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Abstract. In the paper, we study and compare several types of approximations of
stationary processes by martingales.

1. Introduction

Let (Ω,A, µ) be a probability space with a bijective, bimeasurable and measure
preserving transformation T . For a measurable function f on Ω, (f ◦ T i)i is a
(strictly) stationary process and reciprocally, any (strictly) stationary process can
be represented in this way. We shall denote Uf = f ◦ T ; U is a unitary operator
in L2. The function f will be supposed to have a zero mean. (Fi)i∈Z, where
T−1Fi = Fi+1, is an increasing filtration of sub-σ-fields of A. Hi denotes the space
of Fi-measurable and square integrable random variables. Pi(f) is the projection
of f onto the space Hi ⊖ Hi−1, i.e. Pi(f) = E(f |T−i(F0)) − E(f |T−i+1(F0)). We

suppose the function f to be regular, i.e. f =
∑+∞

i=−∞ Pi(f). Let σn = ||Sn(f)||,
where || · || is the L2-norm and Sn(f) =

∑n

i=1 f ◦ T i. For simplicity of notation we
write Q0(Sn(f)) for E(Sn(f)|F0) and Rn(Sn(f)) for Sn(f) − E(Sn(f)|Fn).

Definition 1.1. We say that a function f has a martingale approximation if
there exists a martingale difference sequence (m◦T i)i∈Z such that ||Sn(f −m)||2 =
o(n).

It is a classical result that the martingale approximation implies the central limit

theorem Gordin (1969). In his article, Gordin noticed that if f =
∑k

i=j Pif , j ≤ k,

then for m = P0

∑−j

i=−k U if we have f = m + g − Ug with g ∈ L2 hence we get a
martingale approximation.
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258 Jana Klicnarová and Dalibor Volný

Definition 1.2. We say that for a function f there exists a weak diagonal ap-

proximation if there is a sequence (kn)n∈N, kn = o(n) of integers such that

(i) for fn =
∑kn

i=−kn
Pif we have

1

σn

||Sn(f − fn)|| → 0,

(ii) for fn = mn + gn − Ugn with

mn =

kn
∑

i=−kn

P0U
if

gn =

kn−1
∑

i=0

kn−i
∑

j=1

P−iU
jfn −

kn
∑

i=1

kn−i
∑

j=0

PiU
−jfn

we have ||gn|| = o(σn).

If for the array (U imn)i=0,kn−1,n≥1 of martingale differences a CLT holds, we
get it for Sn(f)/σn as well (cf. Volný, 2006); this generalises Gordin’s result to
processes with nonlinear growth of variances (of partial sums).

Hannan (1973) has noticed that if the series of ||Pif || = ||P0U
if || is summable

then the series of m =
∑

i∈Z
P0U

if converges and gives a martingale approximation.

We, moreover, get that for any ǫ > 0 there is an n such that for mn =
∑n

i=−n P0U
if ,

lim supk→∞ ||Sk(f − m)||2/k ≤ ǫ; this holds if we replace mn by fn =
∑n

i=−n Pif
as well.

Definition 1.3. We say that for a function f there exists a strong diagonal

approximation if there is an integer sequence of (d(n)))n∈N, d(n) = o(n), such that
for all integer sequences (kn)n∈N which satisfy kn ≥ d(n) for all n and kn = o(n):

(i) for fn =
∑kn

i=−kn
Pif we have

1

σn

||Sn(f − fn)|| → 0,

(ii) for fn = mn + gn − Ugn with

mn =

kn
∑

i=−kn

P0U
if

gn =

kn−1
∑

i=0

kn−i
∑

j=1

P−iU
jfn −

kn
∑

i=1

kn−i
∑

j=0

PiU
−jfn

we have ||gn|| = o(σn).

The Hannan’s condition thus implies the strong diagonal approximation.
The Hannan’s condition implies the weak invarinace principle; in full generality

the result was proved in Dedecker et al. (2007), the martingale approximation for
non adapted processes can be found in Volný (1993). Heyde has shown that if the
series m =

∑

i∈Z
P0U

if converges in L2 and ‖m‖2 ≥ lim infn→∞ ‖Sn(f)‖2 then
a martingale approximation exists (cf. Hall and Heyde, 1980). Volný (1993) has
shown that the convergence in L2 is not sufficient for the martingale approximation
and that an unconditional convergence is a sufficient condition.
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Figure 1.1. Diagonal and Wu-Woodroofe approximation
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Definition 1.4. We say that a function f has Wu-Woodroofe approximation

if ||Q0(Sn(f))|| = o(σn) and ||Rn(Sn(f))|| = o(σn).

