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Aguascalientes, Aguascalientes, México.
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Abstract. Sufficient conditions, for finite time blow-up of nonnegative solutions,
are given for the weakly coupled system:

∂u1

∂t
= k1 (t)∆α1u1 + u1u

β1

2 , u1 (0) = ϕ1,

∂u2

∂t
= k2 (t)∆α2u2 + u2u

β2

1 , u2 (0) = ϕ2,

where ∆αi is the fractional Laplacian, 0 < αi ≤ 2, βi ≥ 1 are constants, ϕi are
positive, bounded, continuous and not identically zero, and ki : [0,∞) → [0,∞),

are continuous with
∫ t

0
ki (r) dr = O (tρi), ρi > 0, for i = 1, 2.

1. Introduction: statement of the result and overview

In what follows i ∈ {1, 2} and i′ = 3 − i. The purpose of this paper is to
extend some results obtained in the literature about blow up in finite time of the
nonnegative solutions for the following system of equations,

∂ui (t, x)

∂t
= ki (t)∆αiui (t, x) + ui (t, x)uβi

i′ (t, x) , t > 0, x ∈ R
d, (1.1)

ui (0, x) = ϕi (x) ≥ 0, x ∈ R
d.
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For ∆αi = − (−∆)αi/2 we denote the αi-Laplacian, 0 < αi ≤ 2, βi ≥ 1 are
constants, ϕi is bounded, continuous and not identically zero, and ki : [0,∞) →
[0,∞) is continuous. Let us define

Ki(t, s) =

∫ t

s

ki (r) dr, t ≥ s ≥ 0. (1.2)

We also assume
ε1,it

ρi ≤ Ki (t, 0) ≤ ε2,it
ρi , (1.3)

for all t large enough, where ε1,i, ε2,i and ρi are positive constants.
The integral version of (1.1) is given by

ui(t, x) = Ui (t, 0)ϕi (x) +

∫ t

0

Ui (t, r) ui (r, x)uβi

i′ (r, x) dr, (1.4)

where {Ui (t, s)}t≥s≥0 is the evolution family, on the space of bounded Borel mea-

surable functions on R
d, that solves the homogeneous Cauchy problem, for the

family of generators {ki (t)∆αi}t≥0. We have

Ui (t, s) = Si (Ki (t, s)) , t ≥ s ≥ 0,

where {Si (t)}t≥0 is the semigroup of a αi-stable Lévy process with infinitesimal
generator ∆αi .

A solution of (1.4) is called a mild solution of (1.1). By a solution of (1.1) we
always mean a mild solution. If there exist a solution (u1, u2) of (1.1) in [0,∞)×R

d

such that ‖u1 (t, ·)‖∞+‖u2 (t, ·)‖∞ < ∞ for any t ≥ 0, we say that (u1, u2) is a global
solution. If there exist a number 0 < Te < ∞ such that (1.1) has a bounded solution
(u1, u2) in [0, T ]×R

d, for all T < Te, with limt↑Te (‖u1 (t, ·)‖∞ + ‖u2 (t, ·)‖∞) = ∞,
then we say that (u1, u2) is non-global or that blows up in finite time.

From (1.4) we see that if ui blows up in finite time then ui′ also does. In this
paper we will see that all nonnegative solutions (u1, u2) of (1.1) blow up in finite
time. More precisely, we prove in Section 2 the following result.

Theorem 1.1. Let a = min{ρ1/α1, ρ2/α2}. If

d < max

{

(

ρi′βi

αi′
+

ρi

αi
− a

)−1

: i = 1, 2

}

, (1.5)

then the solution (u1, u2) of (1.1) blows up in finite time.

The study of systems like (1.1) is of interest due to their applications. Such
models arise, for example, in chemical reaction processes, combustion theory, heat
conduction, physic and engineering; see Bebernes and Eberly (1989) and Samarskii
et al. (1995). Generators of the form ki (t)∆αi are used for example in models of
anomalous growth of certain fractal interfaces and in hydrodynamic models with
modified diffusivity; see, for example, Bardos et al. (1979) and Jr. and Woyczynski
(2001). From a probabilistic perspective, operators ∆αi correspond to stable Lévy
processes; see Sato (1999) and Bogdan et al. (2009).

