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Timo Seppäläinen and Benedek Valkó
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Abstract. We study the scaling exponents of a 1+1-dimensional directed polymer
in a Brownian random environment introduced by O’Connell and Yor. For a version
of the model with boundary conditions that are stationary in a space-time sense we
identify the exact values of the exponents. For the version without the boundary
conditions we get the conjectured upper bounds on the exponents.

1. Introduction

We study the scaling exponents of a directed polymer model in 1+1 dimen-
sions (one space dimension plus time dimension) whose random environment is
constructed from Brownian motions. For a positive integer n and an inverse tem-
perature parameter β > 0, the partition function is defined by

Zn(β) =

∫

0<s1<···<sn−1<n

exp
[
β
(
B1(0, s1) + B2(s1, s2)+

· · · + Bn(sn−1, n)
)]

ds1,n−1

(1.1)
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B. Valkó was partially supported by National Science Foundation grant DMS-0905820.

451

http://alea.impa.br/english/index_v7.htm
http://www.math.wisc.edu/~seppalai
http://www.math.wisc.edu/~valko
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where {Bj} are independent one-dimensional standard Brownian motions,
B(s, t) = B(t) − B(s), and ds1,n−1 = ds1ds2 · · · dsn−1. This model was intro-
duced by O’Connell and Yor (2001) in connection with a related polymer model
that they named the generalized Brownian queue. Subsequently the exact limiting
free energy density p(β) was computed by Moriarty and O’Connell (2007). To state
their result, recall the gamma function Γ(s) =

∫∞
0 xs−1e−x dx and the digamma

function Ψ0 = Γ′/Γ.

Theorem 1.1 (Moriarty and O’Connell, 2007). For β > 0 this almost sure limit

holds:

lim
n→∞

n−1 log Zn(β) = p(β) = inf
t>0

{
tβ2 − Ψ0(t)

}
− 2 logβ.

Moriarty and O’Connell extracted this result with the help of large deviation
asymptotics from the generalized Brownian queuing system whose limit is readily
computable. In this related model the polymer path is allowed to begin in the
infinite past and a decaying exponential factor is included inside the integral to
make the partition function converge. We also work with the Brownian queueing
system to obtain an estimate on the fluctuations:

Theorem 1.2. There exist finite, positive β-dependent constants b0, n0, C such that

for b ≥ b0 and n ≥ n0

P
(
| log Zn(β) − np(β)| ≥ bn1/3

)
≤ Cb−3/2.

The conjectured behavior for directed polymers is that the order of magnitude
of the fluctuations of log Zn(β) is nχ and in 1+1 dimensions this exponent takes
the value χ = 1/3 at all inverse temperatures β > 0. Theorem 1.2 gives the
expected upper bound on the exponent: χ ≤ 1/3. In Theorem 2.1 below we give
the corresponding upper bound on the fluctuations of the polymer path.

The generalized Brownian queueing system amounts to putting boundary condi-
tions on the polymer (1.1) that are stationary in a natural two-dimensional manner.
This stationarity comes from a Burke-type property discovered by O’Connell and
Yor (2001), see Lemma 3.2 below. For the model with boundary conditions we
identify the exact scaling exponents. Our analysis of these models adapts the steps
of the recent work (Seppäläinen, 2010) where a discrete lattice model with anal-
ogous properties was discovered and its scaling exponents studied. The roots of
the proofs in (Seppäläinen, 2010) can be traced back to the seminal paper (Cator
and Groeneboom, 2006). In the context of maximal increasing paths on planar
Poisson points, Cator and Groeneboom (2006) were the first to chart a path to the
scaling exponents of a two-dimensional growth model without asymptotic analysis
of Fredholm determinants.

Suboptimal but still highly nontrivial bounds on scaling exponents in 1+1 di-
mensional polymer models have been obtained for Brownian polymers in Poisson
environments by Comets and Yoshida (2005) and Wüthrich (1998a,b), for Gaussian
random walk in a Gaussian environment by Mejane (2004) and Petermann (2000),
and for the related model of first passage percolation by Licea et al. (1996) and
Newman and Piza (1995).

The overall situation in 1+1 dimensional polymers is now similar to that for two-
dimensional directed last-passage percolation models, which are of course closely



Polymer in a Brownian environment 453

related as zero-temperature directed polymers. In both areas there is a Brownian
model and some particular discrete models that are amenable to explicit compu-
tations. Models with general distributions remain beyond the reach of current
techniques.

Currently results are farther along for last-passage models: in addition to ex-
ponents, explicit Tracy-Widom limit distributions are known. Key results are by
Baik et al. (1999), Balázs et al. (2006), Baryshnikov (2001), Cator and Groeneboom
(2006), Ferrari and Spohn (2006), Gravner et al. (2001), and Johansson (2000a,b).
The connection between last passage models and random matrix theory has been
one of the major inspirations of the subject. The recent article (O’Connell, 2009)
finds a connection between the Brownian polymer (1.1) and the quantum Toda
lattice and proposes this as the possible polymer analogue of the random matrix
connection of last-passage percolation.

The Brownian last-passage model arises as the zero temperature limit in the
polymer model. With Zn(β) from (1.1),

lim
βր∞

β−1 log Zn(β) = Ln,n ≡ sup
0=s0<s1<···<sn−1<sn=n

n∑

j=1

Bj(sj−1, sj).

We can scale the Brownian motions to the time interval [0, 1] so that Ln,n
d
=

√
nLn,1.

It has been known for some time that Ln,1 has the distribution of the largest
eigenvalue of an n × n GUE random matrix (Baryshnikov, 2001; Gravner et al.,
2001). So as n → ∞, under the correct scaling Ln,n does converge to the Tracy-
Widom GUE distribution. If we believe that the finite temperature polymer should
behave like the zero temperature model, we have heuristic justification for expecting
a Tracy-Widom limit also for the free energy log Zn(β).

There is one directed polymer model which is essentially solved: the continuum
random directed polymer in 1+1 dimension which describes a Brownian path in a
white noise environment. The free energy is defined as

log E

[
:exp:

{
−
∫ T

0

Ẇ(t, b(t))dt

}]

where Ẇ is a space-time white noise, b is a Brownian motion (or bridge) and :exp:
is the Wick-ordered exponential. Balázs et al. (2009) determine the exact scaling
exponent in the case of a stationary boundary condition using a connection to the
KPZ equation and the weakly asymmetric simple exclusion process. Amir et al.
(2000) use the same connection to compute the exact distribution of the free energy
in the point-to-point setting, and the Tracy-Widom distribution is derived in the
appropriate scaling limit. (See also Sasamoto and Spohn, 2010).

Some frequently used notation. We write f(s, t) = f(t) − f(s) for increments,
without assuming that s ≤ t. Z+ = {0, 1, 2, . . .}, N = {1, 2, 3, . . .} and R+ = [0,∞).
X = X − EX denotes a centered random variable. In general a superscript ω
is added to a symbol whenever its dependence on a particular realization of the
environment needs to be made explicit.

2. Models and results

We begin with precise definitions of two polymer models, the one already encoun-
tered and another one with a boundary. B and {Bk : k ∈ N} denote independent
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standard Brownian motions indexed by R. They form the random environment ω
under probability measure P.

By Brownian scaling {B(ct)} d
= {c1/2B(t)} the parameter β can be removed

from the exponent in (1.1) and replaced by a parameter that controls the upper
limit of integration. This is convenient for us, so instead of Zn(β) we work with
the family

Zj,k(s, t) =

∫

s<sj<···<sk−1<t

exp
[
Bj(s, sj) + Bj+1(sj , sj+1)+

· · · + Bk(sk−1, t)
]
dsj,k−1

(2.1)

where 1 ≤ j ≤ k ∈ N and s < t ∈ R. Occasionally we may also write Z(j,k),(s,t) =
Zj,k(s, t). The distributional identity is

Zn(β)
d
= β−2(n−1)Z1,n(0, nβ2). (2.2)

This is the last appearance of the partition function Zn(β) defined by (1.1) in the
paper. Similar notation will be used below for other partition functions.

The partition function is the normalizing constant for the quenched polymer
distribution Q(j,k),(s,t). This is a probability measure on nondecreasing cadlag
paths x : [s, t] → {j, j + 1, . . . , k} that go from x(s) = j to x(t) = k. We represent
these paths in terms of the jump times s < σj < σj+1 < · · · < σk−1 ≤ t where
x(σi−) = i < i + 1 = x(σi). The measure Q(j,k),(s,t) is defined by

EQ(j,k),(s,t)f(σj , . . . , σk−1) =
1

Z(j,k),(s,t)

∫

s<sj<···<sk−1<t

f(sj, . . . , sk−1)

× exp
[
Bj(s, sj) + Bj+1(sj , sj+1) + · · · + Bk(sk−1, t)

]
dsj,k−1.

(2.3)

This measure is called quenched because the environment of Brownian motions is
fixed. Integrating away the environment gives the annealed expectation E(j,k),(s,t)(·)
= EEQ(j,k),(s,t) (·).

