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Abstract. In the classical occupancy scheme with infinitely many boxes, n balls
are thrown independently into boxes 1, 2, . . ., with fixed probabilities pj , j ≥ 1.
We establish approximations to the distributions of the summary statistics Kn, the
number of occupied boxes, and Kn,r, the number of boxes containing exactly r
balls, within the family of translated Poisson distributions. These are shown to be
of ideal order as n → ∞, with respect both to total variation distance and to the
approximation of point probabilities. The proof is probabilistic, making use of a
translated Poisson approximation theorem of Röllin (2005).

1. Introduction

In the classical occupancy scheme with infinitely many boxes, n balls are thrown
independently into boxes 1, 2, . . ., with probability pj of hitting box j, j ≥ 1, where
p1 ≥ p2 ≥ . . . > 0 and

∑∞
j=1 pj = 1. The summary statistics Kn, the number of

occupied boxes, and Kn,r, the number of boxes containing exactly r balls, have been
widely studied. Central limit theorems were established by Karlin (1967), under
a regular variation condition, and Dutko (1989) showed that Kn is asymptotically
normal, assuming only the necessary condition that its variance tends to infinity
with n. A full discussion of this and many more aspects of the problem can be found
in Gnedin et al. (2007); see also Barbour and Gnedin (2009), in which multivariate
approximation of the Kn,r is treated.

As regards the accuracy of the central limit approximation, Hwang and Janson
(2008) show that the point probabilities P[Kn = t] are uniformly approximated
by the point probabilities of the integer discretization of the normal distribution
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N (µn, σ2
n), where µn := EKn and σ2

n := VarKn. The accuracy of their approxi-
mation is of order O(1/σ2

n), provided only that σ2
n → ∞ as n → ∞. This is the

same accuracy as would be expected for sums of independent indicator random
variables, and is thus a remarkably precise result. Earlier results, for instance those
of Mirakhmedov (1989, 1992), in a more complicated setting, require additional
assumptions. However, the proof in Hwang and Janson (2008) involves long and
delicate analysis of the corresponding generating functions. In this paper, working
within the context of a fixed sequence of pj ’s, we derive an analogous approxima-
tion by purely probabilistic arguments, complement this result with a distributional
approximation in total variation, and investigate the quantities Kn,r as well.

The approach that we take begins with the well–known observation that, if the
fixed value n were replaced by a Poisson distributed random number with mean n,
then the numbers Nj of balls in the boxes j = 1, 2, . . . would be independent
Poisson random variables. Approximations of the kind to be discussed would then
be immediate, from the theory of sums of independent Bernoulli random variables.
The essence of the problem lies in the dependence introduced by fixing n. One
way of relaxing this dependence is to disregard the first few boxes, for which the
result is essentially known, and to use the fact that the number of balls falling in
the remaining boxes is now random. Indeed, defining jn ≥ 1 in such a way that

pjn−1 ≥ 4n−1 log n > pjn
, (1.1)

it is immediate that

P[Nj ≥ 1 for all j ≤ jn − 1] ≥ 1 − n

4 logn

(

1 − 4 logn

n

)n

≥ 1 − n−3,

so that, except on a set of probability at most n−3, we have

jn−1
∑

j=1

Ij = jn − 1, (1.2)

where Ij := I[Nj ≥ 1]. Furthermore, a simple Poisson approximation argument,
due to Le Cam (1960) and Michel (1987), can now be used to get a sharp description
of the distribution of the remaining elements in the sum Kn :=

∑

j≥1 Ij , since

dTV(L(Nj , j ≥ jn),L(Lj , j ≥ jn)) ≤ Pn :=
∑

j≥jn

pj,

where (Lj, j ≥ jn) are independent Poisson random variables with means ELj =
npj: see Barbour and Gnedin (2009, Sec. 2). This means that the random sequences
(Ij , j ≥ jn) and (I[Lj ≥ 1], j ≥ jn) can be constructed to be identical, except on a
set of probability at most Pn, so that, except on a set of probability at most n−3+Pn,
the distribution of Kn agrees with that of a sum of independent indicators, the first
jn − 1 of which are equal to 1. Hence a discretized central limit theorem and
uniform approximation of point probabilities follow, using N (µn, σ2

n) as basis, with
accuracies O(σ−1

n + n−3 + Pn) and O(σ−2
n + n−3 + Pn) respectively, and analogous

results are also true for the statistics Kn,r.
The drawback to this very simple approach is that it need not be the case that,

for instance, Pn = O(σ−2
n ). For example, Karlin’s case of regular variation allows

the possibility of having σ2
n ≍ nβ , for any given β, 0 < β < 1. In such cases,

Pn ≍ (n−1 log n)1−β , so that Pn = O(σ−2
n ) is not true if β > 1/2, and Pn = O(σ−1

n )
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is not true if β > 2/3. To get the result of Hwang and Janson (2008), we in general
need something sharper.

Our approach involves a technique analogous to that above, discarding a set of
indices for which the outcome is essentially known, and using the randomness in the
remainder. Foregoing the total independence of the above scheme, which costs too
much to achieve, we instead construct a conditionally independent sequence of Bi-
nomial random variables within the problem, and use these to provide the necessary
refinement. The way in which this can be done is described in Röllin (2005). There,
and in this paper too, we use translations of Poisson distributions as approxima-
tions, instead of discretized normal distributions, though, to the accuracies being
considered, they are equivalent: the translated Poisson distribution TP (µ, σ2) is
defined to be that of the sum of an integer a and a Poisson Po (λ)–distributed
random variable, with λ and a so chosen that a + λ = µ and σ2 ≤ λ < σ2 + 1.

Using this approach, we are able to prove the following two theorems. We use
dTV to denote the total variation distance between distributions:

dTV(P, Q) := sup
A

|P (A) − Q(A)|,

and dloc to denote the local distance (point metric) between distributions on the
integers:

dloc(P, Q) := sup
j∈Z

|P{j} − Q{j}|.

We define j0 so that
∑

j≥j0−1

pj ≥ 1/2 >
∑

j≥j0

pj =: P0, (1.3)

and let n0 ≥ 3 be such that jn, defined in (1.1), satisfies jn ≥ j0 for all n ≥ n0, and
also that n0/ log2 n0 ≥ 16/P0.

Theorem 1.1. If µn := EKn and σ2
n := VarKn, then

dTV(L(Kn), TP(µn, σ2
n)) = O(σ−1

n );

dloc(L(Kn), TP(µn, σ2
n)) = O(σ−2

n ),

uniformly in n ≥ n0.