Using a probabilistic approach Birkner et al. (2002) gave sufficient conditions for
the blow up of solutions of (1.1). In fact, when k1 ≡ k2 ≡ 1, Birkner et al. (2002)
used the Feynman-Kac formula to prove that if a = min{1/α1, 1/α2} and

d < max

{

(

βi

αi′
+

ρi

αi
− a

)−1

: i = 1, 2

}

(1.6)
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then all nontrivial nonnegative solution of (1.1) blow up in finite time. Observe
that when ρ1 = ρ2 = 1, then the condition (1.5) coincides with (1.6). Kolkovska
et al. (2008) proved that the nonnegative solutions of (1.1) blow up in finite time for
a single equation with 0 < α ≤ 2, where k : [0,∞) → [0,∞) is a locally integrable
function satisfying (1.3), and d < α/(ρβ). The case d = α/(ρβ) also implies blow up
in finite time, and it was studied in Pérez and Villa (2010) by analytical methods.
We like to note that the subject was initiated by Fujita (1966) and it is very active
even now, see for example Escobedo and Levine (1995), Lu (1995), Zheng (1999),
Guedda and Kirane (1999), Guedda and Kirane (2001), Wang (2001), Wang (2000),
Kirane and Qafsaoui (2002), Yamauchi (2006), Pérez-Pérez (2006) and references
therein.

When ϕi ≡ ci > 0, a constant, then the solution (v1(t), v2(t)) of the system of
equations

vi(t) = ci +

∫ t

0

vi(s)v
βi

i′ (s)ds,

is a solution of (1.4). This system induce a Bernoulli type equation for vi, and thus
it blows up in finite time (see p. 211). Here the blow up does not depend on the
parameters α, d, β and ρ. We have a completely different behavior when ϕi is not
a constant. Assume, without loss of generality, that 0 is in the support of ϕi and
denote by B1 the unitary open ball with center 0. Then (see Lemma 4.1),

ui(t, x) ≥ ct−d/(αi/ρi)1B1(ct
−1/(αi/ρi)x). (1.7)

In the sequel by c or ci we denote positive constants whose specific values are
unimportant and in general are different form place to place. The lower estimation
in (1.7) of ui is very rough, but using it as initial condition in (1.1), by the Feynman-
Kac formula we find a better lower estimation for ui. In particular, we can see that
ui is not bounded.

Proposition 1.2. If d satisfies (1.5), then infx∈B1 ui(t, x) → ∞, as t → ∞, for
each i ∈ {1, 2}.

In fact, we will see that ui(t, x) can be bounded from below by a solution of a
Bernoulli type equation whose explosion time depends on the fact that we can take
ui(t, x) large enough. The latter is ensured by Proposition 1.2, whose proof is given
in Section 4.

Heuristically, from (1.7) we see that the behavior of ki(t)∆αi is similar to that
of ∆αi/ρi

. If for example the initial condition is sufficiently small and αi/ρi is also
small, then the related αi/ρi-stable process has long jumps and can reach those
regions where the initial values are close to 0, hence bigger values of βi tend to
decrease the values of d. In this way 0 < ρi < 1 diminishes the influence of jumps
of the process and ρi > 1 enhances it, influencing dimensions for wich we obtain
explosion. As an example, observe that if ρi = 1, βi = 1 and αi > 1, then our
criterion yields the blow-up of all the non-negative solutions in finite time only for
d = 1, and if αi = 1, βi = 2, ρi = 1/8, then we certainly have explosion up to
d < 4.

2. Local existence and Proof of Theorem 1.1

The proof of the local existence is an adaptation, to our case, of the proof given
by Uda (1995).
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Let τ > 0 and

Eτ ≡ {(u1, u2) : [0, τ ] → Cb(R
d) × Cb(R

d), |||(u1, u2)||| < ∞},

where Cb(R
d) is the space of real-valued continuous and bounded functions defined

on R
d, and

|||(u1, u2)||| ≡ sup
0≤t≤τ

{||u1(t, ·)||∞ + ||u2(t, ·)||∞}.

The set Eτ is a Banach space and Pτ ≡ {(u1, u2) ∈ Eτ , u1 ≥ 0, u2 ≥ 0} and
CR ≡ {(u1, u2) ∈ Eτ , |||(u1, u2)||| ≤ R}, R > 0, are closed subsets of Eτ .

