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Abstract. In the paper Nourdin et al. (2009), written in collaboration with Ge-
sine Reinert, we proved a universality principle for the Gaussian Wiener chaos. In
the present work, we aim at providing an original example of application of this
principle in the framework of random matrix theory. More specifically, by combin-
ing the result in Nourdin et al. (2009) with some combinatorial estimates, we are
able to prove multi-dimensional central limit theorems for the spectral moments (of
arbitrary degrees) associated with random matrices with real-valued i.i.d. entries,
satisfying some appropriate moment conditions. Our approach has the advantage
of yielding, without extra effort, bounds over classes of smooth (i.e., thrice differ-
entiable) functions, and it allows to deal directly with discrete distributions. As a
further application of our estimates, we provide a new “almost sure central limit
theorem”, involving logarithmic means of functions of vectors of traces.

1. Introduction

1.1. Overview and main results. In the paper Nourdin et al. (2009), written in
collaboration with Gesine Reinert, we proved several universality results, involving
sequences of random vectors whose components have the form of finite homogeneous
sums based on sequences of independent random variables. Roughly speaking, our
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main finding implied that, in order to study the normal approximations of homoge-
neous sums (and under suitable moment conditions) it is always possible to replace
the original sequence with an i.i.d. Gaussian family. The power of this approach
resides in the fact that homogeneous sums associated with Gaussian sequences are
indeed elements of the so-called Wiener chaos, so that normal approximations can
be established by means of the general techniques developed in Nourdin and Peccati
(2009); Nualart and Peccati (2005); Peccati and Tudor (2005) – that are based on
a powerful interaction between standard Gaussian analysis, Malliavin calculus (see
e.g. Nualart, 2006) and Stein’s method (see e.g. Chen and Shao, 2005). Moreover,
in the process one always recovers uniform bounds over suitable classes of smooth
functions.

The aim of this paper is to introduce these techniques into the realm of random
matrix theory. More specifically, our goal is to use the universality principles de-
veloped in Nourdin et al. (2009), in order to prove the forthcoming Theorem 1.1,
which consists in a multidimensional central limit theorem (CLT) for traces of non-
Hermitian random matrices with i.i.d. real-valued entries. As explained below, the
computations and estimates involved in the proof of Theorem 1.1 will be further
applied in Section 5, where we will establish an almost sure central limit theorem

(ASCLT) for logarithmic means associated with powers of large non-Hermitian ran-
dom matrices. See Theorem 1.5 for a precise statement – as well as Hörmann (2007)
for a general discussion on ASCLTs.

Now let X be a centered real random variable, having unit variance and with
finite moments of all orders, that is, E(X) = 0, E(X2) = 1 and E|X |n < ∞ for
every n ≥ 3. We consider a doubly indexed collection X = {Xij : i, j ≥ 1} of i.i.d.
copies of X . For every integer N ≥ 2, we denote by XN the N ×N random matrix

XN =

{
Xij√

N
: i, j = 1, ..., N

}
, (1.1)

and by Tr(·) and Xk
N , respectively, the usual trace operator and the kth power of

XN .

Theorem 1.1. Let the above notation prevail. Fix m ≥ 1, as well as integers

1 ≤ k1 < . . . < km.

Then, the following holds.

(i) As N → ∞,

(
Tr(Xk1

N )−E
[
Tr(Xk1

N )
]
, . . . , Tr(Xkm

N )−E
[
Tr(Xkm

N )
] )

Law−→
(
Zk1 ,..., Zkm

)
, (1.2)

where Z = {Zk : k ≥ 1} denotes a collection of real independent centered
Gaussian random variables such that, for every k ≥ 1, E(Z2

k) = k.
(ii) Write β = E|X |3. Suppose that the function ϕ : Rm → R is thrice differ-

entiable and that its partial derivatives up to the order three are bounded
by some constant B < ∞. Then, there exists a finite constant C =
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C(β, B, m, k1, ..., km), not depending on N , such that
∣∣∣∣∣E


ϕ


Tr(Xk1

N ) − E[Tr(Xk1

N )]√
Var(Tr(Xk1

N ))
, . . . ,

Tr(Xkm

N ) − E[Tr(Xkm

N )]√
Var(Tr(Xkm

N ))
]




 (1.3)

−E

[
ϕ

(
Zk1√

k1

, ...,
Zkm√

km

)] ∣∣∣∣∣ ≤ C N−1/4.

Remark 1.2. (1) We chose to state and prove Theorem 1.1 in the case of non-
Hermitian matrices with real-valued entries, mainly in order to facilitate the
connection with the universality results proved in Nourdin et al. (2009). For
the extension to the case where the random variable X is complex-valued

and with finite absolute moments of every order, we refer to the forthcoming
PhD thesis of Noreddine.

(2) Fix an integer K ≥ 2 and assume that E|X |2K < ∞, while higher moments
are allowed to be possibly infinite. By inspection of the forthcoming proof of
Theorem 1.1, one sees that the CLT (1.2) as well as the bound (1.3) continue
to hold, as long as the integers k1, ..., km verify kj ≤ K for j = 1, ..., m.

(3) In a similar vein as at the previous point, by imposing that supi,j E|Xij |n <
∞ for all n ≥ 1, one can easily adapt our techniques in order to deal with
random matrices whose entries are independent but not identically dis-

tributed. One crucial fact supporting this claim is that the universality
principles of Section 2 hold for collections of independent, and not neces-
sarily identically distributed, random variables.

(4) For non-Hermitian matrices, limits of moments are not sufficient to pro-
vide an exhaustive description of the limiting spectral measure or of the
fluctuations around it. Rather, one would need to consider polynomials in
the eigenvalues and their complex conjugates. These quantities cannot be
represented using traces of powers of XN , so that our approach cannot be
extended to this case.

1.2. Discussion. In this section we compare our Theorem 1.1 with some related
results proved in the existing probabilistic literature.

1. In Rider and Silverstein (2006), the following CLT is shown.

Theorem 1.3. Let X be a complex random variable such that E(X) = E(X2) = 0,
E(|X |2) = 1, E(|X |k) ≤ kαk, k ≥ 3 (for some α > 0) and Re(X), Im(X) possess
a joint bounded density. For N ≥ 2, let XN be defined as in (1.1). Consider the
space H of functions f : C → C which are analytic in a neighborhood of the disk
|z| ≤ 4 and otherwise bounded. Then, as N → ∞, the random field

{Tr(f(XN )) − E [Tr(f(XN ))] : f ∈ H}
converges in the sense of finite-dimensional distributions (f.d.d.) to the centered
complex-valued Gaussian field {Z(f) : f ∈ H}, whose covariance structure is given
by

E[Z(f)Z(g)] =

∫

U

f ′(z)g′(z)
d2z

π
. (1.4)

Here, U = {z ∈ C : |z| ≤ 1} is the unit disk, and d2z/π stands for the uniform
measure on U (in other words, d2z = dxdy for x, y ∈ R such that z = x + iy).
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By using the elementary relations: for every integers n, m ≥ 0,

1

π

∫

U

znzmd2z =

{
(n + 1)−1 if m = n
0 otherwise,

one sees that our Theorem 1.1 can be reformulated by saying that

{Tr(f(XN )) − E [Tr(f(XN ))] : f ∈ Pol(C)} f.d.d.−→ {Z(f) : f ∈ Pol(C)}, (1.5)

where the covariance structure of {Z(f) : f ∈ Pol(C)} is given by (1.4). It follows
that Theorem 1.1 roughly agrees with Theorem 1.3. However, we stress that the
framework of Rider and Silverstein (2006) is different from ours, since the findings
therein cannot be applied to the real case due to the assumption that real and
imaginary parts of entries must possess a joint bounded density. In addition, also
note that (differently from Rider and Silverstein, 2006) we do not introduce in the
present paper any requirement on the absolute continuity of the law of the real
random variable X , so that the framework of our Theorem 1.1 contemplates every
discrete random variable with values in a finite set and with unit variance.

2. One should of course compare the results of this paper with the CLTs in-
volving traces of Hermitian random matrices, like for instance Wigner random
matrices. One general reference in this direction is the fundamental paper by An-
derson and Zeitouni (2006), where the authors obtain CLTs for traces associated
with large classes of (symmetric) band matrix ensembles, using a version of the
classical method of moments based on graph enumerations. It is plausible that
some of the findings of the present paper could be also deduced from a suitable
extension of the combinatorial devices introduced in Anderson and Zeitouni (2006)
to the case of non-Hermitian matrices. However, proving Theorem 1.1 using this
kind of techniques would require estimates for arbitrary joint moments of traces,
whereas our approach merely requires the computation of variances and fourth mo-
ments. Also, the findings of Anderson and Zeitouni (2006) do not allow to directly
deduce bounds such as (1.3). We refer the reader e.g. to Guionnet (2009) or to An-
derson et al. (2009), and the references therein, for a detailed overview of existing
asymptotic results for large Hermitian random matrices.

3. The general statement proved by Chatterjee (2009, Theorem 3.1) concerns the
normal approximation of linear statistics of random matrices that are possibly non-
Hermitian. However, the techniques used by the author require that the entries
can be re-written as smooth transformations of Gaussian random variables. In
particular, the findings of Chatterjee (2009) do not apply to discrete distributions.
On the other hand, the results of Chatterjee (2009) also provide uniform bounds
(based on Poincaré-type inequalities and in the total variation distance) for one-
dimensional CLTs. Here, we do not introduce any requirements on the absolute
continuity of the law of the real random variable X , and we get bounds for multi-
dimensional CLTs.

4. Let us denote by {λj(N) : j = 1, ..., N} the complex-valued (random) eigen-
values of XN , repeated according to their multiplicities. Theorem 1.1 deals with
the spectral moments of XN , that are defined by the relations:

N ×
∫

zkdµXN
(z) =

N∑

j=1

λj(N)k = Tr(Xk
N ), N ≥ 2, k ≥ 1, (1.6)
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where µXN
denote the spectral measure of XN . Recall that

µXN
(·) =

1

N

N∑

j=1

δλj(N)(·), (1.7)

where δz(·) denotes the Dirac mass at z, and observe that one has also the alternate
expression

Tr(Xk
N ) = N− k

2

N∑

i1,...,ik=1

Xi1i2Xi2i3 · · · Xiki1 . (1.8)

It follows that our Theorem 1.1 can be seen as a partial (see Remark 1.2 (4) above)
characterization of the Gaussian fluctuations associated with the so-called circular

law, whose most general version has been recently proved by Tao and Vu:

Theorem 1.4 (Circular law, see Tao and Vu, 2008). Let X be a complex-valued
random variable, with mean zero and unit variance. For N ≥ 2, let XN be defined
as in (1.1). Then, as N → ∞, the spectral measure µXN

converges almost surely
to the uniform measure on the unit disk U = {z ∈ C : |z| ≤ 1}. The convergence
takes place in the sense of the vague topology.

To see why Theorem 1.1 concerns fluctuations around the circular law, one can
proceed as follows. First observe that, since E(X2) = 1 and E(X4) < ∞ by
assumption, one can use a result by Bai and Yin (1986, Theorem 2.2) stating that,
with probability one,

lim sup
N→∞

max
j=1,...,N

|λj(N)| ≤ 1. (1.9)

Let p(z) be a complex polynomial. Elementary considerations yield that, since (1.9)
and the circular law are in order, with probability one,

1

N
Tr(p(XN )) → 1

π

∫

U

p(z)d2z = p(0). (1.10)

On the other hand, it is not difficult to see that, for every k ≥ 1 and as N → ∞,

E

[∫
zkdµXN

(z)

]
= E

[
1

N
Tr(Xk

N )

]
→ 0

(one can use e.g. the same arguments exploited in the second part of the proof
Proposition 3.1 below). This implies in particular

E

[
1

N
Tr(p(Xn))

]
→ p(0). (1.11)

Therefore, with probability one

1

N
Tr(p(XN )) − E

[
1

N
Tr(p(XN ))

]
→ 0.

That is, the random variable 1
N Tr(p(XN )) tends to concentrate around its mean

as N goes to infinity, and (1.5) describes the Gaussian fluctuations associated with
this phenomenon.