Theorem 1.2. For r ≥ 1, setting µn,r := EKn,r and σ2
n,r := VarKn,r, we have

dTV(L(Kn,r), TP (µn,r, σ
2
n,r)) = O(σ−1

n,r);

dloc(L(Kn,r), TP (µn,r, σ
2
n,r)) = O(σ−2

n,r),

uniformly in n ≥ max{n0, e
r/4, 2r}.

Note that the variances σ2
n and σ2

n,r in the above theorems cannot necessarily be

replaced by their simpler ‘poissonized’ versions σ̃2
n and σ̃2

n,r from the model in
which a Poisson Po (n)–distributed number of balls are thrown. For instance, in
Theorem 1.1, the difference (σ̃n/σn −1) may tend to zero more slowly than σ−1

n , in
which case it would dominate the error in the corresponding approximation. Note
also that the implied constants in Theorems 1.1 and 1.2 are the same for all choices
of the pj ’s, as long as the quantities jn, j0 and P0 determined from (1.1) and (1.3)

are such that jn ≥ j0, and that P0 ≥ 16 log2 n/n. To this extent, the pj’s can also
be allowed to depend on n.
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Röllin’s theorem and our construction are set out in Section 2, together with the
general scheme of the proofs. The details for the two theorems are then given in
Sections 3 and 4. Some useful technical results are collected in the appendix.

2. The basic method

We begin with the following theorem from Röllin (2005). Let W be an integer
valued random variable, with mean µ and variance σ2, and let M be some random
element. Define

µM := E(W |M); σ2
M := Var (W |M); τ2 := Var (µM );

ρ2 := E(σ2
M ); ν2 := Var (σ2

M ); U := τ−1(µM − µ). (2.1)

Of course, σ2 = ρ2 + τ2.

Theorem 2.1. Suppose that, for some ε > 0,

|E{f ′(U) − Uf(U)}| ≤ ε‖f ′′‖ (2.2)

for all bounded functions f with bounded second derivative; ‖ · ‖ denotes the supre-

mum norm. Then there exist universal constants R1 and R2 such that

dTV(L(W ), TP (µ, σ2))

≤ E{dTV(L(W |M), TP(µM , σ2
M ))} + R1

1

ρ

{

1 +
ν

ρ
+

ετ3

σ2

}

;

dloc(L(W ), TP (µ, σ2))

≤ E{dloc(L(W |M), TP(µM , σ2
M ))} + R2

1

ρ2

{

1 +
ν2

ρ2
+

ετ3

σ2

}

.

Values of the constants are given in Röllin (2005). Note that (2.2) is exactly what
has to be established for the simplest smooth metric standard normal approximation
to L(U), using Stein’s method. For U a sum of independent random variables, ε
would typically be the Lyapounov ratio, and thus the quantity σ−2τ3ε would be
bounded by an average of the ratios of third to second moments of the summands.

The theorem is useful provided that L(W |M) is such that it is well approxi-
mated for each value of M by the translated Poisson distribution with its mean
and variance as parameters. This is the case, for instance, for sums of independent
Bernoulli random variables, as well as for many sums of independent integer valued
random variables, as noted in Röllin (2005). Here is the result that we shall use in
what follows.

Theorem 2.2. Suppose that L(W |M) is the distribution of a sum
∑

j≥1 Ij(M) of

independent Bernoulli random variables with probabilities pj(M) such that µM :=
∑

j≥1 pj(M) < ∞ a.s.; write σ2
M :=

∑

j≥1 pj(M)(1 − pj(M)), ρ2 := E(σ2
M ) and

ν2 := Var (σ2
M ). Suppose that ν2 ≤ Cρ2 for some C < ∞. Then there exist

universal constants C1 and C2 such that

E{dTV(L(W |M), TP(µM , σ2
M ))} ≤ 4C

ρ2
+

C1

√
2

ρ
;

E{dloc(L(W |M), TP(µM , σ2
M ))} ≤ 4C + 2C2

ρ2
.
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Proof. Bounds of the form

dTV(L(W |M), TP(µM , σ2
M )) ≤ min{C1σ

−1
M , 1};

dloc(L(W |M), TP(µM , σ2
M )) ≤ min{C2σ

−2
M , 1}, (2.3)

are given in Barbour (2009, Theorems 6.2 and 6.3), with C1 = 4 and C2 = 280. The
former follows as in Barbour and Čekanavičius (2002, Theorem 3.1), and similar
techniques can be used to establish the latter; see also Röllin (2005). Then, by
Chebyshev’s inequality, P[σ2

M < 1
2ρ2] ≤ 4C/ρ2. The bounds follow by taking

expectations in (2.3). �

We now need to find a suitable collection of conditionally independent Bernoulli
random variables. To do so, we start by observing, as before, that it is enough
to consider indices j ≥ jn in the sums, so we need only consider the distribution
of (Nj , j ≥ jn). We realize these random variables in two stages: first, we realize
M := (Mj , j ≥ j0) by throwing n balls independently into the boxes with indices
j ≥ j0, with probability pj/P0 for box j, and then ‘thinning’ them independently
with retention probability P0, so that, conditionally on M , the (Nj , j ≥ j0) are
independent, with Nj ∼ Bi (Mj , P0). With this construction, it remains to evaluate
the quantities appearing in Röllin’s theorem, and to check that we have the right
result. More specifically, we need to check that, for some constants C, C′, C′′,

(i) ν2 ≤ Cρ2; (ii) ρ2 ≥ C′σ2, and (iii) ε ≤ C′′τ−3σ2, (2.4)

uniformly in the stated ranges of n, for the random sums Wn :=
∑

j≥jn
I[Nj ≥ 1]

and Wn,r :=
∑

j≥jn
I[Nj = r], r ≥ 1. Theorems 1.1 and 1.2 will then follow directly

from Theorems 2.1 and 2.2.
The first two inequalities in (2.4) cause no great problems, since they involve

only variance calculations, though care has to be taken with the correlations in
Theorem 1.2, because the summands in

µM :=
∑

j≥jn

(

Mj

r

)

P r
0 (1 − P0)

Mj−r

are not monotone functions of the (negatively associated) Mj. The main effort is
required in evaluating ε for the third inequality. We now sketch the structure of
this argument, leaving the details to the next two sections.