In addition to the digamma function we also need its derivative, the trigamma
function Ψ1 = Ψ′

0. Ψ0 is concave and increasing and Ψ1 is positive, convex and
strictly decreasing with Ψ1(0+) = ∞ and Ψ1(∞) = 0. Theorem 1.1 is equivalent
to the statement

lim
n→∞

n−1 log Z1,n(0, nτ) = Ψ1(θ)θ − Ψ0(θ) P-a.s. (2.4)

where τ > 0 and θ is the unique value such that Ψ1(θ) = τ . Theorem 1.2 will be
proved in Section 7 in terms of Z1,n(0, nτ). In conjunction with Theorem 1.2 goes
an upper bound on the fluctuations of the path, also proved in Section 7.

Theorem 2.1. Let τ > 0 and 0 < γ < 1. Then for all large enough n and b

P(1,n),(0,nτ)

(
|σ⌊nγ⌋ − nγτ | > bn2/3

)
≤ C(τ)b−3. (2.5)

Theorem 2.1 says that the path stays close to the diagonal of the rectangle [1, n]×
[0, nτ ], and typical fluctuations away from the diagonal have order of magnitude
at most n2/3. This gives an upper bound ζ ≤ 2/3 for the second basic scaling
exponent ζ which describes the fluctuations of the polymer path.

These are the results for the polymer without a boundary, and we turn to discuss
the model with boundary. For this model the upper bounds of Theorems 1.2 and
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2.1 are combined with matching lower bounds, so we have the precise values of the
scaling exponents. An additional parameter θ > 0 is introduced in this model.

The partition function is

Zθ
n(t) = Zθ

n,t =

∫

−∞<s0<s1<···<sn−1<t

exp
[
−B(s0) + θs0

+ B1(s0, s1) + B2(s1, s2) + · · · + Bn(sn−1, t)
]
ds0,n−1.

(2.6)

The quenched polymer measure Qθ
n,t lives on nondecreasing cadlag paths

x : (−∞, t] → {0, 1, . . . , n} that go from x(−∞) = 0 to x(t) = n.

Again we represent these in terms of jump times −∞ < σ0 < σ1 < · · · < σn−1 ≤ t
where x(σi−) = i < i + 1 = x(σi). The measure is defined by

EQθ
n,tf(σ0, σ1, . . . , σn−1) =

1

Zθ
n(t)

∫

−∞<s0<···<sn−1<t

f(s0, s1, . . . , sn−1)

× exp
[
−B(s0) + θs0 + B1(s0, s1) + B2(s1, s2)+

· · · + Bn(sn−1, t)
]
ds0,n−1.

(2.7)

Annealed probability and expectation are denoted by P θ
n,t(·) = EQθ

n,t(·) and

Eθ
n,t(·) = EEQθ

n,t(·), and simply E(·) when the parameters are understood.
Notational remark. To simplify notation we shall not consistently carry the su-

perscript θ in the notation for the objects of the polymer model with boundary. The
notational distinction between the two models is that the model without bound-
ary has two space-time parameters represented by ((j, k), (s, t)) in definitions (2.1)
and (2.3), while the model with boundary has only a single space-time parameter,
namely (n, t) in definitions (2.6) and (2.7). When dependence on the environment
ω needs to be displayed explicitly, ω is added as a superscript, as for example in

Qθ,ω
n,t .
The boundary conditions render the model stationary in a sense made precise

in Theorem 3.3. As a consequence some explicit computations can be performed:
from Theorems 3.3 and 3.6 we obtain

E(log Zθ
n(t)) = −nΨ0(θ) + θt

and
Var(log Zθ

n(t)) = nΨ1(θ) − t + 2Eθ
n,t(σ

+
0 ). (2.8)

As we take the size of the polymer to infinity, the interesting exponents appear
when the endpoint follows approximately a characteristic direction specified by the
parameter θ. As t and n become large, they will be assumed to satisfy

|t − nΨ1(θ)| ≤ An2/3 for a constant 0 ≤ A < ∞. (2.9)

The purpose of this assumption is to kill the first two terms of the variance formula
in (2.8). The first theorem says that the exponent χ = 1/3 describes the order of
fluctuations of log Zθ

n(t).

Theorem 2.2. Fix 0 < A < ∞. Then there exist constants 0 < C1 < C2 < ∞ that

depend on (θ, A) such that, for all t > 0 and n ≥ 1 that satisfy (2.9),

C1n
2/3 ≤ Var(log Zθ

n(t)) ≤ C2n
2/3. (2.10)
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The second theorem says that under the annealed distribution the path stays
close to the diagonal of the rectangle [0, n] × [0, t], and n2/3 is the correct order of
typical fluctuations.

Theorem 2.3. Fix 0 < A < ∞ and consider t > 0 and n ≥ 1 that satisfy (2.9).
Fix 0 ≤ γ < 1. Then for large enough n and b

P θ
n,t(|σ⌊γn⌋ − γt| > bn2/3) ≤ Cb−3. (2.11)

For any ε > 0 there exists δ > 0 such that

lim
n→∞

P θ
n,t(|σ⌊γn⌋ − γt| ≤ δn2/3) ≤ ε. (2.12)

Variable σ0 is a special case of Theorem 2.3, but in fact controlling this case
turns out to be the key to both Theorems 2.2 and 2.3. Let us also mention that
our arguments give the moment bound Eθ

n,t(|σ0|p) ≤ Cn2p/3 for 1 ≤ p < 3.

3. Properties of the model with boundary

Following O’Connell and Yor (2001) introduce the following processes to render
the role of boundary conditions clearer in (2.6): Y0(t) = B(t), and then define
inductively for k ∈ N

rk(t) = log

∫ t

−∞
eYk−1(s,t)−θ(t−s)+Bk(s,t) ds (3.1)

and

Yk(t) = Yk−1(t) + rk(0) − rk(t),

Xk(t) = Bk(t) + rk(0) − rk(t).
(3.2)

From the definitions and a simple induction argument follow the equations
n∑

k=1

rk(t) = log

∫

−∞<s0<s1···<sn−1<t

exp
[
B(s0, t) − θ(t − s0)

+ B1(s0, s1) + B2(s1, s2) + · · · + Bn(sn−1, t)
]
ds0,n−1

= B(t) − θt + log Zθ
n(t)

(3.3)

and

Zθ
n(t) =

∫ t

0

exp[−B(s) + θs]Z1,n(s, t) ds +

n∑

j=1

( j∏

k=1

erk(0)
)
Zj,n(0, t). (3.4)

If we define also
Zθ

0 (t) = exp[−B(t) + θt] (3.5)

then the above can be expressed in the form

Zθ
n(t) =

∫ t

0

Zθ
0 (s)Z1,n(s, t) ds +

n∑

j=1

Zθ
j (0)Zj,n(0, t). (3.6)

Combining (3.3) with (3.2) gives the space and time increments

log Zθ
n(t) − log Zθ

n−1(t) = rn(t) for n ∈ N, t ∈ R+ (3.7)

and

log Zθ
n(t) − log Zθ

n(s) = θ(t − s) − Yn(s, t) for n ∈ Z+, s < t ∈ R+. (3.8)
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Remark 3.1. The density of (σ0, . . . , σn−1) under Qn,t can also be written as

1

Ẑθ
n(t)

exp
[
B̂(s0, t) + B̂1(s0, s1) + B̂2(s1, s2) + · · · + B̂n(sn−1, t)

]

× 1{s0 < · · · < sn−1 < t}
(3.9)

where B̂(u) = B(u)−θu/2 (and similarly for B̂k) and Ẑθ
n(t) = Zθ

n(t) exp(B(t)−θt).
From this representation and the stationarity of Brownian increments it is clear that

EQn,tf(σ0, σ1, . . . , σn−1)
d
= EQn,0f(t + σ0, t + σ1, . . . , t + σn−1). (3.10)

3.1. Burke property. This lemma summarizes the Burke property of (O’Connell
and Yor, 2001, Thm. 5).

Lemma 3.2 (O’Connell and Yor, 2001). Let B and C be independent standard

Brownian motions indexed by R and θ > 0 a fixed constant. For t ∈ R set

r(t) = log

∫ t

−∞
exp (B(s, t) + C(s, t) − θ(t − s)) ds,

f(t) = B(t) + r(0) − r(t), g(t) = C(t) + r(0) − r(t).

Then f and g are independent standard Brownian motions indexed by R and for

each t ≥ 0 the processes {(f(s), g(s)) : s ≤ t} and {r(s) : s ≥ t} are independent.

Moreover the following identity holds almost surely:

r(t) = log

∫ ∞

t

exp (f(t, s) + g(t, s) + θ(t − s)) ds. (3.11)

Although identity (3.11) is not stated explicitly in Theorem 5 of O’Connell and
Yor (2001) it is contained in the proof. In the next theorem we generalize the Burke
property in a form suitable for our use.