This is equivalent to the existence of an array (U imn)n−1
i=0 , n ≥ 1 of martingale

differences such that ||Sn(f −mn)|| = o(σn); for mn we can, in such a case, choose

mn =
∑n−1

i=0
n−i
n

P0U
if +

∑n−1
i=1

n−i
n

P0U
−if = 1

n

∑n−1
k=0

∑k

i=−k P0U
if .

The Wu-Woodroofe approximation was introduced in Wu and Woodroofe (2004)
for adapted processes. The nonadapted case can been found in Volný (2006).

The Wu-Woodroofe approximation together with linear growth of variances –
||Sn(f)||2 – are necessary (but not sufficient, cf. Klicnarová and Volný, 2009)
conditions for the martingale approximation. A condition which, for processes
with linear growth of variance, is necessary and sufficient for the existence of a
martingale approximation, has been found by Zhao and Woodroofe (2008). This
condition, valid for adapted processes, can be formulated in the following way: For
fn =

∑n

i=0 P−if

1

n

n
∑

k=1

lim sup
j→∞

1√
j
||Sj(f − fk)|| → 0.

2. Results

Theorem 2.1. The weak diagonal approximation and the Wu-Woodroofe approxi-

mation are equivalent and both are implied by the strong diagonal approximation.

Now, we shall deal with adapted processes, i.e. f will be supposed F0 measurable.

Theorem 2.2. There exists a stationary linear process (f ◦ T i)i such that f has

a martingale approximation but no strong diagonal approximation. More precisely,

for any sequence of d(n) = o(n) there exists a sequence (kn) such that kn ≥ d(n),

kn = o(n) and for fn =
∑kn

i=−kn
Pif , 1√

n
||Sn(f − fn)|| 6→ 0.
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The Proposition shows that in the Zhao-Woodroofe’s condition, the limit of
averages cannot be replaced by a limit of ||f ||k+ = lim supj→∞

1√
j
||Sj(f − fk)||.

3. Proofs

3.1. Proof of Theorem 2.1. Let us prove the first part of the theorem.
At first we prove that the weak diagonal approximation implies the

Wu-Woodroofe approximation. We have

||Q0(Sn(f))|| = ||
0
∑

i=−∞
(

n
∑

j=1

PiU
jf)||

≤ ||
−kn
∑

i=−∞
(

n
∑

j=1

PiU
jf)|| + ||

0
∑

i=−kn+1

(

i+kn
∑

j=1

PiU
jf)|| +

+||
0
∑

i=−kn+1

(

n
∑

j=i+kn+1

PiU
jf)||

= I1 + I2 + I3

0

−kn

n

I1

I2 I3

and

I1 + I3 ≤ ||Sn(f − fn)||
I2 ≤ ||Ugn|| = ||gn||.

Therefore, under the assumptions of the weak diagonal approximation,

||Q0(Sn(f))|| = o(σn).

The proof for ||Rn(Sn(f))|| is similar.

Now, we show that the Wu-Woodroofe approximation implies the weak diagonal
approximation.

We can suppose that f is adapted to the filtration and regular, i.e. f =
∑∞

i=0 P−if ; the non adapted case can be treated in the same manner (cf. Volný,
2006) and the non regular part of f does not affect the limit behaviour.

We have σ2
n = ||Sn(f)||22 = nhn where hn is a slowly varying function in the

sense of Karamata (cf. Kallenberg, 1997) and ||E(Sn(f)|F0)||2 = o(σn).
Recall that the Wu-Woodroofe condition implies that there is a martingale dif-

ference array (U imn) such that ||Sn(f − mn)||2 = o(σn); we then have ||mn||2 =
σn/

√
n + o(σn/

√
n).
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Note that

||Sn(f − mn)||22 = ||E(Sn(f)|F0)||22 +
n
∑

j=1

||U jmn − Pj

n
∑

i=j

U if ||22 =

= ||E(Sn(f)|F0)||22 +

n
∑

j=1

||mn − P0

n−j
∑

i=0

U if ||22

(by the assumptions, f is adapted hence PjU
if = 0 for j > i).

We thus have that for any ǫ > 0 and n big enough, for all but ǫn j ∈ {0, . . . , n},
||mn − P0

∑n−j

i=0 U if ||22 < ǫhn. Let kn ≤ ǫn be one of such j. We then have

n
∑

j=1

||P0

n
∑

i=j

U if − P0

kn
∑

i=0

U if ||22 < 2ǫhn

hence for m′
n = P0

∑kn

i=0 U if ,

||Sn(f − m′
n)||22 = o(σ2

n).

Denote fn =
∑kn

i=0 P−if . To show that ||Sn(f − fn)||22 = o(σ2
n) it suffices to prove

||E(Skn
(fn)|F0)||2 = o(σn).

By the assumptions

||
n
∑

j=1

U jmn − Pj

n
∑

i=j

U if ||2 = o(σn)

hence (recall that PjU
jmn = U jmn)

n
∑

j=n−kn+1

||mn − P0

n−j
∑

i=0

U if ||2 = o(σn)

so that
kn−1
∑

j=0

||mn − P0

j
∑

i=0

U if ||2 = o(σn).