Take z(l), l ≥ 0, to be either Bi (l, P0){[1,∞)} or Bi (l, P0){r}, as appropriate,
(zero if l = 0). Then define the quantity U that we wish to address by U :=
∑

j≥jn
Yj , where

ζj := E(z(Mj)), yj(l) := z(l) − ζj and Yj := τ−1yj(Mj). (2.5)

Thus U is a sum of mean zero, weakly dependent random variables. In order to
approach (2.2), we begin by writing

E{Uf(U)} =
∑

j≥jn

E{Yjf(U)} = τ−1
∑

j≥jn

∑

l≥0

qj(l)yj(l)E{f(U
(n−l)
j + τ−1yj(l))},

(2.6)
where qj(l) := P[Mj = l] and

U
(m)
j := τ−1

∑

s≥jn
s 6=j

ys(M
(m)
js ), (2.7)
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and where

M
(m)
j· := (Mjs, s ≥ jn, s 6= j) ∼ MN(m; (ps/P0j , s ≥ jn, s 6= j)) (2.8)

has the multinomial distribution of m balls thrown independently into the boxes
with indices (s ≥ jn, s 6= j) with probabilities (ps/P0j , s ≥ jn, s 6= j), with P0j :=
P0−pj ≥ 3P0/4. We need to show that the expression in (2.6) is close to E{f ′(U)}.

As a first step, we use Taylor development to discard all but the constant and

linear terms in E{f(U
(n−l)
j + τ−1yj(l))}, establishing that

(1)
∣

∣

∣
τ−1

∑

j≥jn

∑

l≥0

qj(l)yj(l)
{

Ef(U
(n−l)
j + τ−1yj(l)) − Ef(U

(n−l)
j )

− τ−1yj(l)Ef ′(U
(n−l)
j )

}
∣

∣

∣
≤ k1σ

2τ−3‖f ′′‖.

The next step is to remove the l-dependence in the constant term, replacing U
(n−l)
j

by U
(n)
j . To make the computations, we realize U

(n−l)
j and U

(n)
j on the same

probability space by writing M
(n)
j· = M

(n−l)
j· + Z

(l)
j· , where M

(n−l)
j· and Z

(l)
j· are

independent, and distributed as M
(m)
j· in (2.8), with m = n − l and m = l, re-

spectively; and then defining U
(n−l)
j and U

(n)
j as before, using (2.7). Using this

representation, we then show that

(2)
∣

∣

∣
τ−1

∑

j≥jn

∑

l≥0

qj(l)yj(l)
{

Ef(U
(n−l)
j ) − Ef(U

(n)
j )

− E[f ′(U
(n−l)
j )(U

(n−l)
j − U

(n)
j )]

}∣

∣

∣
≤ k2σ

2τ−3‖f ′′‖.

Although this has introduced a further term E[f ′(U
(n−l)
j )(U

(n−l)
j − U

(n)
j )] involv-

ing l, there is simplification because Ef(U
(n)
j ) is multiplied by

∑

l≥0 qj(l)yj(l) =
EYj = 0, and hence drops out.

We now simplify what is left by showing that

(3)
∣

∣

∣
τ−1

∑

j≥jn

∑

l≥0

qj(l)yj(l)
{

E[f ′(U
(n−l)
j )(U

(n−l)
j − U

(n)
j )]

− E[f ′(U
(n)
j )]E(U

(n−l)
j − U

(n)
j )

}
∣

∣

∣
≤ k3σ

2τ−3‖f ′′‖.

As a result of this, the quantity Ef(U
(n−l)
j ) in (1) has been replaced by a multiple

of Ef ′(U
(n)
j ), with errors of the desired order, which is a useful step in approaching

the intended goal of Ef ′(U). There is also the quantity Ef ′(U
(n−l)
j ) appearing

in (1), but this is easily reduced to one involving only Ef ′(U
(n)
j ), too:

(4)
∣

∣

∣
τ−1

∑

j≥jn

∑

l≥0

qj(l)y
2
j (l){Ef ′(U

(n−l)
j ) − Ef ′(U

(n)
j )}

∣

∣

∣
≤ k4σ

2τ−3‖f ′′‖.

At this point, we have thus established that
∣

∣

∣
EUf(U) − τ−2

∑

j≥jn

κjEf ′(U
(n)
j )

∣

∣

∣
≤ (k1 + k2 + k3 + k4)σ

2τ−3‖f ′′‖, (2.9)

with
κj :=

∑

l≥0

qj(l)yj(l){yj(l) − τE(U
(n)
j − U

(n−l)
j )}, (2.10)
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and, for example by taking f(x) = x,

1 = EU2 = τ−2
∑

j≥jn

κj .

In parallel with the above reduction starting from (2.6), we now start with

Ef ′(U) = τ−2
∑

j≥jn

κjEf ′(U)

= τ−2
∑

j≥jn

κj

∑

l≥0

qj(l)Ef ′(U
(n−l)
j + τ−1yj(l)), (2.11)

and make two rather simpler steps, first proving that

(5)
∣

∣

∣
τ−2

∑

j≥jn

κj

∑

l≥0

qj(l){Ef ′(U
(n−l)
j + τ−1yj(l))−Ef ′(U

(n−l)
j )}

∣

∣

∣
≤ k5σ

2τ−3‖f ′′‖,

and then that

(6)
∣

∣

∣
τ−2

∑

j≥jn

κj

∑

l≥0

qj(l){Ef ′(U
(n−l)
j )−Ef ′(U

(n)
j )}

∣

∣

∣
≤ k6σ

2τ−3‖f ′′‖.

Putting these two into (2.11), it follows that
∣

∣

∣
Ef ′(U) − τ−2

∑

j≥jn

κjEf ′(U
(n)
j )

∣

∣

∣
≤ (k5 + k6)σ

2τ−3‖f ′′‖, (2.12)

and combining this with (2.9) yields

|E{f ′(U) − Uf(U)}| ≤ ε‖f ′′‖, (2.13)

with σ−2τ3ε ≤ ∑6
t=1 kt bounded, as required.

3. The argument for Kn

We begin by noting, for future reference, that we have

p̄n := max
j≥jn

pj ≤ 4n−1 log n ≤ P0/4 ≤ 1/8;

np̄2
n ≤ 16n−1 log2 n ≤ P0, (3.1)

whenever n ≥ n0, and that β := (1 − P0/2) ≥ 3/4. We use c and c′ to denote
generic universal constants, not depending on n or the pj ’s.

For Kn, we have L(Wn |M) that of a sum of indicator random variables Ij(M),
j ≥ jn, with probabilities

{1 − (1 − P0)
Mj} =: z(Mj);

recall (2.5). Hence σ2
M =

∑

j≥jn
z(Mj)(1 − z(Mj)), and

ρ2 = Eσ2
M =

∑

j≥jn

E{(1 − P0)
Mj − (1 − P0)

2Mj}.