On the other hand, one crucial feature of the proof of the circular law provided
in Tao and Vu (2008) is that it is based on a universality principle. This result
basically states that, under adequate conditions, the distance between the spectral
measures of (possibly perturbed) non-Hermitian matrices converges systematically
to zero, so that Theorem 1.4 can be established by simply focussing on the case
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where X is complex Gaussian (this is the so-called Ginibre matrix ensemble, first
introduced in Ginibre, 1965). It is interesting to note that our proof of Theorem 1.1
is also based on a universality result. Indeed, we shall show that the relevant part
of the vector on the LHS of (1.2) (that is, the part not vanishing at infinity) has the
form of a collection of homogeneous sums with fixed orders. This implies that the
CLT in (1.2) can be deduced from the results established in Nourdin et al. (2009),
where it is proved that the Gaussian Wiener chaos has a universal character with
respect to Gaussian approximations. Roughly speaking, this means that, in order to
prove a CLT for a vector of general homogeneous sums, it is sufficient to consider
the case where the summands are built from an i.i.d. Gaussian sequence. This
phenomenon can be seen as a further instance of the so-called Lindeberg invariance
principle for probabilistic approximations, and stems from powerful approximation
results by Rotar’ (1979) and Mossel et al. (2010). See the forthcoming Section 2
for precise statements.

5. We finish this section by listing and discussing very briefly some other results
related to Theorem 1.1, taken from the existing probabilistic literature.

- In Rider (2004) (but see also Forrester, 1999), one can find a CLT for
(possibly discontinuous) linear statistics of the eigenvalues associated with
complex random matrices in the Ginibre ensemble. This partially builds
on previous findings by Costin and Lebowitz, 1995.

- Reference Rider and Virág (2007) provides further insights into limit theo-
rems involving sequences in the complex Ginibre ensemble. In particular,
one sees that relaxing the assumption of analyticity on test functions yields
a striking decomposition of the variance of the limiting noise, into the sum
of a “bulk” and of a “boundary” term. Another finding in Rider and Virág
(2007) is an asymptotic characterization of characteristic polynomials, in
terms of the so-called Gaussian free field.

- Finally, one should note that the Gaussian sequence Z in Theorem 1.1
also appears when dealing with Gaussian fluctuations of vectors of traces
associated with large, Haar-distributed unitary random matrices. See e.g.
Diaconis and Evans (2001) and Diaconis and Shahshahani (1994) for two
classic references on the subject.

1.3. Proof of Theorem 1.1: the strategy. In order to prove (1.2) (and (1.3) as well),
we use an original combination of techniques, which are based both on the univer-
sality results of Nourdin et al. (2009) and on combinatorial considerations. The
aim of this section is to provide a brief outline of this strategy.

For N ≥ 1, write [N ] = {1, ..., N}. For k ≥ 2, let us denote by D
(k)
N the collection

of all vectors i = (i1, . . . , ik) ∈ [N ]k such that all pairs (ia, ia+1), a = 1, . . . , k, are

different (with the convention that ik+1 = i1), that is, i ∈ D
(k)
N if and only if

(ia, ia+1) 6= (ib, ib+1) for every a 6= b. Now consider the representation given in
(1.8) and, after subtracting the expectation, rewrite the resulting expression as
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follows:

Tr(Xk
N ) − E

[
Tr(Xk

N )
]

= N− k
2

N∑

i1,...,ik=1

(
Xi1i2Xi2i3 · · · Xiki1 − E[Xi1i2Xi2i3 · · · Xiki1 ]

)
(1.12)

= N− k
2

∑

i∈D
(k)
N

Xi1i2Xi2i3 · · · Xiki1

+N−k
2

∑

i6∈D
(k)
N

(
Xi1i2Xi2i3 · · · Xiki1 − E[Xi1i2Xi2i3 · · · Xiki1 ]

)
. (1.13)

Our proof of (1.2) is based on the representation (1.12)–(1.13), and it is divided in
two (almost independent) parts.

I. In Section 3, we shall prove that the following multi-dimensional CLT takes
place for every integers 2 ≤ k1 < ... < km:


N−1/2

N∑

i=1

Xii, N− k1
2

∑

i∈D
(k1)

N

Xi1i2Xi2i3 · · · Xik1
i1 , . . . (1.14)

. . . , N− km
2

∑

i∈D
(km)
N

Xi1i2Xi2i3 · · · Xikm i1


 Law−→

(
Z1, Zk1 , ..., Zkm

)
,

for Z = {Zi : i ≥ 1} as in Theorem 1.1. In order to prove (1.14), we apply the
universality result obtained in Nourdin et al. (2009) (and stated in a convenient
form in the subsequent Section 2). This result roughly states that, in order to
show (1.14) in full generality, it is sufficient to consider the special case where
the collection X = {Xij : i, j ≥ 1} is replaced by an i.i.d. centered Gaussian
family G = {Gij : i, j ≥ 1}, whose elements have unit variance. In this way, the
components of the vector on the LHS of (1.14) become elements of the so-called
Gaussian Wiener chaos associated with G: it follows that one can establish the
required CLT by using the general criteria for normal approximations on a fixed
Wiener chaos, recently proved in Nourdin and Peccati (2009); Nualart and Peccati
(2005); Peccati and Tudor (2005). Note that the results of Nourdin and Peccati
(2009); Nualart and Peccati (2005); Peccati and Tudor (2005) can be described as a
“simplified method of moments”: in particular, the proof of (1.14) will require the
mere computation of quantities having the same level of complexity of covariances
and fourth moments.

II. In Section 4, we shall prove that the term (1.13) vanishes as N → ∞, that
is, for every k ≥ 2,

RN (k) := N−k
2

∑

i6∈D
(k)
N

(
Xi1i2Xi2i3 · · · Xiki1 − E[Xi1i2Xi2i3 · · · Xiki1 ]

)
→ 0

in L2(Ω). (1.15)

The proof of (1.15) requires some subtle combinatorial analysis, that we will illus-
trate by means of graphical devices, known as diagrams. Some of the combinatorial
arguments and ideas developed in Section 4 should be compared with the two works
by Geman (1980, 1986).
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Then, the upper bound (1.3) will be deduced in Section 4.4 from the estimates
obtained at the previous steps.

1.4. An application to almost sure central limit theorems. As already pointed out,
one of the main advantages of our approach is that it yields explicit estimates for
the normal approximation of vectors of traces of large random matrices – see e.g.
relation (1.3). In Section 5, we shall show that these estimates can be effectively
used in order to deduce multivariate almost sure central limit theorems (ASCLTs),
such as the one stated in the forthcoming Theorem 1.5. In particular, this result
involves powers of non-Hermitian random matrices and sheds further light on the
asymptotic behavior of their traces. To the best of our knowledge, Theorem 1.5 is
the first ASCLT ever proved in the context of traces of random matrices.

Theorem 1.5. Fix m ≥ 1, as well as integers km > . . . > k1 ≥ 1, and let the
Gaussian vector (Zk1 , . . . , Zkm

) be defined as in Theorem 1.1. Then, a.s.-P ,

1

log N

N∑

n=1

1

n
ϕ
(
Tr(Xk1

n ) − E
[
Tr(Xk1

n )
]
, . . . , Tr(Xkm

n ) − E
[
Tr(Xkm

n )
] )

→

→E
[
ϕ
(
Zk1 ,..., Zkm

)]
, (1.16)

as N → ∞, for every continuous and bounded function ϕ : Rm → R.

Remark 1.6. (1) Fix m ≥ 1 and, for every N ≥ 1, denote by ρN the discrete
random measure on Rm assigning mass (n log(N))−1 to the points

(
Tr(Xk1

n ) − E
[
Tr(Xk1

n )
]
, . . . , Tr(Xkm

n ) − E
[
Tr(Xkm

n )
])

, n = 1, ..., N.

Then, the usual characterization of weak convergence imply that relation
(1.16) is indeed equivalent to saying that, a.s.-P , the measure ρN converges
weakly to the law of (Zk1 , . . . , Zkm

), as N → ∞. For instance, by special-
izing (1.16) to the case m = 1 one obtains that, a.s.-P ,

1

log N

N∑

n=1

1

n
1{Tr(Xk

n)−E[Tr(Xk
n)]≤x}−→P

[
Zk ≤ x

]
,

as N → ∞, for every integer k ≥ 1 and every real x.
(2) The content of Theorem 1.5 should be compared with the following well-

known ASCLT for usual partial sums. Let (Yn)n≥1 be a sequence of real-
valued independent identically distributed random variables with E[Yn] = 0
and E[Y 2

n ] = 1, and write Sn = 1√
n

∑n
k=1 Yk. Then, almost surely, for any

bounded and continuous function ϕ : R → R,

1

log N

N∑

n=1

1

n
ϕ(Sn) −→ E[ϕ(G)], as N → ∞; G ∼ N (0, 1). (1.17)

The asymptotic relation (1.17) was first stated by Lévy (1937) without
proof, and then forgotten for almost fifty years. It was then rediscovered
by Brosamler (1988) and Schatte (1988) and finally proved in its present
form by Lacey and Philipp (1990). We refer the reader to Berkes and
Csáki (2001) for a universal ASCLT covering a large class of limit theorems
for partial sums, extremes, empirical distribution functions and local times
associated with independent random variables. The paper by Hörmann
(2007) contains several insights into the existing literature on the subject.
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(3) As demonstrated in Section 5, in order to prove Theorem 1.5 we shall make
a substantial use of a result by Ibragimov and Lifshits (1999), providing a
criterion for ASCLTs such as (1.17), not requiring that the random variables
Sn have the specific form of partial sums, nor that G is normally distributed.
Our approach is close to the one developed by Bercu et al. (2010), in the
context of ASCLTs on the Wiener space. One should also note that Bercu
et al. (2010) only deals with ASCLTs involving sequences of single real-
valued random variables (and not vectors, as in the present paper).

The rest of the paper is organized as follows. In Section 2 we present the univer-
sality results proved in Nourdin et al. (2009), in a form which is convenient for our
analysis. Section 3 contains a proof of (1.14). Section 4 deals with (1.15), whereas
Section 5 focuses on the proof of Theorem 1.5.

2. Main tool: universality of Wiener chaos

In what follows, every random object is defined on an adequate common probabil-
ity space (Ω, F , P ). The symbols E and ‘Var’ denote, respectively, the expectation
and the variance associated with P . Also, given a finite set B, we write |B| to
indicate the cardinality of B. Finally, given numerical sequences aN , bN , N ≥ 1,
we write aN ∼ bN whenever aN/bN → 1 as N → ∞.

We shall now present a series of invariance principles and central limit theorems
involving sequences of homogeneous sums. These are mainly taken from Nourdin
et al. (2009) (Theorem 2.2), Peccati and Tudor (2005) (Theorem 2.4) and Nualart
and Peccati (2005) (Theorem 2.6). Note that the framework of Nourdin et al.
(2009) is that of random variables indexed by the set of positive integers. Since in
this paper we mainly deal with random variables indexed by pairs of integers (i.e.,
matrix entries) we need to restate some of the findings of Nourdin et al. (2009) in
terms of random variables indexed by a general (fixed) discrete countable set A.

Definition 2.1 (Homogeneous sums). Fix an integer k ≥ 2. Let Y = {Ya : a ∈ A}
be a collection of square integrable and centered independent random variables,
and let f : Ak → R be a symmetric function vanishing on diagonals (that is,
f(a1, ..., ak) = 0 whenever there exists k 6= j such that ak = aj), and assume that
f has finite support. The random variable

Qk(f,Y) =
∑

a1,...,ak∈A

f(a1, ..., ak)Ya1 · · · Yak

=
∑

{a1,...,ak}⊂Ak

k!f(a1, ..., ak)Ya1 · · · Yak
(2.1)

is called the homogeneous sum, of order k, based on f and Y. Clearly, E[Qk(f,Y)]=
0 and also, if E(Y 2

a ) = 1 for every a ∈ A, then

E[Qk(f,Y)2] = k!‖f‖2
k, (2.2)

where, here and for the rest of the paper, we set

‖f‖2
k =

∑

a1,...,ak∈A

f2(a1, ..., ak).

