally approximation concepts like Lp–approximability or
NED (see Section 4.2) are not applicable. One advantage of the coupling method is
that the random variables Xkm have the same marginal distributions as the Xk’s.
This will be useful here, since some of our results require conditions on the moments
E|Xkm|p. Furthermore, in contrast to (2.4), it is clear that the variables Xkm are
well defined.

The most important case of (2.2) is when fk = f and {εk} are i.i.d. Then {Xk} is
a stationary and ergodic sequence. In fact, most stationary and ergodic processes
in practice can be represented as a shift process of i.i.d. random variables. See
Rosenblatt (1959, 1961, 1971) for general sufficient criteria for the representation
(2.2). Especially it is well known that (2.2) holds for many popular time series
models (cf. Priestley, 1988, Stein, 1997, Tong, 1990).

We emphasize that in an abstract sense (2.2) is not required for our method, but
it is (2.2) that gives the possibility for an easy construction of Xkm in (2.1).

3. Results

For the rest of the paper we agree on the following notation: Sn = X1 + · · ·+Xn

and B2
n = Var(Sn). The “approximation–depth sequence” (mn) is assumed to be a

sequence of positive and non–decreasing integers. Our results depend crucially on
the order of magnitude of the constants

ep,n,m = B−1
n

n
∑

k=1

‖Xk −Xkm‖p. (3.1)

We will assume throughout that {Xk} ∈ W(Lp, {mn}), which implies that
ep,n,mn

→ 0 as n→ ∞. We are now ready to formulate our main results.

Theorem 3.1. Let {Xk} ∈ W(Lp, {mn}) for some p ∈ (2, 3]. Then if n is suffi-
ciently large we have

sup
−∞<x<∞

∆n(x) ≤ 2p · 76 (10mn + 1)p−1

(

B−p
n

n
∑

k=1

E|Xk|p + ep
p,n,mn

)

+ 2 ep/(p+1)
p,n,mn

.

(3.2)
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We note that the constants in Theorem 3.1 and also in sequel results could

be slightly improved. For example 2 e
p/(p+1)
p,n,mn in (3.2) can be replaced with (1 +

(2π)−1/2 + δ)e
p/(p+1)
p,n,mn , where δ > 0 can be chosen arbitrary small. For the sake of

simplicity and ease of notation we work with slightly coarser estimates.
Of course, the order of magnitude of ep,n,mn

depends on the growth speed of
mn. The faster mn grows the smaller is ep,n,mn

. To get an optimal bound in
(3.2) will thus require to correctly balance the speed of growth of ep,n,mn

and mn.
Our applications in Section 4 show that in many important special cases choosing
mn = ⌊H logn⌋ is optimal in the sense that for sufficiently large H the constants
ep,n,mn

satisfy

ep/(p+1)
p,n,mn

∨mp−1
n ep

p,n,mn
= o

(

mp−1
n B−p

n

n
∑

k=1

E|Xk|p
)

.

(As usual ⌊x⌋ denotes the integer part of the real number x.) We obtain then up
to a multiplicative factor (log n)p−1 the same order in the normal approximation
as for independent random variables.

Our next result is a non-uniform version of Theorem 3.1. Here the (absolute)
constant in the estimate remains undetermined.

Theorem 3.2. Let {Xk} ∈ W(Lp, {mn}) for some p ∈ (2, 3]. Then if n is suffi-
ciently large we have

∆n(x) ≤ C(1 + |x|)−p×
{

mp−1
n

(

B−p
n

n
∑

k=1

E|Xk|p + ep
p,n,mn

)

+ (− log ep,n,mn
)(p+1)/2ep/(p+1)

p,n,mn

}

, (3.3)

where C is an absolute constant.

As a matter of fact the computation of ep,n,mn
might be difficult if p is not

an integer. In order to get a simpler condition, we shall give now a version of
Theorem 3.1 and Theorem 3.2 under the weaker assumption {Xk} ∈ W(L2, {mn}).