Applying Lemma 5.1 (iv) with x =
√

1 − P0, and using the fact that np̄2
n ≤ P0, now

immediately gives the lower bound

ρ2 ≥ cρ

∑

j≥jn

e−npj min{1, npj}, (3.2)
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where cρ = c(
√

1 − P0)e
−2P0 , and c(·) is as in Lemma 5.1. On the other hand,

because the Nj are negatively associated,

σ2 ≤
∑

j≥jn

Var I[Nj ≥ 1] =
∑

j≥jn

{1−(1−pj)
n}(1−pj)

n ≤
∑

j≥jn

e−npj min{1, npj}.

It thus follows that ρ2 ≥ cρσ
2, establishing (2.4) (ii).

For ν2 = Varσ2
M , we note that σ2

M is the difference of the random variables
s1(M) :=

∑

j≥jn
(1 − P0)

Mj and s2(M) :=
∑

j≥jn
(1 − P0)

2Mj , thus implying that

ν2 ≤ 2(Var s1(M) + Var s2(M)). Since (1 − P0)
l is decreasing in l, we can use the

negative association of the Mj’s to upper bound the variances:

Var s1(M) ≤
∑

j≥jn

Var {(1 − P0)
Mj}; Var s2(M) ≤

∑

j≥jn

Var {(1 − P0)
2Mj}.

Now both of these quantities can be bounded by using Lemma 5.1 (iv):

Var {(1 − P0)
Mj} ≤ e−2βnpj min{1, 2βnpj},

and

Var {(1 − P0)
2Mj} ≤ e−2β′npj min{1, 2β′npj},

with β′ := 4 − 6P0 + 4P 2
0 − P 3

0 . Thus ρ−2ν2 is uniformly bounded, establish-
ing (2.4) (i). It thus remains to prove that ε ≤ C′′τ−3σ2 for some constant C′′,
and we are finished. To do this, we successively verify the inequalities (1) – (6) of
Section 2.

To establish inequality (1), we note that its left hand side is bounded by

1
2τ−3

∑

j≥jn

∑

l≥0

qj(n)|yj(l)|3‖f ′′‖. (3.3)

Now |yj(l)| ≤ 1, and
∑

l≥0

qj(l)y
2
j (l) = E{(1 − P0)

2Mj} − {E(1 − P0)
Mj}2,

with Mj ∼ Bi (n, pj/P0). From Lemma 5.1 (iv) with x = 1 − P0, it follows that
∑

l≥0

qj(l)y
2
j (l) ≤ e−2βnpj min{1, 2βnpj}. (3.4)

Hence, from Lemma 5.4 (i),

τ−3
∑

l≥0

qj(l)|yj(l)|3 ≤ τ−3
∑

j≥jn

npje
−2βnpj ≤ K

(2β−1)
0 σ2τ−3.

By (3.3), this proves (1) with k1 = K
(2β−1)
0 .

For inequality (2), we have

|E{f(U
(n)
j )−f(U

(n−l)
j )−f ′(U

(n−l)
j )(U

(n)
j −U

(n−l)
j )}| ≤ 1

2‖f ′′‖E{(U (n)
j −U

(n−l)
j )2}.

(3.5)
Now

τ2
E{(U (n)

j − U
(n−l)
j )2} ≤ E

{(

∑

s≥jn
s 6=j

Z
(l)
js P0(1 − P0)

M
(n−l)
js

)2}

,
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and the collections of random variables (Z
(l)
js , s ≥ jn) and ((1 − P0)

M
(n−l)
js , s ≥ jn)

are independent, and each is composed of negatively correlated elements. Hence

τ2
E{(U (n)

j − U
(n−l)
j )2} ≤ P 2

0

(

∑

s≥jn
s 6=j

EZ
(l)
js E

{

(1 − P0)
M

(n−l)
js

})2

+ P 2
0

∑

s≥jn
s 6=j

E{(Z(l)
js )2}E

{

(1 − P0)
2M

(n−l)
js

}

.

Now routine calculation gives

P0 EZ
(l)
js ≤ lP0ps/P0j ≤ 2lps; P 2

0 E{(Z(l)
js )2} ≤ 2lps(1 + 2lps);

E

{

(1 − P0)
M

(n−l)
js

}

≤ e−(n−l)ps ; E

{

(1 − P0)
2M

(n−l)
js

}

≤ e−2β(n−l)ps ,

and hence, with crude simplifications,

τ2
E{(U (n)

j − U
(n−l)
j )2} ≤ 10l2elδn

∑

s≥jn

pse
−2βnps ≤ cl2elδnn−1σ2, (3.6)

this last using (3.2) and Lemma 5.4 (i), where δn := 2p̄n and c = 10(K
(2β−1)
0 /cρ).

Hence, putting (3.5) and (3.6) into (2), we obtain the bound

c

2
‖f ′′‖τ−3

∑

j≥jn

∑

l≥0

qj(l)|yj(l)|l2elδnn−1σ2

≤ c′τ−3σ2‖f ′′‖ exp{δn(3 + np̄ne/P0)}
∑

j≥jn

e−npj pj(1 + npj),

by Lemma 5.1 (ii) and (iii), and this is uniformly of order τ−3σ2‖f ′′‖ in the stated
range of n, because

∑

j≥jn

pj(1 + npj)e
−npj ≤ Pn(1 + e−1) and δn + nδnp̄n ≤ 5P0/4.

This establishes inequality (2).
For inequality (3), we begin by writing

E{(U (n−l)
j − U

(n)
j )f ′(U

(n−l)
j )}

= E{[E(U
(n−l)
j − U

(n)
j |M (n−l)

j· ) − E(U
(n−l)
j − U

(n)
j )](f ′(U

(n−l)
j ) − f ′(EU

(n−l)
j ))}

− E(U
(n)
j − U

(n−l)
j )Ef ′(U

(n−l)
j ); (3.7)

note that introducing f ′(EU
(n−l)
j ) changes nothing, since it is multiplied by a quan-

tity with mean zero. The first term we bound by

‖f ′′‖
√

Var [E(U
(n−l)
j − U

(n)
j |M (n−l)

j· )]

√

Var U
(n−l)
j . (3.8)

Since

τE(U
(n−l)
j − U

(n)
j |M (n−l)

j· ) =
∑

s≥jn
s 6=j

(1 − P0)
M

(n−l)
js {1 − (1 − psP0/P0j)

l}, (3.9)
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and since the (M
(n−l)
js , s ≥ jn) are negatively associated, it follows that

τ2Var [E(U
(n−l)
j − U

(n)
j |M (n−l)

j· )] ≤ 4l2
∑

s≥jn
s 6=j

p2
se

−2β(n−l)ps

≤ 4l2elδnn−1/(2βe) = cl2elδnn−1,

for a suitable c. In much the same way, and using Lemma 5.1 (iv), we have

τ2VarU
(n−l)
j ≤

∑

s≥jn
s 6=j

Var {(1−P0)
M

(n−l)
js } ≤ 2

P0

P0j

∑

s≥jn
s 6=j

npse
−2β(n−l)ps ≤ celδnσ2.

