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Abstract. We consider the hydrodynamic behavior of some conservative particle
systems with degenerate jump rates without exclusive constraints. More precisely,
we study the particle systems without restrictions on the total number of particles
per site with nearest neighbor exchange rates which vanish for certain configura-
tions. Due to the degeneracy of the rates, there exists blocked configurations which
do not evolve under the dynamics and all of the hyperplanes of configurations with
a fixed number particles can be decomposed into different irreducible sets. We
show that, for initial profiles smooth enough and bounded away from zero, the
macroscopic density profile evolves under the diffusive time scaling according to a
nonlinear diffusion equation (which we call the modified porous medium equation).
The proof is based on the Relative Entropy method but it cannot be straightfor-
wardly applied because of the degeneracy.

1. Introduction

Gonçalves, Landim and Toninelli established the hydrodynamic limit for some
particle systems with degenerate rates under exclusive constraints in Gonçalves
et al. (2009). They showed that the macroscopic density profile for their model
evolves under the diffusive time scaling according to the porous medium equation.

In this paper, we consider some particle systems on the d-dimensional torus T
d
N

with degenerate rates without restrictions on the total number of particles per site
to obtain a microscopic derivation of the modified porous medium equation defined
below.
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The modified porous medium equation (MPME) is a partial differential equation
of the form

{

∂tρ(t, u) = ∆(Φ(ρ(t, u))m)

ρ(0, .) = ρ0(.)
(1.1)

where ∆ = Σ1≤j≤d∂
2
uj , m ∈ N \ {0, 1} and Φ(ρ) is a smooth strictly increasing

function satisfying Φ(0) = 0 and limρ→0 Φ′(ρ) < ∞. This can be rewritten in
the divergence form as ∂tρ(t, u) = ∇(D(ρ(t, u))∇(ρ(t, u))) with diffusion coefficient
D(ρ(t, u)) = mΦ(ρ)m−1Φ′(ρ). Note that D(ρ) goes to zero as ρ → 0, thus the
equation looses its parabolic character.

To obtain a microscopic derivation of the MPME, we study stochastic particle
systems on the d-dimensional discrete torus T

d
N without restrictions on the total

number of particles per site. A configuration space of our microscopic dynamics is

therefore given by N
T
d
N with N = {0, 1, 2, ...} and a configuration is defined by giving

for each site x ∈ T
d
N the occupation variable, η(x) ∈ N, which stands for the total

number of particles at x. The process is defined through a function g : N → R+

vanishing at zero as follows. The evolution of our system is a continuous time
Markov process in which each particle jumps from site x to a nearest neighbor site
y at a rate c(x, y, η)g(η(x))(η(x))−1 . Namely, if there are k particles at a site x, at
rate c(x, y, η)g(η(x)) one of the particles at x jumps to y. For eachm ∈ N\{0, 1}, we
can provide a proper choice of c(x, y, η) = c(y, x, η) to derive the MPME with the
correspondent m (see (2.2) for m = 2 and (2.3) for m = 3 in the next section). The
function Φ(ρ) appearing in the hydrodynamic equation is given as an expectation
value of g with respect to an invariant measure νρ, which is defined in the next
section and parameterized by the density of particles (see (2.5) in the next section).
We remark that the choice c(x, y, η) = 1 corresponds to the Zero Range process
and, as is well known, leads to the nonlinear heat equation with D(ρ) = Φ′(ρ)
under diffusive re-scaling of time (see e.g. Section 5 and 6 in Kipnis and Landim,
1999). For a technical reason, in addition to an assumption usually assumed for g
to obtain the hydrodynamic behavior of the Zero Range process, we have to assume
another condition for g called (G). As we note at Remark 2.4, the condition (G)
depends on m.

This paper is organized as follows: In Section 2 we introduce our model and
state the main result. In Section 3, we give some examples for g satisfying the
desired condition. In Section 4, we give the proof of the main theorem via the
Relative Entropy method. The proof of One block estimate and Proposition 4.3
needed for the Relative Entropy method are postponed to Section 5 and Section 6,
respectively.

2. Notation and Results

We consider the continuous time Markov process ηt with state space χdN = N
T
d
N ,

where T
d
N = {0, 1, ..., N − 1}d is the discrete d-dimensional torus. Let η denote a

configuration in χdN , x a site in T
d
N and η(x) = k if there are k particles at site x.

The elementary moves which occur during evolution correspond to jump of particles
among nearest neighbors, x and y, occurring at a rate c(x, y, η) times g(η(x)) where
a function g : N → R+ satisfies that g(k) = 0 if and only if k = 0. Here, c(x, y, η) =
c(y, x, η) depends both on the couple (x, y) and on the value of the configuration
η in a finite neighborhood of x and y. On the other hand, g(η(x)) depends only
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on the value of the configuration η at site x. Precisely, the dynamics is defined by
means of an infinitesimal generator acting on cylinder functions f : χdN → R as

(LNf)(η) =
∑

x,y∈T
d
N
,|x−y|=1

c(x, y, η)g(η(x))(f(ηx,y) − f(η)),

where |x− y| =
∑

1≤i≤d |xi − yi| is the sum norm in R
d and

ηx,y(z) =











η(z) if z 6= x, y

η(x) − 1 if z = x

η(y) + 1 if z = y.