Theorem 3.3. Let n ∈ N and 0 ≤ sn ≤ sn−1 ≤ · · · ≤ s1 < ∞. Then over the

index j the following random variables and processes are all mutually independent:

rj(sj) and {Xj(s) : s ≤ sj} for 1 ≤ j ≤ n, {Yn(s) : s ≤ sn},
and {Yj(sj+1, s) : sj+1 ≤ s ≤ sj} for 1 ≤ j ≤ n − 1.

Furthermore, the Xj and Yj processes are standard Brownian motions, and rj(sj)
d
=

− log η with η ∼ Gamma(θ, 1).

Proof : We use induction on n. For n = 1 the statement follows from Lemma 3.2 to-
gether with Dufresne’s identity (Dufresne, 2001, Cor. 4) which gives the distribution
of r1(t).

We now assume that the statement is true for n−1 and prove it for n. From defi-
nitions (3.1)–(3.2), {rn(s), Yn(s), Xn(s) : s ≤ sn} is a function of {Yn−1(s) : s ≤ sn}
and an independent Brownian motion Bn. This means that {rn(s), Yn(s), Xn(s) :
s ≤ sn} is independent of the processes {Xj(s) : s ≤ sj}, {Yj(sj+1, s) : sj+1 ≤ s ≤
sj} for 1 ≤ j ≤ n − 1, and random variables {rj(sj) : 1 ≤ j ≤ n − 1}. Besides
the induction hypothesis we also used that {Yn−1(sn, s), s ≥ sn} is independent of
{Yn−1(s) : s ≤ sn}. That {Yn(s), Xn(s) : s ≤ sn} and rn(sn) have the right joint
distribution again follows from Lemma 3.2 and Dufresne’s identity. �
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Applying the shift Suf(t) = f(u + t) − f(u) that preserves the distributions of
the Brownian motions shows that rk(t) = rk(0) ◦ St is a stationary process. We
also note that E(rk(t)) = −Ψ0(θ) and Var(rk(t)) = Ψ1(θ).

3.2. Reversal. Fix T ∈ R and n ∈ N. Define the following new processes:

Y ∗
j (s) = Yn−j(T ) − Yn−j(T − s), 0 ≤ j ≤ n, (3.12)

B∗
j (s) = Xn+1−j(T ) − Xn+1−j(T − s), 1 ≤ j ≤ n, (3.13)

r∗j (s) = rn+1−j(T − s), 1 ≤ j ≤ n, (3.14)

X∗
j (s) = Bn+1−j(T ) − Bn+1−j(T − s), 1 ≤ j ≤ n. (3.15)

Define the dual environment by ω∗ = (Y ∗
0 , B∗

j : 1 ≤ j ≤ n).

Theorem 3.4. Fix n ∈ N. We have the following equality in distribution for the

processes on R:

{Yk : 0 ≤ k ≤ n; Xj, Bj , rj : 1 ≤ j ≤ n}
d
=
{
Y ∗

k : 0 ≤ k ≤ n; X∗
j , B∗

j , r∗j : 1 ≤ j ≤ n
}

.

In particular, the dual environment ω∗ = (Y ∗
0 , B∗

j : 1 ≤ j ≤ n) has the same

distribution as the original environment ω = (B, Bj : 1 ≤ j ≤ n).

Proof : By (3.11) from Lemma 3.2

rk(t) = log

∫ ∞

t

exp(Yk(t, s) + θ(t − s) + Xk(t, s))ds. (3.16)

Definitions (3.12)–(3.15) together with (3.2) and (3.16) give the identities

r∗k(t) = log

∫ t

−∞
exp(Y ∗

k−1(s, t) − θ(t − s) + B∗
k(s, t)) ds,

Y ∗
k (t) = Y ∗

k−1(t) + r∗k(0) − r∗k(t),

X∗
k (t) = B∗

k(t) + r∗k(0) − r∗k(t).

(3.17)

Theorem 3.3 tells us that {Yn, Xj , 1 ≤ j ≤ n} are independent Brownian motions
on (−∞, t] for any t > 0, hence over all of R. Consequently by (3.12)–(3.13)
processes {Y ∗

0 , B∗
j , 1 ≤ j ≤ n} have the same distribution as {Y0, Bj , 1 ≤ j ≤ n}.

The theorem follows because (3.17) defines the same recursions as (3.1)–(3.2). �

We define the dual quenched measure Q∗
n on non-decreasing cadlag paths x :

R+ → {0, 1, . . . , n} with x(0) = 0 and x(∞) = n. These paths can be represented
by jump times 0 < σ∗

1 < · · · < σ∗
n defined by x(σ∗

j−) = j − 1 < j = x(σ∗
j ). The

dual measure Q∗
n is defined by

EQ∗
n
[
f(σ∗

1 , σ∗
2 , . . . , σ∗

n)
]

=
1

Z∗
n

∫

0<s1<···<sn<∞
f(s1, s2, . . . , sn)

× exp
[
X1(0, s1) + X2(s1, s2)+

· · · + Xn(sn−1, sn) + Yn(0, sn) − θsn

]
ds1,n.

(3.18)

Because of the shifting described in (3.10) we only need the measure Q∗
n instead of a

family indexed also by t. The dual measure is naturally connected with the represen-
tation of Qn,t given in Remark 3.1. The next lemma is proved by a straightforward

change of variables in the integrals. Recall the definition of Ẑθ
n(t) from (3.9).
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Lemma 3.5. Fix t ∈ R and n ∈ N and for each ω define the dual environment ω∗

with T = t. Then Z∗,ω
n = Ẑθ,ω∗

n (t), and

EQ∗,ω
n
[
f(σ∗

1 , σ∗
2 , . . . , σ∗

n)
]

= EQω∗

n,t
[
f(t − σn−1, t − σn−2, . . . , t − σ0)

]
.

Consequently, by Theorem 3.4,

EQ∗
n
[
f(σ∗

1 , σ∗
2 , . . . , σ∗

n)
] d

= EQn,t
[
f(t − σn−1, t − σn−2, . . . , t − σ0)

]
.

3.3. Variance identity.

Theorem 3.6. For θ > 0 and (t, n) ∈ (0,∞) × N

Var[log Zθ
n(t)] = nΨ1(θ) − t + 2Eθ

n,t(σ
+
0 )

= −nΨ1(θ) + t + 2Eθ
n,t(σ

−
0 ).

(3.19)

Remark 3.7. Adding the two equations gives Var[log Zθ
n(t)] = Eθ

n,t|σ0| while sub-

tracting them yields Eθ
n,t(σ0) = t − nΨ1(θ).

Proof of Theorem 3.6: While we keep θ fixed we simplify the notation to Zn(t) =
Zθ

n(t).
The proof begins the same way as the proof of Theorem 3.7 in (Seppäläinen,

2010). (The idea was originally learned from the proof of Theorem 2.1 in (Cator
and Groeneboom, 2006).) Abbreviate the increments with reference to compass
directions:

N = log Zn(t) − log Zn(0), S = log Z0(t) = θt − B(t),

E = log Zn(t) − log Z0(t), W = log Zn(0) =

n∑

j=1

rj(0).

The south and west increments are given by the boundary conditions as indicated
above, while the east and north increments are computed from (3.4). Then

Var
[
log Zn(t)

]
= Var(W + N ) = Var(W) + Var(N ) + 2Cov(W ,N )

= Var(W) + Var(N ) + 2Cov(S + E − N ,N )

= Var(W) − Var(N ) + 2Cov(S,N )

= nΨ1(θ) − t + 2Cov(S,N ).

(3.20)

The third line comes from the independence of E and N while the last equality
came from (3.8) and Theorem 3.3. Substituting N instead of W in the covariance
in the second line of (3.20) leads to the formula

Var
[
log Zn(t)

]
= −nΨ1(θ) + t + 2Cov(E ,W). (3.21)

Equations (3.20) and (3.21) give the two lines of (3.19) once we evaluate the co-
variances. We begin with (3.20).

We need to vary separately the parameters of the boundary conditions on the
x and y axes. So we rename the parameter on the y-axis as λ, and rewrite the
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partition function with boundaries as follows:

Zn(t) =

∫

0<s0<s1···<sn−1<t

exp
[
−B(s0) + θs0

+ B1(s0, s1) + B2(s1, s2) + · · · + Bn(sn−1, t)
]
ds0,n−1

+

∫

−∞<s0<s1···<sn−1<t

1{s0 < 0} exp
[
−B(s0) + λs0

+ B1(s0, s1) + B2(s1, s2) + · · · + Bn(sn−1, t)
]
ds0,n−1.