Hence the first term in (3.7) is bounded by

cτ−2‖f ′′‖ lelδnn−1/2σ, (3.10)

for a suitable c. For the second, we replace Ef ′(U
(n−l)
j ) by Ef ′(U

(n)
j ):

|E(U
(n)
j −U

(n−l)
j ){Ef ′(U

(n−l)
j )−Ef ′(U

(n)
j )}| ≤ ‖f ′′‖E{(U (n)

j −U
(n−l)
j )2}, (3.11)

which is at most cτ−2‖f ′′‖l2elδnn−1σ2, by (3.6). Putting these bounds into (3.7),
it follows that the left hand side in (3) is at most

cτ−3‖f ′′‖
∑

j≥jn

∑

l≥0

qj(l)|yj(l)|elδn{ln−1/2σ + l2n−1σ2}

≤ c′τ−3‖f ′′‖
{

n−1/2σ
∑

j≥jn

npje
−npj + σ2

}

, (3.12)

by using Lemma 5.1 (ii) and (iii), for suitable constants c and c′. But now
∑

j≥jn

npje
−npj ≤

√
K ′nσ2,

by Lemma 5.4 (iv), and this, together with (3.12), shows that (3) is satisfied.
For (4), we use the simple bound

|Ef ′(U
(n−l)
j ) − Ef ′(U

(n)
j )| ≤ ‖f ′′‖E|U (n)

j − U
(n−l)
j | ≤ τ−1l‖f ′′‖. (3.13)

This gives a bound for the left hand side of (4) of

τ−3‖f ′′‖
∑

j≥jn

∑

l≥0

qj(l)y
2
j (l)l ≤ τ−3‖f ′′‖

∑

j≥jn

npj{e−2npj + e−2βnpj}

≤ k4τ
−3‖f ′′‖σ2,

by Lemma 5.4 (i); and hence we have proved (2.9).
For the remaining two inequalities, we observe that, from (2.10) and (3.4),

κ+
j := max{κj, 0} ≤ 2βnpje

−2βnpj , (3.14)

whereas, from (3.9),

κ−
j = |min{0, κj}| ≤

∑

l≥0

qj(l)|yj(l)|
∑

s≥jn

2lpse
−(n−l)ps ≤ cnpje

−npj

∑

s≥jn

pse
−nps ,

(3.15)
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from Lemma 5.1 (ii) and (iii). Hence, for inequality (5), we obtain the bound

τ−3‖f ′′‖
∑

j≥jn

|κj |
∑

l≥0

qj(l)|yj(l)| ≤ 2τ−3‖f ′′‖
∑

j≥jn

|κj |e−npj

≤ cτ−3‖f ′′‖
∑

j≥jn

npje
−2npj ≤ k5τ

−3σ2‖f ′′‖, (3.16)

by Lemma 5.4 (i), for a suitable k5. For inequality (6), we start from the bound

τ−2‖f ′′‖
∑

j≥jn

|κj |
∑

l≥0

qj(l)E|U (n)
j − U

(n−l)
j |

≤ τ−3‖f ′′‖
∑

j≥jn

|κj |
∑

l≥0

qj(l)2lelδn

∑

s≥jn
s 6=j

pse
−nps

≤ cτ−3‖f ′′‖
∑

j≥jn

|κj |npj

∑

s≥jn

pse
−nps ,

again from (3.9) and Lemma 5.1 (ii), and substituting from (3.14) and (3.15) for |κj |
gives at most

cτ−3‖f ′′‖
∑

j≥jn

(npj)
2
{

Pne−2βnpj + e−npj

(

∑

s≥jn

pse
−nps

)2}

≤ k6τ
−3‖f ′′‖ σ2, (3.17)

by Lemma 5.4 (i) and (iv). Since (3.16) and (3.17) together establish (2.12), we have
completed the proof of (2.13), and hence of (2.4) (iii), thus proving Theorem 1.1.

4. The argument for Kn,r

Fix r ≥ 1. We now require n to satisfy 4 log n ≥ r − 1 and n ≥ 2r. Then, with
p := pjn−1 ≥ 4n−1 log n, we have

∑

j<jn

P[Nj = r] ≤ (jn − 1)

(

n

r

)

pr(1 − p)n−r ≤ nrpr−1e−(n−r)p/r!

≤ n−3(4 log n)r−1er/r! ≤ c(log n)r−1n−3,

since xse−x is decreasing in x ≥ s and 4 logn ≥ r − 1. Thus
∑

j<jn
I[Nj = r] = 0

except on a set of probability of order O(n−3(log n)r−1), and we can restrict at-
tention to Wn,r :=

∑

j≥jn
I[Nj = r]. We recall that β := (1 − P0/2) ≥ 3/4, and

that

p̄n ≤ P0/4 ≤ 1/8 and np̄2
n ≤ P0,

whenever n ≥ n0. The generic constants c and c′ are now allowed to depend on r.
For Kn,r, the distribution L(Wn,r |M) is that of a sum of indicator random

variables Ij(M), j ≥ jn, with probabilities
(

Mj

r

)

P r
0 (1 − P0)

Mj =: z(Mj);

recall (2.5). The argument now runs much as before, but is complicated by the
fact that z(·) is not monotonic in l. First, we have µ =

∑

j≥jn
Ez(Mj) =

∑

j≥jn
ζj ,
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with ζj := Bi (n, pj){r}, whence, defining

µ̂r :=
∑

j≥jn

(npj)
re−npj

r!
,

it easily follows that

exp{−np̄2
n − n−1r2} ≤ µ/µ̂r ≤ erp̄n , (4.1)

for n ≥ 2r, with both lower and upper estimates uniformly bounded away from
zero and infinity in the chosen range of n: hence µ and µ̂r are uniformly of the
same order.

Now

σ2
M =

∑

j≥jn

z(Mj)(1 − z(Mj)) ≥
∑

j≥jn

z(Mj)(1 − zr), (4.2)

where zr := maxl≥r

(

l
r

)

P r
0 (1 − P0)

l−r < 1, and hence

ρ2 = Eσ2
M ≥ µ(1 − zr). (4.3)

For

σ2 = VarWn =
∑

j≥jn

∑

s≥jn

{P[Nj = Ns = r] − P[Nj = r]P[Ns = r]},

we use Lemma 5.3 for j 6= s to give

P[Nj = Ns = r] − P[Nj = r]P[Ns = r] ≤ 2er(pj + ps)e
4rp̄nP[Nj = r]P[Ns = r],

and adding over j and s gives an upper bound of at most

c
∑

j≥jn

pj(npj)
re−npj

∑

s≥jn

(nps)
re−nps ≤ c′Pnµ̂r.