Theorem 3.3. Let {Xk} ∈ W(L2, {mn}) and assume that E|Xk|p <∞ for some
p ∈ (2, 3]. Assume further that there is a constant D such that

n
∑

k=1

E|Xkmn
|p ≤ D

n
∑

k=1

E|Xk|p ultimately. (3.4)

Then for sufficiently large n

sup
−∞<x<∞

∆n(x) ≤ 76D (10mn + 1)p−1B−p
n

n
∑

k=1

E|Xk|p + 2 e
2/3
2,n,mn

and

∆n(x) ≤ C(1 + |x|)−2

{

Dmp−1
n B−p

n

n
∑

k=1

E|Xk|p +
(

− log e2,n,mn

)3/2
e
2/3
2,n,mn

}

,

where C is an absolute constant.
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In return for the weaker assumption {Xk} ∈ W(L2, {mn}) we have to require the
additional condition (3.4) in Theorem 3.3. For example, if the Xkm are constructed
via the coupling method (2.5) then (3.4) is trivially satisfied with D = 1. We also
notice that if (3.4) holds in Theorem 3.1 or Theorem 3.2, then the factor

B−p
n

n
∑

k=1

E|Xk|p + ep
p,n,mn

in (3.2) and (3.3) can be replaced with

D 2−p

(

B−p
n

n
∑

k=1

E|Xk|p
)

.

In the following Theorem we consider the important special case where the se-
quences {(Xk, Xkm)} are stationary, for each m ≥ 1. Here condition (3.4) reduces
to

E|X1mn
|p ≤ DE|X1|p ultimately. (3.5)

We will further assume a logarithmic growth rate for mn, since this is the right
approximation–depth for most of our examples in the next section.

Corollary 3.4. Let {Xk} ∈ W(L2, {⌊H logn⌋}, {nh}), where H > 0 and h <
2− 3p/4. Assume that for each m ≥ 1 the sequence {(Xk, Xkm)} is stationary. Let
E|X1|p <∞, 2 < p ≤ 3, and assume that (3.5) holds. Then

σ2 = EX2
1 + 2

∑

k≥2

E(X1Xk) (3.6)

converges absolutely and if σ2 > 0, then for sufficiently large n

sup
−∞<x<∞

∆n(x) ≤ 76E|X1/σ|pD
(

10H logn
)p−1

n1−p/2,

and
∆n(x) ≤ C (1 + |x|)−2 E|X1/σ|pD

(

H logn
)p−1

n1−p/2,

where C is an absolute constant.

4. Applications

4.1. Iterated random functions. We briefly outline the construction of Markov
chains via iterated random functions as it can be found in the paper of Diaconis
and Freedman (1999). We also refer to Diaconis and Freedman (1999) for several
interesting applications, ranging from fractal images to queuing theory. The theory
is also applicable for many non–linear time series models, like threshold autoregres-
sive models (Tong, 1990), bilinear autoregressive models (Haggan and Ozaki, 1981)
or ARCH models (Engle, 1982).

Let S be a complete separable metric space equipped with the metric ρ and let
(Θ,A, µ) be a probability space. Further let {fθ, θ ∈ Θ} be a parametric family of
measurable functions from S onto itself. We consider now a Markov chain moving
around in S according to the following rule: after starting in some x0 we pick a
θ1 ∈ Θ at random from µ and set Y1(x0) = fθ1

(x0). Repeating this experiment
independently with the new starting point Y1(x0) we obtain Y2(x0), etc. Hence the
process at time n is

Yn(x0) = fθn
◦ fθn−1

◦ · · · ◦ fθ1
(x0).
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Assuming that the functions fθ are Lipschitz continuous, i.e.

ρ(fθ(x), fθ(y)) ≤ Kθρ(x, y) for all x, y ∈ S,

Theorem 1.1 in Diaconis and Freedman (1999) gives conditions that imply that the
induced Markov chain has a stationary distribution π. Alternative conditions were
derived by Wu and Shao (2004). Lemma 4.1 below is immediate from Theorem 2
in Wu and Shao (2004). We let {θn} be an i.i.d. sequence with marginals θn ∼ µ.
Further we let {θ′n} be an independent copy of {θn}.
Lemma 4.1. Assume that there exist y0 ∈ S and α > 0 such that Eρ(y0, fθ(y0))

α <
∞. Assume further that there is an x0 ∈ S, an α > 0, and constants r = r(α) ∈
(0, 1), C = C(α) > 0 such that Eρ(Yn(x), Yn(x0))

α ≤ Crnρ(x, x0)
α for all x ∈ S

and n ≥ 1. Then for all x ∈ S the limit

lim
k→∞

fθn
◦ fθn−1

◦ · · · ◦ fθn−k
(x)

exists almost surely and does not dependent on x. If Yn denotes the limit, then

Yn = M(. . . , θn−1, θn)

with a measurable function M : ΘN → S. The sequence is strictly stationary and
ergodic and satisfies