Now let G = {Ga : a ∈ A} be a collection of i.i.d. centered Gaussian random
variables with unit variance. We recall that, for every k and every f , the random
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variable Qk(f,G) (defined according to (2.1)) is an element of the kth Wiener chaos

associated with G. See e.g. Janson (1997) for basic definitions and results on the
Gaussian Wiener chaos. The next result, proved in Nourdin et al. (2009), shows that
sequences of random variables of the type Qk(f,G) have a universal character with
respect to normal approximations. The proof of Theorem 2.2 is based on a powerful
interaction between three techniques, namely: the Stein’s method for probabilistic
approximations (see e.g. Chen and Shao, 2005), the Malliavin calculus of variations

(see e.g. Nualart, 2006), and a general Lindeberg-type invariance principle recently
proved by Mossel et al. (2010).

Theorem 2.2 (Universality of Wiener chaos, see Nourdin et al., 2009). Let G =
{Ga : a ∈ A} be a collection of standard centered i.i.d. Gaussian random variables,

and fix integers m ≥ 1 and k1, ..., km ≥ 2. For every j = 1, ..., m, let {f (j)
N : N ≥ 1}

be a sequence of functions such that f
(j)
N : Akj → R is symmetric and vanishes on

diagonals. We also suppose that, for every j = 1, ..., m, the support of f
(j)
N , denoted

by supp(f
(j)
N ), is such that |supp(f

(j)
N )| → ∞, as N → ∞. Define Qkj

(f
(j)
N ,G),

N ≥ 1, according to (2.1). Assume that, for every j = 1, ...m, the following sequence
of variances is bounded:

E[Qkj
(f

(j)
N ,G)2], N ≥ 1. (2.3)

Let V be a m×m non-negative symmetric matrix, and let Nm(0, V ) indicate a m-
dimensional centered Gaussian vector with covariance matrix V . Then, as N → ∞,
the following two conditions are equivalent.

(1) The vector {Qkj
(f

(j)
N ,G) : j = 1, ..., m} converges in law to Nm(0, V ).

(2) For every sequence X = {Xa : a ∈ A} of independent centered random
variables, with unit variance and such that supa E|Xa|3 < ∞, the law of

the vector {Qkj
(f

(j)
N ,X) : j = 1, ..., m} converges to the law of Nm(0, V ).

Note that Theorem 2.2 concerns only homogeneous sums of order k ≥ 2: it is
easily seen (see e.g. Nourdin et al., 2009, Section 1.6.1) that the statement is indeed
false in the case k = 1. However, if one considers sums with a specific structure
(basically, verifying some Lindeberg-type condition) one can embed sums of order
one into the previous statement. A particular instance of this fact is made clear in
the following statement, whose proof (combining the results of Nourdin et al., 2009
with the main estimates of Mossel et al., 2010) is standard and therefore omitted.

Proposition 2.3. For m ≥ 1, let the kernels {f (j)
N : N ≥ 1}, j = 1, ..., m, verify

the assumptions of Theorem 2.2. Let {ai : i ≥ 1} be an infinite subset of A, and
assume that condition (1) in the statement of Theorem 2.2 is verified. Then, for
every sequence X = {Xa : a ∈ A} of independent centered random variables, with
unit variance and such that supa E|Xa|3 < ∞, as N → ∞ the law of the vector

{WN ; Qkj
(f

(j)
N ,X) : j = 1, ..., m}, where WN = 1√

N

∑N
i=1 Xai

, converges to the

law of {N0 ; Nj : j = 1, ..., m}, where N0 ∼ N (0, 1), and (N1, ..., Nm) ∼ Nm(0, V )
denotes a centered Gaussian vector with covariance V , and independent of N0.

Theorem 2.2 and Proposition 2.3 imply that, in order to prove a CLT involving
vectors of homogeneous sums based on some independent sequence X, it suffices to
replace X with an i.i.d. Gaussian sequence G. In this way, one obtains a sequence
of random vectors whose components belong to a fixed Wiener chaos. We now
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present two results, showing that proving CLTs for this type of random variables
can be a relatively easy task: indeed, one can apply some drastic simplification of
the method of moments. The first statement deals with multi-dimensional CLTs
and shows that, in a Gaussian Wiener chaos setting, componentwise convergence to
Gaussian always implies joint convergence. See also Airault et al. (2010) for some
connections with Stokes formula.

Theorem 2.4 (Multidimensional CLTs on Wiener chaos, see Nourdin et al., 2009;
Peccati and Tudor, 2005). Let the family G = {Ga : a ∈ A} be i.i.d. centered

standard Gaussian and, for j = 1, ..., m, define the sequences Qkj
(f

(j)
N ,G), N ≥ 1,

as in Theorem 2.2 (in particular, the functions f
(j)
N verify the same assumptions as

in that theorem). Suppose that, for every i, j = 1, ..., m, as N → ∞

E
[
Qki

(f
(i)
N ,G) × Qkj

(f
(j)
N ,G)

]
→ V (i, j), (2.4)

where V is a m × m covariance matrix. Finally, assume that WN , N ≥ 1, is a
sequence of N (0, 1) random variables with the representation

WN =
∑

a∈A

wN (a) × Ga,

where the weights wN (a) are zero for all but a finite number of indices a, and∑
a∈A wN (a)2 = 1. Then, the following are equivalent:

(1) The random vector {WN ; Qkj
(f

(j)
N ,G) : j = 1, ..., m} converges in law

to {N0 ; Nj : j = 1, ..., m}, where N0 ∼ N (0, 1), and (N1, ..., Nm) ∼
Nm(0, V ) denotes a centered Gaussian vector with covariance V , and in-
dependent of N0.

(2) For every fixed j = 1, ..., m, the sequence Qkj
(f

(j)
N ,G), N ≥ 1, converges in

law to Z ∼ N
(
0, V (j, j)

)
, that is, to a centered Gaussian random variable

with variance V (j, j).

The previous statement implies that, in order to prove CLTs for vectors of homo-
geneous sums, one can focus on the componentwise convergence of their (Gaussian)
Wiener chaos counterpart. The forthcoming Theorem 2.6 shows that this type
of one-dimensional convergence can be studied by focussing exclusively on fourth
moments. To put this result into full use, we need some further definitions.

Definition 2.5. Fix k ≥ 2. Let f : Ak → R be a (not necessarily symmetric)
function vanishing on diagonals and with finite support. For every r = 0, ..., k, the
contraction f ⋆r f is the function on A2k−2r given by

f ⋆rf(a1, ..., a2k−2r) (2.5)

=
∑

(x1,...,xr)∈Ar

f(a1, ..., ak−r, x1, ..., xr)f(ak−r+1, ..., a2k−2r, x1, ..., xr).

Observe that (even when f is symmetric) the contraction f ⋆r f is not necessarily
symmetric and not necessarily vanishes on diagonals. The canonical symmetrization
of f ⋆r f is written f ⋆̃rf .

Theorem 2.6 (The simplified method of moments, see Nualart and Peccati, 2005).
Fix k ≥ 2. Let G = {Ga : a ∈ A} be an i.i.d. centered standard Gaussian family.
Let {fN : N ≥ 1} be a sequence of functions such that fN : Ak → R is symmetric
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and vanishes on diagonals. Suppose also that |supp(fN )| → ∞, as N → ∞. Assume
that

E[Qk(fN ,G)2] → σ2 > 0, as N → ∞. (2.6)

Then, the following three conditions are equivalent, as N → ∞.

(1) The sequence Qk(fN ,G), N ≥ 1, converges in law to Z ∼ N (0, σ2).
(2) E[Qk(fN ,G)4] → 3σ4.
(3) For every r = 1, ..., k − 1, ‖fN ⋆r fN‖2k−2r → 0.

Finally, we present a version of Theorem 2.2 with bounds, that will lead to the
proof of Theorem 1.1-(ii) provided in Section 4.4.

Theorem 2.7 (Universal bounds, see Nourdin et al., 2009). Let X = {Xa : a ∈ A}
be a collection of independent centered random variables, with unit variance and
such that β := supa E|Xa|3 < ∞. Fix integers m ≥ 1, km > ... > k1 ≥ 2.
For every j = 1, ..., m, let f (j) : Akj → R be a symmetric function vanishing
on diagonals. Define Qj(X) := Qkj

(f (j),X) according to (2.1), and assume that

E[Qj(X)2] = 1 for all j = 1, . . . , m. Also, assume that K > 0 is given such that∑
a∈A max1≤j≤m Infa(f (j)) ≤ K, where

Infa(f (j)) =
∑

{a2,...,akj
}⊂Akj

f (j)(a, a2, . . . , akj
)2

=
1

(kj − 1)!

∑

a2,...,akj
∈A

f (j)(a, a2, . . . , akj
)2.

Let ϕ : Rm → R be a thrice differentiable function such that ‖ϕ′′‖∞ +‖ϕ′′′‖∞ < ∞,
with ‖ϕ(k)‖∞ = max|α|=k

1
α! supz∈Rm |∂αϕ(z)|. Then, for Z = (Z1, . . . , Zm) ∼

Nm(0, Im) (standard Gaussian vector on Rm), we have

∣∣E[ϕ(Q1(X), . . . , Qm(X))] − E[ϕ(Z)]
∣∣ ≤ ‖ϕ′′‖∞




m∑

i=1

∆ii + 2
∑

1≤i<j≤m

∆ij





+K‖ϕ′′′‖∞
(

β +

√
8

π

)


m∑

j=1

(16
√

2β)
kj−1

3 kj !




3√

max
1≤j≤m

max
a∈A

Infa(f (j)),

where ∆ij , 1 ≤ i ≤ j ≤ m, is given by

kj√
2

kj−1∑

r=1

(r − 1)!

(
ki − 1

r − 1

)(
kj − 1

r − 1

)√
(ki + kj − 2r)!

(
‖f (i) ⋆ki−r f (i)‖2r+‖f (j) ⋆kj−r f (j)‖2r

)

+1{ki<kj}

√

kj !

(
kj

ki

)
‖f (j) ⋆kj−ki

f (j)‖2ki
.

We finish this section by a useful result, which shows how the influence Infaf of
f : Ak → R can be bounded by the norm of the contraction of f of order k − 1:

Proposition 2.8. Let f : Ak → R be a symmetric function vanishing on diagonals.
Then

(k − 1)! max
a∈A

Infa(f) := max
a∈A

∑

a2,...,ak∈A

f(a, a2, . . . , ak)2 ≤ ‖f ⋆k−1 f‖2.
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Proof. We have

‖f ⋆k−1 f‖2
2 =

∑

a,b∈A




∑

a2,...,ak∈A

f(a, a2, . . . , ak)f(b, a2, . . . , ak)




2

≥
∑

a∈A




∑

a2,...,ak∈A

f2(a, a2, . . . , ak)




2

≥ max
a∈A




∑

a2,...,ak∈A

f2(a, a2, . . . , ak)




2

=

[
(k − 1)! max

a∈A
Infa(f)

]2
.

As a consequence of Theorem 2.7 and Proposition 2.8, we immediately get the
following result.

Corollary 2.9. Let X = {Xa : a ∈ A} be a collection of independent centered
random variables, with unit variance and such that β := supa E|Xa|3 < ∞. Fix

integers m ≥ 1, km > ... > k1 ≥ 1. For every j = 1, ..., m, let {f (j)
N : N ≥ 1}

be a sequence of functions such that f
(j)
N : Akj → R is symmetric and vanishes

on diagonals. Define Qj
N(X) := Qkj

(f
(j)
N ,X) according to (2.1), and assume that

E[Qj
N(X)2] = 1 for all j = 1, . . . , m and N ≥ 1. Let ϕ : Rm → R be a thrice

differentiable function such that ‖ϕ′′‖∞ + ‖ϕ′′′‖∞ < ∞. If, for some α > 0,

‖f (j)
N ⋆kj−r f

(j)
N ‖2r = O(N−α) for all j = 1, . . . , m and r = 1, . . . , kj − 1, then,

by noting (Z1, . . . , Zm) a centered Gaussian vector such that E[ZiZj] = 0 if i 6= j
and E[(Zj)2] = 1, we have

∣∣E[ϕ(Q1
N (X), . . . , Qm

N (X))] − E[ϕ(Z1, . . . , Zm)]
∣∣ = O(N−α/2).

3. Gaussian fluctuations of non-diagonal trace components

Our aim in this section is to prove the multidimensional CLT (1.14), by using
the universality results presented in Section 2. To do this, we shall use an auxiliary
collection G = {Gij : i, j ≥ 1} of i.i.d. copies of a N (0, 1) random variable.