(2.1)

In the sequel we consider the rates

c(x, x + ej , η) = g(η(x− ej)) + g(η(x+ 2ej)) (2.2)

where {ej , j = 1, ..., d} denotes the canonical basis of R
d and we will prove all

the theorems for this choice. This, as we will prove, leads in the hydrodynamic
limit to the modified porous medium equation (1.1) for m = 2. Since g(k) = 0
if and only if k = 0, the degeneracy is exactly the same as the choice made in
Gonçalves et al. (2009) to obtain the porous medium equation with m = 2. Namely,
c(x, x + ei, η) = 0 both here and in the model of Gonçalves et al. (2009) when
η(x− ei)+ η(x+2ei) = 0, so the property is the same as in Gonçalves et al. (2009).
Also we can provide for any other m a proper choice of the rates such that all proofs
can be readily extended leading in the diffusive re-scaling to the MPME with the
correspondent m. For instance in the case m = 3, the jump rates to be considered
are

c(x, x + ej, η) = g(η(x − ej))g(η(x + 2ej))

+ g(η(x− 2ej))g(η(x− ej)) + g(η(x+ 2ej))g(η(x+ 3ej)). (2.3)

For the choice proposed to obtain m = 3, the degeneracy is also the same as in
Gonçalves et al. (2009). Note that both the choices of the jump rates taken above
have the property of defining a gradient system.

To prove the hydrodynamic behavior, we need some assumptions for the function
g. First we state an assumption, which is usually required to prove the hydrody-
namic behavior of the Zero Range process. Denote by ψ∗ the radius of convergence
of the partition function Z : R+ → R+ defined by

Z(ψ) =
∑

k≥0

ψk

g(k)!

where g(k)! = Πk
j=1g(j) and g(0)! = 1. Notice that Z is analytic and strictly

increasing on [0, ψ∗). We assume for g that Z(·) increases to ∞ as ψ converges to
ψ∗:

lim
ψ↑ψ∗

Z(ψ) = ∞. (2.4)

Now, we describe some invariant measures of this process which are also invariant for
the Zero Range Process defined with the same function g. For each fixed ψ ∈ [0, ψ∗),
let ν̄ψ = ν̄Nψ denote a product measure on χdN with marginals given by

ν̄ψ{η(x) = k} =
ψk

Z(ψ)g(k)!
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for all x ∈ χdN and k ∈ N. Then, the Markov process ηt on χdN is reversible
with respect to the one parameter family of translation invariant product measures
{ν̄ψ}ψ∈[0,ψ∗).

Let R(ψ) denote the expectation value of the occupation variable under ν̄ψ, i.e.,
R(ψ) = Eν̄ψ [η(0)]. Under our assumption, it is known that R : [0, ψ∗) → R+ is onto
and one-to-one, so that there exists an inverse of R (see e.g. Section 2 in Kipnis
and Landim, 1999). Denote this inverse function by Φ. By the definition, Φ is a
smooth strictly increasing function and satisfies Φ(0) = 0 and limρ→0 Φ′(ρ) = g(1).
Let να be the measure ν̄Φ(α). Then, the index α stands for the density of particles,
namely Eνα [η(0)] = α. A simple computation shows that

Φ(α) = Eνα [g(η(0))]. (2.5)

Remark 2.1. By assumption (2.4), for each α ∈ R+ the measure να has a finite
exponential moment: there exists θ(α) > 0 such that

Eνα [exp(θη(0))] <∞.

By the degeneracy of the rates, other invariant measures arise naturally. For
example in one dimensional setting, any configuration η such that the distance
between the position of two consecutive nonempty sites is bigger than two has
the exchange rates all of which vanish, because c(x, x ± 1)g(η(x)) 6= 0 only when
η(x){η(x∓ 1) + η(x± 2)} 6= 0. Therefore it is a blocked configuration and a Dirac
measure supported on it is an invariant measure for this process. Since there are
some blocked configurations, we need to study the irreducible components of the
hyperplanes of configurations with a fixed number of particles in detail.

Remark 2.2. Let ΣN,k denote the hyperplane of configurations with k particles,
namely

ΣN,k = {η ∈ χdN :
∑

x∈T
d
N

η(x) = k}.

For any pair of positive integers N and k, ΣN,k is not irreducible. In fact, for
example, a configuration η ∈ ΣN,k satisfying η(x) = k for a single site x ∈ T

d
N

and η(y) = 0 for y 6= x is a blocked configuration. Moreover, it is easily seen
that a configuration is blocked when it does not contain at least a couple of sites
at distance one or two with occupation number different from 0. Note that for
the case in Gonçalves et al. (2009), due to the exclusive constraints, there exists a
constant C(d) <∞ such that the hyperplane ΣN,k is irreducible for k > C(d)(N3 )d.

Remark 2.3. Any two configurations η and ξ in ΣN,k belong to a same irreducible
component if η and ξ have at least one d-dimensional hypercube of sites of linear
size 2 with occupation number different from 0. In other words, define the set Σ∗

N,k

as

Σ∗
N,k = {η ∈ ΣN,k :

∑

x∈T
d
N

Πy∈Qxη(y) ≥ 1}

where Qx = {y ∈ T
d
N : yi − xi ∈ {0, 1} for all 1 ≤ i ≤ d}, then Σ∗

N,k is a subset
of an irreducible component. This is a key ingredient to derive the hydrodynamic
limit.