Yn = fθn
(Yn−1);

Yn ∼ π;

Eρ(Yn,M(. . . , θ′n−m−1, θ
′
n−m, θn−m+1, . . . , θn))α ≤ Crm. (4.1)

Property (4.1) is called the geometric moment contraction property. In order
to get a real valued sequence which inherits the moment contraction property we
define Xn = T (Yn), where T : S → R is Lipschitz continuous, i.e. there is a constant
L such that |T (x) − T (y)| ≤ Lρ(x, y) for all x, y ∈ S. Proposition 4.2 below is an
immediate consequence of Corollary 3.4.

Proposition 4.2. Assume that the conditions of Lemma 4.1 hold with α = 2. For
some Lipschitz continuous function T : S → R we define Xn = T (Yn) and we
assume that E|X0|p <∞, p ∈ (2, 3]. Let H > (1 − 3p/4)/ log r. Then the series in
(3.6) converges absolutely and for sufficiently large n

sup
−∞<x<∞

∆n(x) ≤ 76 E|X1/σ|p (10H logn)p−1n1−p/2,

and
∆n(x) ≤ C (1 + |x|)−2 E|X1/σ|p (H logn)p−1n1−p/2,

where C is an absolute constant.

4.2. NED sequences. Near epoch dependence (NED) has been successfully used in
the econometrics literature to establish weak dependence of many important dy-
namic time series models (see e.g. Pötscher and Prucha, 1997).

Definition 4.3 (Andrews, 1988). Let {Xk} and {εk} be two random sequences
defined on the same probability space. Then the process {Xk} is called near epoch
dependent (NED) on the basis process {εk} if

νm = sup
k∈Z

‖Xk − E[Xk|εk−m, . . . , εk+m]‖2 (4.2)

tends to zero for m→ ∞.
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Under NED or the more general concept of Lp–approximability (see Pötscher
and Prucha, 1997) (functional) central limit theorems and laws of large numbers
have been obtained. We refer to Pötscher and Prucha (1997) for detailed results
and further references. Lemma 4.4 below shows when our results apply to NED–
sequences.

Lemma 4.4. Let νm be given as in (4.2). Assume that {Xk} is NED on an inde-
pendent basis sequence {εk}. For any positive sequence {κn} with κn ր ∞ we have
{Xk} ∈ W(L2, {mn}, {nνmn

κn}). If νmn
= o(Bn/n) then {Xk} ∈ W(L2, {mn}).

Example 1. Let {yk} be a GARCH(1,1) sequence. I.e.

yk = εkσk (4.3)

where
σ2

k = δ + ασ2
k−1 + βy2

k−1, (4.4)

with i.i.d. {εk}, δ > 0 and α, β ≥ 0. Nelson (1990) showed that a strictly stationary
solution of (4.3) and (4.4) with E|y0|p < ∞ exists if and only if ̺p := E(α +

βε20)
p/2 < 1. The unique solution is given by

yk = εk

√
δ

(

1 +

∞
∑

ℓ=1

ℓ
∏

i=1

(

α+ βε2k−i

)

)1/2

.

Assume that ̺p < 1 for some p ∈ (2, 3]. We notice that then also ̺q < 1 for
all 0 < q ≤ p. Using the independence of the εk we obtain with some routine
arguments

νm = ‖y0 − E[y0|ε−m, · · · , ε0]‖2

≤
∥

∥

∥

∥

y0 − ε0
√
δ

( m
∑

ℓ=1

ℓ
∏

i=1

(

α+ βε2−i

)

)1/2∥
∥

∥

∥

2

≤
√
δ ‖ε0‖2

(

E
∞
∑

ℓ=m+1

ℓ
∏

i=1

(

α+ βε2−i

)

)1/2

= O
(

̺
m/2
2

)

.

Now let mn = ⌊H logn⌋ whereH > 2(1−3p/4)/ log̺2. Then Corollary 3.4 applies.
The example shows, that our method can significantly improve upon standard

methods (using β–mixing) when applied to GARCH(1,1) sequences. Besides the
fact that we do not need any of the smoothness assumptions for the density of the
error sequence mentioned in the Introduction, we also get non–uniform bounds,
and bounds when only p < 3 moments exist. As for the uniform bounds we can
explicitly determine the absolute constant in the approximation error.