As in Section 1.3, for a given integer k ≥ 2, we write D
(k)
N to indicate the set

of vectors i = (i1, . . . , ik) ∈ [N ]k such that all the elements (ia, ia+1), a = 1, . . . , k,
are different in pairs (with the convention that ik+1 = i1). We have the following
preliminary result:

Proposition 3.1. For any fixed integer k ≥ 2,

N−k/2
∑

i∈D
(k)
N

Gi1i2 . . . Giki1
Law−→ Zk ∼ N (0, k) as N → ∞.

Remark 3.2. When k = 1, the conclusion of the above proposition continues to be
true, since in this case we obviously have

N−1/2
N∑

i=1

Gii ∼ N (0, 1).
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Proof of Proposition 3.1: The main idea is to use the results of Section 2, in the
special case A = N2, that is, A is the collection of all pairs (i, j) such that i, j ≥ 1.
Observe that

N−k/2
∑

i∈D
(k)
N

Gi1i2 . . . Giki1 = Qk(fk,N ,G),

with fk,N : ([N ]2)k → R the symmetric function defined by

fk,N =
1

k!

∑

σ∈Sk

f
(σ)
k,N , (3.1)

where we used the notation

f
(σ)
k,N

(
(a1, b1), . . . , (ak, bk)

)
=

N−k/2
∑

i∈D
(k)
N

1{iσ(1)=a1, iσ(1)+1=b1} . . .1{iσ(k)=ak, iσ(k)+1=bk}, (3.2)

and Sk denotes the set of all permutations of [k]. Hence, by virtue of Theorem 2.6,
to prove Proposition 3.1 it is sufficient to accomplish the following two steps: (Step
1) prove that property (3) (with fk,N replacing fN ) in the statement of Theorem
2.6 takes place, and (Step 2) show that relation (2.6) (with fk,N replacing fN ) is
verified.

Step 1. Let r ∈ {1, . . . , k − 1}. For σ, τ ∈ Sk, we compute

f
(σ)
k,N ⋆r f

(τ)
k,N

(
(x1, y1), . . . , (x2k−2r , y2k−2r)

)
(3.3)

= N−k
∑

i,j∈D
(k)
N

1{iσ(1)=x1, iσ(1)+1=y1} . . .1{iσ(k−r)=xk−r, iσ(k−r)+1=yk−r}

×1{jτ(1)=xk−r+1, jτ(1)+1=yk−r+1} . . .1{jτ(k−r)=x2k−2r, jτ(k−r)+1=y2k−2r}

×1{iσ(k−r+1)=jτ(k−r+1), iσ(k−r+1)+1=jτ(k−r+1)+1} . . .1{iσ(k)=jτ(k), iσ(k)+1=jτ(k)+1
}.

We now want to assess the quantity ‖f (σ)
k,N ⋆r f

(τ)
k,N‖2

2k−2r. To do this, we exploit the

representation (3.3) in order to write

‖f (σ)
k,N ⋆r f

(τ)
k,N‖2

2k−2r =
∣∣F (r,σ,τ)

N ∩ (D
(k)
N )4

∣∣N−2k,

where F
(r,σ,τ)
N is the subset of ([N ]k)4 composed of those quadruplets (i, j,a,b) such

that

iσ(1) = aσ(1), iσ(1)+1 = aσ(1)+1, . . . ,

iσ(k−r) = aσ(k−r), iσ(k−r)+1 = aσ(k−r)+1

jτ(1) = bτ(1), jτ(1)+1 = bτ(1)+1, . . . ,

jτ(k−r) = bτ(k−r), jτ(k−r)+1 = bτ(k−r)+1

iσ(k−r+1) = jτ(k−r+1), iσ(k−r+1)+1 = jτ(k−r+1)+1, . . . ,

iσ(k) = jτ(k), iσ(k)+1 = jτ(k)+1

aσ(k−r+1) = bτ(k−r+1), aσ(k−r+1)+1 = bτ(k−r+1)+1, . . . ,

aσ(k) = bτ(k), aσ(k)+1 = bτ(k)+1. (3.4)

It is immediate that, among the equalities in (3.4), the 2k equalities appearing in
the forthcoming display (3.5) are pairwise disjoint (that is, an index appearing in
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one of the equalities does not enter into the others):

iσ(1) = aσ(1), . . . , iσ(k−r) = aσ(k−r),

jτ(1) = bτ(1), . . . , jτ(k−r) = bτ(k−r)

iσ(k−r+1) = jτ(k−r+1), . . . , iσ(k) = jτ(k),

aσ(k−r+1) = bτ(k−r+1), . . . , aσ(k) = bτ(k). (3.5)

Hence, the cardinality of F
(r,σ,τ)
N is less than N2k, from which we infer that ‖f (σ)

k,N ⋆r

f
(τ)
k,N‖2

2k−2r is bounded by 1. This is not sufficient for our purposes, since we need

to show that ‖f (σ)
k,N ⋆r f

(τ)
k,N‖2

2k−2r tends to zero as N → ∞. To prove this, it is

sufficient to extract from (3.4) one supplementary equality which is not already
written in (3.5). We shall prove that this equality exists by contradiction. Set
L = {σ(s) : 1 ≤ s ≤ k−r} and R = {σ(s)+1 : 1 ≤ s ≤ k−r} (with the convention
that k + 1 = 1). Now assume that R = L. Then σ(1) + 1 ∈ R also belongs to L, so
that σ(1)+2 ∈ R. By repeating this argument, we get that L = R = [k], which is a
contradiction because r ≥ 1. Hence, R 6= L. In particular, the display (3.4) implies
at least one relation involving two indices that are not already coupled in (3.5).

This yields that the cardinality of F
(r,σ,τ)
N is at most N2k−1, and consequently

that ‖f (σ)
k,N ⋆r f

(τ)
k,N‖2

2k−2r ≤ N−1. This fact implies immediately that the norms

‖fk,N ⋆r fk,N‖2k−2r, r = 1, . . . , k − 1, verify

‖fk,N ⋆r fk,N‖2k−2r = O(N−1/2), (3.6)

and tend to zero as N → ∞. In other words, we have proved that condition (3) in
the statement of Theorem 2.6 is met.

Step 2. We have

Var


N−k/2

∑

i∈D
(k)
N

Gi1i2 . . .Giki1


 = N−k

∑

i,j∈D
(k)
N

E[Gi1i2 . . . Giki1Gj1j2 . . . Gjkj1 ].

For fixed i, j ∈ D
(k)
N , observe that the expectation E[Gi1i2 . . .Giki1Gj1j2 . . .Gjkj1 ]

can only be zero or one. Moreover, it is one if and only if, for all s ∈ [k], there is
exactly one t ∈ [k] such that (is, is+1) = (jt, jt+1). In this case, we define σ ∈ Sk

as the bijection of [k] into itself which maps each s to the corresponding t and we
have, for all s ∈ [k],

is = jσ(s) = jσ(s−1)+1. (3.7)

To summarize, one has that Var
(
N−k/2

∑
i∈D

(k)
N

Gi1i2 . . . Giki1

)
equals

N−k
∑

σ∈Sk

∣∣{(i, j) ∈ (D
(k)
N )2 : (is, is+1) = (jσ(s), jσ(s)+1) for all s ∈ [k]

}∣∣. (3.8)

If σ ∈ Sk is such that σ(s) = σ(s − 1) + 1 for all s (it is easily seen that there are
exactly k permutations verifying this property in Sk), we get, by letting s run over
[k] in (3.7),

{
(i, j) ∈ (D

(k)
N )2 : (is, is+1) = (jσ(s), jσ(s)+1)

for all s ∈ [k]
}

= Nk + O(Nk−1), as N → ∞.
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In contrast, if σ ∈ Sk is not such that σ(s) = σ(s− 1) + 1 for all s, then by letting
s run over [k], one deduces from (3.7) at least k + 1 different conditions, so that, in
this case,

{
(i, j) ∈ (D

(k)
N )2 : (is, is+1) = (jσ(s), jσ(s)+1)

for all s ∈ [k]
}

= O(Nk−1), as N → ∞.

Taking into account these two properties together with the representation (3.8), we
deduce that the variance of

N−k/2
∑

i∈D
(k)
N

Gi1i2 . . . Giki1

tends to k as N → ∞. It follows that the required property (2.6) in Theorem 2.6
(with σ2 = k) is met.

The proof of Proposition 3.1 is concluded.

Remark 3.3. By inspection of the previous proof, one also deduces that, for every
k ≥ 2, there exists a constant Ck (independent of N) such that, for all N ≥ 1,

∣∣∣∣∣∣∣
Var


N−k/2

∑

i∈D
(k)
N

Gi1i2 . . .Giki1


− k

∣∣∣∣∣∣∣
≤ Ck

N
. (3.9)

The multidimensional version of Proposition 3.1 reads as follows:

Proposition 3.4. Fix m ≥ 1, as well as integers km > . . . > k1 ≥ 2. Then, as
N → ∞,

N−1/2

N∑

i=1

Gii, N−k1
2

∑

i∈D
(k1)

N

Gi1i2 · · · Gik1
i1 , . . . (3.10)

. . . , N−km
2

∑

i∈D
(km)
N

Gi1i2 · · · Gikm i1


 Law−→

(
Z1, Zk1 , ..., Zkm

)
,

where Z = {Zk : k ≥ 1} denotes a collection of independent centered Gaussian
random variables such that, for every k ≥ 1, E(Z2

k) = k.

Proof: It is an application of Theorem 2.4, in the following special case:

- wN (i, j) = 1√
N

, if i = j ≤ N and wN (i, j) = 0 otherwise;

- V is equal to the diagonal matrix such that V (a, b) = 0 if a 6= b and
V (a, a) = ka, for a = 1, ..., m;

- for j = 1, ..., m, f
(j)
N = fkj ,N , where we used the notation (3.1).

Indeed, in view of Proposition 3.1, one has that condition (2) in the statement
of Theorem 2.4 is satisfied. Moreover, for fixed a 6= b and since G consists of a
collection of independent and centered (Gaussian) random variables, it is clear that,
for all N ,

E



∑

i∈D
(ka)
N

Gi1i2 . . . Gika i1 ×
∑

j∈D
(kb)

N

Gj1j2 . . .Gjkb
j1


 = 0,
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so that condition (2.4) is met. The proof is concluded.

By combining Proposition 3.4 and Proposition 2.3, we can finally deduce the
following general result for non-diagonal trace components.

Corollary 3.5. For N ≥ 2, let XN be the N × N random matrix given by (1.1),
where the reference random variable X has mean zero, unit variance and finite
absolute third moment. Fix m ≥ 1, as well as integers 2 ≤ k1 < . . . < km.
Then, the CLT (1.14) takes place, with Z = {Zk : k ≥ 1} denoting a sequence
of independent centered Gaussian random variables such that, for every k ≥ 1,
E(Z2

k) = k.

Remark 3.6. In order to prove Corollary 3.5, one only needs the existence of third
moments. Note that, as will become clear in the following Section 4, moments of
higher orders are necessary for our proof of (1.15).

4. The remainder: combinatorial bounds on partitioned chains and proof
of Theorem 1.1

Fix an integer k ≥ 2. From section 1.3, recall that D
(k)
N denotes the subset of

vectors i = (i1, . . . , ik) ∈ [N ]k such that all the elements (ia, ia+1), a = 1, . . . , k,
are different in pairs (with the convention that ik+1 = i1). From the Introduction,
recall that X is a centered random variable, having unit variance and with finite
moments of all orders. Let also X = {Xij : i, j ≥ 1} be a collection of i.i.d. copies
of X . In the present section, our aim is to prove the asymptotic relation (1.15),
that is

Proposition 4.1. For every k ≥ 2, as N → ∞,

E(RN (k)2) = Var


N−k/2

∑

i6∈D
(k)
N

[
Xi1i2 . . . Xiki1 − E(Xi1i2 . . .Xiki1)

]

 = O(N−1).

(4.1)

The proof of Proposition 4.1 is detailed in Section 4.4, and builds on several
combinatorial estimates derived in Sections 4.2–4.3. To ease the reading of the
forthcoming material, we now provide an intuitive outline of this proof.