(3.22)

Next we argue that

E(N|S = x) does not depend on θ. (3.23)

Indeed, if we condition {h(s) = θs − B(s), 0 ≤ s ≤ t} on the event h(t) = x

then this (as a process) has the same distribution as θs − B̃s where B̃s is a BM
conditioned to hit y = θt − x at t. It is known that the latter has the same
distribution as Bs − sBt/t + sy/t which means that the conditional distribution of
{h(s), 0 ≤ s ≤ t} is the same as

θs −
(

Bs −
sBt

t
+

s(θt − x)

t

)
=

s

t
Bt − Bs +

sx

t

which does not depend on θ.
The density of S is fθ(x) = (2πt)−1/2 exp(− 1

2t (x − θt)2). Utilizing (3.23),

∂

∂θ
E(N ) =

∂

∂θ

∫

R

E(N |S = x)fθ(x) dx =

∫

R

E(N |S = x)
∂fθ(x)

∂θ
dx

=

∫

R

E(N |S = x)(x − θt)fθ(x) dx

= E(NS) − E(N )E(S) = Cov(N ,S).

(3.24)

On the other hand, utilizing (3.22),

∂

∂θ
E(N ) = E

[ ∂

∂θ
log Zn(t)

]

= E

[ 1

Zn(t)

∫

0<s0<s1···<sn−1<t

s0 exp
{
−B(s0) + θs0

+ B1(s0, s1) + B2(s1, s2) + · · · + Bn(sn−1, t)
}

ds0,n−1

]

= E(σ+
0 ).

(3.25)

Combining (3.24), (3.24) and (3.25) gives the first line of (3.19).
Proof of the second line of (3.19) proceeds analogously. E(E |W = x) does not de-

pend on λ, and so the analogue of computation (3.24) gives ∂λE(E) = −Cov(E ,W).
Then from (3.22), ∂λE(E) = E(∂λ log Zn(t)) = E(σ01{σ0 < 0}). �

3.4. Comparison lemma. We find it useful here to augment the family Zj,k(s, t)
defined for j ≥ 1 by (2.1) by introducing Z0,k(t) = Z0,k(0, t). These will be de-
fined not exactly consistently with (2.1), but in a manner that gives us inequalities
between ratios of partition functions. For k ∈ N and t ∈ R+ define

Z0,0(t) = e−B(t) (3.26)
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and

Z0,k(t) =

∫

0<s0<···<sk−1<t

exp
[
−B(s0) + B1(s0, s1)

+ B2(s1, s2) + · · · + Bk(sk−1, t)
]
ds0,k−1.

(3.27)

For n ∈ N and events D on the paths we write Zθ
n,t(D) = Zθ

n,tQ
θ
n,t(D) for the

unnormalized quenched measure. It is also convenient to set, for A ⊆ R,

Zθ
0,t(σ0 ∈ A) = 1A∩R+(t) exp[−B(t) + θt]. (3.28)

Lemma 3.8. Let θ > 0. For 0 < s < t and n ∈ Z+

Zθ
n+1,t(σ0 > 0)

Zθ
n,t(σ0 > 0)

≤ Z0,n+1(t)

Z0,n(t)
≤ Zθ

n+1,t(σ0 < 0)

Zθ
n,t(σ0 < 0)

(3.29)

and

Zθ
n,t(σ0 > 0)

Zθ
n,s(σ0 > 0)

≥ Z0,n(t)

Z0,n(s)
≥ Zθ

n,t(σ0 < 0)

Zθ
n,s(σ0 < 0)

. (3.30)

The second inequality of (3.30) makes sense only for n ≥ 1.

Proof : We check the cases that initialize the inductive proofs. For (3.29)

Zθ
1,t(σ0 > 0)

Zθ
0,t(σ0 > 0)

=

∫ t

0
e−B(s)+θs+B1(s,t) ds

e−B(t)+θt
=

∫ t

0

eB(s,t)+θ(s−t)+B1(s,t) ds

≤
∫ t

0

eB(s,t)+B1(s,t) ds =
Z0,1(t)

Z0,0(t)
< ∞ =

Zθ
1,t(σ0 < 0)

Zθ
0,t(σ0 < 0)

.

For the first part of (3.30)

Zθ
0,t(σ0 > 0)

Zθ
0,s(σ0 > 0)

= e−B(s,t)+θ(t−s) > e−B(s,t) =
Z0,0(t)

Z0,0(s)

and for the second part (now for n = 1)

Z0,1(t)

Z0,1(s)
= eB1(s,t) +

∫ t

s e−B(u)+B1(u,t) du
∫ s

0
e−B(u)+B1(u,s) du

> eB1(s,t) =
Zθ

1,t(σ0 < 0)

Zθ
1,s(σ0 < 0)

.

Next the induction steps. We make use of the decomposition (for 0 ≤ s < t)

Zθ
n,t(σ0 ∈ A) = Zθ

n,s(σ0 ∈ A)eBn(s,t) +

∫ t

s

Zθ
n−1,u(σ0 ∈ A)eBn(u,t) du

valid for n ∈ N and for both A = (−∞, 0) and A = (0,∞). For n = 1 convention
(3.28) is used on the right-hand side.
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We begin with the first inequalities in (3.29)–(3.30). Assume the first inequality
of both (3.29) and (3.30) holds for n − 1. We verify first (3.30) for n.

Zθ
n,t(σ0 > 0)

Zθ
n,s(σ0 > 0)

= eBn(s,t) +

∫ t

s

Zθ
n−1,u(σ0 > 0)

Zθ
n,s(σ0 > 0)

eBn(u,t) du

= eBn(s,t) +

∫ t

s

Zθ
n−1,u(σ0 > 0)

Zθ
n−1,s(σ0 > 0)

· Zθ
n−1,s(σ0 > 0)

Zθ
n,s(σ0 > 0)

eBn(u,t) du

≥ eBn(s,t) +

∫ t

s

Z0,n−1(u)

Z0,n−1(s)
· Z0,n−1(s)

Z0,n(s)
eBn(u,t) du

=
Z0,n(t)

Z0,n(s)

and the inequality came from the induction assumption.
Deriving the first inequality of (3.29) for n requires an extra step. First decom-

pose and use (3.30) for n that we just proved:

Zθ
n+1,t(σ0 > 0)

Zθ
n,t(σ0 > 0)

=
Zθ

n+1,s(σ0 > 0)

Zθ
n,t(σ0 > 0)

eBn(s,t) +

∫ t

s

Zθ
n,u(σ0 > 0)

Zθ
n,t(σ0 > 0)

eBn(u,t) du

=
Zθ

n+1,s(σ0 > 0)

Zθ
n,s(σ0 > 0)

· Zθ
n,s(σ0 > 0)

Zθ
n,t(σ0 > 0)

eBn(s,t) +

∫ t

s

Zθ
n,u(σ0 > 0)

Zθ
n,t(σ0 > 0)

eBn(u,t) du

≤ Zθ
n+1,s(σ0 > 0)

Zθ
n,s(σ0 > 0)

· Z0,n(s)

Z0,n(t)
eBn(s,t) +

∫ t

s

Z0,n(u)

Z0,n(t)
eBn(u,t) du

≡
Zθ

n+1,s(σ0 > 0)

Zθ
n,s(σ0 > 0)

a(s, t) +

∫ t

s

a(u, t) du.

The last equality defines the continuous function a(s, t). The same steps applied to
the middle member of (3.29) gives an equality

Z0,n+1(t)

Z0,n(t)
=

Z0,n+1(s)

Z0,n(s)
a(s, t) +

∫ t

s

a(u, t) du

from which

Zθ
n+1,t(σ0 > 0)

Zθ
n,t(σ0 > 0)

− Z0,n+1(t)

Z0,n(t)
≤ a(s, t)

(
Zθ

n+1,s(σ0 > 0)

Zθ
n,s(σ0 > 0)

− Z0,n+1(s)

Z0,n(s)

)
. (3.31)

Each of the three terms on the right-hand side above vanishes as we take s ց 0.
We have proved that the first inequalities in (3.29)–(3.30) hold for n.

To derive the second inequalities in (3.29)–(3.30) for n the induction proofs
work the same way: once (σ0 > 0) has been replaced by (σ0 < 0) all inequalities
in the above calculations have to be reversed. In (3.31) on the right the ratio
Zθ

n+1,s(σ0 < 0)/Zθ
n,s(σ0 < 0) does not vanish as s ց 0 but it stays bounded

a.s. and again a(0+, t) = 0 takes the entire right-hand side to 0. �

4. Upper bound for the variance

The parameter θ ∈ (0,∞) can be considered fixed throughout. The constants
such as C(θ) that depend on θ and appear in all our statements are locally bounded
functions of θ. Sometimes we will suppress the dependence on θ and the constants
in the intermediate estimates may change from line to line. Recall also the key
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assumption (2.9) on t > 0 and n ∈ N, namely that |t − nΨ1(θ)| ≤ An2/3. We
develop the upper bounds so that the effect of the constant A is explicitly present.

Theorem 4.1. Fix 0 < A < ∞. Then there exists a constant C(θ) < ∞ such that,

for all t > 0 and n ≥ 1 that satisfy assumption (2.9),

Var(log Zθ
n(t)) ≤ (9A + C(θ))n2/3. (4.1)

The value 9 in the statement has no particular meaning, except as a constant
independent of θ. As a first step we give a bound on the tails of σ±

0 .