4.3. Linear processes with dependent innovations. Let {ai} be a real–valued and
absolute summable sequence and define the linear process

Xk =

∞
∑

i=−∞

aiYk−i. (4.5)

We are interested in the case where {Yk} is a dependent sequence. Invariance
principles for the partial sums of linear processes with dependent innovations have
been studied by Wu and Min (2005).



Berry-Esseen bounds for econometric time series 387

Proposition 4.5. Let {Yk} be a zero–mean sequence in W(Lp, {mn}, {an}) for
which M = supk∈Z ‖Yk‖p < ∞. Let {Xk} be defined as in (4.5). Further let
φm = supk∈Z

‖Yk − Ykm‖p and

νm = mφm +
∑

|i|>m

|ai|.

If νmn
= o(Bn/n), then {Xn} ∈ W(Lp, {mn}).

Proof : Setting

Xkm =

m
∑

i=−m

aiYk−i,m,

we get 4m–dependent approximations for Xk. Repeated application of the
Minkowski’s inequality gives

‖Xk −Xkm‖p ≤
∥

∥

∥

∥

∑

|i|>m

aiYk−i

∥

∥

∥

∥

p

+

∥

∥

∥

∥

m
∑

i=−m

ai(Yk−i − Yk−i,m)

∥

∥

∥

∥

p

≤M
∑

|i|>m

|ai| + (2m+ 1)φm = O(νm).

�

Example 2. In the econometric literature an important class of linear processes
with dependent errors is defined by ARMA(p, q) processes with GARCH–type in-
novations. I.e. the process {Xk, k ∈ Z} is given by the relation

Xk − φ1Xk−1 − · · · − φpXk−p = Yk + θ1Yk−1 + · · · + θqYk−q , (4.6)

with some real coefficients φi, i ∈ {1, . . . , p} and θj , j ∈ {1, . . . , q} and it is assumed
that {Yk, k ∈ Z} is some GARCH type process which should not be specified
here. If a stationary and causal solution of (4.6) exists, then it can be represented
as a linear process

∑

i≥0 ψiYk−i with exponentially decreasing coefficients ψi (see

Brockwell and Davis, 1991). Similar as we just showed for the GARCH(1,1), we
proved in Hörmann (2008) that for a large class of GARCH models (including
EGARCH, AGARCH, threshold models etc.) m–dependent approximations {Ykm}
to the original sequence {Yk} can be obtained, such that

‖Yk − Ykm‖2 ≤ const · ̺m (̺ < 1).

Hence, for ARMA processes with a causal representation and errors specified by the
GARCH processes given in Hörmann (2008) we get νm ≤ const·e−δm for some δ > 0.
If p ∈ (2, 3] moments exist, application of Corollary 3.4 gives sup−∞<x<∞ ∆n(x) =

O
(

(log n)p−1n1−p/2
)

.

4.4. Sums of the form
∑

fk(2kω). This example serves to demonstrate the applica-
bility of our method outside the time series framework. Let (fk)k≥1 be a sequence

of measurable functions defined on the unit interval, such that
∫ 1

0 fk(ω) dω = 0 and
∫ 1

0
|fk(ω)|p < ∞ for some p ∈ (2, 3]. In addition we let f̂k(ω) be the 1–periodic

extension to the positive real line, i.e. f̂k(x) = fk(x − ⌊x⌋). Further we set

Sn(ω) =

n
∑

k=1

f̂k(2kω), ω ∈ [0, 1),
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and B2
n =

∫ 1

0 S
2
n(ω) dω. Notice that if λ denotes the Lebesgue measure then we

have here

∆n(x) = |λ{ω ∈ [0, 1) : Sn(ω) ≤ xBn} − Φ(x)|.
Under the present setup McLeish (1975b) obtained a Kolmogorov type law of large
numbers. For fk = f central and functional central limit theorems have been
obtained by Ibragimov (1967) and Billingsley (1968).

We define the modulus of continuity wf of a function f on the unit interval

wf (δ) = sup
0≤s,t<1

|s−t|<δ

|f(s) − f(t)|, 0 < δ < 1.

Proposition 4.6. Assume that for a sequence (mn)n≥1 of positive integers we have

ρn =
1

Bn

n
∑

k=1

wfk

(

2−mn
)

= o(1).