To show this, it is sufficient to see that a d-dimensional hypercube of particles of
linear size 2 (i.e. 2d particles which form a d-dimensional hypercube of linear size 2)
is the mobile cluster, namely it has the following properties: (i) there exists allowed
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sequence of jumps which allows to shift the mobile cluster to any other position,
(ii) this allowed path is independent on the value of the occupation number on the
remaining sites, (iii) the jump of any other particle to a neighboring site should be
allowed when the mobile cluster is brought in a proper position in its vicinity. For
the direct construction of the path in (i) and (ii), we refer the reader to Gonçalves
et al. (2009) where the path is described in Section 2. The property (iii) is easy to
check.

To prove Proposition 4.2 we also assume the linear-growth of the power of g:

(G) lim sup
k→∞

g(k)2

k
<∞.

Remark 2.4. If we consider the case m > 2, we need to assume that

lim sup
k→∞

g(k)m

k
<∞.

Remark 2.5. Under the assumption (G), there exists some positive constant b such
that

g(k)2 ≤ b k for all k ≥ 0.

Let T
d denote the d-dimensional torus. Fix ε > 0 and a initial profile ρ0 : T

d →
R+ of class C2+ε(Td) satisfying the bounded condition, as the existence of a strictly
positive constant δ0 such that

δ0 ≤ ρ0(u) for all u ∈ T
d. (2.6)

Since ρ0 is continuous, we can take δ1 > 0 as

δ0 ≤ ρ0(u) ≤ δ1 for all u ∈ T
d. (2.7)

By the definition, Φ(α)2 is a smooth strictly increasing function on [δ0, δ1] and

sup
α∈[δ0,δ1]

|Φ · Φ′(α)| <∞.

Therefore, by Theorem A2.4.1 of Kipnis and Landim (1999), the equation (1.1)
admits a solution that we denote by ρ(t, u) which is of class C1+ε,2+ε(R+×T

d) and
δ0 ≤ inft,u ρ(t, u) ≤ supt,u ρ(t, u) ≤ δ1.

Let νNρ0(·) be the product measure on χdN such that:

νNρ0(·){η, η(x) = k} = νρ0( x
N

){η, η(x) = k}.

Hereafter, for t ≥ 0, we denote by νNρ(t,·) the product measure on χdN such that

νNρ(t,·){η, η(x) = k} = νρ(t, x
N

){η, η(x) = k}.

For two measure µ and ν on χdN denote by H(µ/ν) the relative entropy of µ with
respect to ν, defined by:

H(µ/ν) = sup
f

{

∫

fdµ− log

∫

efdν
}

,

where the supreme is carried over all continuous functions.
With these notations our main theorem is stated as follows:
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Theorem 2.6. Under the assumption (G), let ρ0 : T
d → R+ be a initial profile of

class C2+ε(Td) that satisfies the bounded condition (2.7) and (µN )N be a sequence
of probability measures on χNd such that:

H(µN/νNρ0(.)) = o(Nd). (2.8)

Then, for each t ≥ 0
H(µNSNt /ν

N
ρ(t,·)

) = o(Nd), (2.9)

where ρ(t, u) is a smooth solution of equation (1.1). In the above formula, SNt
stands for the semigroup associated to the generator LN speeded up by N2.

To keep notation as simple as possible, hereafter we denote by µNt the distribution
on χdN at macroscopic time t:

µNt := µNSNt ,

and by µNt the Cesaro mean of µNt :

µNt :=
1

t

∫ t

0

µNs ds.

Remark 2.7. Fix a bounded profile ρ0 : T
d → R+. In Kipnis and Landim (1999), it

is shown that every sequence of probability measures µN with entropyH(µN/νNρ0(·))

of order o(Nd) satisfies that

H(µN/νNα ) = O(Nd)

for every α > 0. In particular, if the entropy H(µN/νNα ) at time 0 is bounded by
C0N

d, we have

H(µNt /ν
N
α ) ≤ C0N

d for every t ≥ 0.

We can deduce the conservation of local equilibrium in the weak sense.

Corollary 2.8. Under the assumption of Theorem 2.6, for every continuous func-
tion H : T

d → R, every bounded cylinder function Ψ and every t ≥ 0,

lim
N→∞

EµNt [|
1

Nd

∑

x∈T
d
N

H(
x

N
)τxΨ(η) −

∫

Td

H(u)Eνρ(t,u)
[Ψ]du|] = 0

where τx is the shift operator acting on the cylinder functions f as well as configu-
rations η as follows:

τxf(η) = f(τxη), (τxη)(z) := η(z + x), z ∈ Z
d.

3. Examples

We present three classes of examples for g : N → R+ that satisfies both (2.4)
and the assumption (G).

Example 3.1. Fix q > 0 and let g(k) be a real sequence:

g(0) = 0, g(k) =
k

q + k − 1
for all k ≥ 1.