For j = s, the total contribution to the variance is at most
∑

j≥jn
P[Nj = r] = µ.

Hence, and from (4.3), we have

σ2 ≍ ρ2 ≍ µ ≍ µ̂r, (4.4)

where the implied constants are universal for each r. This shows also that (2.4) (ii)
holds.

For (2.4) (i), we take

ν2 := Var (σ2
M ) = Var

(

∑

j≥jn

z(Mj)(1 − z(Mj))
)

,

to which we can apply Lemma 5.3, noting that 0 ≤ z(l)(1−z(l)) ≤
(

l
r

)

P r
0 (1−P0)

l−r.
For j 6= s, this gives

Cov {z(Mj)(1 − z(Mj)), z(Ms)(1 − z(Ms))}
≤ c(pj + ps)(n(pj + ps) + 2r)(npj)

r(nps)
re−n(pj+ps),

by Lemma 5.2. Adding over j and s, this gives at most

c′
{

∑

j≥jn

pj(npj + 2r)(npj)
re−npj

∑

s≥jn

(nps)
re−nps

+
∑

j≥jn

pj(npj)
re−npj

∑

s≥jn

(nps)
r+1e−nps

}

, (4.5)
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and this is at most cPnµ̂r + K11Pnµ̂r, by Lemma 5.4 (iii) and (v). The terms with
j = s give at most

∑

j≥jn

E{z2(Mj)} ≤ P 2r
0

(r!)2
E

{

[(Mj)(2r) + (2r)(r)(Mj)(r)](1 − P0)
2(Mj−r)

}

≤ c{(npj)
2r + (npj)

r}e−2β(n−r)pj , (4.6)

by Lemma 5.1, and because l2(r) ≤
(

2r
r

)

l(2r)+(2r)(r)l(r). Adding over j, this gives at

most a contribution of cµ̂r, by Lemma 5.4 (ii). Thus we have shown that ν2 ≤ cσ2,
and (2.4) (i) is satisfied. It thus remains to show that ε ≤ cτ−3σ2, and the proof is
accomplished.

To establish inequality (1), we again observe that |yj(l)| := |z(l)−Ez(Mj)| ≤ 1,
and hence, recalling (3.3), that

1
2τ−3‖f ′′‖

∑

j≥jn

E|yj(Mj)|3 ≤ τ−3‖f ′′‖
∑

j≥jn

Ez2(Mj) ≤ cτ−3‖f ′′‖ µ̂r,

as for (4.6); so (1) holds, as required.
For (2), we recall (3.5). We then note that, for u ≥ r,

|z(u + t) − z(u)| = P r
0

∣

∣

∣

(

u

r

)

(1 − P0)
u−r −

(

u + t

r

)

(1 − P0)
u+t−r

∣

∣

∣

≤ c

(

u

r

)

(1 − P0)
u, (4.7)

for c a universal constant. From this, it follows that

τ |U (n)
j − U

(n−l)
j | ≤

∑

s≥jn
s 6=j

{

cI[Z
(l)
js ≥ 1]

(

M
(n−l)
js

r

)

(1 − P0)
M

(n−l)
js

+

r−1
∑

u=0

I[Z
(l)
js ≥ r − u] I[M

(n−l)
js = u]

}

. (4.8)

Since (x1 + · · · + xr)
2 ≤ r(x2

1 + · · · + x2
r), we can bound τ2

E(U
(n)
j − U

(n−l)
j )2 by

considering the r different sums separately.
First, for

E

{(

∑

s≥jn
s 6=j

I[Z
(l)
js ≥ 1]

(

M
(n−l)
js

r

)

(1 − P0)
M

(n−l)
js

)2}

,

using the independence of Z
(l)
j· and M

(n−l)
j· and Lemma 5.2, and with δn = 2p̄n as

before, the off-diagonal terms give at most

c
∑

s≥jn

∑

t≥jn

(l2pspt)(nps)
r(npt)

re−n(ps+pt)e2δn(2r+l) ≤ c′l2e2lδn n−1Pnµ̂r,

the last line using Lemma 5.4 (v). The terms with j = s then contribute at most

c
∑

s≥jn

lps(nps)
r{1 + (nps)

r}e−2βnpse2lδn ≤ c′le2lδnn−1µ̂r,

using Lemma 5.4 (ii). The contribution to τ2
E(U

(n)
j − U

(n−l)
j )2 from this first sum

is thus no more than cl2e2lδnn−1µ̂r.



428 A. D. Barbour

For 0 ≤ u ≤ r − 1, we need to find similar bounds for

E

{(

∑

s≥jn
s 6=j

I[Z
(l)
js ≥ r − u]I[M

(n−l)
js = u]

)2}

.

Here, the off-diagonal terms contribute at most

c
∑

s≥jn

∑

t≥jn

(l2(r−u)(pspt)
r−u(nps)

u(npt)
ue−n(ps+pt)e2δn(2u+l)

≤ c′(l/n)2(r−u)e2lδnnµ̂r,

by Lemma 5.4 (v), and the diagonal terms give at most

c
∑

s≥jn

(lps)
r−u(nps)

ue−npse2δn(2u+l) ≤ c′(l/n)r−ue2lδn µ̂r.

Since, in the above, u ≤ r − 1 and l ≤ n, it follows that

τ2
E(U

(n)
j − U

(n−l)
j )2 ≤ cl2e2lδnn−1µ̂r. (4.9)

Returning to (2), and once again recalling (3.5), we thus have a bound of

1
2‖f ′′‖ τ−1

∑

j≥jn

∑

l≥0

qj(l)|yj(l)|E(U
(n)
j − U

(n−l)
j )2

≤ cτ−3‖f ′′‖ µ̂r

n

∑

j≥jn

E{|yj(Mj)|M2
j e2Mjδn}

≤ c′τ−3‖f ′′‖ µ̂r

n

∑

j≥jn

(npj)
r(1 + (npj)

2)e−npj

≤ c′µ̂rτ
−3‖f ′′‖ (Kr−1 + Kr+1)Pn,

from Lemma 5.4 (iii), and this, with (4.4), completes the proof of (2).
For inequality (3), recalling (3.7) and (3.8), we first need to bound the variance