Then for sufficiently large n

sup
−∞<x<∞

∆n(x) ≤ 76 (10mn + 1)p−1B−p
n

n
∑

k=1

∫ 1

0

|fk(ω)|p dω + 2 ρp/(p+1)
n

and

∆n(x) ≤ C(1+|x|)−p

{

mp−1
n B−p

n

n
∑

k=1

∫ 1

0

|fk(ω)|p dω +
(

− log ρn

)(p+1)/2
ρp/(p+1)

n

}

,

where C is an absolute constant.

Proof : Let Xk(ω) = f̂k(2kω). Define the random variable εk(ω) equal to the k–th
digit in the binary expansion of ω. Ambiguity can be avoided by the convention
to take terminating expansions whenever possible. Then {εk} is an i.i.d. sequence
where εk takes values 0 and 1 with probability 1/2. Obviously we have the repre-
sentation

Xk = fk

(

∞
∑

j=1

εk+j2
−j

)

= Mk(εk+1, εk+2, . . .).

Using a one–sided version of the coupling construction method, we define m–
dependent approximations

Xkm = Mk(εk+1, εk+2, . . . , εk+m, ε
(k)
k+m+1, ε

(k)
k+m+2, . . .).

Changing for some ω ∈ [0, 1) the digits εk(ω) for k > m will give an ω′ with
|ω − ω′| ≤ 2−m. And therefore

|Xk −Xkm| ≤ wfk

(

2−m
)

.

Thus ep,n,mn
≤ ρn. Applying Theorems 3.1–3.2 directly would yield a little bit

weaker result as in Proposition 4.6. Since the Xkm are constructed via the cou-
pling method we have E|Xkm|p = E|Xk|p for all k,m ≥ 1. Hence we get sharper
estimates in (5.7) and (5.8). �

Example 3. If fk = f ,
∫ 1

0
|f(ω)|p dω is finite and wf (h) ≤ const · |h|β , β > 0, our

method yields

∆n(x) ≤ C1(1 + |x|)−p(logn)p−1n1−p/2
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and

sup
−∞<x<∞

∆n(x) ≤ C2(logn)p−1n1−p/2.

We notice that under these assumptions Ibragimov (1967) obtained the slightly bet-
ter uniform bound C1(logn)p/2−1n1−p/2. See also Ladokhin and Moskvin (1971).

5. Proof

In the sequel we let Snm = X1m + · · · + Xnm. Without loss of generality we
can assume that EXk = EXkm = 0 for all k,m ≥ 1. We set Bnm = E(S2

nm) and
recall the definition of ep,n,mn

in (3.1). Note that if {Xk} is in W(Lp, {mn}) then
it follows that eq,n,mn

→ 0 for all 0 < q ≤ p. To show our main results we need
some preliminary lemmas.

Lemma 5.1. For every δ > 0, every m,n ≥ 1 and every x ∈ R the following
estimate holds:

|P (Sn ≤ xBn) − Φ(x)| ≤ A0(x, δ) +A1(m,n, δ)

+ max{A2(m,n, x, δ) +A3(m,n, x, δ), A4(m,n, x, δ) +A5(m,n, x, δ)},
where

A0(x, δ) = |Φ(x) − Φ
(

x+ δ
)

|;
A1(m,n, δ) = P (|Sn − Snm| > δBn);

A2(m,n, x, δ) = |P (Snm ≤ (x+ δ)Bn) − Φ
(

(x+ δ)Bn/Bnm

)

|;
A3(m,n, x, δ) = |Φ

(

(x + δ
)

Bn/Bnm) − Φ
(

(x+ δ)
)

|;
A4(m,n, x, δ) = A2(m,n, x,−δ) and A5(m,n, x, δ) = A3(m,n, x,−δ).

Proof : Since {Sn ≤ xBn} ⊂ {Snm ≤ (x+ δ)Bn} ∪ {Snm − Sn > δBn} we obtain

P (Sn ≤ xBn) ≤ P
(

Snm ≤ (x+ δ)Bn

)

+ P (|Sn − Snm| > δBn). (5.1)

Similarly it follows that

P (Sn ≤ xBn) ≥ P
(

Snm ≤ (x− δ)Bn

)

− P (|Sn − Snm| > δBn).

By (5.1) and the triangular inequality we get

P (Sn ≤ xBn) − Φ(x) ≤ |P
(

Snm ≤ (x+ δ)Bn

)

− Φ
(

(x+ δ)
)

|
+A0(x, δ) +A1(m,n, δ).

