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Abstract. We consider an n-tuple of independent ergodic Markov processes, each
of which converges (in the sense of separation distance) at an exponential rate, and
obtain a necessary and sufficient condition for the n-tuple to exhibit a separation
cutoff. We also provide general bounds on the (asymmetric) window size of the
cutoff, and indicate links to classical extreme value theory.

1. Introduction

It is well known that a large number of Markov chains exhibit cutoff phenomena
when converging to stationarity. This phenomenon occurs when the distance of the
chain from equilibrium (measured using, for example, the total-variation metric or
separation distance) stays close to its maximum value for some time, before drop-
ping relatively fast and tending quickly to zero. Such behaviour was first identified
for the transposition shuffle on the symmetric group (Diaconis and Shahshahani,
1981), and has since been shown to hold for many natural sequences of random
walks on groups (see Saloff-Coste, 2004 for a review).

In a recent paper, Barrera et al. (2006) consider n-tuples of independent pro-
cesses, and give sufficient conditions for cutoffs to hold when distance from sta-
tionarity is measured using total-variation, Hellinger, chi-square and Kullback dis-
tances, under the assumption that each coordinate process converges exponentially
fast. In the particular case when all coordinates converge at the same rate, the
window size of the cutoff (to be defined below) is also determined.

In this paper we consider the separation distance of such n-tuples from station-
arity and give conditions (very similar to those in Barrera et al., 2006) guaranteeing
the existence of a separation cutoff. Our approach is slightly different from that of
Barrera et al., however: instead of working with a set of ordered exponential rates
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we choose to work with discrete probability measures. This enables us to relate
cutoff to convergence of (suitably scaled versions of) these measures. Furthermore,
we are able to provide general bounds on the window size of the cutoff (not only
when all coordinates converge at the same rate). In particular, we show that in
general the right-hand side of the cutoff window may be of significantly larger order
than the left.

The paper is organised as follows. In Section 2 we recall the definitions of total-
variation and separation distance, and make formal the notion of cutoff time and
window size. In Section 3 we present our main result concerning the existence of a
separation cutoff, and prove general bounds on the window-size of such a cutoff. We
then apply this to the example of a continuous-time random walk on the hypercube
Zn

2 , where each coordinate may move at a different rate, and present a specific case
which shows that our general window-size bounds are tight. Some links to classical
extreme value theory are also highlighted. Finally, in Section 4, we briefly consider
the notion of a coupling cutoff for two such n-tuples.

2. The cutoff phenomenon

In keeping with the notation of Diaconis and Saloff-Coste (2006), for two proba-
bility measures µ and ν on a finite space (E, E) we shall write D(µ, ν) for a general
notion of distance between them. One example is total-variation distance

D(µ, ν) = ‖µ − ν‖TV = sup
A∈E

|µ(A) − ν(A)| ,

while the separation distance is defined to be

D(µ, ν) = sep (µ, ν) = max
x∈E

{

1 − µ(x)

ν(x)

}

.

Note that separation is not a metric due to its asymmetry. Both of these distances
take values in [0, 1], and it is simple to show (Aldous and Diaconis, 1987) that

‖µ − ν‖TV ≤ sep (µ, ν) .

Separation distance is intimately linked with the notion of strong stationary
times. Let X be a Markov chain with time-t distribution P t and stationary distri-
bution π.

Definition 2.1. A strong stationary time (SST) T is a randomized stopping time
for X such that

P(Xt = k |T ≤ t) = π(k) , for all 0 ≤ t < ∞, k ∈ E.

If T is a SST for X , then (Aldous and Diaconis, 1987)

sep (P t, π) ≤ P(T > t) , for all t ≥ 0. (2.1)

An optimal SST is one which achieves equality in (2.1) for all t ≥ 0: existence is
demonstrated in Aldous and Diaconis (1987) (in discrete-time).

We may now define the notion of a cutoff phenomenon for a given distance
function D (including, but not restricted to, those distances defined above).