Theorem 2.1. There exists a constant τ = τ(ϕ1, ϕ2) > 0 such that the integral
system (1.4) has a local solution in Cb([0, τ ] × R

d) × Cb([0, τ ] × R
d).

Proof : Define the operator Ψ on Cb([0, τ ] × R
d) × Cb([0, τ ] × R

d) as

Ψ (u1, u2) = (U1 (t, 0)ϕ1 (x) , U2 (t, 0)ϕ2 (x))

+

(
∫ t

0

U1 (t, r) u1 (r, x) uβ1

2 (r, x) dr,

∫ t

0

U2 (t, r)u2 (r, x) uβ2

1 (r, x) dr

)

.

Then, by taking τ > 0 small enough and R > 0 sufficiently large, we see that Ψ
is a contraction mapping on CR ∩ Pτ , hence the result follows by the fixed point
theorem. �

Now let us handle the proof of the main result. We begin by introducing some
concepts. Let pi(t, x), t ≥ 0, x ∈ R

d, be the transition density of the d-dimensional
isotropic αi-stable process Zi ≡ {Zi (t)}t≥0. We use Px to denote the distribution

of Zi, where Px [Zi (0) = x] = 1.

Lemma 2.2. Let

ξi := min
x∈B1

min
0≤r≤1

Px [Zi (r) ∈ B1] .

Then ξi > 0 and for any 0 ≤ s ≤ t, x ∈ B1 and t0 ≥ 0,
∫

B1

pi(Ki(t + t0, s + t0), y − x)dy ≥ ξ
⌊Ki(t+t0,s+t0)⌋
i , (2.1)

where ⌊z⌋ denotes the least integer no smaller than z ∈ [0,∞).

Proof : See Lemma 4.2 in Kolkovska et al. (2008). �

Proof of Theorem 1.1: Let t1 > 0 such that ‖u1 (t1, ·)‖∞ + ‖u2 (t1, ·)‖∞ < ∞.
Then

ui(t + t1, x) ≥

∫

B1

pi (Ki (t + t1, t1) , y − x) ui (t1, y) dy

+

∫ t

0

∫

B1

pi (Ki (t + t1, s + t1) , y − x)ui (s + t1, y)uβi

i′ (s + t1, y) dyds.

Let wi(t, ·) := ui(t1 + t, ·), then

wi(t, x) ≥

(

min
y∈B1

ui(t1, y)

)
∫

B1

pi (K1 (t + t1, t1) , y − x) dy

+

∫ t

0

∫

B1

pi (K1 (t + t1, s + t1) , y − x)

(

min
z∈B1

wi (s, z)

) (

min
z∈B1

wi′ (s, z)

)βi

dyds.
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Let t ∈ [0, 1]. From Lemma 2.2 and observing that

Ki(t + t1, s + t1) ≤ Ki(t + t1, t1) ≤ Ki(1 + t1, t1),

we get

min
x∈B1

wi(t, x) ≥

(

min
y∈B1

ui(t1, y)

)

ξ
⌊Ki(t+t1,t1)⌋
i

+

∫ t

0

ξ
⌊Ki(t+t1,s+t1)⌋
i

(

min
z∈B1

wi(s, z)

)(

min
z∈B1

wi′(s, z)

)βi

dyds

≥ Ci(t1)ξi(t1)

+ξi(t1)

∫ t

0

(

min
z∈B1

wi(s, z)

) (

min
z∈B1

wi′ (s, z)

)βi

dyds,

where

Ci(t1) = min
y∈B1

ui(t1, y) and ξi(t1) = ξ
⌊Ki(1+t1,t1)⌋
i .

Consider the integral system

vi(t) = Ci(t1) +

∫ t

0

vi(s)v
βi

i′ (s)ds.