Because ||∑kn

j=1 U jmn||22 ≈ kn

n
σ2

n = o(σ2
n), we thus get

kn−1
∑

j=0

||P0

j
∑

i=0

U if ||2 = o(σn)

hence fn = m′
n + gn − Ugn where ||gn||2 = o(σn) and ||Sn(f − fn)||2 = o(σn).

So, the f has a weak diagonal approximation.

It remains to prove the second part of the theorem. This part follows immediately
from the definitions of the strong diagonal approximation and the weak diagonal
approximation.

△
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3.2. Proof of Theorem 2.2.

3.2.1. Construction of the process. Let e ∈ H0 ⊖ H−1 and ||e|| = 1. (U ie)i is thus
a martingale difference sequence. For i, j ∈ N (N denotes the set of all positive
integers) we denote

Kj = ⌊exp j2⌋

Nj = 2

j−1
∑

i=0

Ki + 1,

bj =
1

j2

and put K0, N0 = 0, b0 = 1.

We define functions fi, f̄i for i ∈ N:

fi :=

Ki
∑

k=1

(

−1

k

)

e ◦ T k +

Ki−1
∑

k=0

1

k + 1
e ◦ T−k,

f̄i := fi ◦ T−Ni−Ki

and put

f =

+∞
∑

i=1

bif̄i + f0, (3.1)

where f0 = b0e.

3.2.2. Main idea of the proof. We will prove that ||Q0(Sn(f))||
||Sn(f)|| → 0. Remark that

this is a necessary and sufficient condition for the Wu-Woodroofe approximation
(cf. Wu and Woodroofe, 2004). Then we will deduce that there is a martingale
approximation. In the second part of the proof we will show that for any sequence
of d(n) = o(n) there exists a sequence (kn) such that kn ≥ d(n), kn = o(n) and for

fn =
∑kn

i=−kn
Pif , 1√

n
||Sn(f − fn)|| 6→ 0.

In the proof, we shall need both – upper and lower – estimations of the term
||Sn(f)||, an upper estimation of ||Q0(Sn(f)|| and a lower estimation of the term
||Sn(f − fn)||.

We have

||Sn(f)|| ≥ ||Sn(f) − Q0(Sn(f))||,
||Sn(f)|| ≤ ||Sn(f) − Q0(Sn(f))|| + ||Q0(Sn(f))||,

hence for the estimation of the term ||Sn(f)|| it suffices to estimate the terms
||Q0(Sn(f))|| and ||Sn(f) − Q0(Sn(f))||.
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Figure 3.2. The construction of the process
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3.2.3. Projections Pj(Sn(f)). Since Q0(Sn(f)) =
∑0

j=−∞ Pj(Sn(f)) and Sn(f) −
Q0(Sn(f)) =

∑+∞
j=1 Pj(Sn(f)), in order to estimate the terms ||Q0(Sn(f))|| and

||Sn(f) − Q0(Sn(f))|| we need to know estimations of Pj(Sn(f)). From the con-
struction (3.1) of the function f we have

Pj(Sn(f)) = Pj

(

Sn

(

+∞
∑

i=1

bif̄i + f0

))

. (3.2)

Let us study the functions f̄i. From the construction of f̄i we can see that

f̄i ∈ H−Ni
⊖ H−Ni−2Ki

.

It follows that

f̄i ◦ T k ∈ H−Ni+k ⊖ H−Ni−2Ki+k

and

Sn(f̄i) ∈ H−Ni+n ⊖ H−Ni−2Ki+1. (3.3)

Now, let us fix i and study Pj(Sn(bif̄i)). We can write

Pj(Sn(bif̄i)) = yn,jej.

The part yn,j on the right hand side of the equation depends in fact on i, n
and j. Let us split all possibilities into the following three cases. (Recall that
Ni+1 = Ni + 2Ki.)
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The case of n > Ni+1. If we suppose n ≥ Ni+1, then the term yn,j is as follows:

1.1 j : j > n − Ni or j ≤ −Ni+1 + 1. In such case (cf. (3.3)) yn,j = 0.
1.2 j : n − Ni − Ki + 1 ≤ j ≤ n − Ni

yn,j = bi

Ki
∑

k=j−n+Ni+Ki

(

−1

k

)

.

1.3 j : n − Ni − 2Ki + 2 ≤ j ≤ n− Ni − Ki

yn,j = bi

Ki
∑

k=n+2−Ni−Ki−j

(

−1

k

)

.