Definition 2.2. For n ≥ 1, let Xn be a stochastic process taking values on a
finite space (En, En), with time-t distribution P t

n and stationary distribution πn.
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We say that the sequence {En, Xn, πn ; n = 1, 2, . . . } exhibits a (τn, bn)-D-cutoff if
τn, bn > 0 satisfy bn = o(τn) and

d−(c) = lim inf
n→∞

D(P τn+cbn

n , πn) satisfies lim
c→−∞

d−(c) = 1 ,

d+(c) = lim sup
n→∞

D(P τn+cbn

n , πn) satisfies lim
c→∞

d+(c) = 0 .

Here τn is called the cutoff time, and bn will be referred to as the window of the
cutoff. (We may simply say that the sequence Xn exhibits a τn-D-cutoff when we
are not concerned with the window size bn.)

Furthermore, it is possible to analyse the window size in more detail by consid-
ering separately the windows either side of the cutoff time τn. That is, instead of
using a single sequence bn to establish convergence in equations (4.2) and (4.3), we
can consider each convergence statement separately.

Definition 2.3. Suppose the sequence {En, Xn, πn} exhibits a τn-D-cutoff. If
there exist sequences bL

n , bR
n with max{bL

n , bR
n } = o(τn), such that

dL
−(c) = lim inf

n→∞
D(P

τn+cbL

n

n , πn) satisfies lim
c→−∞

dL
−(c) = 1,

and dR
+(c) = lim sup

n→∞
D(P

τn+cbR

n

n , πn) satisfies lim
c→∞

dR
+(c) = 0,

then bL
n will be called a left-window and bR

n a right-window of the cutoff.

To the best of the author’s knowledge, the only published article to identify a
difference between the left and right windows of a cutoff phenomenon is that of Chen
and Saloff-Coste (2008). For the processes considered in this paper however, such
a distinction will prove to be rather important.

3. Separation cutoff for n-tuples of independent processes

Let Xn = (X1
n, X2

n, . . . , Xn
n ) be an n-tuple of independent, continuous-time

Markov chains on a finite space (En, En), with initial state xn = (x1
n, . . . , xn

n) and
stationary distribution πn = π1

n × . . . × πn
n . Let

sepn (t) = sep (P t
n , πn) and sepi

n (t) = sep (P t
n,i , πi

n) ,

where P t
n,i denotes the distribution of X i

n at time t.

Proposition 3.1. For all t ≥ 0,

sepn (t) = 1 −
n
∏

i=1

(1 − sepi
n (t)) .

Proof : The independence of the chains implies that

1 − sepn (t) = min
y1

n
,...,yn

n

n
∏

i=1

P t
n,i(x

i
n, yi

n)

πi
n(yi

n)
=

n
∏

i=1

(1 − sepi
n (t)) ,

since each term in the product may be minimised individually. �

If T i
n is an optimal SST for X i

n (1 ≤ i ≤ n), then letting Tn = max T i
n one can

check that Tn is a SST for the n-tuple. Proposition 3.1 shows that

sepn (t) = P(Tn > t) for all t ≥ 0,

and it follows that Tn is an optimal SST for Xn.
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As in Barrera et al. (2006), we are interested in processes for which each compo-
nent X i

n converges at an exponential rate λi
n, although now this convergence is to

be measured using separation distance. Rather than following the route of Barrera
et al. (2006) and using an ordered set of rates {λ(i,n)}, we prefer to work instead
with discrete probability measures µn on (0,∞), where

µn({λ}) =
1

n
#{λi

n : λi
n = λ} .

(This is similar to the use of design measures in design theory, see e.g. St. John and
Draper, 1975.) The result of this will be that the existence of a separation cutoff
can be directly related to the convergence of appropriately scaled versions of µn as
n → ∞. We define κn by

κn = min {λ > 0 : µn(0, λ] > 0} .

The main result of this paper is the following:

Theorem 3.2. Let Xn be an n-tuple of independent ergodic Markov processes, each
of whose components satisfies |gλi

n
(t)| ≤ g(t) for all t ≥ 0, where gλi

n
is defined by

log sepi
n (t)

t
+ λi

n = gλi
n
(t) ,

and where g is a bounded continuous function satisfying g(t) ≤ O(t−1). As above,
let µn be the discrete probability measure describing the set {λi

n}, with support
[κn,∞).