From this we see that vi blows up in finite time if and only if vi′ does. Moreover, by
the comparison theorem we have minz∈B1 wi(t, z)/ξi(t1) ≥ vi(t). In this manner, it
is enough to deal with vi. Since

v
βi′−1
i (t)

dvi

dt
(t) = vβi−1

i′ (t)
dvi′

dt
(t),

then we get a Bernoulli type equation for vi, namely,

dvi

dt
(t) +

(

βi

βi′
v

βi′

i (0) − vβi

i′ (0)

)

vi(t) =
βi

βi′
v

βi′+1
i (t) . (2.2)

Let C∗
i (t1) = βiCi(t1)

βi′ and C∗
i′(t1) = βi′Ci′(t1)

βi . Without loss of generality, we
can assume that C∗

i′(t1) ≥ C∗
i (t1). The solution of (2.2), when C∗

i′ (t1) > C∗
i (t1) is

v
βi′

i (t) =
C∗

i (t1) (C∗
i′ (t1) − C∗

i (t1))β−1
i C∗

i′(t1)
−1 exp [(C∗

i′ (t1) − C∗
i (t1)) t]

1 −
C∗

i (t1)

C∗

i′
(t1) exp [(C∗

i′ (t1) − C∗
i (t1)) t]

and when C∗
i′(t1) = C∗

i (t1),

v
βi′

i (t) =
1

βi

(

1
C∗

i′
(t1)

− t
) .

Thus, the explosion time for vi, the solution of (2.2), is

τ =

{

ln C∗

i′
(t1)−lnC∗

i (t1)

C∗

i′
(t1)−C∗

i (t1)
, if C∗

i′ (t1) > C∗
i (t1) ,

1
C∗

i (t1) , if C∗
i′ (t1) = C∗

i (t1) .

By Proposition 1.2 we can choose t1 such that C∗
i (t1) > 1. Since f(x) = x − ln(x)

is strictly increasing for x > 1, we have τ < 1, and thus

min
z∈B1

wi(1, z)

ξi(t1)
≥ vi(1) = ∞,

which implies that (u1, u2) blows up at time t1 + 1. �
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3. Feynman-Kac formula and subsolutions

Let Xi ≡ {Xi (t)}t≥0 be the (time-inhomogeneous) càdlàg Feller process corre-

sponding to the family of generators {ki (t)∆αi}. Note that Xi (t) = Zi (Ki (t, 0)).
We use Px to denote the distribution of Xi, where Px [Xi (0) = x] = 1 and we write
Ex for the expectation with respect to Px, x ∈ R

d.
It is known (see e.g. Kolkovska et al., 2008) that for any 0 < T < Te the solution

(u1, u2) of (1.1) admits the Feynman-Kac representation

ui(t, x) = Ex

[

ϕi (Xi(t)) exp

{
∫ t

0

uβi

i′ (t − s, Xi (s)) ds

}]

, (3.1)

for each (t, x) ∈ [0, T ] × R
d. We say that (u1, u2) is a subsolution of (u1, u2), the

solution of (1.1), if ui ≤ ui. Such formula implies that (u∗
1, u

∗
2), where

u∗
i (t, x) := Ex[ϕi(Xi(t))],

is a subsolution of (1.1). Also, the next lemma, which we will need in the following
section, is a direct consequence of the Feynman-Kac representation.

Lemma 3.1. If (u1, u2) is a subsolution of (1.1), then any solution of

∂ui (t, x)

∂t
= ki (t) ∆αiui (t, x) + ui (t, x)uβi

i′ (t, x) , (t, x) ∈ (0, Te) × R
d,

ui (0, x) = ϕi (x) , x ∈ R
d,

remains a subsolution of (1.1).

4. Unboundness of positive solutions

We recall that the transition densities, pi (t, x), of the d-dimensional symmetric
αi-stable process Zi, are strictly positive, radially symmetric, continuous. They
also have the following properties.

Lemma 4.1. Let s, t > 0 and x, y ∈ R
d. Then

(i) pi(ts, x) = t−d/αipi(s, t
−1/αix) (self similarity),

(ii) pi(t, x) ≤ pi (t, y), when |x| ≥ |y| (radially decreasing).

Proof : See Sugitani (1975) or Guedda and Kirane (1999), for example. �

Fix t0 > 1 such that Ki(t0, 0) ≥ 1 and (1.3) holds for all t ≥ t0. Define

δ0 = min

{

(

ε1,i

2ε2,i

)1/ρi

: i = 1, 2

}

.