1.4 j : −Ni + 1 ≤ j ≤ n− Ni − 2Ki + 1. It is easily seen (from the construc-
tion of the function f̄i) that

Pj(Sn(bif̄i)) = bi

(

Ki
∑

k=1

(

−1

k

)

+

Ki
∑

k=1

(

1

k

)

)

= 0,

so yn,j = 0.
1.5 j : −Ni − Ki + 2 ≤ j ≤ −Ni. Alike as in (3.)

yn,j = bi

Ki
∑

k=Ni+Ki+j

(

−1

k

)

.

1.6 j : −Ni − 2Ki + 2 ≤ j ≤ −Ni − Ki + 1. It is similar case to (2.), we have

yn,j = bi

Ki
∑

k=−Ni−Ki−j+2

(

−1

k

)

.

The case of n ≤ Ni. Remark that Pj(Sn(f)) = 0 for j > n (since f is adapted). So,
if have the case of n < Ni, then we need to express the projection Pj(Sn(bif̄i)) for
negative j only, especially for j ∈ [n − NI ,−NI − 2KI ].

Now, let us have n ≤ Ni. Since Sn(f̄i) ∈ H−Ni+n ⊖ H−Ni−2Ki+1, we are inter-
ested only in projections Pj for negative j. The expression of the term yn,j is as
follows.

2.1 j : j > n − Ni or j ≤ −Ni+1 + 1. In such case (cf. (3.3)) yn,j = 0.
2.2 j : −Ni + 1 ≤ j ≤ n− Ni

yn,j = bi

Ki
∑

k=j−n+Ni+Ki

(

−1

k

)

.

2.3 j : n − Ni − Ki + 1 ≤ j ≤ −Ni

yn,j = bi

Ki+j+Ni−1
∑

k=j−n+Ni+Ki

(

−1

k

)

.

2.4 j :
⌈

n+1

2

⌉

− Ni − Ki + 1 ≤ j ≤ n− Ni − Ki

yn,j = bi

Ki+j+Ni−1
∑

k=−j+n−Ni−Ki+1

(

−1

k

)

.
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Figure 3.3. The case of n ≥ 2Ki.
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2.5 j : −Ni − Ki + 1 ≤ j ≤
⌊

n−1

2

⌋

− Ni − Ki

yn,j = bi

−Ki−j−Ni+n
∑

k=j+Ni+Ki+1

(

1

k

)

.

2.6 j : n − Ni − 2Ki + 1 ≤ j ≤ −Ni − Ki

yn,j = bi

−Ki−j−Ni+n
∑

k=−j−Ni−Ki+1

(

1

k

)

.

2.7 j : −Ni − 2Ki + 1 ≤ j ≤ n− Ni − 2Ki

yn,j = bi

Ki
∑

k=−j−Ni−Ki+1

(

1

k

)

.

Observe that if n is even, then the term P−Ni−Ki+1+ n
2
(Sn(f̄i)) is equal to zero.

The case of Ni < n < Ni+1. We can split this case into the following three parts.
If n ≥ 2Ki, then we can apply formulas (1.1)–(1.6). In the case of n ≤ Ki, the
formulas (2.1)–(2.7) can be used. When n is such that Ki < n < 2Ki then we can
use the formulas (2.1)–(2.5) and (2.7), where the upper bound in (2.5) is −Ni−Ki.
(In such a case the set of j in the formula (2.6) is empty.)
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Figure 3.4. The case of n ≤ Ni
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General expression for positive j. As we saw above, the projection – for fixed i –
Pj(Sn(bif̄i)) depends on n, j. Let us denote

Pj(Sn(bif̄i)) = yn,jej.

For general j, n ∈ N, we can thus express the term yn,j (in,j is such i that
n − Ni+1 + 2 ≤ j ≤ n − Ni; recall that in,j is the only i for which the projection
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Pj(Sn(f̄i)) is nonzero) as

yn,j = bin,j

Kin,j
∑

k=j−n+Nin,j
+Kin,j

(

−1

k

)

for j : n − Nin,j
− Kin,j

+ 1 ≤ j ≤ n − Nin,j

= bin,j

Kin,j
∑

k=n+2−Nin,j
−Kin,j

−j

(

−1

k

)

(3.4)

for j : n − Nin,j+1 + 2 ≤ j ≤ n − Nin,j
− Kin,j

= 0 in other case.

From the previous calculations we can deduce that (still for positive j)

||Pj(Sn(f))||2 = ||Pj(Sn(f0 + bin,j
f̄in,j

))||2 = (1 + yn,j)
2 (3.5)

where in,j is such that j belongs to the interval [n−Nin,j+1 +2, n−Nin,j
] and yn,j

is as above. Remark that yn,j ∈ [−1, 0].