(1) The sequence of n-tuples Xn exhibits a separation cutoff at time

τn = max
λ≥κn

{

log(nµn(0, λ])

λ

}

if and only if τnκn → ∞;
(2) The window of the separation cutoff is in general asymmetric: the left side

is at most O(1/κn), and the right side is bounded above by W (τnκn)/κn,
where W is the Lambert W -function.

As remarked in Barrera et al. (2006), under the conditions of Theorem 3.2 the
spectral gap of Xn is equal to κn and the separation-mixing time equivalent to τn.
Thus Theorem 3.2(i) shows that the conjecture of Peres (reported in Diaconis and
Saloff-Coste, 2006; Chen and Saloff-Coste, 2008) holds true for separation cutoff for
the processes considered here.

Consider an n-tuple Xn satisfying the conditions of Theorem 3.2. Using µn and
Proposition 3.1, the separation distance at time t may be written as

sepn (t) = 1 − exp

(

n

∫ ∞

κn

log(1 − e−t(λ−gλ(t)))µn(dλ)

)

. (3.1)

One benefit of working with separation distance in this setting is that equation (3.1)
holds for any µn, whereas there is no longer a simple exact expression for the total-
variation distance between P t

n and πn when the rates λi
n are not identical (Barrera

et al., 2006).
The proof of Theorem 3.2 will be established by the results of Proposition 3.3,

Lemma 3.6 and Theorem 3.7 below.
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Proposition 3.3. For the sequence {Xn} to exhibit a τn-separation cutoff, it is
necessary for τnκn → ∞.

Proof : Restricting attention to the mass at κn in equation (3.1) immediately im-
plies that, for any c > 1,

sepn (cτn) ≥ exp(−cτn(κn − gκn
(cτn)))

≥ exp(−cτnκn) exp(−cτng(cτn)) .

For a separation cutoff to hold at τn, we require that sepn (cτn) → 0 for all fixed
c > 1: this fails, however, if τnκn 9 ∞ (since the final exponential term above is
bounded away from zero due to our conditions on g). �

Now, given a measure µn, define τn by

τn = max
λ≥κn

{

log(nµn(0, λ])

λ

}

=
log(nµn(0, λ∗

n])

λ∗
n

, (3.2)

where λ∗
n ∈ [κn,∞) is defined by this last equality. (If there are two or more values

of λ achieving the maximum in equation (3.2) then we shall (arbitrarily) always take
λ∗

n to be the minimum of these values.) Given λ∗
n, we may define a new measure

νn on (0,∞) as follows:

νn({x}) =
µn({λ∗

n x})
µn(0, λ∗

n]
. (3.3)

This measure has total mass (µn(0, λ∗
n])−1 ∈ [1, n] and satisfies νn(0, 1] = 1. The

idea behind this scaling is as follows: λ∗
n describes in some sense the ‘critical point’

of µn – it will be shown that if τnκn → ∞ then any mass µn places to the left of
λ∗

n will not influence the separation cutoff time. For ease of notation we define

βn = nµn(0, λ∗
n] ∈ [1, n] .

Lemma 3.4. If τnκn → ∞ then:

(i) βn → ∞;

(ii) νn(0, 1]
w−→ δ1 (where

w−→ denotes weak convergence).

Proof : (i) βn = exp(τnλ∗
n) ≥ exp(τnκn) → ∞ by assumption.

(ii) By definition of τn (3.2),

log(nµn(0, λ])

λ
≤ log βn

λ∗
n

for all λ ≥ κn.

Thus for all x ≥ κn/λ∗
n,

log(nµn(0, xλ∗
n])

x
≤ log βn .