Var {E(U
(n)
j − U

(n−l)
j |M (n−l)

j· )}. Now

τE(U
(n)
j − U

(n−l)
j |M (n−l)

j· ) =
∑

s≥jn
s 6=j

E(z(M
(n)
js ) − z(M

(n−l)
js ) |M (n−l)

j· )

=:
∑

s≥jn
s 6=j

gs(M
(n−l)
js ),

where, from (4.7) and the independence of Z
(l)
j· and M

(n−l)
j· ,

|gs(t)| ≤ lps

P0j

(

t

r

)

(1 − P0)
tP r

0 , (4.10)

but gs is not non-negative. From Lemmas 5.3 and 5.2, the off-diagonal terms in

the variance Var {∑s≥jn, s6=j gs(M
(n−l)
js )} contribute at most

cl2e2lδn

∑

s≥jn

∑

t≥jn

pspt(nps)
r(npt)

re−n(ps+pt)

×{(ps + pt)(1 + nps + npt) + n−1(1 + nps)(1 + npt) + npspt},
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and, using Lemma 5.4 (v), this can be bounded by cl2e2lδnn−2Pnµ̂r. The diagonal
terms in turn yield at most
∑

s≥jn
s 6=j

Var gs(M
(n−l)
js ) ≤ cl2e2lδn

∑

s≥jn

p2
s(nps)

r(1+(nps)
r)e−2βnps ≤ c′l2e2lδnn−1Pn,

by Lemma 5.4 (iii). Since also µ̂r ≤ cn, it follows that

Var {E(U
(n)
j − U

(n−l)
j |M (n−l)

j· )} ≤ cτ−2l2e2lδnn−1Pn.

For τ2VarU
(n−l)
j , the considerations are similar but easier, since we now have

0 ≤ z(t) ≤
(

t

r

)

(1 − P0)
tP r

0

in place of (4.10), and the contributions from both diagonal and off-diagonal terms
are bounded by e2lδn µ̂r. Hence, and recalling (3.7) and (3.8), we have arrived at a
bound

|E{[E(U
(n−l)
j − U

(n)
j |M (n−l)

j· ) − E(U
(n−l)
j − U

(n)
j )](f ′(U

(n−l)
j ) − f ′(EU

(n−l)
j ))}|

≤ cτ−2‖f ′′‖ le2lδn

√

µ̂rPn/n; (4.11)

the analogue of (3.11),

|E(U
(n)
j − U

(n−l)
j ){Ef ′(U

(n−l)
j ) − Ef ′(U

(n)
j )}| ≤ cτ−2‖f ′′‖ l2e2lδnn−1µ̂r, (4.12)

follows directly from (4.9). Hence, for (3), we have
∣

∣

∣

∣

∣

∣

τ−1
∑

j≥jn

∑

l≥0

qj(l)yj(l){E[f ′(U
(n−l)
j )(U

(n−l)
j − U

(n)
j )]E[f ′(U

(n)
j )]

− E[f ′(U
(n)
j )]E(U

(n−l)
j − U

(n)
j )}

∣

∣

∣

∣

∣

∣

≤ cτ−3‖f ′′‖
∑

j≥jn

E{M2
j |yj(Mj)|e2Mjδn}(

√

µ̂rPn/n + n−1µ̂r)

≤ c′τ−3‖f ′′‖
{

∑

j≥jn

(npj)
r+1(1 + npj)e

−npj

}

(
√

µ̂rPn/n + n−1µ̂r),

and since
{

∑

j≥jn

(npj)
r+1(1 + npj)e

−npj

}2

≤ cnPnµ̂r, (4.13)

by Lemma 5.4 (v), we conclude that inequality (3) is indeed satisfied.
For inequality (4), we use the simple bound in (3.13), obtaining

∣

∣

∣

∣

∣

∣

τ−1
∑

j≥jn

∑

l≥0

qj(l)y
2
j (l){Ef ′(U

(n−l)
j ) − Ef ′(U

(n)
j )}

∣

∣

∣

∣

∣

∣

≤ τ−3‖f ′′‖
∑

j≥jn

E{Mjy
2
j (Mj)}

≤ cτ−3‖f ′′‖
∑

j≥jn

(npj)
r(1 + (npj)

r+1)e−2βnpj ≤ c′µ̂rτ
−3‖f ′′‖,
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from Lemma 5.1 (iii), in much the same way as for (4.6). Hence we have now
established (2.9).

For (5) and (6), we need the constants κj , for which we now have the bounds

κ+
j ≤ c(npj)

r(1 + (npj)
r)e−2βnpj ,

from (4.6), and

κ−
j ≤ cE{Mj|yj(Mj)|e2Mjδn}

√

µ̂r/n

≤ c′(npj)
r(1 + npj)e

−npj

√

µ̂r/n,

from (4.9). For inequality (5), this immediately gives a bound of

cτ−3‖f ′′‖
∑

j≥jn

|κj |(npj)
re−npj ≤ c′µ̂rτ

−3‖f ′′‖,

using Lemma 5.4 (ii); for (6), we obtain the bound

cτ−3‖f ′′‖
∑

j≥jn

|κj |npj

√

µ̂r/n ≤ c′µ̂rτ
−3‖f ′′‖,

where, for the contribution from κ−
j , we again use Lemma 5.4 (v), much as for (4.13).

This completes the proof of (2.12), and thus of Theorem 1.2.

5. Appendix

We collect several useful calculations, the first two of which need little proof. We
write m(s) := m(m − 1) . . . (m − s + 1).

Lemma 5.1. If M ∼ Bi (m, p), then for any x > 0 and 0 ≤ s ≤ m,

(i) E{M(s)x
M} = m(s)(xp)s(1 + p(x − 1))m−s.

In particular, if x = eδ, where 0 ≤ δ ≤ δ0 ≤ 1, and if (1 − P )eδ0 ≤ 1, then

(ii) E{M(s)x
M} ≤ (mp)s exp{δ0(s + mpe)};

(iii) E{M(s)[(1 − P )eδ]M}
≤ (mp(1 − P ))se−(m−s)pP exp{δ0[s + mpe(1 − P )]}.

Furthermore, for 0 ≤ x ≤ 1 and p ≤ 1/2, we have

(iv) c(x)e−2mp2

min{1, mp} ≤ emp(1−x2){Ex2M − (ExM )2}
≤ min{1, mp(1 − x2)},

where c(x) := min{(1 − e−(1−x)2), (1 − x)2e−(1−x)2)}.
Proof. We prove only (iv). From (i), we have

Ex2M − (ExM )2 = {1 − p(1 − x2)}m
{

1 −
(

1 − p(1 − p)(1 − x)2

1 − p(1 − x2)

)m}

.