Lemma 4.2. Let t > 0 and n ≥ 1 satisfy (2.9), and fix K > 0. Then we can

fix C = C(θ) < ∞ large enough and s = s(K, θ) > 0 small enough such that, for

3An2/3 ≤ u ≤ Kn, we have the bound

P(Qn,t(σ
±
0 ≥ u) ≥ e−su2/n) ≤ Cn2

u4
En,t(σ

±
0 ) +

Cn2

u3
. (4.2)

Proof : We first consider the proof for σ+. Set λ = θ + bu
n where 0 < b < 1. In

the course of the proof b will be chosen small. Superscripts θ and λ indicate which
parameter is used. We have

Qθ
n,t(σ

+
0 ≥ u) =

1

Zθ
n(t)

∫

−∞<s0<···<sn−1<t

1(s0 ≥ u)

× exp
[
−B(s0) + θs0 + B1(s0, s1) + · · · + Bn(sn−1, t)

]
ds0,n−1

≤ 1

Zθ
n(t)

∫

−∞<s0<···<sn−1<t

1(s0 ≥ u)e(θ−λ)u

× exp
[
−B(s0) + λs0 + B1(s0, s1) + · · · + Bn(sn−1, t)

]
ds0,n−1

≤ Zλ
n(t)

Zθ
n(t)

e(θ−λ)u.

Thus

P(Qθ
n,t(σ

+
0 ≥ u) ≥ e−su2/n) ≤ P

( Zλ
n(t)

Zθ
n(t)

e(θ−λ)u ≥ e−su2/n
)

= P(log(Zλ
n(t)) − log(Zθ

n(t)) ≥ (λ − θ)u − su2/n).

From (3.3) and the distribution e−rk(t) ∼ Gamma(θ,1) from Theorem 3.3

E log(Zθ
n(t)) = −nΨ0(θ) + θt. (4.3)

Recall that X = X − EX denotes a centered random variable. Consequently from
above

P(Qθ
n,t(σ

+
0 ≥ u) ≥ e−su2/n)

≤ P
{
log(Zλ

n(t)) − log(Zθ
n(t)) ≥ n(Ψ0(λ) − Ψ0(θ)) − t(λ − θ) + (λ − θ)u − su2/n

}
.

Given K we can restrict b = b(K, θ) small enough so that |λ − θ| ≤ bK ≤ θ/2 and
then a Taylor expansion gives

|Ψ0(λ) − Ψ0(θ) − (λ − θ)Ψ1(θ)| ≤ C(θ)(λ − θ)2.
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Together with |t − nΨ1(θ)| ≤ An2/3 this leads to

n(Ψ0(λ) − Ψ0(θ) −
t

n
(λ − θ)) + (λ − θ)u − su2/n

≥ −C(θ)b2u2/n − Abun−1/3 + bu2/n − su2/n

≥ bu2

3n

(
1 − 3C(θ)b

)
+

bu

3n1/3
(un−2/3 − 3A) +

bu2

3n
(1 − 3s/b)

≥ C(θ)u2/n.

The last line, with C(θ) > 0, follows by enforcing u ≥ 3An2/3, choosing s = b/3
and then taking b = b(θ) small enough. Put this back above and apply Chebyshev’s
inequality:

P(Qθ
n,t(σ

+
0 ≥ u) ≥ e−su2/n) ≤ P(log(Zλ

n(t)) − log(Zθ
n(t)) ≥ Cu2/n)

≤ C
n2

u4
Var

[
log Zλ

n(t) − log Zθ
n(t)

]

≤ 2C
n2

u4

(
Var[log(Zλ

n(t))] + Var[log(Zθ
n(t))]

)
. (4.4)

Using Lemma 4.3 below together with the definition of λ:

Var(log(Zλ
n(t)) ≤ Var(log(Zθ

n(t)) + n|Ψ1(λ) − Ψ1(θ)|
≤ Var(log(Zθ

n(t)) + C(θ)bu ≤ Var(log(Zθ
n(t)) + C(θ)u.

In the last inequality above we used the restriction b ≤ 1 which was placed on b at
the outset.

Continuing from (4.4),

P(Qθ
n,t(σ

+
0 ≥ u) ≥ e−su2/n) ≤ C

n2

u4
Var(log(Zθ

n(t)) + C
n2

u3
.

Using Theorem 3.6 and once more u ≥ 3An2/3 we get

P(Qθ
n,t(σ

+
0 ≥ u) ≥ e−su2/n) ≤ C

n2

u4
En,t(σ

+
0 ) + CAn8/3u−4 + C

n2

u3

≤ C
n2

u4
En,t(σ

+
0 ) + C

n2

u3

which is exactly what we wanted to prove.
To proof for σ− starts with λ = θ − bu

n with b > 0 small. Using

1(s0 ≤ −u)eθs0 ≤ e−(θ−λ)u1(s0 ≤ −u)eλs0

we get

Qθ
n,t(σ

−
0 ≥ u) ≤ Zλ

n(t)

Zθ
n(t)

e−(θ−λ)u

and the rest of the proof goes the same way. �

Lemma 4.3. For θ, λ > 0,
∣∣Var(log(Zλ

n(t)) − Var(log(Zθ
n(t))

∣∣ ≤ n|Ψ1(λ) − Ψ1(θ)|.
Proof : Assume λ > θ. From Theorem 3.6

Var(log(Zλ
n(t)) − Var(log(Zθ

n(t)) = n(Ψ1(λ) − Ψ1(θ)) + 2
[
Eλ

n,t(σ
+
0 ) − Eθ

n,t(σ
+
0 )
]

= −n(Ψ1(λ) − Ψ1(θ)) + 2
[
Eλ

n,t(σ
−
0 ) − Eθ

n,t(σ
−
0 )
]
.
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From the definition (2.7) of the quenched expectation

∂

∂θ
EQθ

(σ±
0 ) = CovQθ

(σ0, σ
±
0 ).

For any random variable

Cov(X, X±) = E((X+ − X−)X±) − E(X+ − X−)EX±

= ±Var(X±) ± EX+EX−.

Consequently

Eλ
n,t(σ

−
0 ) − Eθ

n,t(σ
−
0 ) ≤ 0 ≤ Eλ

n,t(σ
+
0 ) − Eθ

n,t(σ
+
0 ).

The claim follows. �

Next the tail bound for σ±
0 for larger deviations.

Lemma 4.4. Fix 0 < A < ∞. Let δ > 0. Then there exist c = c(θ, δ) < ∞
and s = s(θ, δ) > 0 such that, for all t > 0 and n ≥ 1 that satisfy (2.9), and all

u ≥ max{δn, 3An2/3},
P(Qn,t(σ

±
0 ≥ u) ≥ e−su) ≤ 2e−cu. (4.5)

Proof : We do the case σ+
0 . The argument for σ−

0 is analogous. Set λ = θ+ν where
ν > 0 is small. Then

P(Qθ
n,t(σ

+
0 ≥ u) ≥ e−su) ≤ P(

Zλ
n(t)

Zθ
n(t)

e(θ−λ)u ≥ e−su)

= P(log(Zλ
n(t)) − log(Zθ

n(t)) ≥ (λ − θ)u − su).

After centering:

P(Qθ
n,t(σ

+
0 ≥ u) ≥ e−su)

≤ P
(
log(Zλ

n(t)) − log(Zθ
n(t)) ≥ n(Ψ0(λ) − Ψ0(θ)) − t(λ − θ) + (λ − θ)u − su

)
.

From a Taylor expansion, u ≥ max{δn, 4An2/3}, and then fixing ν small enough
and s = ν/2,

n(Ψ0(λ) − Ψ0(θ)) − t(λ − θ) + (λ − θ)u − su

≥ −C(θ)ν2n − Aνn2/3 + νu − su

≥ C(δ, θ)u.

From (3.7) and (3.5)

log(Zλ
n(t)) − log(Zθ

n(t)) =

n∑

j=1

rλ
j (t) −

n∑

j=1

rθ
j (t) (4.6)

where, for a fixed t, e−rθ
j (t) are i.i.d. Gamma(θ, 1) variables, and similarly e−rλ

j (t)with
parameter λ. Thus for certain sums S′

n, S′′
n of i.i.d. mean zero variables with an

exponential moment

P(Qθ
n,t(σ

+
0 ≥ u) ≥ e−su) ≤ P(S′

n − S′′
n ≥ Cu)

≤ P(S′
n ≥ Cu/2) + P(S′′

n < −Cu/2) ≤e−cu.

The last inequality follows from u ≥ δn and standard large deviation theory. �
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Now we combine the two deviation estimates into a moment bound.

Lemma 4.5. Fix 0 < A < ∞. Then there exists C(θ) < ∞ such that, for all t > 0
and n ≥ 1 that satisfy (2.9),

En,t(σ
±
0 ) ≤ (4A + C(θ))n2/3. (4.7)

Proof : We do the computation for σ+
0 . It is identical for σ−

0 . Let r ≥ 1, to be
chosen at the end, and B = r ∨ (3A). Begin with

En,t(σ
+
0 ) ≤ Bn2/3 +

∫ n∨(Bn2/3)

Bn2/3

P (σ+
0 ≥ u) du +

∫ ∞

n∨(Bn2/3)

P (σ+
0 ≥ u) du. (4.8)

The last integral in (4.8) is bounded by a constant that depends on θ, uniformly
over r > 0, A > 0 and n ≥ 1, as can be seen by an application of Lemma 4.4 with
δ = 1. The middle integral is bounded as follows, utilizing Lemma 4.2 with K = 1.