This yields

nµn(0, xλ∗
n] ≤ βx

n for all x ≥ κn/λ∗
n. (3.4)

Hence

νn(0, x] =
µn(0, xλ∗

n]

µn(0, λ∗
n]

=
nµn(0, xλ∗

n]

βn
≤ βx−1

n , (3.5)

where the inequality follows from (3.4). Thus for all ε ∈ (0, 1),

νn(0, 1 − ε] ≤ β−ε
n −−−−→

n→∞
0 .
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Since νn(0, 1] = 1 for all n, this proves the required convergence.
�

This makes more precise what is meant by λ∗
n describing the ‘critical point’ of

µn. Under the assumption that τnκn → ∞, the measures νn converge weakly to δ1

on (0, 1]: this is exactly the sort of behaviour to be expected if the sequence {λ∗
n}

captures information about the cutoff time. Lemma 3.6 and Theorem 3.7 make
this observation exact: their proofs rely on Proposition 3.5, which describes the
behaviour of the function θn defined by

θn(t) = βn

∫ ∞

κn/λ∗

n

exp(−tλ∗
nλ)νn(dλ) . (3.6)

Proposition 3.5. The following inequalities hold for all t ≥ log 2/κn:

1 − exp(−e−tg(t)θn(t)) ≤ sepn (t) ≤ 1 − exp(−2e2tg(t)θn(t)) . (3.7)

Note that if τnκn → ∞, Proposition 3.5 implies that the behaviour of sep(n)

around τn is determined by that of θn.

Proof : Using the measure νn, the separation in equation (3.1) may be rewritten as
follows:

sepn (t) = 1 − exp

(

βn

∫ ∞

κn/λ∗

n

log
(

1 − e−t(λ∗

n
λ−gλ∗

n
λ(t))

)

νn(dλ)

)

. (3.8)

Now note that the following simple inequality holds for 0 ≤ x ≤ 1/2:

−x − x2 ≤ log(1 − x) ≤ −x .

Applying this inequality to the log term in equation (3.8), and bounding gλ∗

n
λ(t)

by ±g(t), shows that for all t ≥ log 2/κn:

1 − exp(−e−tg(t)θn(t)) ≤ sepn (t) ≤ 1 − exp(−etg(t)θn(t) − e2tg(t)θn(2t)) .

Finally, observe from (3.6) that θn(2t) ≤ θn(t) for all t ≥ 0: the result follows
immediately. �

We are now in a position to prove the existence of the left-hand side of the cutoff
in Theorem 3.2.

Lemma 3.6. Suppose that τnκn → ∞, with τn defined as in (3.2). Let bL
n =

1/λ∗
n ≤ O(1/κn). Then

sepL
−(c) = lim inf

n→∞
sepn (τn + cbL

n) satisfies lim
c→−∞

sepL
−(c) = 1.

(Note that since τnκn → ∞, bL
n = o(τn), as is required for any candidate window-

size.)

Proof : Consider θn(τn + c/λ∗
n), for fixed c ∈ R. Since τnκn → ∞ it follows from

Lemma 3.4(i) that for any fixed c ∈ R,

τn +
c

λ∗
n

=
log βn + c

λ∗
n

≥ 0
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for large enough n. By definition of τn, with τn + c/λ∗
n ≥ 0:

θn(τn + c/λ∗
n) = βn

∫ ∞

κn/λ∗

n

exp(− [τn + c/λ∗
n] λ∗

nλ)νn(dλ)

≥ βn

∫ 1

κn/λ∗

n

exp(− [τn + c/λ∗
n] λ∗

nλ)νn(dλ)

≥ βnνn(0, 1]

(

e−c

βn

)

= e−c . (3.9)

Combining Proposition 3.5 and inequality (3.9) shows that for all c ∈ R,

sepL
−(c) ≥ 1 − lim sup

n→∞
exp(−e−γL

n
(c)θn(τn + c/λ∗

n)) ,

where

γL
n (c) = (τn + cbL

n)g(τn + cbL
n) ∼

n→∞
τng(τn) = O(1) . (3.10)

Hence

sepL
−(c) ≥ 1 − exp(−Me−c) ,

for some finite constant M > 0, and thus sepL
−(c) → 1 as c → −∞, as claimed. �

It turns out that the general bound for the right-window of the cutoff is signif-
icantly larger than that for the left. Theorem 3.7, which completes the proof of
Theorem 3.2, makes use of the Lambert W -function (see Corless et al., 1996). This
is the function defined for all x ∈ C by

W (x)eW (x) = x .