It is well known that Z(ψ) = (1 − ψ)−q and ψ∗ = 1. Furthermore by this explicit
formula, we obtain that limψ↑ψ∗ Z(ψ) = ∞. The function g also satisfies the
assumption (G):

lim
k→∞

g(k)2

k
= lim

k→∞

k2

k(q + k − 1)2
= 0.
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Therefore, we can apply Theorem 2.6 to the dynamics defined by g. In this case,
Φ(ρ) and D(ρ) also can be written explicitly:

Φ(ρ) =
ρ

ρ+ q
D(ρ) = 2

ρq

(ρ+ q)3
.

Example 3.2. Fix 0 ≤ β ≤ 1 and let g(k) be a real sequence:

g(0) = 0, g(1) = 1, g(k) = (
k

k − 1
)β for all k ≥ 2.

Then, Z(ψ) =
∑

k≥0
ψk

kβ
and ψ∗ = 1. Furthermore it is well known that

limψ↑ψ∗ Z(ψ) = ∞. The function g also satisfies the assumption (G):

lim
k→∞

g(k)2

k
= lim

k→∞

kβ

k(k − 1)β
= 0.

Therefore, we can apply Theorem 2.6 to the dynamics defined by g. The special
case β = 0 is corresponding to Example 1 with q = 1.

Example 3.3. Fix 0 < γ ≤ 1
2 and let g(k) be a real sequence:

g(0) = 0, g(k) = kγ for all k ≥ 1.

Then, by limk→∞ g(k) = ∞, it is obvious that ψ∗ = ∞ and limψ↑ψ∗ Z(ψ) = ∞.
The function g also satisfies the assumption (G):

lim
k→∞

g(k)2

k
= lim
k→∞

k2γ

k
<∞.

Therefore, we can apply Theorem 2.6 to the dynamics defined by g.

4. The Relative Entropy Method

In this section, we prove Theorem 2.6 via the Relative Entropy Method due to
Yau in Yau (1991). The proof of Theorem 2.6 is divided in several lemmas. We
start with introducing some notation. Fix α ∈ (0,∞) and an invariant measure να.
Let

ψNt =
dνNρ(t,.)

dνα
, fNt =

dµNt
dνα

, HN (t) = H(µNt /ν
N
ρ(t,·)

).

Since the measures νNρ(t,.) and να are product, it is very simple to obtain an expres-

sion for ψNt :

ψNt = exp{
∑

x∈T
N
d

[η(x) log
Φ(ρ(t, xN ))

Φ(α)
− log

Z(Φ(ρ(t, xN ))

Z(Φ(α))
]}.

We take T > 0 arbitrarily and fix it in the rest of this paper. In order to prove the
result, we are going to show that there exists a constant γ > 0 satisfying

HN (t) ≤ o(Nd) +
1

γ

∫ t

0

HN (s)ds for all 0 ≤ t ≤ T

and apply Gronwall inequality to conclude.
There is a well-known estimate of the entropy production due to Yau in Yau

(1991):

∂tHN (t) ≤

∫

χd
N

1

ψNt
(N2L∗

Nψ
N
t − ∂tψ

N
t )fNt dν

N
α for all t ≥ 0, (4.1)
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where L∗
N is the adjoint operator of LN in L2(να). In our case, L∗

N = LN .

By simple computations, we obtain that the term
N2L∗

Nψ
N
t

ψNt
is bounded from

above by

∑

x∈T
N
d

d
∑

j=1

[τxpj(η)∂
2
ujλ(t,

x

N
) +

1

2
τxqj(η)(∂ujλ(t,

x

N
))2]

+o(1)
∑

x∈T
N
d

d
∑

j=1

[|τxpj(η)| + τxqj(η)]

where

pj(η) = g(η(0))g(η(ej)) + g(η(0))g(η(−ej)) − g(η(ej))g(η(−ej)),

qj(η) = c(0, ej, η){g(η(0)+g(η(ej))} = {g(η(−ej))+g(η(2ej))}{g(η(0))+g(η(ej))},

and
λ(t, u) = log Φ(ρ(t, u)).

Notice that W0,ej := c(0, ej, η){g(η(0)− g(η(ej))} = pj(η)− τejpj(η) where τej is a
shift operator.

Here and after, o(1) means that the absolute value of the term is bounded from
above by a constant CN,T depending only on N and T such that limN→∞ CN,T = 0.
By Remark 2.5

|τxpj(η)| ≤ b(η(x − ej) + η(x) + η(x+ ej)) (4.2)

and
τxqj(η) ≤ b(η(x− ej) + η(x) + η(x+ ej) + η(x+ 2ej)) (4.3)

holds. Therefore, we obtain that

N2L∗
Nψ

N
t

ψNt
≤

∑

x∈T
N
d

d
∑

j=1

[τxpj(η)∂
2
ujλ(t,

x

N
)+

1

2
τxqj(η)(∂ujλ(t,

x

N
))2]+o(1)

∑

x∈T
N
d

η(x).

(4.4)
On the other hand, Taylor’s expansion gives that

∑

x∈T
N
d

d
∑

j=1

[p̃(ρ(t,
x

N
))∂2

ujλ(t,
x

N
) +

1

2
q̃(ρ(t,

x

N
))(∂ujλ(t,

x

N
))2] = o(Nd) (4.5)

where
p̃(α) := Eνα [pj(η)] = Φ(α)2

and
q̃(α) := Eνα [qj(η)] = 4Φ(α)2.