∫ n∨(Bn2/3)

Bn2/3

P (σ+
0 ≥ u) du

≤
∫ n∨(Bn2/3)

Bn2/3

{
e−su2/n + P(Qn,t(σ

+
0 ≥ u) ≥ e−su2/n)

}
du

≤
∫ ∞

Bn2/3

(
C(θ)n2

u4
En,t(σ

+
0 ) +

C(θ)n2

u3

)
du + C(θ)

≤ C(θ)

B3
En,t(σ

+
0 ) +

C(θ)

B2
n2/3 + C(θ).

Combine the estimates, noting that B ≥ 1 and n ≥ 1, to

En,t(σ
+
0 ) ≤ (B + C(θ))n2/3 +

C(θ)

r3
En,t(σ

+
0 ).

Choose r = (4C(θ))1/3. Rearranging gives the conclusion. �

Theorem 4.1 is now proved by (4.7), the variance identity (3.19) and assumption
(2.9). For future reference let us also state tail bounds on σ±

0 that we obtain by
combining (4.7) with Lemmas 4.2 and 4.4.

Proposition 4.6. Under assumption (2.9) we have these tail bounds, for finite

positive constants C, c and s that depend on θ, and for b > 0:

P(Qn,t(σ0
± ≥ bn2/3) ≥ e−sb2n1/3

) ≤ Cb−3 for 3A ≤ b ≤ n1/3, (4.9)

P(Qn,t(σ0
± ≥ bn2/3) ≥ e−sbn2/3

) ≤ 2e−cbn2/3

for b ≥ n1/3 ∨ (3A) (4.10)

and

Pn,t(σ
±
0 ≥ bn2/3) ≤ Cb−3 for b ≥ 3A. (4.11)

From (4.11) we get the moment bound

En,t( |σ0|p ) ≤ (3pAp + C(θ))n2p/3 for 1 ≤ p < 3. (4.12)
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5. Lower bound on the variance

Theorem 5.1. Fix 0 < A < ∞. Then there exists a constant C1 = C1(A, θ) such

that, for t > 0 and n ≥ 1 that satisfy (2.9),

Var(log Zθ
n(t)) ≥ C1n

2/3. (5.1)

The estimate that gives the theorem is in the next proposition.

Proposition 5.2. Assume that (2.9) holds with a constant A ∈ R+. Then there

exist finite positive θ-dependent constants C(θ), c(θ), D(θ) so that, if 0 < δ ≤ 1 and

K ≥ 1 satisfy

D(θ)(A + 1)δ1/2 ≤ K ≤ c(θ)(A + 1)−4δ−1/2,

then

lim
n→∞

P
(
Qθ

n,t(0 < σ0 ≤ δn2/3) > e−Kn1/3
√

δ
)
≤ C(θ)(e−K2/16 + K3/4δ3/8).

Remark 5.3. As a corollary we get the following more general statement. Fix x ∈ R

and assume that

D(θ)(A + |x| + 1)δ1/2 ≤ K ≤ c(θ)(A + |x| + 1)−4δ−1/2. (5.2)

Then

lim
n→∞

P(Qθ
n,t(xn2/3 < σ0 ≤ (x + δ)n2/3) > e−Kn1/3

√
δ)

≤ C(e−K2/16 + K3/4δ3/8).
(5.3)

This follows because by the translation invariance (3.10)

Qθ
n,t(xn2/3 < σ0 ≤ (δ + x)n2/3)

d
= Qθ

n,t−xn2/3(0 < σ0 ≤ δn2/3)

and |t − xn2/3 − nΨ1(θ)| ≤ (A + |x|)n2/3. In particular, with x = −δ, we get
the matching estimate for σ−

0 , and we can combine the estimates for σ±
0 : under

assumptions (2.9) and (5.2) with x = −δ,

lim
n→∞

P
(
Qθ

n,t(|σ0| ≤ δn2/3) > 2e−Kn1/3
√

δ
)
≤ C(θ)(e−K2/16 + K3/4δ3/8). (5.4)

Before proving Proposition 5.2 let us observe how Theorem 5.1 is proved. Esti-
mate (5.4) gives the annealed limit

lim
δց0

lim
n→∞

P θ
n,t(|σ0| ≤ δn2/3) = 0.

Then by the variance identity (3.19)

Var(log Zθ
n(t)) = Eθ

n,t

(
|σ0|
)
≥ δn2/3P θ

n,t(|σ0| ≥ δn2/3)

and Theorem 5.1 follows.
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Proof of Proposition 5.2: Set u = δn2/3, υ(δ) = K
√

δ and begin by writing

P(Qθ
n,t(0 < σ0 ≤ δn2/3) > e−n1/3υ(δ))

= P

(
Qθ(σ0 > u or σ0 < 0)

Qθ(0 < σ0 ≤ u)
< en1/3υ(δ) − 1

)

= P

(
Zθ

n,t(σ0 > u or σ0 < 0)

Zθ
n,t(0 < σ0 ≤ u)

< en1/3υ(δ) − 1

)

= P

(
Zθ

n,t(σ0 > u or σ0 < 0)

Zθ
n,t(0 < σ0 ≤ u)

· Z1,n(0, t)

Z1,n(0, t)
< en1/3υ(δ) − 1

)
.

Split the last probability to get

P(Qθ
n,t(0 < σ0 ≤ δn2/3) > e−n1/3υ(δ))

≤ P

(
Zθ

n,t(σ0 > u or σ0 < 0)

Z1,n(0, t)
< e2n1/3υ(δ)

)

+ P

(
Zθ

n,t(0 < σ0 ≤ u)

Z1,n(0, t)
> en1/3υ(δ) 1

1 − e−n1/3υ(δ)

)

≤ P

(
Zθ

n,t(σ0 > u)

Z1,n(0, t)
< e2n1/3υ(δ)

)
(5.5)

+ P

(
Zθ

n,t(0 < σ0 ≤ u)

Z1,n(0, t)
> en1/3υ(δ)

)
. (5.6)

We bound probabilities in (5.5) and (5.6) separately.
The term (5.5).

Zθ
n,t(σ0 > u)

Z1,n(0, t)
=

∫ t

u

exp(−B(s) + θs)
Z1,n(s, t)

Z1,n(0, t)
ds.

Construct a new environment ω̃ with

B̃(s) = −(Bn(t) − Bn(t − s)), B̃i(s) = Bn−i(t) − Bn−i(t − s), 1 ≤ i ≤ n − 1,

and take a new parameter λ = θ +a(δ)n−1/3 where a(δ) = K−1/4δ−1/8. Quantities
that use environment ω̃ are marked with a tilde. From the definitions one checks
that

Z1,n(s, t) = Z̃0,n−1(0, t − s) for any t > 0 and s ∈ (−∞, t). (5.7)
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Use (3.30) for the new system to get

Z1,n(s, t)

Z1,n(0, t)
=

Z̃0,n−1(0, t − s)

Z̃0,n−1(0, t)
≥ Z̃λ

n−1,t−s(σ0 > 0)

Z̃λ
n−1,t(σ0 > 0)

=
Q̃λ

n−1,t−s(σ0 > 0)Z̃λ
n−1,t−s

Q̃λ
n−1,t(σ0 > 0)Z̃λ

n−1,t

≥ Q̃λ
n−1,t−s(σ0 > 0)

Z̃λ
n−1,t−s

Z̃λ
n−1,t

= Q̃λ
n−1,t−s(σ0 > 0) exp(Ỹn−1(t − s, t) − λs).

Thus, denoting the probability in (5.5) by p1,

p1 = P

(
Zθ

n,t(σ0 > u)

Z1,n(0, t)
< e2n1/3υ(δ)

)

≤ P

(∫ t

u

e−B(s)+Ỹn−1(t−s,t)+(θ−λ)s Q̃λ
n−1,t−s(σ0 > 0) ds < e2n1/3υ(δ)

)

= P

(∫ t

u

e−B(s)+Ỹ ∗
n−1(t−s,t)+(θ−λ)s Q̃λ,∗

n−1(t − s − σ∗
n−1 > 0) ds < e2n1/3υ(δ)

)
.

On the last line above we applied the ∗ transformation to the ω̃ system and Lemma
3.5 to replace the measure Q̃λ,ω̃∗

with the dual measure Q̃λ,∗.
Set

ū = nΨ1(θ) − (n − 1)Ψ1(λ).