Using again the triangular inequality we can split up the first term on the right
above in A2(m,n, x, δ)+A3(m,n, x, δ). With the same argument we obtain a lower
bound. Then A2 has to be replaced with A4 and A3 with A5. �

The next two Lemmas are special cases of Theorem 2.6 in Chen and Shao (2004)
and give uniform and nonuniform Berry–Esseen bounds for m–dependent random
variables.

Lemma 5.2. Let Z1, Z2, . . . , Zn be m–dependent random variables with zero mean
and finite E|Zi|p for 2 < p ≤ 3. Then

sup
−∞<x<∞

∆n(x) ≤ 75(10m+ 1)p−1B−p
n

n
∑

i=1

E|Zi|p.
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Lemma 5.3. Let Z1, Z2, . . . , Zn be m–dependent random variables with zero mean
and finite E|Zi|p for 2 < p ≤ 3. Then there is an absolute constant c0, such that

∆n(x) ≤ c0(1 + |x|)−pmp−1B−p
n

n
∑

i=1

E|Zi|p.

Lemma 5.4. Let {Xk} ∈ W(L2, {mn}). Then

lim sup
n→∞

1

e2,n,mn

(∣

∣

∣

∣

Bn

Bnmn

− 1

∣

∣

∣

∣

∨
∣

∣

∣

∣

Bnmn

Bn
− 1

∣

∣

∣

∣

)

≤ 2.

Especially we have Bn ∼ Bnmn
for n→ ∞.

Proof : Note that |B2
n −B2

nmn
| = E|Sn + Snmn

||Sn − Snmn
|. Hence by some basic

inequalities we infer

|B2
n −B2

nmn
| ≤ ‖Sn + Snmn

‖2‖Sn − Snmn
‖2

≤
(

‖Sn‖2 + ‖Snmn
‖2

)

‖Sn − Snmn
‖2

≤
(

2‖Sn‖2 + ‖Sn − Snmn
‖2

)

‖Sn − Snmn
‖2,

where we used ‖Snmn
‖2 ≤ ‖Sn‖2 + ‖Sn − Snmn

‖2. From the definition of ep,n,mn

and the Minkowski inequality it follows that

‖Sn − Snmn
‖p ≤ ep,n,mn

Bn. (5.2)

Hence

|B2
n −B2

nmn
| ≤ (2Bn + e2,n,mn

Bn)e2,n,mn
Bn.

The latter relation implies that
∣

∣

∣

∣

Bn −Bnmn

Bn

∣

∣

∣

∣

≤
∣

∣

∣

∣

Bn −Bnmn

Bn

∣

∣

∣

∣

∣

∣

∣

∣

Bn +Bnmn

Bn

∣

∣

∣

∣

≤ (2 + e2,n,mn
)e2,n,mn

.

�

Proof of Theorem 3.2: We use Lemma 5.1 to estimate ∆n(x). Since the bound
given there is uniform in its parameters we can use m = mn and

δ = δn(x) = ep/(p+1)
p,n,mn

(1 + |x|).

With these values we estimate the terms Ai (i = 1, 2, . . . , 5) of Lemma 5.1.
In order to bound

A0(x, δn(x)) =
∣

∣Φ(x) − Φ
(

x+ δn(x)
)∣

∣,

we distinguish two cases. First we assume that 1 + |x| < (−2 log ep,n,mn
)1/2. By

the mean value theorem it follows that
∣

∣Φ(x) − Φ
(

x+ δn(x)
)∣

∣ ≤ (2π)−1/2δn(x)

≤ (2π)−1/2(1 + |x|)−p(−2 log ep,n,mn
)(p+1)/2ep/(p+1)

p,n,mn
.

Now we assume that 1 + |x| ≥ (−2 log ep,n,mn
)1/2. If sign(x) = −1 then

x+ δn(x) = −(1 + |x|)(1 − ep/(p+1)
p,n,mn

) + 1.
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Hence we can choose an n0 which is independent of the eligible x such that x +
δn(x) < 0 if n ≥ n0. Thus

∣

∣Φ(x) − Φ
(

x+ δn(x)
)
∣

∣ ≤ 2Φ
(

x+ δn(x)
)

≤ 2
(

1 − Φ
(

(1 + |x|)(1 − ep/(p+1)
p,n,mn

) − 1
))

= bn(x).