Remark on notation. Given an integer k ≥ 2, we denote by P(k) the collection
of all partitions of [k] = {1, ..., k}. Recall that a partition π ∈ P(k) is an object
of the type π = {B1, ..., Br}, where the Bj ’s are disjoint and non-empty subsets of
[k], called blocks, such that ∪j=1,...,rBj = [k]. Given a, x ∈ [k] and π ∈ P(k), we

write a
π∼ x whenever a and x are in the same block of π. We also use the symbol

1̂ to indicate the one-block partition 1̂ = {[k]} (this is standard notation from
combinatorics – see e.g. Stanley, 1997). In this section, for the sake of simplicity

and because k is fixed, we write DN instead of D
(k)
N .

4.1. Sketch of the proof of Proposition 4.1. Our starting point is the following ele-
mentary decomposition:

[N ]k \ DN =
⋃

π∈Q(k)

AN (π),



358 Ivan Nourdin and Giovanni Peccati

where Q(k) stands for the collection of all partitions of [k] containing at least one
block of cardinality ≥ 2, and AN (π) is the collection of all vectors i ∈ [N ]k such

that the equality (ia, ia+1) = (ix, ix+1) holds if and only if a
π∼ x. (Recall that, for

a, b ∈ [k], we write a
π∼ b to indicate that a and b belong to the same block of π.)

Using this decomposition, one sees immediately that, in order to show (4.1), it is
sufficient to prove that, for each fixed π ∈ Q(k), the quantity

Var


N−k/2

∑

i∈AN (π)

[
Xi1i2 . . . Xiki1 − E(Xi1i2 . . . Xiki1)

]

 (4.2)

= N−k
∑

(i,j)∈AN (π)×AN (π)

[ E(Xi1i2 . . .Xiki1Xj1j2 . . .Xjkj1)

−E(Xi1i2 . . . Xiki1)E(Xj1j2 . . . Xjkj1) ]

is O(N−1), as N → ∞. Let GN (π) denote the subset of pairs (i, j) ∈ AN (π)×AN (π)
such that the following non-vanishing condition is in order:

E(Xi1i2 . . .Xiki1Xj1j2 . . . Xjkj1) − E(Xi1i2 . . . Xiki1)E(Xj1j2 . . . Xjkj1) 6= 0. (4.3)

Hence

Var


N−k/2

∑

i∈AN (π)

[
Xi1i2 . . .Xiki1 − E(Xi1i2 . . . Xiki1)

]

 (4.4)

= N−k
∑

(i,j)∈GN (π)

[E(Xi1i2 . . . Xiki1Xj1j2 . . . Xjkj1)

−E(Xi1i2 . . . Xiki1)E(Xj1j2 . . . Xjkj1) ] .

Due to the finite moment assumptions for X , and by applying the generalized
Hölder inequality, it is clear that, for a generic pair (i, j),
∣∣E(Xi1i2 . . .Xiki1Xj1j2 . . . Xjkj1) − E(Xi1i2 . . . Xiki1)E(Xj1j2 . . .Xjkj1)

∣∣

≤ 2 E(|X |2k) < ∞.

It follows that, in order to prove that the sum in (4.4) is O(N−1), it is enough to
show that ∣∣GN (π)

∣∣ ≤ Θ(k, π)Nk−1, (4.5)

for some constant Θ(k, π) not depending on N . Our way of proving (4.5) is to show
that, if (i, j) denotes a generic element of GN (π), then, necessarily, there exists
at least k + 1 equalities between the 2k indices i1, . . . , ik, j1, . . . , jk of (i, j). Note
that by ‘equality’ we just mean the existence of two different integers a, b ∈ [k]
such that ia = ib or ja = jb, or the existence of two integers a, b ∈ [k] such that
ia = jb. Proving this fact implies that the 2k indices of a generic elements (i, j) of
GN (π) have at most k−1 degrees of freedom (see Point 7 of Section 4.2 for a precise
definition), so that (4.5) holds immediately — the constant Θ(k, π) merely counting
the number of ways in which the k + 1 equalities can be consistently distributed
among the indices composing (i, j). In order to extract these k+1 equalities between
the 2k indices of a generic element (i, j) of GN (π), we will consider two cases,
according as the partition π ∈ Q(k) contains at least one singleton or not.
Case A: No singletons in π. By definition of AN (π), and due to the absence of
singleton in π, we already see that there are at least k/2 or (k + 1)/2 (according
to the evenness of k) equalities between the k indices of i (resp. j). Moreover,
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the non-vanishing condition (4.3) implies that there is at least one further equality
between one index of i and one index of j. So, we proved the existence of k + 1
equalities between the 2k indices of (i, j), and the proof of (4.5) in the Case A is
done.

Case B: At least one singleton in π. Let S denote the collection of the singleton(s)
of π. In order for (4.3) to be true, observe that, for all s ∈ S, we must have
(js, js+1) = (ia, ia+1) for some a ∈ [k]. In particular, this means that there exist |S|
equalities of the type js = ia for the indices composing (i, j). Also, by definition of
the objects we are dealing with, for all t ∈ [k]\S, we must have (it, it+1) = (ia, ia+1)
for some a, different from t, in the same π-block as t. Of course, the same must
hold with i replaced by j. Hence, in order for (4.5) to be true, it remains to produce
one equality between indices that has not been already considered. We mentioned
above that for all t ∈ [k] \ S, there exists a, different from t and in the same block
as t, such that jt = ja. Hence, to conclude it remains to show that we have jt = ja

for at least one integer t belonging to [k] \ S and one integer a not belonging to
the same block as t. Since, by assumption, π contains at least one singleton and
one block of cardinality ≥ 2 (indeed, π ∈ Q(k)), without loss of generality (up to
relabeling the indices according to a cyclic permutation of [k]), we can assume that
S contains the singleton {k}. Consider now the singleton {s∗} of S, where s∗ is
defined as the greatest of the integers m such that {m} is adjacent from the right
to a block, say Bu∗, of cardinality ≥ 2. For a particular example of this situation,
see the diagram in Fig. 4.1, where each row represents the same partition of [7]
having s∗ = 6 (see Point 3. in the subsequent Section 4.2 for a formal construction
of diagrams). To finish the proof, once again we split it into two cases:

Case B1: The block Bu∗ contains two consecutive integers. This assumption
implies that jx = jt = jt+1 for all x, t ∈ Bu∗. Since {a} is adjacent from the right
to Bu∗, we have ja = jt for all t ∈ Bu∗, which is exactly what we wanted to show.

Case B2: The block Bu∗ does not contain two consecutive integers. Fig. 4.7 is an
illustrative example of such situation, where each row represents the same partition
of [8], with s∗ = 7. As we see on this picture, we have necessarily j7 = j5, yielding
the desired additional equality, which could not be extracted from the previous
discussion. In Section 4.3, it is shown that this line of reasoning can be extended
to general situations.

Remark 4.2. The sketch given above contains all the main ideas entering in the proof
of Proposition 4.1. The reader not interested in technical combinatorial details, can
then go directly to Section 4.4, where the proof of Theorem 1.1 is concluded. The
subsequent Sections 4.2–4.3 fill the gaps of the above sketch, by providing exact
definitions as well as complete formal arguments leading to the estimate (4.1).

4.2. Definitions. In the following list, we introduce some further definitions that
are needed for the analysis developed in the rest of this section.

1. Fix integers N, k ≥ 2. A chain c of length 2k, built from [N ], is an object
given by the juxtaposition of 2k pairs of integers of the type

c = (i1, i2)(i2, i3)...(ik, i1)(j1, j2)(j2, j3)...(jk, j1), (4.6)

where ia, jx ∈ [N ], for a, x = 1, ..., k. The class of all chains of length 2k built from
[N ] is denoted by C(2k, N). As a notational convention, we will use the letter i to
write the first k pairs in the chain, and the letter j to write the remaining ones.
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For instance, an element of C(6, 5) (that is, a chain of length 6 built from the set
{1, 2, 3, 4, 5}) is

c = (1, 5)(5, 1)(1, 1)(3, 3)(3, 3)(3, 3),

where i1 = 1, i2 = 5, i3 = 1, j1 = j2 = j3 = 3. According to the graphical
conventions given below (at Point 3 of the present list) we will sometimes say that
(i1, i2)(i2, i3)...(ik, i1) and (j1, j2)(j2, j3) ...(jk, j1) are, respectively, the upper sub-

chain and the lower sub-chain associated with the chain c in (4.6). For instance, in
the previous example the upper sub-chain is (1, 5)(5, 1)(1, 1), whereas the lower one
is (3, 3)(3, 3)(3, 3). We shall say that (il, il+1) is the lth pair in the upper sub-chain
of c (and similarly for the elements of the lower sub-chain). We shall sometimes
call ia the left index of the pair (ia, ia+1). Also, we use the convention ik+1 = i1
and jk+1 = j1. Of course, a chain is completely determined by the left indices of
its pairs.

2. Let π ∈ P(k) be a partition of [k]. We say that a chain c as in (4.6) has

partition π if, for every a, b ∈ [k], the following double implications take place: (i)

(ia, ia+1) = (ib, ib+1) if and only if a
π∼ b, and (ii) (ja, ja+1) = (jb, jb+1) if and only

if a
π∼ b. In other words, a chain has partition π if and only if the partitions of [k]

induced by the identical pairs in its upper and lower sub-chain are both equal to
π, that is (with the notation of Section 4.1), if and only if (i1, ..., ik), (j1, ..., jk) ∈
AN (π). For instance, take k = 4 and π = {{1, 3}, {2, 4}}. Then, the following chain
built from [3] has partition π:

c = (1, 2)(2, 1)(1, 2)(2, 1)(3, 1)(1, 3)(3, 1)(1, 3).

Note the ‘only if’ part in the definition given above, implying that, if a chain
has partition π and if x and y are not in the same block of π, then necessarily
(ix, ix+1) 6= (iy, iy+1) and (jx, jx+1) 6= (jy, jy+1). This yields in particular that a
chain cannot have two different partitions.

3. Given k ≥ 2, we shall sometimes represent a generic chain with partition
π ∈ P(k) by means of diagrams. These diagrams are mnemonic devices composed
of an upper row and a lower row, of k dots each. These rows represent, respectively,
the upper and lower sub-chain of a given chain, in such a way that the lth dot (from
left to right) in the upper (resp. lower) row corresponds the lth pair in the upper
(resp. lower) sub-chain. Each block B of the partition π is represented by two closed
curves: the first one is drawn around the dots of the upper row corresponding to
the pairs (ia, ia+1) verifying a ∈ B; the second one is drawn around the dots of the
lower row corresponding to those (jx, jx+1) verifying x ∈ B. The resulting diagram
is the superposition of two identical combinations of dots and curves. Note that
the shape of the diagram does not depend on N . For instance, the diagram in Fig.
4.1 corresponds to the case k = 7, and π = {{1, 4, 5}, {2}, {3}, {6}, {7}},1 whereas

the diagram in Fig. 4.2 corresponds to k = 6 and the one-block partition 1̂ = {[6]}.

4. In general, given a chain c as in (4.6) with partition π = {B1, ..., Br} as at
Point 2 of the present list, we shall say the the block Bu of the upper sub-chain
corresponds to the block Bv of the lower sub-chain, whenever (ia, ia+1) = (jx, jx+1)

1A chain with partition π as in Fig. 4.1 is

c = (1, 1)(1, 2)(2, 1)(1, 1)(1, 1)(1, 3)(3, 1)(1, 1)(1, 4)(4, 1)(1, 1)(1, 1)(1, 5)(5, 1).
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b bb bb b b

b bb bb b b

Figure 4.1. a chain with a five-block partition

b b b b b b

b b b b b b

Figure 4.2. a chain with a one-block partition

for every a ∈ Bu and every x ∈ Bv. Note that one given block Bu in the upper sub-
chain cannot correspond to more than one block in the lower sub-chain. For π =
{B1, ..., Br} ∈ P(k), we shall now define a class of chains Cπ(2k, N) ⊂ C(2k, N),
whose elements have partition π and are characterized by two facts: the associated
upper and lower sub-chains have at least one pair in common, and “no singletons are
left on their own”. Formally, the class Cπ(2k, N) is defined as follows (recall that
we use the letter i for the elements of the upper sub-chain, and the letter j for the
elements of the lower sub-chain). (i) If |Bt| ≥ 2 for every t = 1, ..., r, then Cπ(2k, N)
is the collection of all chains of partition π verifying that there exists a, x ∈ [k] such
that the block Ba in the upper sub-chain corresponds to the block Bx in the lower
sub-chain. (ii) If π contains at least one singleton, then Cπ(2k, N) is the collection
of all chains of partition π such that every singleton in the upper (resp. lower) sub-
chain corresponds to a block of the lower (resp. upper) subchain, that is: for every
{a} ∈ π, there exists u = 1, ..., r such that (ia, ia+1) = (jl, jl+1) for every l ∈ Bu,
and, for every {x} ∈ π, there exists v = 1, ..., r such that (jx, jx+1) = (js, js+1) for
every s ∈ Bv. For instance, if k = 3 and π = {[3]}, then one element of Cπ(6, 5) is

c = (5, 5)(5, 5)(5, 5)(5, 5)(5, 5)(5, 5).