Given any δ and K, there exists a constant c0(θ) > 0 such that ū/2 ≥ c0(θ)a(δ)n2/3

for large enough n. Furthermore, from the hypothesis on δ and K it follows that
ū/2 ≥ u and ū/2 ≥ 3An2/3. Restrict the integration inside the probability and
decompose again:

p1 ≤ P

(∫ ū/2

u

e−B(s)+Ỹ ∗
n−1(t−s,t)+(θ−λ)s Q̃λ,∗

n−1(t − σ∗
n−1 > ū/2) ds < e2n1/3υ(δ)

)

≤ P

(
Q̃λ,∗

n−1(t − σ∗
n−1 > ū/2) ≤ 1/2

)
(5.8)

+ P

(∫ ū/2

u

exp(−B(s) + Ỹ ∗
n−1(t − s, t) + (θ − λ)s)ds < 2e2n1/3υ(δ)

)
. (5.9)

For probability (5.8) switch to complements, apply Lemma 3.5 again, and then the
upper bound (4.9):

P

(
Q̃λ,∗

n−1(t − σ∗
n−1 > ū/2) ≤ 1/2

)

= P

(
Q̃λ,∗

n−1(t − ū − σ∗
n−1 ≤ −ū/2) > 1/2

)

= P

(
Q̃λ

n−1,t−ū(σ0 ≤ −ū/2) > 1/2
)

≤ C(θ)a(δ)−3 = C(θ)K3/4δ3/8.

(5.10)

On the last line above assumption (2.9) continues to be valid with the same constant
A because |t − ū − (n − 1)Ψ1(λ)| = |t − nΨ1(θ)| ≤ An2/3. Property ū/2 ≥ 3An2/3

is the assumption needed for (4.9).
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Next we estimate probability (5.9). Process s 7→ Ỹ ∗
n−1(t − s, t) is a standard

Brownian motion, and independent of B because Ỹ ∗ was constructed from the new
environment ω̃. Define another standard Brownian motion

B†(s) = 2−1/2n−1/3
(
−B(n2/3s) + Ỹ ∗

n−1(t − n2/3s, t)
)
.

Then probability (5.9) equals

P

(∫ ū/2

u

exp(
√

2n1/3B†(n−2/3s) + (θ − λ)s) ds < 2e2n1/3υ(δ)

)

≤ P

(
n2/3

∫ c0(θ)a(δ)

δ

exp(
√

2n1/3B†(s) − a(δ)n1/3s) ds < 2e2n1/3υ(δ)

)

= P

(
n−1/3 log

∫ c0(θ)a(δ)

δ

e
√

2n1/3B†(s)−a(δ)n1/3s ds ≤ 2υ(δ) +
log(2n−2/3)

n1/3

)

As n → ∞ the probability on the last line above converges to

P

(
sup

δ≤s≤c0(θ)a(δ)

(
√

2B†(s) − a(δ)s) ≤ 2υ(δ)

)
.

Introduce one more Brownian motion B(s) = B†(δ + s) − B†(δ). Abbreviate tem-

porarily τ = a(δ)2(c0(θ)a(δ) − δ)/
√

2 > 1 where the inequality is a consequence of
the assumption on δ and K. Then the probability above is

≤ P
(√

2B†(δ) < −υ(δ)
)

+ P

(
sup

0≤s≤c0(θ)a(δ)−δ

(
√

2B(s) − a(δ)s) ≤ 3υ(δ) + δa(δ)

)

≤ e−
1
4υ(δ)2δ−1

+ P

(
sup

0≤s≤τ
(B(s) − s) ≤ 2−1/2a(δ)(3υ(δ) + δa(δ))

)

≤ e−
1
4υ(δ)2δ−1

+ P

(
sup

0≤s≤1
(B(s) − s) ≤ 2−1/2a(δ)(3υ(δ) + δa(δ))

)

≤ e−
1
4υ(δ)2δ−1

+ Ca(δ)(3υ(δ) + δa(δ)).

The last inequality comes because sup0≤s≤1(B(s)−s) is a.s. positive with a bounded
density function. Including the estimate from (5.10) we get

lim
n→∞

(5.5) ≤ C(θ)(e−K2/4 + K3/4δ3/8 + K−1/2δ3/4)

≤ C(θ)(e−K2/4 + K3/4δ3/8).
(5.11)

In the last inequality we used δ ≤ 1 ≤ K.
The term (5.6).

For probability (5.6) we separate the argument into a lemma because the same
estimate will be needed again, though with different parameters.

Lemma 5.4. Assume (2.9) with the constant A and let a, b, κ > 0. Then there

exist finite, positive constants C(θ), C1(θ) and n0(a, b, κ, θ) such that, if b/a ≥
C1(θ)(A + 1), then for n ≥ n0(a, b, κ, θ)

P

(
Zθ

n,t(0 < σ±
0 ≤ an2/3)

Z1,n(0, t)
≥ κen1/3b

)
≤ C(θ)

(
a3b−3 + exp(−b2a−1/16)

)
.
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Before proving the lemma let us use it to conclude the proof of Proposition 5.2.
In Lemma 5.4 take κ = 1, a = δ and b = K

√
δ. Then for large enough n,

probability (5.6) ≤ C(θ)(δ3/2K−3 + e−K2/16). (5.12)

Combine (5.11) and (5.12) with δ ≤ 1 ≤ K, and we have

lim
n→∞

P(Qθ
n,t(0 < σ0 ≤ δn2/3) > e−n1/3υ(δ)) ≤ C(θ)(e−K2/16 + K3/4δ3/8)

and the proposition is proved. �

Proof of Lemma 5.4: We do the case of σ+
0 in full detail. Abbreviate u = an2/3.

Introduce the new environment ω̃ as before, and a new parameter λ = θ − rn−1/3

with r = b/(4a). We must restrict n large enough so that for example rn−1/3 < θ/2
so that λ is a legitimate parameter.

Begin with (5.7) and then apply comparison (3.30):

Z1,n(s, t)

Z1,n(0, t)
=

Z̃0,n−1(0, t − s)

Z̃0,n−1(0, t)
≤

Z̃λ
n−1,t−s(σ0 < 0)

Z̃λ
n−1,t(σ0 < 0)

=
Z̃λ

n−1,t−s

Z̃λ
n−1,t

·
Q̃λ

n−1,t−s(σ0 < 0)

Q̃λ
n−1,t(σ0 < 0)

≤ exp
(
Ỹn−1(t − s, t) − λs

)
· 1

Q̃λ
n−1,t(σ0 < 0)

.

Substitute the above bound in the probability that is to be bounded:

P

(
Zθ

n,t(0 < σ0 ≤ u)

Z1,n(0, t)
≥ κen1/3b

)

= P

(∫ u

0

exp(−B(s) + θs)
Z1,n(s, t)

Z1,n(0, t)
ds ≥ κen1/3b

)

≤ P

(∫ u

0

exp(−B(s) + Ỹn−1(t − s, t) + (θ − λ)s)

Q̃λ
n−1,t(σ0 < 0)

ds ≥ κen1/3b

)

≤ P

(
Q̃λ

n−1,t(σ0 < 0) ≤ 1/2
)

(5.13)

+ P

(∫ u

0

exp(−B(s) + Ỹn−1(t − s, t) + (θ − λ)s) ds ≥ κ

2
en1/3b

)
. (5.14)

To treat probability (5.13) set ū = (n−1)Ψ1(λ)−nΨ1(θ). Ψ1 is positive, convex
and strictly decreasing, so one can check that ū ≥ 1

4 |Ψ′
1(θ)|rn2/3 for all n ≥ 1

provided C1(θ) in the hypothesis is large enough. Use the shift invariance property
of Q described in Remark 3.1 and the upper bound (4.9):

P(Q̃λ
n−1,t(σ0 < 0) < 1/2) = P(Q̃λ

n−1,t(σ0 > 0) ≥ 1/2)

= P(Q̃λ
n−1,t+ū(σ0 > ū) ≥ 1/2) ≤ C(θ)r−3 ≤ C(θ)(a/b)3.

(5.15)

The choice of ū makes (2.9) valid again with the same A, and a large enough C1(θ)
guarantees that ū ≥ 3An2/3 so that (4.9) can be applied.
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For probability (5.14), after rescaling the integral and introducing a new Brow-
nian motion,

(5.14) ≤ P

(
n2/3

∫ a

0

exp(n1/3(
√

2B†(s) + rs))ds >
κ

2
en1/3b

)

= P

(
n−1/3 log

∫ a

0

exp(n1/3(
√

2B†(s) + rs))ds > b + n−1/3 log(κn−2/3/2)

)

≤ P

(
sup

0≤s≤a
(
√

2B†(s) + rs) ≥ 3
4b

)
.

In the last inequality we took n large enough so that n−1/3 log(κn−2/3/2) < b/4.

Via sup0≤s≤a B†(s)
d
= a1/2|B†(1)| bound the last probability by

P

(
sup

0≤s≤a

√
2B†(s) ≥ 3

4b − ra

)
≤ C exp

(
− 1

4a
( 3

4b − ra)2
)

= C exp

(
− b2

16a

)
.

Combining estimate (5.15) with above gives the conclusion for σ+
0 .