If sign(x) = 1 we have
∣

∣Φ(x)−Φ
(

x+ δn(x)
)
∣

∣ ≤ 2
(

1−Φ(x)
)

≤ bn(x). We recall the
well know inequality

1 − Φ(T ) ≤ (2π)−1/2 1

T
e−T 2/2 for all T ≥ 1.

Our assumptions on x and ep,n,mn
→ 0 imply that for each γ > 0 we can choose

an n1 = n1(γ), such that for all n ≥ n1

(1 + |x|)
(

1 − ep/(p+1)
p,n,mn

)

− 1 > (1 + |x|)(1 − γ)1/2.

If γ is chosen small enough we obtain
∣

∣Φ(x) − Φ
(

x+ δn(x)
)∣

∣ ≤ (2π)−1/2 2

(1 + |x|)(1 − γ)1/2
exp

(

− (1 + |x|)2(1 − γ)/2
)

≤ (1 + |x|)−p(1 + |x|)p−1 exp
(

− (1 + |x|)2(1 − γ)/2
)

≤ (1 + |x|)−p(−2 log ep,n,mn
)(p−1)/2e1−γ

p,n,mn
.

We chose now γ < 1/(p+1) and collect our estimates for A0(x, δn(x)) . We conclude
that for every C > (2π)−1/2,

A0(x, δn(x)) ≤ C(1 + |x|)−p(−2 log ep,n,mn
)(p+1)/2ep/(p+1)

p,n,mn
ultimately. (5.3)

By the Markov–inequality and (5.2)

A1(mn, n, δn(x)) = P (|Sn − Snmn
| > δn(x)Bn)

≤ E|Sn − Snmn
|p(δn(x)Bn)−p

≤ ep
p,n,mn

(

δn(x)
)−p

= (1 + |x|)−pep/(p+1)
p,n,mn

. (5.4)

According to Lemma 5.3 we have

A2(mn, n, x, δn(x)) ≤ c0(1 + |Hn(x)|)−pmp−1
n B−p

nmn

n
∑

k=1

E|Xkmn
|p, (5.5)

where

1 + |Hn(x)| = 1 +

∣

∣

∣

∣

(x+ δn(x))Bn

Bnmn

∣

∣

∣

∣

≥ 1 +
[

(1 + |x|)
(

1 + ep/(p+1)
p,n,mn

)

− 1
] Bn

Bnmn

≥ 1 − Bn

Bnmn

+ (1 + |x|) Bn

Bnmn

.

By Lemma 5.4 it follows that

lim sup
n→∞

sup
x∈R

1 + |x|
1 + |Hn(x)| ≤ 1. (5.6)
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Note that

E|Xkmn
|p ≤ (‖Xk‖p + ‖Xkmn

−Xk‖p)
p

≤ 2p(‖Xk‖p
p + ‖Xk −Xkmn

‖p
p).

Since for any real sequence (ak) and for any p ≥ 1 the relation
∑n

k=1 |ak|p ≤
(
∑n

k=1 |ak|
)p

holds, we conclude from the definition of ep,n,mn

n
∑

k=1

E|Xkmn
|p ≤ 2p

( n
∑

k=1

E|Xk|p +
(

n
∑

k=1

‖Xk −Xkmn
‖p

)p
)

= 2p

( n
∑

k=1

E|Xk|p + ep
p,n,mn

Bp
n

)

. (5.7)

Hence combining (5.5)–(5.7) and Lemma 5.4 we get for every C > 2pc0

A2(mn, n, x, δn(x)) ≤ C
(

1 + |x|
)−p

mp−1
n

(

B−p
n

n
∑

k=1

E|Xk|p + ep
p,n,mn

)

ultimately.

(5.8)
Next we estimate A3. By definition we have

A3(mn, n, x, δn(x)) =
∣

∣Φ
(

(x+ δn(x))Bn/Bnmn

)

− Φ
(

x+ δn(x)
)∣

∣. (5.9)

The mean value theorem and Lemma 5.4 give for 1 + |x| ≤ (−2 log ep,n,mn
)1/2

∣

∣Φ
(

(x+δn(x))Bn/Bnmn
) − Φ

(

x+ δn(x)
)
∣

∣

≤ (2π)−1/2
∣

∣x+ δn(x)
∣

∣

∣

∣

∣

∣

Bn

Bnmn

− 1

∣

∣

∣

∣

≤ const · (1 + |x|)−p
(

− log ep,n,mn

)(p+1)/2
e2,n,mn

= (1 + |x|)−p o
(

ep/(p+1)
p,n,mn

)

.