The upper estimation of the term ||Sn(f) − Q0(Sn(f))||. Now, let us estimate the
term ||Sn(f)−Q0(Sn(f))||. An upper estimation of this term can, using the previous
remarks, be easily seen (the norm of each term Pj(Sn(f)) is less or equal to one,
cf. (3.5)) to be

||Sn(f) − Q0(Sn(f))||2 =

n
∑

j=1

||Pj(Sn(f))||2 ≤ n. (3.6)

The lower estimation of the term ||Sn(f) − Q0(Sn(f))||. Since (cf. (3.5))

||Pj(Sn(f))||2 = ||Pj(Sn(f0 + bin,j
f̄in,j

))||2,
for the lower estimation of ||Sn(f) − Q0(Sn(f))||2 we need to estimate

||Pj(Sn(f0 + bin,j
f̄in,j

))||2 for 0 ≤ j ≤ n.

Let us fix n ∈ N. Then, there exists an integer I such that NI < n ≤ NI+1.
Using (3.5) we have

||Sn(f) − Q0(Sn(f))||2 =

n
∑

j=1

||Pj(Sn(f))||2 =

n
∑

j=1

||Pj(Sn(f0 + bin,j
f̄in,j

))||2.

We can write the term on the right hand side as

n
∑

j=1

||Pj(Sn(f))||2 =

I
∑

i=0

n−Ni
∑

j=max(1,n−Ni+1+1)

||Pj(Sn(f0 + bif̄i))||2.

Recall that for positive j, the projections Pj(Sn(bif̄i)) are equal to zero for every
i ≥ 1 except one of them (in,j). We get

||Sn(f) − Q0(Sn(f))||2 =
I
∑

i=0

Ai
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where for i ≤ I − 1

Ai =

n−Ni
∑

j=n−Ni+1+1

||Pj(Sn(f))||2 =

n−Ni
∑

j=n−Ni−2Ki+1

||Pj(Sn(f0 + bin,j
f̄in,j

))||2

and

AI =

n−NI
∑

j=1

||Pj(Sn(f0 + bI f̄I))||2.

Remark that all functions f̄in,j
contained in Ai are the same.

Let us study the case of i ≤ I−1, using ((1.3),(1.4)) (recall that Ni+1 = Ni+2Ki):

Ai =

n−Ni
∑

j=n−Ni−2Ki+1

||Pj(Sn(f0 + bin,j
f̄in,j

))||2

=

n−Ni
∑

j=n−Ni−2Ki+2

||Pj(Sn(f0 + bin,j
f̄in,j

))||2 + ||Pn−Ni−2Ki+1(Sn(f0))||2

= 2

n−Ni
∑

j=n−Ni−Ki+2

(1 + yn,j)
2 + (1 + yn,n−Ni−Ki+1)

2 + 1.

Since

(1 + yn,j)
2 ≥ 1 + 2yn,j

we have

Ai ≥ 2

n−Ni
∑

j=n−Ni−Ki+2

(1 + 2yn,j) + (1 + 2yn,n−Ni−Ki+1) + 1.

Using the expression of yn,j as a sum of the fractions, see (3.4), putting l := j−n+
Ni +Ki, we obtain (recall that

∑m

k=l

(

1
k

)

≤ log m
l−1 and

∑m

k=l log k ≤
∫m

l−1
log xdx):

Ai ≥ 2

Ki
∑

l=2

(

1 − 2

i2

Ki
∑

k=l

(

1

k

)

)

+

(

1 − 2

i2

Ki
∑

k=1

(

1

k

)

)

+ 1

≥ 2

(

Ki − 1 − 2

i2

Ki
∑

l=2

log
Ki

l − 1

)

+ 2 − 2

i2
(1 + log(Ki))

= 2Ki −
2

i2

(

(2Ki − 1) log(Ki) − 2

Ki
∑

l=2

log(l − 1) + 1

)

≥ 2Ki −
2

i2

(

(2Ki − 1) log(Ki) − 2[x log x − x]Ki−1
1 + 1

)

= 2Ki −
2

i2
((2Ki − 2)(log(Ki) − log(Ki − 1)) + log(Ki) + (2Ki − 2) − 1)

= 2Ki −
2

i2

(

(2Ki − 2)

(

log
Ki

Ki − 1
+ 1

)

+ log(Ki) − 1

)

Using log
(

x
x−1

)

= log
(

1 + 1
x−1

)

≤ 1
x−1 for x > 1, we have
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Ai ≥ 2Ki −
2

i2

(

(2Ki − 2)

(

1

Ki − 1
+ 1

)

+ log(Ki) − 1

)

= 2Ki −
2

i2
(2Ki + log(Ki) − 1)

= 2Ki −
4Ki + 2 log Ki − 2

i2
.

We have derived (recall that Ki = ⌊exp i2⌋)

Ai ∼ 2Ki + O

(

Ki

log Ki

)

.