W (x) is positive and increasing for x ∈ R
+, with W (x) ∼ log(x/ log x) as x → ∞.

Theorem 3.7. Suppose that τnκn → ∞, with τn defined as in (3.2). Then

sepR
+(c) = lim sup

n→∞
sepn (τn + cW (τnκn)/κn) satisfies lim

c→∞
sepR

+(c) = 0.

Proof : In order for a sequence bR
n to be a right-window for the separation cutoff, it

is sufficient to show that θn(τn +cbR
n ) ≤ h(c) for sufficiently large n, where h(c) → 0

as c → ∞. For then, using inequality (3.7) it follows that

sepR
+(c) = lim sup

n→∞
sepn (τn + cbR

n )

≤ 1 − lim inf
n→∞

exp(−2e2γR

n
(c)θn(τn + cbR

n )) ,

where γR
n (c) is defined analogously to (3.10). Thus, for some finite M ,

sepR
+(c) ≤ 1 − exp(−Mh(c)) −−−→

c→∞
0 .
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We therefore search for an upper bound on the function θn(τn + cbR
n ) for fixed

c > 0. The form of τn, and use of integration by parts, yield the following:

θn(τn + cbR
n ) = βn

∫ ∞

κn/λ∗

n

(

e−cbR

n
λ∗

n

βn

)λ

νn(dλ)

= βn





(

e−cbR

n
λ∗

n

βn

)λ

νn(0, λ]





∞

κn/λ∗

n

+ βn log(βnecbR

n
λ∗

n)

∫ ∞

κn/λ∗

n

(

e−cbR

n
λ∗

n

βn

)λ

νn(0, λ] dλ . (3.11)

Now, for c > 0, this first term is negative for all n. Discarding this, and using
inequality (3.5) to bound νn(0, λ] in the second term, we see that

θn(τn + cbR
n ) ≤ βn log(βnecbR

n
λ∗

n)

∫ ∞

κn/λ∗

n

(

e−cbR

n
λ∗

n

βn

)λ

βλ−1
n dλ

= log(βnecbR

n
λ∗

n)
e−cbR

n
κn

cbR
n λ∗

n

= e−cbR

n
κn

(

τn

cbR
n

+ 1

)

, by definition of τn. (3.12)

Since bR
n must satisfy bR

n = o(τn), this upper bound tends to infinity with n unless
cbR

n κn ≥ W (τnκn), by definition of the Lambert W -function. Thus, with bR
n =

W (τnκn)/κn, (3.12) satisfies

e−cbR

n
κn

(

τn

cbR
n

+ 1

)

−−−−→
n→∞

h(c) =











∞ 0 < c < 1

1 c = 1

0 c > 1 .

It follows that for c > 1, θn(τn + cW (τnκn)/κn) → 0 as n → ∞, and so

sepR
+(c) = lim sup

n→∞
sepn (τn + cW (τnκn)/κn) = 0 .

Therefore bR
n = W (τnκn)/κn is a right-window of the cutoff, as claimed. �

This bound on the right-window is significantly larger than that for the left-
window. Since τnκn necessarily tends to infinity when a separation cutoff holds, it
follows that

O(1/κn) <
W (τnκn)

κn
= o(τn) .

3.1. Random walks on Zn
2 . Let Zn

2 be the group of binary n-tuples under coordinate-
wise addition modulo 2: this can be viewed as the vertices of an n-dimensional
hypercube. A continuous-time random walk Xn on Zn

2 may be defined as follows.
Let {Λi

n : 1 ≤ i ≤ n} be a set of independent Poisson processes, with the rate
of Λi

n equal to 2ρi
n: whenever there is an incident on Λi

n, with probability 1/2
the ith coordinate, Xn,i, is flipped to its opposite value. The unique equilibrium
distribution of Xn is the uniform distribution on Zn

2 , Un.
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Let T i
n be the time of the first incident on Λi

n. It is simple to show that T i
n is an

optimal SST for Xn,i, with

P(T i
n > t) = e−2tρi

n .

Thus Tn = max T i
n is an optimal SST for Xn. (This is similar in flavour to the

optimal SST for the continuous-time birth-death processes of Diaconis and Saloff-
Coste, 2006: there the SST is given by a sum of exponential random variables of
varying rates, rather than their maximum.)