If k = 6 and π = {{1, 2, 3}, {4}, {5}, {6}}, then one element of Cπ(12, 5) is

c = (1, 1)(1, 1)(1, 1)(1, 2)(2, 5)(5, 1)(2, 2)(2, 2)(2, 2)(2, 5)(5, 1)(1, 2).

5. Fix k, N ≥ 2, as well as a partition π = {B1, ..., Br} ∈ P(k). Given two
subsets U, V ⊂ [r] such that |U | = |V |, let R : U → V : u 7→ R(u) be a bijection from
U onto V . We shall denote by CR

π (2k, N) the subset of Cπ(2k, N) composed of those
chains c ∈ Cπ(2k, N) such that the block Bu in the upper sub-chain corresponds to
the block BR(u) in the lower sub-chain. When U = {u} and V = {v} are singletons,
we shall simply write Cu,v

π (2k, N) to indicate the set of those c ∈ Cπ(2k, N) such
that the block Bu in the upper sub-chain corresponds to the block Bv in the lower
sub-chain. For instance, the chain

c1 = (1, 1)(1, 1)(1, 2)(2, 5)(5, 1)(2, 2)(2, 2)(2, 5)(5, 1)(1, 2)
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is an element of CR
π (10, 4), where π = {B1, B2, B3, B4} = {{1, 2}, {3}, {4}, {5}},

U = V = {2, 3, 4}, and R(2) = 4, R(3) = 2 and R(4) = 3. The chain

c2 = (3, 3)(3, 3)(3, 3)(3, 3)

belongs to C1,1

1̂
(4, 3), where 1̂ = {B1} = {[2]}. Note that the definition of CR

π (2k, N)
does not give any information concerning the blocks of the upper and lower sub-
chains that do not belong, respectively, to the domain and the image of R. In other
words, for a chain c ∈ CR

π (2k, N), one can have that the block Bu in the upper
sub-chain corresponds to the block Bv in the lower sub-chain even if u ∈/ U and
v ∈/ V . For instance, the chain

c = (1, 1)(1, 1)(1, 2)(2, 5)(5, 1)(1, 1)(1, 1)(1, 2)(2, 5)(5, 1)

is counted as an element of CR
π (10, 4), where

π = {B1, B2, B3, B4} = {{1, 2}, {3}, {4}, {5}},
U = V = {2, 3, 4}, and R(u) = u, for u = 2, 3, 4.

6. Fix k, N ≥ 2, as well as a partition π = {B1, ..., Br} ∈ P(k). Given a
bijection R : U → V as at Point 5 above, we shall represent a generic element
of the class CR

π (2k, N) by means of a diagram built as follows: first (i) draw the
diagram associated with the class Cπ(2k, N), as explained at Point 3 of the present
list, then (ii) for every pair of blocks Bu and Bv such that u ∈ U , v ∈ V and
v = R(u) (note that Bu is in the upper sub-chain, and Bv in the lower sub-chain),
draw a segment linking a representative element of Bu with a representative element
of Bv. For instance, the class CR

π (10, N), associated with the chain c1 appearing
at Point 5 above, is represented by the diagram appearing in Fig. 4.3, whereas the
chain c2 is associated with the class C1,1

1̂
(4, 3), whose diagram is drawn in Fig. 4.4.

b b b b

b b b b

b

b

b

b

Figure 4.3. a chain with three pairs of corresponding singletons

b b

b b

Figure 4.4. a chain with two corresponding blocks

7. Fix k, N ≥ 2 and let C ⊂ C(2k, N) be a generic subset of C(2k, N). Let
q = 1, ..., 2k be an integer. We say that C has at most q degrees of freedom (or,
equivalently, that C has at most q free indices) if there exists two subsets D, E ⊂ [k]
such that |D| ≥ 1 and the following two properties are verified: (i) |D|+|E| ≤ q, and
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(ii) for every2 xD = {xa : a ∈ D} ∈ [N ]|D| and every yE = {yb : b ∈ E} ∈ [N ]|E|,
there exists at most one chain c as in (4.6) such that ia = xa for every a ∈ D and
jb = yb for every b ∈ E. Note that our definition contemplates the possibility that
E = ∅, and in this case the role of yE = ∅ is immaterial. In other words, the class C
has at most q degrees of freedom if every c ∈ C is completely determined by those
ia in the upper sub-chain such that a ∈ D and those jb in the lower sub-chain such
that b ∈ E. For instance, it is easily seen the class C(2k, N) has (exactly) 2k degrees
of freedom. Another example is the diagram in Fig. 4.5, which corresponds to the
case k = 6, π = {{1, 2}, {3, 5}, {4, 6}} and u = v = 1. One sees that, for every N ,
specifying i1, i4 and j4 completely identifies a chain inside the class C1,1

π (12, N),
which has therefore three degrees of freedom.3

bbbb b b

bbbb b b

Figure 4.5. a class with three degrees of freedom

The proof of the two (useful) results contained in the next statement is elemen-
tary and omitted.

Lemma 4.3. Fix k, N ≥ 2.
(1) Let q = 1, ..., 2k. Assume that a generic class C ⊂ C(2k, N) has at most q

degrees of freedom. Then, |C| ≤ N q.

(2) Let 1̂ = {[k]} be the one-block partition of [k]. Then, the class C1̂(2k, N)
contains only “constant” chains of the type (4.6) such that (i1, i2) = (ia, ia+1) =
(jx, jx+1), for every a = 2, ..., k and every x = 1, ..., k. It follows that |C1̂(2k, N)| =
N .

Lemma 4.3 will be used in the subsequent section.

4.3. Combinatorial upper bounds. We keep the notation introduced in the previous
section. The following statement, which is the key element for proving Proposition
4.1, contains the main combinatorial estimate of the paper.

Proposition 4.4. Fix k, N ≥ 2, and let π = {B1, ..., Br} ∈ P(k) be a partition
containing at least one block of cardinality ≥ 2. Let the class Cπ(2k, N) be defined as
at Point 4. of the previous section. Then, there exists a finite constant Θ(k, π) ≥ 0,
depending only on k and π (and not on N), such that

|Cπ(2k, N)| ≤ Θ(k, π) × Nk−1. (4.7)

Proof: We shall consider separately the two cases

A. For every v = 1, ..., r, |Bv| ≥ 2.
B. The partition π contains at least one singleton.

2As indicated by our notation, we regard xD and yE as vectors, respectively in [N ]|D| and

[N ]|E|, by endowing D and E with the natural ordering induced by the ordering on [k].
3Indeed, one has necessarily that i1 = i2 = i3 = i5 = j1 = j2 = j3 = j5, i4 = i6 and j4 = j6.
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Case A. When k = 2, 3, the only partition meeting the needed requirements is 1̂.
According to Lemma 4.3-(2), |C1̂(2k, N)| = N , so that the claim is proved, and we
shall henceforth assume that k ≥ 4. Start by observing that r ≤ k/2. Moreover,
the class Cπ(2k, N) contains only chains such that at least one block in the upper
sub-chain corresponds to a block in the lower sub-chain, which yields in turn that

Cπ(2k, N) =

r⋃

u,v=1

Cu,v
π (2k, N),

where we adopted the notation introduced at Point 5. of Section 4.2. This implies
the crude estimate

|Cπ(2k, N)| ≤
r∑

u,v=1

|Cu,v
π (2k, N)|. (4.8)

According to Lemma 4.3-(1), it is now sufficient to prove that each class Cu,v
π (2k, N)

has at most 2r − 1 degrees of freedom: indeed, (4.8) together with the fact that
2r − 1 ≤ k − 1 would imply relation (4.7), with Θ(k, π) = r2 ≤ k2/4. Fix u, v ∈
{1, ..., r}. To prove that Cu,v

π (2k, N) has at most 2r − 1 degrees of freedom, we
shall build two sets D, E ⊂ [k] as follows. For every s = 1, ..., r, choose an element
of the block Bs, and denote this element by as. Then, define

D = {as : s = 1, ..., r}, E = D\{av},
where ‘\’ denotes the difference between sets. We now claim that, for every xD =
{xa : a ∈ D} ∈ [N ]|D| and every yE = {yb : b ∈ E} ∈ [N ]|E|, there exists at most
one chain c ∈ Cu,v

π (2k, N) as in (4.6) such that ia = xa for every a ∈ D and jb = yb

for every b ∈ E. To prove this fact, suppose that such a chain c exists, and assume
that there exists another chain

c′ = (i′1, i
′
2)(i

′
2, i

′
3)...(i

′
k, i′1)(j

′
1, j

′
2)(j

′
2, j

′
3)...(j

′
k, j′1)

verifying this property and such that c′ ∈ Cu,v
π (2k, N). The following hold: (a) for

every s = 1, ..., r and every a ∈ Bs, one has that i′a = xas
= ias

= ia, (b) for every
s 6= v and every a ∈ Bs, j′a = yas

= jas
= ja and (c) for s = v and every a ∈ Bv,

j′a = j′av
= i′au

= xau
= iau

= jav
= ja.

As a consequence, c′ = c. Since |D| + |E| = 2r − 1, this concludes the proof of
Proposition 4.4 in the Case A.

Case B. We shall denote by S the collection of the singleton(s) of π, that is the
subset of [k] composed of those indices a such that {a} ∈ π. Note that |S| > 0
by assumption. We also write P for the collection of the indices u ∈ [r] such that
|Bu| ≥ 2. Note that P is a subset of [r], whereas S ⊂ [k]. Note also that the set
[r]\P is the collection of all those v ∈ [r] such that Bv is a singleton. Clearly,

|P | = r − |S| ≤ k − |S|
2

.

By exploiting the cyclic nature of sub-chains, we can always assume, without loss
of generality, that S contains the singleton {k}. Since P is not empty, this entails
that there exists at least one singleton of π that is adjacent from the right to a
block of cardinality at least two. Formally, this means that there exists s∗ ∈ S and
u∗ ∈ P such that s∗ − 1 ∈ Bu∗ . We shall distinguish two cases

B1. The block Bu∗ contains two consecutive integers.
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B2. The block Bu∗ does not contain two consecutive integers.

(Proof under B1.) The situation of B1 is illustrated in Fig. 4.6, where k = 9,

π = {B1, ..., B7} = {{1}, {2}, {3, 6, 7}, {4}, {5}, {8}, {9}},
and one can take s∗ = 8, u∗ = 3, and the two consecutive integers in Bu∗ are 6 and
7.

b bb bb b b

b bb bb b b

b b

b b

Figure 4.6. a singleton is adjacent to a 3-block with two consec-
utive elements

Since each element of Cπ(2k, N) is such that every singleton in a given sub-chain
corresponds to a block in the opposite sub-chain, we have that

Cπ(2k, N) =
⋃

R∈R
CR

π (2k, N), (4.9)

where we adopted the same notation as at Point 5. of Section 4.2, and the union
runs over the class R of all bijections R : U → V such that both U and V contain
the set [r]\P , and every pair (u, R(u)) is such that at least one of the two blocks
Bu and BR(u) is a singleton. This entails the estimate

|Cπ(2k, N)| ≤
∑

R∈R
|CR

π (2k, N)|. (4.10)

To conclude the proof, we shall show that every class CR
π (2k, N) appearing in (4.10)

has at most k−1 degrees of freedom: indeed, this fact together with Lemma 4.3-(1)
yields the desired conclusion (4.7), with the constant Θ(k, π) = |R| (note that the
definition of R does not depend on N) . To prove that CR

π (2k, N) has at most k−1
degrees of freedom, we define two sets D, E ⊂ [k] as follows. For every s = 1, ..., r,
choose an element of the block Bs, and denote this element by as. Then, define

D = {as : s = 1, ..., r}, E = D\ {{au∗} ∪ {as : s ∈ [r]\P}} .