Denote C1 =
∑I−1

i=1 Ai. We have

C1 =

I−1
∑

i=1

Ai =

I−1
∑

i=1

(

2Ki −
4Ki + 2 log Ki − 2

i2

)

≥ NI − 1 −
I−1
∑

i=1

4Ki + 2 log Ki − 2

i2

∼ NI + O

(

KI−1

log KI−1

)

.

Now, for finishing of the estimation of the term ||Sn(f) − Q0(Sn(f))||, we need
to estimate the term AI . The estimation can be divided into following three parts.

(1) Let n = NI + KI . Then, (cf. (3.4))

||Pj(Sn(f))||2 = ||Pj(Sn(f0 + bI f̄I)||2, for j ∈ [1, n − NI ].

Hence, in this case, we estimate the terms ||Pj(Sn(f0 + bI f̄I))||2 using
the same methods as above and we obtain (using n−NI −KI + 1 = 1 and
n − NI = KI)

A
(1)
I =

KI
∑

j=1

||Pj(Sn(f0 + bI f̄I))||2 ≥ KI −
2KI + log KI − 1

I2
.

For ||Sn(f) − Q0(Sn(f))||2 we have deduced that (recall that in such a
case n ∼ KI and log KI ∼ I2)

||Sn(f) − Q0(Sn(f))||2 ≥ C1 + KI −
2KI + log KI − 1

I2

≥ n + O

(

KI−1

log KI−1

)

− 2KI + log KI − 1

I2

= n + o(n).

(2) Let NI < n < NI + KI .
We need to estimate the term

A
(2)
I =

n−NI
∑

j=1

||Pj(Sn(f0 + bI f̄I))||2.
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Using similar arguments as before (n − NI < KI) we get

A
(2)
I ≥ n − NI −

2

I2

KI
∑

j=NI−n+KI+1

KI
∑

k=j

(

1

k

)

≥ n − NI −
2

I2

KI
∑

j=NI−n+KI+1

log
KI

j − 1

≥ n − NI −
2

I2

(

(n − NI) log(KI) − [x log x − x]KI−1
KI−n+NI−1

)

= n − NI −

− 2

I2

(

(n−NI) log
KI

KI−n+NI−1
−(KI−1) log

KI − 1

KI−n+NI−1
+n−NI

)

≥ n − NI −

− 2

I2

(

(n−NI−KI+1) log
KI−1

KI−n+NI−1
+(n−NI) log

KI

KI−1
+n−NI

)

≥ n − NI −
3

I2
(n − NI).

We thus have got

A
(2)
I ≥ n − NI −

3

I2
(n − NI).

So, for ||Sn(f) − Q0(Sn(f))||2, we have

||Sn(f) − Q0(Sn(f))||2 ≥ C1 + n − NI −
3

I2
(n − NI)

≥ n + O

(

KI−1

log KI−1

)

− 3

I2
(n − NI)

= n + o(n).

(3) Let NI +KI < n < NI +2KI . In such a case we need to estimate the term

A
(3)
I =

n−NI
∑

j=1

||Pj(Sn(f0 + bI f̄I))||2.

Since n − NI > KI we divide the term A
(3)
I into two parts as follows

n−NI
∑

j=1

||Pj(Sn(f0 + bI f̄I))||2 =

n−NI
∑

j=n−NI−KI+1

||Pj(Sn(f0 + bI f̄I))||2 +

+

n−NI−KI
∑

j=1

||Pj(Sn(f0 + bI f̄I))||2

where we know the estimation of the first term on the right-hand side.

It is the same estimation as for the term A
(1)
I . So, let us denote by A

(32)
I

the second term on the right-hand side. This term can be expressed as
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A
(32)
I =

n−NI−KI
∑

j=1



1 − 1

I2

KI
∑

k=j+1

(

1

k

)





2

.

A
(32)
I ≥

n−NI−KI
∑

j=1



1 − 2

I2

KI
∑

k=j+1

(

1

k

)





≥ (n − NI − KI) −
2

I2





n−NI−KI
∑

j=1

log
KI

j





≥ (n − NI − KI) −
2

I2

(

(n − NI − KI) log(KI) − [x log x − x]n−NI−KI

1

)

= (n − NI − KI) −
2

I2

(

(n − NI − KI)

(

log
KI

n − NI − KI

+ 1

)

− 1

)

Now, let us take a constant c such that 0 < c < 1 and n−NI−KI = cKI ;
we thus have

A
(32)
I ≥ cKI −

2

I2

(

cKI

(

log
KI

cKI

+ 1

)

− 1

)

≥ cKI −
2

I2
(cKI(1 − log c))

So, for the term A
(3)
I we have derived ( log KI−1

I2 ≤ 1):

A
(3)
I ≥ (c + 1)KI −

2

I2
(cKI − cKI log c + KI) − 1

= (c + 1)KI

(

1 − 2

I2

)

+
2KIc log c

I2
− 1

Using the inequality − log c ≤ 1
c
− 1, we get

A
(3)
I ≥ (c + 1)KI −

4KI

I2
− 1.