It follows that Xn satisfies the conditions of Theorem 3.2, with

λi
n = 2ρi

n , and g ≡ 0 .

Writing ρ∗n = min
{

ρi
n

}

, the sequence Xn therefore exhibits a separation cutoff at
time

τn = max
ρ≥ρ∗

n

{

log(nµn(0, 2ρ])

2ρ

}

if and only if τnρ∗n → ∞. In this case, τn = 2τ̂n, where τ̂n is the total-variation
cutoff time according to Theorem 12 of Barrera et al. (2006).

For many simple examples, such as the symmetric random walk for which all co-
ordinates jump at rate 1, the result of Theorem 3.7 gives an extremely conservative
bound for the right-window. (Simple direct calculations show that a (log n/2, 1)-
separation cutoff holds, whereas the bound on bR

n from Theorem 3.7 tends to infinity
with n.) However, the following example shows that the bound of Theorem 3.7 can
be achieved, and so cannot be improved upon in general.

Example 3.8. Consider the sequence of random walks on Zn
2 with

ρi
n = max {1, 2 logn(i)}. The associated probability measure for Xn is

µn =
1

n

n
∑

i=1

δmax{2, 4 log
n
(i)} .

The measure µn places all its mass in the interval [2, 4], with κn = 2 and

µn[2, λ] =

⌊

nλ/4
⌋

n
∼ nλ/4−1, for all λ ∈ [2, 4].

For this sequence,

τn = max
2≤λ≤4

{

log(nµn[2, λ])

λ

}

= max
2≤λ≤4

{

log(nλ/4)

λ

}

=
log n

4
.

Note that this maximum is attained at all λ ∈ [2, 4]: we arbitrarily take λ∗
n = 2 to

be the minimum of these values. This gives βn =
√

n, and hence νn[1, x] = n(x−1)/2

for x ∈ [1, 2]. Since τn → ∞ as n → ∞, this random walk exhibits a τn-separation
cutoff. Now, by Lemma 3.6, the left-window of this separation cutoff is bounded
above by 1/λ∗

n = 1/2. However, for fixed c > 0 and some sequence bR
n = o(τn),
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integration by parts as in equation (3.11) yields the following:

θn

(

log n

4
+ cbR

n

)

∼ (e−4cbR

n − e−2cbR

n )

+
√

n log(
√

n e2cbR

n )

∫ 2

1

(

e−2cbR

n

√
n

)λ

n(λ−1)/2 dλ

∼ e−2cbR

n

τn

cbR
n

.

Arguing as in the proof of Theorem 3.7, a (τn, bR
n )-separation cutoff does not hold

for any sequence bR
n = o(W (τn)) (see Connor, 2007 for further details).

3.2. Links to extreme value theory. Looking back to the discussion following Propo-
sition 3.1, where the separation distance is identified as the tail distribution of the
maximum of a set of independent random variables T i

n, it is reasonable to ask how
the above results relate to the theory of extreme values. If the random variables
{T i

n} are i.i.d. for all i and n then the Fisher-Tippet-Gnedenko Theorem guar-
antees convergence in distribution of a renormalized Tn to one of three possible
distributions. For example, if Xn is a random walk on Zn

2 for which the rate of
each coordinate is chosen at random, with

P(ρi
n = pk) = qk , k = 1, . . . , m,

for all i and n, Theorem 2.7.2 of Galambos (1978) shows that a renormalized Tn has
a limiting Gumbel distribution. Indeed, writing p∗ = min {pk}, direct calculation
shows that

sepn

(

log n + c

2p∗

)

= 1 −



1 −
m
∑

j=1

qk

[

e−c

n

]pk/p∗





n

∼ 1 −
(

1 − q∗
e−c

n

)n

−−−−→
n→∞

1 − exp(−q∗e−c) .