In other words, E is obtained by subtracting from D the singleton(s) and the
representative element of the block Bu∗ , that is, of the block adjacent to {s∗}.
We now want to prove that, for every xD = {xa : a ∈ D} ∈ [N ]|D| and every
yE = {yb : b ∈ E} ∈ [N ]|E|, there is at most one chain c ∈ CR

π (2k, N) as in (4.6)
such that ia = xa for every a ∈ D and jb = yb for every b ∈ E. To show this,
assume that such a chain c exists, and suppose that there exists another chain

c′ = (i′1, i
′
2)(i

′
2, i

′
3)...(i

′
k, i′1)(j

′
1, j

′
2)(j

′
2, j

′
3)...(j

′
k, j′1)

verifying this property and such that c′ ∈ CR
π (2k, N) and c′ 6= c. By construction

of the sets D and E, all the indices composing the upper chain are completely
determined by the choice of xD, whereas the choice of yE determines the indices
jx such that either x is a singleton or x ∈ Bv for some block Bv of cardinality ≥ 2
and such that v 6= u∗. This entails in turn that, necessarily since c′ 6= c, one has
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that j′x 6= jx for every x ∈ Bu∗ . This is absurd. Indeed, since Bu∗ contains two
consecutive integers, one has that j′x = j′x+1 and jx = jx+1 for every x ∈ Bu∗ ; it
follows that, since {s∗} is adjacent from the right to Bu∗ and therefore s∗−1 ∈ Bu∗

,

j′x = j′s∗−1 = j′s∗ = ys∗ = js∗ = js∗−1 = jx,

which is indeed a contradiction. Since

|D| + |E| = r + |P | − 1 ≤ k − |S|
2

+ |S| + k − |S|
2

− 1 = k − 1,

the proof is concluded.

(Proof under B2.) Since Bu∗ does not contain two consecutive integers and |Bu∗ | ≥
2, we deduce the existence of a block Bu ∈ π, which is different from Bu∗ and
{s∗}, enjoying the following “interlacement property”: there exists an integer a ∈
[k] such that a + 1 < s∗ − 1, a ∈ Bu∗ and a + 1 ∈ Bu. The block Bu can
be either a singleton or a block with two or more elements. This situation is
illustrated in Fig. 4.7, corresponding to the case k = 8 and π = {B1, ..., B5} =
{{1, 2}, {3, 5}, {4, 6}, {7}, {8}}. Here, s∗ = 7, Bu∗ = B3 = {4, 6}, Bu = B2 = {3, 5}
and a = 4.

bb bb bb b b

bb bb bb b b

Figure 4.7. a singleton is adjacent to a 2-block with no consecu-
tive elements

The crucial remark is now that, for a chain c as in (4.6) with partition π, one has
that is∗ = ia+1. Indeed, a and s∗−1 both belong to Bu∗ , and therefore (is∗−1, is∗) =
(ia, ia+1). Since a + 1 ∈ Bu, this fact yields in particular that, ix = is∗ for every
x ∈ Bu, that is, the left indices associated with Bu are completely determined by
the choice of is∗ . By the same argument, one shows that js∗ = ja+1. The rest of
the proof is similar to the case B1. First, we observe that the representation (4.9),
with R defined exactly as for B1, continues to be true, from which we deduce the
estimate (4.10). It is now sufficient to show that each class CR

π (2k, N) has at most
k − 1 degrees of freedom. To do this, one chooses a representative element from
each block Bs ∈ π, noted as, and then defines the sets

D = {as : s = 1, ..., r, s 6= u}, E = D\ {as : s ∈ [r]\P} ,

that is, D is built by selecting one element from each block of π, except for Bu,
and E is obtained by subtracting from D all the remaining indices a such that {a}
is a singleton of π. One has that

|D| + |E| ≤ k − 1. (4.11)

Indeed, |D| = r−1 = |P |+|S|−1 ≤ k−|S|
2 +|S|−1, and then one has to consider two

cases: either (a) Bu is a singleton, from which it follows that |E| = |D|−(|S|−1) ≤
k−|S|

2 , or (b) Bu is not a singleton, yielding |E| = |D| − |S| ≤ k−|S|
2 − 1. In these
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two cases, (4.11) is then in order. To conclude, it remains to show that, for every
xD = {xa : a ∈ D} ∈ [N ]|D| and every yE = {yb : b ∈ E} ∈ [N ]|E|, there is at most
one chain c ∈ CR

π (2k, N) as in (4.6) such that ia = xa for every a ∈ D and jb = yb

for every b ∈ E. To see this, assume that such a chain c exists, and observe that,
due to the above considerations, the choice of xD completely determines the upper
sub-chain of c, as well as those indices jx in the lower sub-chain such that {x} is
a singleton of π or (whenever Bu is not a singleton) such that x ∈ Bu. Since the
remaining left indices in the lower sub-chain of c are determined by the choice of
yE, the claim is proved. In view of (4.11), this shows that CR

π (2k, N) has at most
k − 1 free indices. This concludes the proof of Proposition 4.4.
As an illustration of the above arguments, one can consider the diagram in Fig. 4.8,
that is constructed from the situation in Fig. 4.7 by selecting U = V = {2, 3, 4, 5}
and R(2) = 4, R(3) = 5, R(4) = 2 and R(5) = 3. In particular, it is easily seen
that fixing i4, i7 and i8 completely identifies a chain c inside the class CR

π (16, N),
that has therefore three degrees of freedom.

bb bb bb b b

bb bb bb b b

Figure 4.8. a class with three free indices

4.4. Proofs of Proposition 4.1 and Theorem 1.1. Proof of Proposition 4.1: We take
up the notation introduced in Section 4.1. In view of Proposition 4.4, in order to
prove relation (4.5) (and therefore Proposition 4.1), it is sufficient to show that, for
every π ∈ Q(k), each pair (i, j) ∈ GN (π) is such that the corresponding chain
(i1, i2)...(ik, i1)(j1, j2)...(jk, j1) is an element of Cπ(2k, N), from which one de-
duces |GN (π)| ≤ |Cπ(2k, N)| ≤ Θ(k, π)Nk−1. To show the desired property, it
is enough to prove that, for every pair (i, j) ∈ AN (π) × AN (π) such that the chain
(i1, i2)...(ik, i1)(j1, j2)...(jk, j1) is not in Cπ(2k, N), one has that (i, j) 6∈ GN (π).
By definition of Cπ(2k, N), we have to examine two cases. Start by considering
a partition π ∈ Q(k) not containing any singleton: if (i, j) ∈ AN (π) × AN (π) is
such that (i1, i2)...(ik, i1)(j1, j2)...(jk, j1) 6∈ Cπ(2k, N), then the random variables
Xiaia+1 indexed by the upper sub-chain are independent of those indexed by the
lower sub-chain, and consequently

E(Xi1i2 . . . Xiki1Xj1j2 . . . Xjkj1 ) = E(Xi1i2 . . . Xiki1)E(Xj1j2 . . . Xjkj1),

yielding (i, j) 6∈ GN (π). On the other hand, if π ∈ Q(k) contains a singleton and
if (i, j) is such that (i1, i2)...(ik, i1)(j1, j2)...(jk, j1) 6∈ Cπ(2k, N), then there exists
a = 1, ..., k such that Xiaia+1 or Xjaja+1 is independent of all the other variables
indexed by the elements of the chain. This gives

E(Xi1i2 . . . Xiki1Xj1j2 . . . Xjkj1) = E(Xi1i2 . . . Xiki1)E(Xj1j2 . . .Xjkj1) = 0,

thus proving the required property (i, j) 6∈ GN (π). The proof is finished.
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Proof of Theorem 1.1-(i): By virtue of the representation (1.12)–(1.13) and of
Proposition 4.1, one sees that, for every 2 ≤ k1 < ... < km, the limit in distribution
of the vector(

Tr(XN ), Tr(Xk1

N ) − E
[
Tr(Xk1

N )
]
,..., Tr(Xkm

N ) − E
[
Tr(Xkm

N )
] )

coincides with the limit in distribution of


N−1/2

N∑

i=1

Xii, N− k1
2

∑

i∈D
(k1)

N

Xi1i2Xi2i3 · · ·Xik1
i1 , . . . ,

N−km
2

∑

i∈D
(km)
N

Xi1i2Xi2i3 · · ·Xikm i1


 ,

so that the desired conclusion follows from Corollary 3.5.
Proof of Theorem 1.1-(ii): For the simplicity of exposition, we assume that k1 ≥ 2,
the proof when k1 = 1 being completely similar and easier. We have, using the

notation D
(k)
N introduced in the beginning of Section 1.3 and using (1.13),
∣∣∣∣∣E



ϕ



Tr(Xk1

N ) − E[Tr(Xk1

N )]√
Var(Tr(Xk1

N ))
, . . . ,

Tr(Xkm

N ) − E[Tr(Xkm

N )]√
Var(Tr(Xkm

N ))









−E

[
ϕ

(
Zk1√

k1

, ...,
Zkm√

km

)] ∣∣∣∣∣ ≤ AN + BN ,

where, by writing Var(Tr(X
kj

N )) = Cj(N),

AN =

∣∣∣∣∣E


ϕ




1

C1(N)1/2N
k1
2

∑

i∈D
(k1)

N

Xi1i2 . . .Xik1
i1 , . . . ,

1

Cm(N)1/2N
km
2

∑

i∈D
(km)
N

Xi1i2 . . . Xikm i1





 − E

[
ϕ

(
Zk1√

k1

, ...,
Zkm√

km

)] ∣∣∣∣∣

and

BN =
∣∣∣∣∣E


ϕ




1

C1(N)1/2N
k1
2

∑

i∈D
(k1)

N

Xi1i2 . . . Xik1
i1 , . . . ,

1

Cm(N)1/2N
km
2

∑

i∈D
(km)
N

Xi1i2 . . .Xikm i1







−E



ϕ



Tr(Xk1

N ) − E[Tr(Xk1

N )]√
Var(Tr(Xk1

N ))
, . . . ,

Tr(Xkm

N ) − E[Tr(Xkm

N )]√
Var(Tr(Xkm

N ))








∣∣∣∣∣.
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By combining Corollary 2.9 with the computations made in the proof of Proposition
3.1, we immediately get that AN = O(N−1/4). For BN , we can write

|BN | ≤ K‖ϕ′‖∞
m∑

j=1

E


N− kj

2

∣∣∣∣∣∣∣

∑

i6∈D
(kj )

N

(
Xi1i2 . . . Xikj

i1 − E[Xi1i2 . . .Xikj
i1 ]
)
∣∣∣∣∣∣∣




≤ K‖ϕ′‖∞
m∑

j=1

√√√√√√Var


N−kj

2

∣∣∣∣∣∣∣

∑

i6∈D
(kj )

N

(
Xi1i2 . . . Xikj

i1 − E[Xi1i2 . . . Xikj
i1 ]
)
,

∣∣∣∣∣∣∣


,

for some constant K not depending on N , so that BN = O(N−1/2) = O(N−1/4)
by Proposition 4.1.

5. Almost sure central limit theorems (ASCLTs)

5.1. Preliminaries: a result by Ibragimov and Lifshits. For x, y ∈ Rm (m ≥ 1 fixed),

we write 〈x, y〉 = x1y1 + . . . + xmym (resp. |x| =
√
〈x, x〉) to indicate the inner

product of x and y (resp. the norm of x). The following result, due to Ibragimov
and Lifshits, plays a crucial role in the proof of Theorem 1.5.

Theorem 5.1 (See Ibragimov and Lifshits, 1999). Let G = {Gn : n ≥ 1} be a se-
quence of Rm-valued random variables converging in distribution towards a random
variable G∞, and set

∆N (G, t) =
1

log N

N∑

n=1

1

n

(
ei〈t,Gn〉 − E[ei〈t,G∞〉]

)
, t ∈ R

m. (5.1)

If, for all r > 0,

sup
|t|≤r

∞∑

N=2

E|∆N (G, t)|2
N log N

< ∞, (5.2)

then, almost surely, for all continuous and bounded function ϕ : Rm → R, we have

1

log N

N∑

n=1

ϕ(Gn)

n
−→ E[ϕ(G∞)], as N → ∞. (5.3)

Remark 5.2. (1) If E|∆N (G, t)|2 = O(1/ log N) uniformly in t on bounded sets,
then (5.2) is automatically satisfied.