By the identity
Z ′(ψ)

Z(ψ)
=
R(ψ)

ψ

and the fact that ρ(t, u) is the solution of the equation (1.1), we can rewrite the
term 1

ψNt
∂tψ

N
t (η) = ∂t(logψNt ) as

∑

x∈T
N
d

d
∑

j=1

[p̃′(ρ(t,
x

N
))∂2

ujλ(t,
x

N
) +

1

2
q̃′(ρ(t,

x

N
))(∂ujλ(t,

x

N
))2](η(x) − ρ(t,

x

N
)).

(4.6)
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Up to this point we prove the next lemma:

Lemma 4.1. For every ε > 0 and l ∈ N, there exists Nǫ,l ∈ N such that for all
t ∈ [0, T ] and N ≥ Nǫ,l

1

Nd
HN (t) ≤ ε+

∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

d
∑

j=1

[∂2
ujλ(s,

x

N
){τxpj(η) − p̃(ηl(x))} (4.7)

+
1

2
(∂ujλ(t,

x

N
))2{τxqj(η) − q̃(ηl(x))}

+ ∂2
ujλ(s,

x

N
){p̃(ηl(x)) − p̃(ρ(s,

x

N
)) − p̃′(ρ(s,

x

N
))((ηl(x) − ρ(s,

x

N
))}

+
1

2
(∂ujλ(s,

x

N
))2{q̃(ηl(x)) − q̃(ρ(s,

x

N
)) − q̃′(ρ(s,

x

N
))(ηl(x) − ρ(s,

x

N
))}]fNs dν

N
α

where ηl(x) stands for the empirical density of particles in a cube of length l centered
at x:

ηl(x) =
1

(2l+ 1)d

∑

|y−x|≤l

η(y).

Proof : From the equations (4.1), (4.4), (4.5) and (4.6), we have only to prove the
estimate:

lim sup
N→∞

|

∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

d
∑

j=1

{∂2
ujλ(s,

x

N
)p̃′(ρ(s,

x

N
))

+
1

2
(∂ujλ(s,

x

N
))2q̃′(ρ(s,

x

N
))}(ηl(x) − η(x))fNs dν

N
α | = 0

for every l ∈ N. Since ∂2
ujλ(s, u)p̃′(ρ(s, u))+ 1

2 (∂ujλ(s, u))
2q̃′(ρ(s, u)) is a uniformly

continuous function on [0, T ]× T
d, a summation by parts gives this estimate. �

To replace the cylinder functions τxpj(η) and τxqj(η) by their mean values
p̃(ηl(x)) and q̃(ηl(x)) respectively, we need to prove the next proposition.

Proposition 4.2 (One-block Estimate). Let ψ be pj or qj. Then, for small γ > 0,

lim sup
l→∞

lim sup
N→∞

∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

τxVl,ψ(η)fNs dν
N
α ≤

1

γNd

∫ t

0

HN (s)ds (4.8)

where

Vl,ψ(η) = |
1

(2l + 1)d

∑

|y|≤l

τyψ(η) − ψ̃(ηl(0))|

and ψ̃(α) = Eνα [ψ]. More precisely, for small γ > 0 and every ε > 0, there exists
lγ,ε such that for all l ≥ lγ,ε, there exists Nγ,ε,l such that for all t ∈ [0, T ] and
N ≥ Nγ,ε,l,

∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

τxVl,ψ(η)fNs dν
N
α ≤ ε+

1

γNd

∫ t

0

HN (s)ds.
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We prove this proposition in the next section. From a summation by parts and
Proposition 4.2, we can deduce the replacement:

lim sup
l→∞

lim sup
N→∞

∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

[∂2
ujλ(s,

x

N
){τxpj(η) − p̃(ηl(x))}

+
1

2
(∂ujλ(t,

x

N
))2{τxqj(η) − q̃(ηl(x))}]fNs dν

N
α ≤

1

γNd

∫ t

0

HN (s)ds

straightforwardly. The rigorous statement of this inequality is same as that of
Proposition 4.2.

Next, to estimate the right hand side of (4.7) we show that the expectation

∫ t

0

ds

∫

χN
d

∑

x∈T
N
d

d
∑

j=1

[∂2
ujλ(s,

x

N
) + 2(∂ujλ(s,

x

N
))2]M(ηl(x), ρ(s,

x

N
))fNs dν

N
α

is bounded from above by the sum of a term of o(Nd) and the time integral of the
entropy multiplied by a constant, where

M(a, b) = p̃(a) − p̃(b) − p̃′(b)(a− b)

=
1

4
{q̃(a) − q̃(b) − q̃′(b)(a− b)}.

By the entropy inequality, for every γ > 0, this integral is bounded above by

1

γ

∫ t

0

HN (s)ds+
1

γ

∫ t

0

ds logEνN
ρ(s,·)

[exp{γ
∑

x∈T
N
d

F (s,
x

N
)M(ηl(x), ρ(s,

x

N
))}]

where

F (s, u) = ∂2
ujλ(s, u) + 2(∂ujλ(s, u))

2.