In this case we see that both right- and left-hand windows are O(1).
More generally, the function θn defined in equation (3.6) may be interpreted as

follows. Let {V i
n : 1 ≤ i ≤ n} be independent, identically distributed random

variables, whose distribution is a mixture over λ of Exp(λ) distributions, with
mixture probability distribution µn. Then, for t ≥ 0,

P(V i
n > t) =

∫ ∞

0

e−λtµn(dλ) ,

and so

E

[

n
∑

i=1

1[V i
n

>t]

]

= n

∫ ∞

0

e−λtµn(dλ) = θn(t) .

Thus θn(t) describes the mean number of exceedances of level t by the set of random
variables {V i

n}. In particular, Proposition 3.5 implies that the set of n-tuples driven
by µn exhibits a τn-separation cutoff if and only if

E

[

n
∑

i=1

1[V i
n

>cτn]

]

−−−−→
n→∞

{

∞ 0 < c < 1

0 c > 1 .
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4. Coupling cutoffs

It is well known that the coupling method can be used to bound the rate of
convergence to equilibrium of a Markov chain, via the coupling inequality (see
Lindvall, 2002). Let Xn and Yn be two copies of a Markov process on En with
equilibrium distribution πn.

Definition 4.1. A coupling of Xn and Yn is a process (X̂n, Ŷn) on En × En such
that

X̂n
D
= Xn and Ŷn

D
= Yn ,

where
D
= denotes equality in distribution.

The coupling time T c
n of X̂n and Ŷn is defined by

T c
n = inf

{

t ≥ 0 : X̂t
n = Ŷ t

n

}

.

For a given coupling of Xn and Yn, define

F̄n(t) = P(T c
n > t), t ≥ 0 , (4.1)

to be the tail probability of T c
n. Suppose now that X0

n = x0
n is fixed, and that

Y 0
n ∼ π0

n. We then define the following behaviour, in analogy with Definition 2.2:

Definition 4.2. For n ≥ 1, let T c
n and F̄n be defined as above. We say that the

sequence {En, Xn, πn, T c
n} exhibits a (τn, bn)-coupling-cutoff if τn, bn > 0 satisfy

bn = o(τn) and

F̄−(c) = lim inf
n→∞

F̄n(τn + cbn) satisfies lim
c→−∞

F̄−(c) = 1 , (4.2)

F̄+(c) = lim sup
n→∞

F̄n(τn + cbn) satisfies lim
c→∞

F̄+(c) = 0 . (4.3)

Thus a coupling cutoff occurs when the distance between the two processes,
measured using the tail probability of the coupling time T c

n, asymptotically exhibits
an abrupt change from one to zero at time τn. (Note that if T c

n is a maximal coupling
time for all n (Griffeath, 1974/75) then a coupling-cutoff is equivalent to a total-
variation cutoff.) As with the optimal SST of Section 3, if (Xn, Yn) is a pair of
n-tuples whose ith coordinates may be independently coupled at an exponential
rate λi

n, then T c
n is the maximum of n coupling times and this yields an analogous

version of Theorem 3.2 for coupling cutoffs.
For the random walks on Zn

2 considered in Section 3.1, no intuitive maximal
coupling is known in general; for the symmetric random walk a (nearly) maximal
solution is presented in Matthews (1987), and a stochastically optimal co-adapted
coupling is described in Connor and Jacka (2008). However, Xn and Yn may be
simply coupled by allowing their ith coordinates to evolve independently until the
time that they first agree, whereafter they move synchronously. If X0

n and Y 0
n

do not agree on the ith coordinate (which happens with probability 1/2), then it
follows that the time taken for agreement on this coordinate is equal to the time of
the first incident on a Poisson process of rate 2pi

n, and so this coupling takes place
at an exponential rate. Thus a random walk on Zn

2 exhibits a coupling cutoff if and
only if it exhibits a separation cutoff (with the same values of τn and bn).

In general, the assumption that each component of the n-tuples may be co-
adaptedly coupled at an exponential rate is not restrictive: indeed, this is a rea-
sonable assumption for many Markov processes of interest (Burdzy and Kendall,
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2000). There is also a possibility that the coupling variant of Theorem 3.2 outlined
above could have interesting consequences for coupling-based perfect simulation
algorithms (such as CFTP and variants) for high-dimensional distributions.
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