(2) See Bercu et al. (2010) for several applications of Theorem 5.1 in the frame-
work of ASCLTs on Wiener space.

The following useful result allows to deal with sequences of random variables
having the form of a sum of two terms, one of which vanishes in the mean-square
sense.

Lemma 5.3. Let G = {Gn : n ≥ 1} be a sequence of R
m-valued random variables

converging in distribution towards a random variable G∞, and satisfying in addi-
tion (5.2). Let R = {Rn : n ≥ 1} be a sequence of Rm-valued random variables
converging in L2(Ω) to R∞ = 0, and such that

∞∑

N=2

1

N log2 N

N∑

n=1

1

n
E|Rn|2 < ∞. (5.4)
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Then

sup
|t|≤r

∞∑

N=2

E
∣∣∆N (G + R, t)

∣∣2

N log N
< ∞,

where G + R = {Gn + Rn : n ≥ 1} and ∆N (G + R, t) is defined according to (5.1).

Remark 5.4. If E|Rn|2 = O(n−a), for some a > 0, then (5.4) is automatically
satisfied.

Proof of Lemma 5.3. Since ∆N (G + R, t) =
∑N

n=1
1
n

(
ei〈t,Gn+Rn〉 − E[ei〈t,G∞〉]

)
,

one has that

∆N (G + R, t) = ∆N (G, t) +
1

log N

N∑

n=1

1

n
ei〈t,Gn〉(ei〈t,Rn〉 − 1

)
,

so that, by using |x+ y|2 ≤ 2|x|2 +2|y|2, Jensen inequality and
∑N

n=1
1
n ∼ log N as

N → ∞, there exists a constant c > 0 (independent of N) such that, for all N ≥ 2,

E|∆N (G + R, t)|2 ≤ 2E|∆N(G, t)|2 +
c

log N

N∑

n=1

1

n
E
∣∣ei〈t,Rn〉 − 1

∣∣2.

Since |ei〈t,x〉 − 1| ≤ |t||x|, we deduce

E|∆N (G + R, t)|2 ≤ 2E|∆N (G, t)|2 +
c|t|2
log N

N∑

n=1

1

n
E|Rn|2.

The desired conclusion follows.

5.2. Proof of Theorem 1.5. For the sake of brevity, we shall prove Theorem 1.5 only
for powers ki strictly greater than one. The general case (ki ≥ 1) can be deduced
from similar arguments.

Throughout this section, we fix integers m ≥ 1 and km > . . . > k1 ≥ 2. For

N ≥ 1 and k ≥ 2, we denote (as above) by D
(k)
N the collection of all vectors

i = (i1, . . . , ik) ∈ {1, . . . , N}k such that all pairs (ia, ia+1), a = 1, . . . , k, are different

(with the convention that ik+1 = i1), that is, i ∈ D
(k)
N if and only if (ia, ia+1) 6=

(ib, ib+1) for every a 6= b and 1 ≤ ia ≤ N for every a = 1, ..., k. Let

JN (k) = N−k/2
∑

i∈D
(k)
N

Xi1i2Xi2i3 . . . Xiki1 , and LN (k) =
JN (k)√

E[JN (k)2]
.

Observe that E[JN (k)] = E[LN(k)] = 0 and Var[LN(k)] = 1. The proof of Theorem
1.5 is divided into several steps.

Step 1: bounding E[Ln(k)Lp(k)]. Fix k ≥ 2. We shall prove that there exists a
constant Ck > 0 such that, for all n, p ≥ 1,

E[Ln(k)Lp(k)] ≤ Ck

√
n ∧ p

n ∨ p
. (5.5)

By symmetry, we assume without loss of generality that p ≥ n. If i ∈ D
(k)
n and

j ∈ D
(k)
p \ D

(k)
n , then

E[Xi1i2 . . . Xiki1Xj1j2 . . . Xjkj1 ] = 0;
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indeed, if i ∈ D
(k)
n and j ∈ D

(k)
p \D

(k)
n , then necessarily there exists a = 1, ..., k such

that ja > n, and therefore the centered random variable Xjaja+1 is independent of

Xibib+1
for every b = 1, ..., k, and also (by the definition of D

(k)
p ) independent of

Xjsjs+1 for every s 6= a. It follows that

E[Jn(k)Jp(k)] =

(
1

np

)k/2 ∑

i∈D
(k)
n

∑

j∈D
(k)
p

E[Xi1i2 . . . Xiki1Xj1j2 . . . Xjkj1 ]

=

(
1

np

)k/2 ∑

i∈D
(k)
n

∑

j∈D
(k)
n

E[Xi1i2 . . . Xiki1Xj1j2 . . . Xjkj1 ]

=

(
n

p

)k/2

E
[
Jn(k)2

]
.

Thus E[Ln(k)Lp(k)] =
(

n
p

)k/2√
E[Jn(k)2]
E[Jp(k)2] . But we have E[Jn(k)2] → k as n → ∞,

see indeed (3.9). As a consequence, we immediately get the existence of a constant
Ck such that (5.5) is in order.

Step 2: showing that sup|t|≤r

∑∞
N=2

E|∆N(L,t)|2
N log N < ∞. Fix k ≥ 2. Let fk,N be

as in (3.1). Set gk,N = 1√
E[JN (k)2]

fk,N . We obviously have LN(k) = Qk(gk,N ,X).

Combining (3.9) and (3.6), we immediately get that ‖gk,N⋆rgk,N‖2k−2r =O(N−1/2),
for all r = 1, . . . , k − 1.

From now on, for simplicity write LN =
(
LN(k1), . . . , LN(km)

)
, N ≥ 1, and

g(t) = e−|t|2/2, t ∈ Rm. Corollary 2.9 yields that
∣∣∣E[ei〈t,LN 〉] − g(t)

∣∣∣ = O(N−1/4). (5.6)

On the other hand, for all r = 1, . . . , k − 1, we can write

‖(gk,N − gk,M ) ⋆r (gk,N − gk,M )‖2k−2r

= ‖gk,N ⋆r gk,N + gk,M ⋆r gk,M − gk,N ⋆r gk,M − gk,M ⋆r gk,N‖2k−2r

≤ ‖gk,N ⋆r gk,N‖2k−2r + ‖gk,M ⋆r gk,M‖2k−2r + 2‖gk,N ⋆r gk,M‖2k−2r.

But

‖gk,N ⋆r gk,M‖2k−2r =
√〈

gk,N ⋆k−r gk,N , gk,M ⋆k−r gk,M

〉
2r

≤
√
‖gk,N ⋆k−r gk,N‖2r

√
‖gk,M ⋆k−r gk,M‖2r

≤ 1

2

(
‖gk,N ⋆k−r gk,N‖2r + ‖gk,M ⋆k−r gk,M‖2r

)
.

Consequently,
∥∥∥∥

gk,N − gk,M√
2

⋆r
gk,N − gk,M√

2

∥∥∥∥
2k−2r

≤

‖gk,N ⋆r gk,N‖2k−2r + ‖gk,M ⋆r gk,M‖2k−2r = O(N−1/2),

as N → ∞, uniformly on M ≥ N and r = 1, ..., k−1, that is, there exists a constant
Ck > 0 (depending solely on k) such that, for every N ,

sup
1≤r≤k−1 ; M≥N

∥∥∥∥
gk,N − gk,M√

2
⋆r

gk,N − gk,M√
2

∥∥∥∥
2k−2r

≤ Ck

N
.
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Since Var
[

LN (k)−LM (k)√
2

]
= 1 − E[LN (k)LM (k)] for all k, by using Corollary 2.9

with

Qi
M,N(X) =

(
LN(ki) − LM (ki)

)
/
√

2 − 2E[LN(ki)LM (ki)]

and

ϕ(z1, . . . , zm) =

exp
(√

1 − E[LN (k1)LM (k1)]t1z1 + . . . +
√

1 − E[LN (km)LM (km)]tmzm

)
,

we get that

∣∣∣∣E
[
e

i
D

t,
LN−LM√

2

E
]

− exp

(
−
(
1 − E[LN (k1)LM (k1)]

) t21
2
− . . . −

(
1 − E[LN (km)LM (km)]

) t2m
2

)∣∣∣∣
(5.7)

is O(N−1/4) as N → ∞, uniformly on M ≥ N . On the other hand, combining (5.5)

with
∣∣e−x2/2 − e−(1−α)x2/2

∣∣ ≤ αx2/2 for all x ∈ R and α ≥ 0, we get that there
exists Cr > 0 such that, for all t ∈ Rm with |t| ≤ r,
∣∣∣∣g(t) − exp

(
−
(
1 − E[LN(k1)LM (k1)]

) t21
2
− . . . −

(
1 − E[LN(km)LM (km)]

) t2m
2

)∣∣∣∣

≤ Cr

√
N ∧ M

N ∨ M
. (5.8)

Define ∆N (L, t) according to (5.1), with L∞ ∼ Nm(0, Im). For |t| ≤ r, we have,
due to (5.6)-(5.7)-(5.8):

E|∆N (L, t)|2

=
1

log2 N

N∑

n,p=1

1

np
E
[(

ei〈t,Ln〉 − g(t)
)(

e−i〈t,Lp〉 − g(t)
)]

=
1

log2 N

N∑

n,p=1

1

np

[(
E
(
ei〈t,Ln−Lp〉)− g2(t)

)
− g(t)

(
E
(
ei〈t,Ln〉)− g(t)

)

−g(t)
(
E
(
e−i〈t,Lp〉)− g(t)

)]

=
1

log2 N

N∑

n,p=1

1

np

[(
E
(
e

i
√

2
D

t,
Ln−Lp

√
2

E)
− g(

√
2 t)

)
− g(t)

(
E
(
ei〈t,Ln〉)− g(t)

)

−g(t)
(
E
(
e−i〈t,Lp〉)− g(t)

)]
.

≤ Cr

log2 N

N∑

n,p=1

1

np

(√
n ∧ p

n ∨ p
+

1

n1/4
+

1

p1/4

)
.

It is obvious that

1

log2 N

N∑

n,p=1

1

np

(
1

n1/4
+

1

p1/4

)
= O

(
1

log N

)
as N → ∞.
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Moreover,

1

log2 N

N∑

n,p=1

1

np

√
n ∧ p

n ∨ p
≤ 2

log

2

N
N∑

n=1

1

n
√

n

n∑

p=1

1√
p

≤ c

log2 N

N∑

n=1

1

n
= O

(
1

log N

)
.

Hence, sup|t|≤r E|∆N (L, t)|2 = O(1/ log N), implying immediately

sup
|t|≤r

∞∑

N=2

E|∆N (L, t)|2
N log N

< ∞. (5.9)

Step 3: using Lemma 5.3. Set TN (k) = JN (k)√
k

. Using (3.9) and elementary calcula-

tions, it is immediate that

E |TN (k) − LN(k)|2 =

∣∣E
[
JN (k)2

]
− k
∣∣2

k
(√

k +
√

E [JN (k)2]
)2 ≤ C2

k

k2 N2
,

so that R̃N := TN − LN verifies condition (5.4) of Lemma 5.3. Since (5.9) is also

in order, we deduce that sup|t|≤r

∑∞
N=2

E|∆N (T,t)|2
N log N < ∞, which in turns implies

sup
|t|≤r

∞∑

N=2

E|∆N (J, t)|2
N log N

< ∞. (5.10)

Step 4: using Lemma 5.3 once again. For any k ≥ 2, set SN (k) = Tr(Ak
N ) −

E
[
Tr(Ak

N )
]
. We have

SN (k) = N− k
2

N∑

i1,...,ik=1

(
Xi1i2Xi2i3 · · ·Xiki1 − E[Xi1i2Xi2i3 · · ·Xiki1 ]

)

= JN (k) + RN (k),

with

RN (k) = N−k
2

∑

i6∈D
(k)
N

(
Xi1i2Xi2i3 · · · Xiki1 − E[Xi1i2Xi2i3 · · · Xiki1 ]

)
.

For all k ≥ 2, we have E|RN (k)|2 = O(1/N), see (4.1). Hence, Lemma 5.3 together

with (5.10) imply that sup|t|≤r

∑∞
N=2

E|∆N(S,t)|2
N log N < ∞. To finish the proof of

Theorem 1.5, it suffices to apply Theorem 5.1.
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