The upper bound follows immediately, using the fact that 1 − p ≤ 1 − p(1 − x2).
The lower bound

e−mp(1−x2)−2mp2{1 − e−mp(1−x)2}
also uses the fact that p ≤ 1/2, and the argument is completed in standard fashion.
�
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Lemma 5.2. Let (L, M, m − L − M) ∼ MN(m; p, q, 1 − p − q) be trinomially

distributed. Then

E{L(u)M(v)w
LxM} = m(u+v)(wp)u(xq)v(1 + p(w − 1) + q(x − 1))m−u−v.

In particular, if 0 ≤ w, x ≤ eδ, where 0 ≤ δ ≤ δ0 ≤ 1, and if (1 − P )eδ0 ≤ 1, then

E{L(u)M(v)w
LxM} ≤ (mp)u(mq)v exp{δ0[(u + v) + m(p + q)e]};

E{L(u)M(v)[(1 − P )eδ]L+M}
≤ (mp(1 − P ))u(mq(1 − P ))ve−(m−u−v)(p+q)P

× exp{δ0[(u + v) + m(p + q)e(1 − P )]}.

Lemma 5.3. Let (L, M, m−L−M) ∼ MN(m; p, q, 1− p− q) be trinomial, where

p + q ≤ δ ≤ 1/4, and let the functions f, g, h, k satisfy 0 ≤ f(l) ≤ h(l) and

0 ≤ g(l) ≤ k(l) for l ∈ Z+. Then

Cov (f(L), g(M)) ≤ C1

:= e(p + q){E(Lh(L)e2Lδ)E(k(M)e2Mδ) + E(h(L)e2Lδ)E(Mk(M)e2Mδ)}.

If f and g are not nonnegative, but |f | and |g| are bounded as above, then

Cov (f(L), g(M)) ≤ C1 + 2m−1
E(Lh(L))E(Mk(M)) +

4m

3
pqEh(L)Ek(M).

Proof. From the multinomial formulae, we have

f(u)g(v){P[L = u, M = v] − P[L = u]P[M = v]}

=
f(u)g(v)

u!v!
puqv{m(u+v)(1 − p − q)m−u−v − m(u)m(v)(1 − p)m−u(1 − q)m−v}

≤ f(u)g(v)P[L = u]P[M = v]{(1 − p − q)−(u+v) − 1} (5.1)

≤ h(u)k(v)P[L = u]P[M = v](p + q)(u + v) exp{2(p + q)(u + v + 1)},
where the last inequality uses p+ q ≤ 1/4. The first part of the lemma now follows.

For the second part, (5.1) should be replaced by

|f(u)g(v)|P[L = u]P[M = v]
{

∣

∣

∣
(1 − p − q)−(u+v) − 1

∣

∣

∣
+

∣

∣

∣

∣

(m − u)(v)

m(v)
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

(

1 − pq

(1 − p)(1 − q)

)m

− 1

∣

∣

∣

∣

}

,

after which we use the bounds
∣

∣

∣

∣

(m − u)(v)

m(v)
− 1

∣

∣

∣

∣

≤ 2uv

m
;

∣

∣

∣

∣

(

1 − pq

(1 − p)(1 − q)

)m

− 1

∣

∣

∣

∣

≤ 4mpq/3.

�

Lemma 5.4. Let ps, s ≥ j, be nonnegative numbers summing to P ≤ 1, and define

σ2
n(r) :=

∑

s≥j

(nps)
re−nps , r ≥ 1; σ2

n(0) :=
∑

s≥j

min(nps, 1)e−nps .



432 A. D. Barbour

Then there exist universal constants K
(α)
r , Ku, Kuv and K ′ such that, for any

integers u ≥ v ≥ 0 and for any α > 0,

(i)
∑

s≥j

(nps)
u+1e−(1+α)nps ≤ K

(α)
0 σ2

n(0);

(ii)
∑

s≥j

(nps)
u+re−(1+α)nps ≤ K(α)

r σ2
n(r);

(iii)
∑

s≥j

(nps)
u+1e−nps ≤ KunP ;

(iv)
(

∑

s≥j

npse
−nps

)2

≤ K ′nσ2
n(0);

(v)
∑

s≥j

∑

t≥j

(nps)
r+u(npt)

r+ve−n(ps+pt) ≤ KuvnPσ2
n(r).

Proof. The first inequality reflects the fact that xu+1e−(1+α)x ≤ xe−x for 0 ≤ x ≤ 1,
whereas xu+1e−(1+α)x ≤ e−x supz≥1{ze−αz}: thus we can take K(α) = 1/eα. The
second is similar in vein, but easier. The third inequality, and case u = v = 0 in
the fifth, follow from

∑

s≥j

(nps)
u+1e−nps = n

∑

s≥j

ps(nps)
ue−nps ≤ nP (u/e)u.

For the fifth with u ≥ 1, we write the sum as

n2
∑

s≥j

ps(nps)
r+u−1e−nps

∑

t≥j

pt[(npt)
r+u−1e−npt ]

r+v−1
r+u−1 exp

{

−npt
u − v

r + u − 1

}

,

and use Cauchy–Schwarz to yield the upper bound

n2P
∑

s≥j

ps(nps)
2r+u+v−2 exp

{

−nps
2r + u + v − 2

r + u − 1

}

≤ nP
∑

s≥j

(nps)
re−nps max

x≥0
{xr+u+v−1 exp{−x(r + v − 1)/(r + u − 1)}},

noting that r + u − 1 ≥ 1. For the fourth part, Cauchy–Schwarz gives
(

∑

s≥j

npse
−nps

)2

≤ n
∑

s≥j

npse
−2nps ≤

∑

s≥j

min{nps, e
−1}e−nps .
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A. Röllin. Approximation of sums of conditionally independent variables by the

translated Poisson distribution. Bernoulli 11 (6), 1115–1128 (2005). doi:10.
3150/bj/1137421642. MR2189083.

http://www.ams.org/mathscinet-getitem?mr=MR1905850
http://www.ams.org/mathscinet-getitem?mr=MR2480545
http://www.ams.org/mathscinet-getitem?mr=MR1009456
http://www.ams.org/mathscinet-getitem?mr=MR2318403
http://www.ams.org/mathscinet-getitem?mr=MR2408581
http://www.ams.org/mathscinet-getitem?mr=MR0216548
http://www.ams.org/mathscinet-getitem?mr=MR0142174
http://www.ams.org/mathscinet-getitem?mr=MR1041684
http://www.ams.org/mathscinet-getitem?mr=MR2189083

	1. Introduction
	2. The basic method
	3. The argument for Kn
	4. The argument for Kn,r
	5. Appendix
	References