We have obtained for the term ||Sn(f) − Q0(Sn(f))||2 (recall that C1 = NI +

O
(

KI−1

log KI−1

)

and n = NI + KI(c + 1)):

||Sn(f) − Q0(Sn(f))||2 ≥ C1 + KI(c + 1) − 4

I2
KI − 1

≥ n + O

(

KI−1

log KI−1

)

− 4

I2
KI − 1

= n + o(n).

We thus have deduced (recall the upper estimate) that for each n ∈ N,

n ≥ ||Sn(f) − Q0(Sn(f))||2 = n + o(n). (3.7)
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Estimation of the term ||Q0(Sn(f))||. Now, we will study the term ||Q0(Sn(f))||.
Recall that

||Q0(Sn(f))||2 =
0
∑

j=−∞
||Pj(Sn(f))||2 =

0
∑

j=−∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pj

(

Sn

(

f0 +
+∞
∑

i=1

bif̄i

))∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

.

Using (3.5) and an inequality (x − y)2 ≤ (x2 + y2) for x, y ≥ 0. We thus get

||Q0(Sn(f))||2 ≤
+∞
∑

i=0

In
i ,

where In
i =

∑0
j=−∞ ||Pj(Sn(bif̄i))||2. The estimation of the terms (In

i ) can be
divided into three parts. It depends on the relation between i and n.

(1) Let i be such that i ≤ I − 1 (we still suppose n : NI ≤ n < NI+1; this
means that n ≥ Ni + 2Ki. In such a case we can use ((1.5),(1.6)) (some
negative j are also in the part (1.4) but the projections in (1.4) are equal
to zero) and putting l := j + Ni + Ki in (1.5) and l := j + Ni + Ki − 2 in
(1.6) we obtain

In
i ≤ 2

Ki
∑

l=1

(

1

i2

Ki
∑

k=l

(

1

k

)

)2

. (3.8)

In
i ≤ 2

i4



(1 + log Ki)
2 +

Ki
∑

j=2

log2 Ki

j − 1





≤ 2

i4



1 + 2 logKi + log2 Ki + (Ki − 1) log2 Ki −
Ki−1
∑

j=1

log2 j





≤ 2

i4

(

1 + 2 logKi + Ki log2 Ki − [x log2 x − 2x log x + 2x]Ki

1

)

≤ 2

i4
(2 + 2(Ki + 1) log Ki − 2Ki)

≤ 5Ki

i2
.

The sum of such In
i can be estimated by (recall that Kj = ⌊exp j2⌋)

I−1
∑

i=1

5Ki

i2
≤ 5KI−1

(I − 1)2
+

I−2
∑

i=1

5Ki

i2
≤ 6KI−1

(I − 1)2
≤ 6n

(I − 1)2
(3.9)

(2) Let i ≥ I + 1, i.e. n ≤ Ni. Then, using expressions (2.1) − (2.7) we get

In
i =

−Ni−Ki
∑

j=−Ni−2Ki

||Pj(Sn(bif̄i))||2 +

−Ni
∑

j=−Ni−Ki+1

||Pj(Sn(bif̄i))||2 +

+

0
∑

j=−Ni+1

||Pj(Sn(bif̄i))||2
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hence

In
i ≤ 3

i4

Ki
∑

j=1





j+n−1
∑

k=j

(

1

k

)





2

.

Using the inequality (
∑n

i=1 ai)
2 ≤ n(

∑n

i=1 a2
i ) we get

Ki
∑

j=1





j+n−1
∑

k=j

(

1

k

)





2

≤
Ki
∑

j=1

n

j+n−1
∑

k=j

1

k2

≤ n

Ki
∑

j=2

(

1

j − 1
− 1

j + n − 1

)

+ n

(

2 − 1

n

)

= n





n
∑

j=1

1

j
−

Ki+n−1
∑

j=Ki

1

j



+ n

(

2 − 1

n

)

≤ n(3 + log n)

hence

In
i ≤ 3

i4
n(3 + log n).

Now, we can sum the terms In
i and using the inequality log n ≤ i2 we get

+∞
∑

i=I+1

In
i ≤

+∞
∑

i=I+1

3

i4
n(3 + log n) ≤ 3n

+∞
∑

i=I+1

3 + i2

i4
≤ 4n

I
.