The next result concludes the proof of Theorem 2.6.

Proposition 4.3. For sufficiently small γ > 0,

lim sup
l→∞

lim sup
N→∞

1

γNd

∫ t

0

ds logEνN
ρ(s,·)

[exp{γ
∑

x∈T
N
d

F (s,
x

N
)M(ηl(x), ρ(s,

x

N
))}] ≤ 0

(4.9)
for all t ∈ [0, T ].

The proof of this proposition is in Section 6.

5. One-block Estimate

In this section, we prove Proposition 4.2. We start with a key lemma.

Lemma 5.1. Fix w > 0 and α > 0. Then, there exists a constant M0 > 0 and
γ0 > 0 such that for all γ ≤ γ0,

lim
n→∞

1

n
logE[exp(wγ

n
∑

k=1

Xk · 1{X̄n>M0})] ≤ 0

where {Xk}
∞
k=1 is a sequence of i.i.d random variables with distribution να and

X̄n =
∑n

k=1Xk/n.
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Proof : By Remark 2.1, the set {θ > 0;E[exp(θX1)] < ∞} is not empty. Take an
element θ from the set and fix it. We prove the statement for γ0 = θ

2w . For every
γ > 0 satisfying γ ≤ γ0, namely 2wγ ≤ θ,

logE[exp(wγ

n
∑

k=1

Xk · 1{X̄n>M0})] ≤ log
(

E[exp(wγ

n
∑

k=1

Xk) · 1{X̄n>M0}] + 1
)

≤ E[exp(wγ
n

∑

k=1

Xk) · 1{X̄n>M0}]

≤ E[exp(2wγ

n
∑

k=1

Xk)]
1/2E[1{X̄n>M0}]

1/2

= E[exp(2wγX1)]
n/2E[1{X̄n>M0}]

1/2.

A simple computation shows that

E[1{X̄n>M0}] = E[1{θ
P

n
k=1Xk>θnM0}]

≤ E[exp(θ

n
∑

k=1

Xk − θnM0)] = exp(−θnM0)E[exp(θX1)]
n.

Denote logE[exp(aX1)] by R(a), then

1

n
logE[exp(wγ

n
∑

k=1

Xk · 1{X̄n>M0})]

≤
1

n
exp(R(2wγ)

n

2
) exp(−θM0

n

2
) exp(R(θ)

n

2
)

=
1

n
exp(

n

2
{R(2wγ) − θM0 +R(θ)})

≤
1

n
exp[

n

2
{−θM0 + 2R(θ)}].

Therefore, we choose M0 as M0 >
2R(θ)
θ and conclude the proof. �

Next, we show that this lemma allows us to introduce an indicator function the
same way as the proof of Zero Range Process in Kipnis and Landim (1999). First,
recall the definition of the function τxVl,ψ :

τxVl,ψ(η) = |
1

(2l+ 1)d

∑

|y−x|≤l

τyψ(η) − ψ̃(ηl(x))|.

Since we assume ψ is pj or qj and we have the estimates (4.2) and (4.3), ψ satisfies
that ψ is measurable with respect to {η(y); |y| ≤ A} and |ψ(η)| ≤ b

∑

|y|≤A η(y) for

some finite constant A. Therefore, simple computations show that

|
1

(2l+ 1)d

∑

|y−x|≤l

τyψ(η)| ≤
b

(2l + 1)d

∑

|y−x|≤l

∑

|z−y|≤A

η(z)

≤
b(2A+ 1)d

(2l + 1)d

∑

|z−x|≤l+A

η(z) ≤
b(2A+ 1)d(2l + 2A+ 1)d

(2l + 1)d
ηl+A(x) ≤ b′ηl+A(x)
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for some finite constant b′ for every l. On the other hand, from the estimate

|ψ(α)| = |Eνα [ψ(η)]| ≤ bEνα [
∑

|y|≤A

η(y)] ≤ b(2A+ 1)dα,

we have the inequality

|ψ(ηl(x))| ≤ b(2A+ 1)dηl(x) ≤
b(2A+ 1)d(2l + 2A+ 1)d

(2l + 1)d
ηl+A(x) ≤ b′ηl+A(x).

These two inequality lead to that:

τxVl,ψ(η) ≤ wηl+A(x) (5.1)

where w = 2b′. Here, we take M0 > 0 and γ0 > 0 for this w and δ1 whose existence
is guaranteed in Lemma 5.1. Then, we can divide the integral that appears in the
statement of Proposition 4.2 into

∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

τxVl,ψ(η)1{ηl+A(x)≤M0}f
N
s dν

N
α (5.2)

+

∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

τxVl,ψ(η)1{ηl+A(x)>M0}f
N
s dν

N
α . (5.3)

By the inequality (5.1) and the entropy inequality, the term (5.3) is bound from
above by
∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

wηl+A(x)1{ηl+A(x)>M0}f
N
s dν

N
α

≤
1

γNd

∫ t

0

HN(s)ds+
1

γNd

∫ t

0

ds logEνN
ρ(s,·)

[exp{γw
∑

x∈T
N
d

ηl+A(x)1{ηl+A(x)>M0}}]

for every γ > 0. By Hölder inequality and by independence, the second term of
last expression can be bounded by