Essentially the same arguments we used to estimate A0 in case of 1 + |x| ≥
(−2 log ep,n,mn

)1/2 can be used here, to show that the (5.9) is bounded by (1 +

|x|)−p o
(

e
p/(p+1)
p,n,mn

)

, for 1 + |x| ≥ (−2 log ep,n,mn
)1/2. Thus we have

A3(mn, n, x, δn(x)) = (1 + |x|)−p o
(

ep/(p+1)
p,n,mn

)

. (5.10)

It is obvious that the terms A4 and A5 in Lemma 5.1 can be estimated in exactly
the same way as A2 and A3. Using the estimates (5.3), (5.4), (5.8) and (5.10), the
proof of Theorem 3.2 follows at once from Lemma 5.1. �

Proof of Theorem 3.1: We can use similar (in fact easier) arguments as in the proof
of Theorem 3.2. Again we will employ Lemma 5.1, but now we choose δ = δn =

e
p/(p+1)
p,n,mn . Application of the mean value theorem and the Markov inequality yield

sup
−∞<x<∞

A0(x, δn) ≤ (2π)−1/2ep/(p+1)
p,n,mn

; (5.11)

A1(mn, n, δn) ≤ ep/(p+1)
p,n,mn

; (5.12)

By Lemma 5.2 it follows that

sup
−∞<x<∞

A2(mn, n, x, δn) ≤ 75(10mn + 1)p−1B−p
nmn

n
∑

k=1

E|Xkmn
|p;
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Thus by Lemma 5.4 and (5.7) it is clear that

sup
−∞<x<∞

A2(mn, n, x, δn) ≤

2p · 76 (10mn + 1)p−1

(

B−p
n

n
∑

k=1

E|Xk|p + ep
p,n,mn

)

ultimately. (5.13)

By the elementary proposition (cf. Petrov, 1995, Lemma 5.2)

sup
−∞<x<∞

|Φ(px) − Φ(x)| ≤ (2πe)−1/2 max{p− 1, p−1 − 1}

we conclude that

sup
−∞<x<∞

A3(mn, n, x, δn) ≤ (2πe)−1/2

(∣

∣

∣

∣

Bn

Bnmn

− 1

∣

∣

∣

∣

∨
∣

∣

∣

∣

Bnmn

Bn
− 1

∣

∣

∣

∣

)

.

Thus by Lemma 5.4 we infer that

sup
−∞<x<∞

A3(mn, n, x, δn) = o
(

ep/(p+1)
p,n,mn

)

. (5.14)

The estimates forA4 andA5 are the same as for A2 and A3. Collecting our estimates
(5.11)–(5.14) and plugging them into Lemma 5.1 finishes the proof. �

Proof of Theorem 3.3: The proof only requires some simple modifications of the
proofs of Theorem 3.1–3.2 and will thus be omitted. �

Proof of Corollary 3.4: We first show that

∞
∑

k=0

|E(X1Xk+1)| <∞. (5.15)

Without loss of generality we can assume that E(Xkm) = 0 for all k ∈ Z, m ≥ 1.
Now write

X1Xk+1 = (X1 −X1m)Xk+1 +X1m(Xk+1 −Xk+1,m) +X1mXk+1,m.

Using stationarity, (3.5) and the fact that X1m and Xk+1,m are independent if
m < k, we get for m = k − 1 that

|E(X1Xk+1)| ≤ E|(X1 −X1,k−1)Xk+1| + E|X1,k−1(Xk+1 −Xk+1,k−1)|

≤ (‖X1‖2 + ‖X1,k−1‖2)‖X1 −X1,k−1‖2

≤
(

1 +D1/p
)

‖X1‖p‖X1 −X1,k−1‖2 for large enough k.

Next note that Xk ∈ W(L2, {⌊H logn⌋}, {nh}) and stationarity imply that ‖X1 −
X1mn

‖2 = o(nh−1). Let tn be such that mtn
= ⌊H log tn⌋ = n. Since tn obviously

grows exponentially fast, we conclude that ‖X1 − X1n‖2 converges to zero at an
exponential rate, and (5.15) follows.

It is also clear now that Bn ∼ σn1/2. Further we notice that by our assumptions

there is an α > 0 such that e
2/3
2,n,mn

= o
(

n1−p/2−α
)

. Hence the proof follows by an
application of Theorem 3.3. �
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