In
i = b2

i





n
∑

j=1

Ki
∑

k=Ki−n+j

(

−1

k

)





2

+ b2
i





Ki−n
∑

j=1

n+j
∑

k=j+1

(

−1

k

)





2

+b2
i







n
∑

j=⌈n+1

2 ⌉

j+1
∑

k=n−j+2

(

−1

k

)







2

+b2
i





n
∑

j=1

Ki
∑

k=Ki−j+1

(

1

k

)





2

+ b2
i





Ki−n
∑

j=1

Ki−j
∑

k=−n+Ki+1−j

(

1

k

)





2

+b2
i







⌈n−1

2 ⌉
∑

j=0

−j+n
∑

k=j+1

(

1

k

)







2

≤ 2b2
i

Ki
∑

j=1





j+n
∑

k=j+1

1

k





2

+ 2b2
i

⌈n−1

2 ⌉
∑

j=0





−j+n
∑

k=j+1

1

k





2

,
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In
i ≤ 2

i4

Ki
∑

j=1





j+n
∑

k=j+1

1

k





2

+
2

i4

⌈n−1

2 ⌉
∑

j=0





−j+n
∑

k=j+1

1

k





2

≤ 4

i4

Ki
∑

j=1





j+n
∑

k=j+1

1

k





2

.

Using the inequality (
∑n

i=1 ai)
2 ≤ n(

∑n

i=1 a2
i ) we get

In
i ≤ 4n

i4

Ki
∑

j=1

j+n
∑

k=j+1

1

k

≤ 4n

i4

Ki
∑

j=1

(

− 1

j + n
+

1

j

)

≤ 4n

i4

n
∑

j=1

1

j

≤ 4n

i4
(1 + log n).

(3) It remains the case of i = I. According to paragraph The case of n :
Ni < n < Ni+1 in the subsection Projections Pj(Sn(f)), this estimation
can be split into three parts. In the case of n ≥ 2KI we have

In
I ≤ 5KI

I2
.

For n ≤ KI we have

In
I ≤ 3n(3 + log n)

I4
.

For KI ≤ n < NI + 2KI we have, similarly as in the previous case,

||Q0(Sn(bI f̄I)||2 ≤ 3

KI
∑

j=1





1

I2

KI
∑

k=j

(

1

k

)





2

In (3.8) we get

||Q0(Sn(bI f̄I)||2 ≤ 10KI

I2
.
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It remains to estimate ||Q0(Sn(f̄I)||2 for NI < n < KI . We have

||Q0(Sn(bI f̄I)||2 ≤
−NI−2KI+n−1

∑

j=−NI−2KI

||Pj(Sn(bI f̄I))||2 +

−NI
∑

j=−NI−n+1

||Pj(Sn(bI f̄I))||2 +

+

0
∑

j=−NI+1

||Pj(Sn(bI f̄I))||2 +

−NI−KI
∑

j=−NI−2KI+n

||Pj(Sn(bI f̄I))||2 +

+

−NI−n
∑

j=−NI−KI+1

||Pj(Sn(bI f̄I))||2 ≤

≤ 1

I4






3

n
∑

j=1





KI
∑

k=KI−j

(

1

k

)





2

+ 2

KI−n
∑

j=1





KI−j+1
∑

k=KI−j−n+2

(

1

k

)





2






which, like in (3.8), can be estimated by

25KI

I2
.

For all n it is thus

||Q0(Sn(f))||2 ≤ 25n

I − 1
.

Wu–Woodroofe approximation of the function f . Using the estimations for terms
||Sn(f) − Q0(Sn(f))|| and ||Q0(Sn(f))|| we obtain

||Q0(Sn(f))||2
||Sn(f)||2 ≤

25n
I−1

n + o(n)
∼ O

(

1

I − 1

)

.

Since I → +∞ (recall that I − 1 ≤ log n ≤ I + 1) as n → +∞, we have proved
Wu-Woodrofe approximation.

In the Wu-Woodroofe approximation, we can take Dn,0 =
∑n−1

i=0
n−i
n

P0U
if +

∑n−1
i=1

n−i
n

P0U
−if . In the case of a stationary linear process P0U

if is a multiple of

e hence we get Dn,0 = cne. From ||Sn(f)||2/n → const. (cf. 3.7) it follows that the
cn converge to a constant c and we get a martingale approximation with m = ce.

Strong diagonal approximation of the function f . Now, we show that the function
f does not satisfy the strong diagonal approximation. Take a sequence d(n) such

that d(n) = o(n). Then, there exists a sequence of

nj = lj(Nj + Kj),

where Nj + Kj ≥ d(nj), Nj + Kj = o(n) and lj tends to infinity. Define

hj =
0
∑

i=−Nj−Kj

Pif.

Then ||Snj
(hj)||2 = o(nj). As we proved above ||Snj

(f)||2 = nj + o(nj), hence

||Snj
(f − hj)||2 = nj − o(nj). This shows that for arbitrary d(n) = o(n) the

condition (i) of Definition 1.3 is not satisfied.
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D. Volný. Approximating martingales and the central limit theorem for strictly sta-

tionary processes. Stochastic Processes and their Applications 44, 41–74 (1993).
MR1198662.
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