Lemma 4.2. There exists c > 0 such that for all x, y ∈ B1 and t ≥ (t0/δ0),

Px

[

Xi(s) ∈ B
K

1/α
i′

i′
(t−s,0)

|Xi(t) = y

]

≥ cs(a−ρi/αi)d

for all s ∈ [t0, δ0t], where a = min{ρj/αj : j ∈ {1, 2}}.
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Proof : Using Lemma 4.1 (self similarity) we get

Px

[

Xi(s) ∈ B
K

1/α
i′

i′
(t−s,0)

|Xi(t) = y

]

=
K

−d/αi

i (s, 0)K
−d/αi

i (t, s)

K
−d/αi

i (t, 0) pi(1, K
−1/αi

i (t, 0) (x − y))

×

∫

B
K

1/α
i′

i′
(t−s,0)

pi(1, K
−1/αi

i (s, 0) (x − z))pi(1, K
−1/αi

i (t, s) (z − y))dz.

The unimodality of pi(1, ·), Ki (t, 0) ≥ Ki (t, s) and (1.3) implies

K
−d/αi

i (s, 0)K
−d/αi

i (t, s)

K
−d/αi

i (t, 0) pi(1, K
−1/αi

i (t, 0) (x − y))
≥

c

pi(1, 0)
s−ρid/αi . (4.1)

Since t0 ≤ s ≤ δ0t, then (1.3) gives

Ki′(t − s, 0) ≥ ε1,i′(t − s)ρi′ ≥ ε1,i′

(

1

δ0
− 1

)ρi′

sρi′ ,

therefore B
K

1/α
i′

i′
(t−s,0)

⊃ Bcsa . Now, let us estimate

∫

Bcsa

pi(1, K
−1/αi

i (s, 0) (x − z))pi(1, K
−1/αi

i (t, s) (z − y))dz. (4.2)

Observe that

|K
−1/αi

i (s, 0) (x − z) | ≤ K
−1/αi

i (s, 0) + K
−1/αi

i (s, 0) csa

≤ 1 + csa−ρi/αi ≤ c1,

and

Ki (t, s) = Ki (t, 0) − Ki (s, 0) ≥ ε1,it
ρi − ε2,iδ

ρi

0 tρi ≥ ctρi

implies

|K
−1/αi

i (t, s) (z − y) | ≤ c2.

Thus, pi radialy decreasing implies that (4.2) is bounded below by
∫

Bcsa

inf{pi(1, ς)pi(1, ζ) : ς, ζ ∈ Bc1+c2}dz = csda.

The result follows from (4.1) and (4.2). �

Lemma 4.3. There exists a constant c > 0 such that,

u∗
i (t, x) ≥ cK

−d/αi

i (t, 0)1B1(K
−1/αi

i (t, 0)x),

for all x ∈ R
d and all t > 0 satisfying Ki(t, 0) ≥ 1.

Proof : See page 6 in Kolkovska et al. (2008). �

Proof of Proposition 1.2: By the law of total probability, the Feynman-Kac rep-
resentation (3.1) of ui can be written as

ui(t, x) =

∫

ϕi(y)pi (Ki(t, 0), y − x)

×Ex

[

exp

∫ t

0

uβi

i′ (t − s, Xi(s))ds | Xi(t) = y

]

dy.
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By Lemmas 4.1, 4.3 and Jensen’s inequality we get

ui (t, x) ≥

∫

B1

ϕi (y)K
−d/αi

i (t, 0)pi(1, K
−1/αi

i (t, 0)(y − x))

× exp
(

∫ δ0t

θ

cK
−dβi/αi′

i′ (t − s, 0)

×Px

[

Xi(s) ∈ B
K

1/α
i′

i′
(t−s,0)

| Xi (t) = y
]

ds
)

dy.

If x, y ∈ B1, then

pi(1, K
−1/αi

i (t, 0)(y − x)) ≥ inf{pi(1, z) : z ∈ B2}.

This, together with Ki′(t − s, 0) ≤ Ki′(t, 0) and (1.3), yields

ui(t, x) ≥ cK
−d/αi

i (t, 0)

∫

B1

ϕi(y) exp
(

c

∫ δ0t

θ

K
−dβi/αi′

i′ (t − s, 0)

×Px

[

Xi(s) ∈ B
K

1/α
i′

i′
(t−s,0)

| Xi (t) = y
]

ds
)

dy

≥ ct−ρid/αi exp
(

ct−dρi′βi/αi′

×

∫ δ0t

θ

min
y∈B1

Px

[

Xi(s) ∈ B
K

1/α
i′

i′
(t−s,0)

| Xi (t) = y
]

ds
)

.

We are done by Lemma 4.2. �
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