1

γNd(2l + 2A+ 1)d

∑

x∈T
N
d

∫ t

0

ds logEνN
ρ(s,·)

[exp{γw
∑

|z−x|≤l+A

η(z)1{ηl+A(x)>M0}}]

≤
1

γNd(2l+ 2A+ 1)d

∑

x∈T
N
d

∫ t

0

ds logEνδ1 [exp{γw
∑

|z−x|≤l+A

η(z)1{ηl+A(x)>M0}}]

=
t

γ(2l+ 2A+ 1)d
logEνδ1 [exp{γw

∑

|z|≤l+A

η(z)1{ηl+A(0)>M0}}]

which vanishes as l → ∞ for every γ ≤ γ0 by Lemma 5.1. Here we use the fact
ρ(s, u) ≤ δ1 for every s ≥ 0 and u ∈ T

d.
Now, we deal with the term (5.2). We separate the set of configurations into two

sets: the irreducible component that contains all configurations with at least one d-
dimensional hypercube of particles of linear size 2 and the remaining configurations.
In the first case the standard proof is easily adapted, while for the second case we
will use the fact that this set has small measure with respect to νNρ(s,·).
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Fix x ∈ T
d
N and denote by Qx,l the set of configurations which have at least one

d-dimensional hypercube of sites of linear size 2 with occupation number different
from 0 in the box center x and radius l:

Qx,l =
{

η :
∑

y∈Cx

Πz∈Qyη(z) ≥ 1
}

where Qy = {z : zi − yi ∈ {0, 1} for all 1 ≤ i ≤ d} and Cx = {y : |z − x| ≤
l for all z ∈ Qy}. We denote by Ex,l the irreducible set which contains Qx,l (and
all configurations that can be connected via an allowed path to one in Ex,l) and we
split the term (5.2) into

∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

τxVl,ψ(η)1{Ex,l}(η)1{ηl+A(x)≤M0}f
N
s dν

N
α (5.4)

+

∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

τxVl,ψ(η)1{Ec
x,l

}(η)1{ηl+A(x)≤M0}f
N
s dν

N
α . (5.5)

For the term (5.4), we can repeat the standard argument of the One-block estimate
with Remark 2.7 because we have already succeeded to cut off large densities and
we conclude:

lim sup
l→∞

lim sup
N→∞

∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

τxVl,ψ(η)1{Ex,l}(η)1{ηl+A(x)≤M0}f
N
s dν

N
α = 0.

It remains to show that the term (5.5) is bounded from above by the sum of a term
which vanishes as N → ∞ and the time integral of the entropy multiplied by a
constant and divided by Nd. Denote the probability of the set {η; η(0) ≥ 1} under
νδ0 by Pδ0 :

Pδ0 = νδ0({η; η(0) ≥ 1}).

Note that the probability of the ergodic set Ex,l converges rapidly to one with l,
indeed the following holds:

νNρ(s,·)(Ex,l) ≥ 1 − (1 − P 2d

δ0 )l
d

(5.6)

where we use the fact that initial profile is bounded away from zero, namely
ρ(s, u) ≥ δ0 for every u ∈ T

d.
The equation (5.1) shows that we can bound the term (5.5) from above by

∫ t

0

ds

∫

χN
d

1

Nd

∑

x∈T
N
d

wM01{Ec
x,l

}(η)f
N
s dν

N
α

and the entropy inequality allow us to bound it by

1

γNd

∫ t

0

HN (s)ds+
1

γNd

∫ t

0

ds logEνN
ρ(s,·)

[exp{γwM0

∑

x∈T
N
d

1{Ec
x,l

}}]
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for every γ > 0. By Hölder inequality and by independence, the second term of the
last expression can be bounded from above by

1

γNd(2l + 1)d

∑

x∈T
N
d

∫ t

0

ds logEνN
ρ(s,·)

[exp{γwM0(2l + 1)d1{Ec
x,l

}}]

=
1

γNd(2l + 1)d

∑

x∈T
N
d

∫ t

0

ds log
(

νNρ(s,·)(E
c
x,l)(exp{γwM0(2l + 1)d} − 1) + 1

)

.

By using the upper bound on νNρ(s,·)(E
c
x,l) which follows from (5.6) and the inequality

log(x+ 1) ≤ x, we can bound from above the last expression by

t

γ(2l+ 1)d
(exp{γwM0(2l + 1)d} − 1)(1 − P 2d

δ0 )l
d

,

which vanishes as l → ∞ for sufficiently small γ > 0 since Pδ0 > 0.

6. Proof of Proposition 4.3

In this section, we prove Proposition 4.3. First, we reduce the problem stated in
proposition to the problem where the time is fixed. With the elementary estima-
tions, we obtain that

|M(ηl(x), ρ(s,
x

N
))| ≤ p̃(ηl(x)) + p̃(δ1) + sup

a∈[δ0,δ1]

p̃′(a)ηl(x) + sup
a∈[δ0,δ1]

ap̃′(a)

≤ C1η
l(x) + C2

for some constants C1 and C2 because p̃(λ) = Φ(λ)2 = Eνλ [g(η(0))g(η(e1))] ≤
1/2Eνλ [g(η(0))2 + g(η(e1))

2] ≤ bλ. Therefore, by Hölder inequality and by inde-
pendence, for sufficiently small γ > 0

1

γNd
logEνN

ρ(s,·)
[exp{γ

∑

x∈T
N
d

F (s,
x

N
)M(ηl(x), ρ(s,

x

N
))}]

≤
1

γNd(2l + 1)d

∑

x∈T
N
d

logEνN
ρ(s,·)

[exp{γ‖F‖∞(2l+ 1)d(C1η
l(x) + C2)}]

≤
1

γNd(2l + 1)d

∑

x∈T
N
d

log
{

exp(γ‖F‖∞(2l + 1)dC2) ×

× Eνδ1 [exp{γ‖F‖∞C1η(0)}](2l+1)d
}

= ‖F‖∞C2 +
1

γ
logEνδ1 [exp{γ‖F‖∞C1η(0)}] := k <∞.

In this formula, ‖F‖∞ stands for the L∞([0, T ]× T
d) norm of F :

‖F‖∞ = sup
(s,u)∈[0,T ]×Td

|F (s, u)|

By the definition, k does not depend on N , l nor s. Therefore, we can apply Fatou’s
lemma to bound the expression

lim sup
l→∞

lim sup
N→∞

∫ t

0

1

γNd
logEνN

ρ(s,·)
[exp{γ

∑

x∈T
N
d

F (s,
x

N
)M(ηl(x), ρ(s,

x

N
))}]
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from above by
∫ t

0

lim sup
l→∞

lim sup
N→∞

( 1

γNd
logEνN

ρ(s,·)
[exp{γ

∑

x∈T
N
d

F (s,
x

N
)M(ηl(x), ρ(s,

x

N
))}]

)

.

The next lemma concludes the proof of Proposition 4.3.

Lemma 6.1. There exists γ1 > 0 such that for all 0 ≤ s ≤ T

lim sup
l→∞

lim sup
N→∞

1

Nd
logEνN

ρ(s,·)
[exp{γ1

∑

x∈T
N
d

F (s,
x

N
)M(ηl(x), ρ(s,

x

N
))}] ≤ 0. (6.1)

To prove this lemma, we use the statement of Lemma 6.1.8 in Kipnis and Landim
(1999):

Lemma 6.2. Let G : T
d × R+ → R be a continuous function such that

sup
u∈Td

|G(u, λ)| ≤ D0 +D1λ for all λ ∈ R+ (6.2)

where D0 is a finite constant and D1 is a constant bounded by log[ψ∗/Φ(δ1)]:

D1 < log
ψ∗

Φ(δ1)
.

Then,

lim sup
l→∞

lim sup
N→∞

1

Nd
logEνN

ρ(·)
[exp{

∑

x∈T
N
d

G
( x

N
, ηl(x)

)

}]

≤

∫

Td

du sup
λ≥0

{G(u, λ) − Jρ(u)(λ)},

where Jβ(·) is a rate function:

Jβ(λ) =

{

λ log(Φ(λ)
Φ(β) ) − log

(

Z(Φ(λ))
Z(Φ(β))

)

for λ ≥ 0

∞ otherwise.

To apply this lemma to the function

G(u, λ) = γF (s, u){p̃(λ) − p̃(ρ(s, u)) − p̃′(ρ(s, u))(λ − ρ(s, u))},

notice that

sup
u∈Td

|G(u, λ)| ≤ γ‖F‖∞{bλ+ sup
a∈[δ0,δ1]

p̃(a) + sup
a∈[δ0,δ1]

p̃′(a)λ+ sup
a∈[δ0,δ1]

ap̃′(a)}.

We summarize the conclusions up to this point in the next corollary.

Corollary 6.3. Let

γ2 =
1

(b + supa∈[δ0,δ1] p̃
′(a))‖F‖∞

log
ψ∗

Φ(δ1)
.

Then, for all γ < γ2 and 0 ≤ s ≤ T ,

lim sup
l→∞

lim sup
N→∞

1

Nd
logEνN

ρ(s,·)
[exp{γ

∑

x∈T
N
d

F (s,
x

N
)M(ηl(x), ρ(s,

x

N
))}]

≤

∫

Td

du sup
λ≥0

{γF (s, u)M(λ, ρ(s, u)) − Jρ(s,u)(λ)}.
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To conclude the proof of Proposition 4.3, we have to show that the right hand
side of the previous inequality is non positive for all γ sufficiently small. This result
follows from the next lemma.

Lemma 6.4. For every 0 < K1 < K2 <∞,

sup
β∈[K1,K2],λ≥0

|M(λ, β)|

Jβ(λ)
<∞.

Proof : Straightforward form the proof of Lemma 6.1.10 in Kipnis and Landim
(1999) with the fact that p̃(λ) ≤ bλ. �

Corollary 6.5. There exists γ1 > 0 such that for all γ < γ1

sup
(s,u)∈[0,T ]×Td,λ≥0

{γF (s, u)M(λ, ρ(s, u)) − Jρ(s,u)(λ)} ≤ 0.

Proof : Straightforward from Lemma 6.4 because F is bounded on [0, T ]× T
d and

the range of ρ(·, ·) is contained in [δ0, δ1]. �
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