The case of σ−
0 goes similarly, with small alterations. Now λ = θ + rn−1/3.

Utilizing (5.7) and comparison (3.30) the ratio is developed as follows:

Zθ
n,t(−u ≤ σ0 < 0)

Z1,n(0, t)
=

∫ 0

−u

exp(−B(s) + θs)
Z1,n(s, t)

Z1,n(0, t)
ds

≤
∫ 0

−u

exp(−B(s) − Ỹn−1(t, t − s) − (θ − λ)s)

Q̃λ
n−1,t(σ0 > 0)

ds.

The rest follows along the same lines as above. With this we consider Lemma 5.4
proved. �

6. Fluctuations of the path under boundary conditions

Theorem 6.1. Assume t > 0 and n ≥ 1 satisfy (2.9) for a fixed A < ∞, let

0 < γ < 1 and assume b ≥ 3(A + 1). Then for n ≥ (1 − γ)−1

P (|σ⌊γn⌋ − γt| > bn2/3) ≤ C(θ)b−3. (6.1)

Also, for any 0 < γ < 1, ε > 0 there exists δ > 0 with

lim
n→∞

P (|σ⌊γn⌋ − γt| ≤ δn2/3) ≤ ε. (6.2)

Proof : For the first statement it is enough to prove that

Qn,t(σk − v > u)
d
= Qn−k,t−v(σ0 > u). (6.3)

Indeed, from this identity we get

Pn,t(|σ⌊γn⌋ − γt| > bn2/3) = Pn−⌊γn⌋,(1−γ)t(|σ0| > bn2/3) ≤ C(θ)b−3 (6.4)

where the last inequality comes from applying (4.11). This is legitimate because

|(1 − γ)t − (n − ⌊γn⌋)Ψ1(θ)| ≤ (A + 1)n2/3.

Condition n ≥ (1 − γ)−1 ensures that n − ⌊γn⌋ ≥ 1.
By Lemma 3.5, to prove (6.3) it is enough to show that the distribution of

(σ∗
1 , . . . , σ∗

n−1) is the same under Q∗
n and Q∗

n−1. For this we check that integrating
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out σ∗
n from the density function of Q∗

n results in the density of Q∗
n−1. In the next

calculation use (3.16) and (3.2).
∫ ∞

sn−1

1

Z∗
n

exp [X1(0, s1) + X2(s1, s2) + · · · + Xn(sn−1, sn) + Yn(0, sn) − θsn] dsn

=
1

Z∗
n

exp [X1(0, s1) + · · · + Xn−1(sn−2, sn−1) + Yn(0, sn−1) − θsn−1]

×
∫ ∞

sn−1

exp [Xn(sn−1, sn) + Yn(sn−1, sn) − θ(sn − sn−1)] dsn

=
1

Z∗
n

exp [X1(0, s1) + · · · + Xn−1(sn−2, sn−1) + Yn(0, sn−1) − θsn−1] e
rn(sn−1)

=
ern(0)

Z∗
n

exp [X1(0, s1) + · · · + Xn−1(sn−2, sn−1) + Yn−1(0, sn−1) − θsn−1]

which is exactly the density of Q∗
n−1 and also shows that Z∗

n = Z∗
n−1e

rn(0).
To prove (6.2), use (6.3) to write

Qn,t(|σ⌊γn⌋ − γt| ≤ δn2/3)
d
= Qn−⌊γn⌋,(1−γ)t(|σ0| ≤ δn2/3)

and apply Proposition 5.2. �

7. Upper bounds without boundary conditions

Theorem 7.1. Let τ > 0 and pick θ so that Ψ1(θ) = τ . Then for n ≥ n0(τ) and

b ≥ b0(τ) we have

P(| log Z1,n(0, nτ) − n(Ψ1(θ)θ − Ψ0(θ))| ≥ bn1/3) ≤ C(τ)b−3/2. (7.1)

Proof : The choice of θ gives E(log Zθ
n,nτ ) = n(Ψ1(θ)θ −Ψ0(θ)), so by Theorem 4.1

we only need to prove the bound

P(| log Z1,n(0, nτ) − log Zθ
n,nτ | ≥ bn1/3) ≤ Cb−3/2. (7.2)

Abbreviate t = nτ . By (3.4)

Zθ
n,t ≥ er1(0)Z1,n(0, t). (7.3)

This gives

P

(
log Zθ

n,t − log Z1,n(0, t) ≤ −bn1/3
)
≤ P

(
er1(0) ≤ e−bn1/3

)
≤ Ce−bn1/3

,

the last inequality follows from er1(0) ∼ Gamma(θ, 1)−1 which has bounded density
near 0.

To get the opposite bound set u =
√

bn2/3 and write

P

(
Zθ

n,t

Z1,n(0, t)
≥ ebn1/3

)
= P

(
Zθ

n,t(|σ0| ≤ u)

Z1,n(0, t)Qθ
n,t(|σ0| ≤ u)

≥ ebn1/3

)

≤ P

(
Zθ

n,t(|σ0| ≤ u)

Z1,n(0, t)
≥ 1

2
ebn1/3

)
+ P

(
Qθ

n,t(|σ0| ≤ u) ≤ 1/2
)

≤ C(θ)b−3/2.

(7.4)
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To get the last inequality, apply Lemma 5.4 with a =
√

b to the first probability,
and the upper bound (4.9) to the second probability, and take both n and b large
enough. �

Theorem 1.2 is a restatement of Theorem 7.1. The next theorem proves Theorem
2.1.

Theorem 7.2. Assume (2.9) holds, and 0 < γ < 1. Then for large enough n and

b we have

P(1,n),(0,t)

(
|σ⌊nγ⌋ − γt| > bn2/3

)
≤ C(θ)b−3. (7.5)

Proof : Let ℓ = ⌊nγ⌋, t′ = γt and u = bn2/3. By the definitions and (7.3)

Q(1,n),(0,t) (|σℓ − t′| > u) =
1

Z1,n(0, t)

∫

|s−t′|>u

Z1,ℓ(0, s)Zℓ+1,n(s, t) ds

≤ e−r1(0)

Z1,n(0, t)

∫

|s−t′|>u

Zθ
ℓ,s Zℓ+1,n(s, t) ds =

e−r1(0)Zθ
n,t

Z1,n(0, t)
Qn,t (|σℓ − t′| > u) .

Consider h ∈ (b−3, 1).

P
(
Q(1,n),(0,t) (|σℓ − t′| > u) > h

)
≤ P(er1(0) ≤ b−3) + P

[
Zθ

n,t

Z1,n(0, t)
≥ ern1/3

]

+P

[
Qn,t (|σℓ − t′| > u) > e−rn1/3

hb−3
]

where we set r = sb2/(3(1 − γ)) with s from Proposition 4.6. The first term is
bounded by Cb−3 as er1(0) has bounded density near zero. The second term is
bounded by Cr−3/2 ≤ Cb−3 by (7.4). Finally, (6.3) and Lemma 4.2 give, for large
enough n and b and uniformly for h ∈ (b−3, 1),

P

[
Qn,t (|σℓ − t′| > u) > e−rn1/3

hb−3
]
≤ P

[
Qn,t (|σℓ − t′| > u) > e−2rn1/3

]

= P

[
Qn−ℓ,t−t′(|σ0| > u) > e−su2/(n−ℓ)

]
≤ Cb−3.

Collecting the estimates

P
[
Q(1,n),(0,t) (|σℓ − t′| > u) > h

]
≤ Cb−3

and from this

P(1,n),(0,t)

(
|σ⌊nγ⌋ − γt| > bn2/3

)

≤ b−3 +

∫ 1

b−3

P
[
Q(1,n),(0,t) (|σℓ − t′| > u) > h

]
dh ≤ Cb−3.

This completes the proof of the theorem. �
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M. Balázs, J. Quastel and T. Seppäläinen. Scaling exponent for the Hopf-
Cole solution of KPZ/stochastic Burgers. ArXiv Mathematics e-prints (2009).
http://arxiv.org/abs/0909.4816.

Yu. Baryshnikov. GUEs and queues. Probab. Theory Related Fields 119 (2), 256–
274 (2001). MR1818248.

E. Cator and P. Groeneboom. Second class particles and cube root asymptotics for
Hammersley’s process. Ann. Probab. 34 (4), 1273–1295 (2006). MR2257647.

F. Comets and N. Yoshida. Brownian directed polymers in random environment.
Comm. Math. Phys. 254 (2), 257–287 (2005). MR2257647.

D. Dufresne. An affine property of the reciprocal Asian option process. Osaka J.

Math. 38 (2), 379–381 (2001). MR1833627.
P. L. Ferrari and H. Spohn. Scaling limit for the space-time covariance of the

stationary totally asymmetric simple exclusion process. Comm. Math. Phys.

265 (1), 1–46 (2006). MR2217296.
J. Gravner, C. A. Tracy and H. Widom. Limit theorems for height fluctuations in

a class of discrete space and time growth models. J. Statist. Phys. 102 (5-6),
1085–1132 (2001). MR1830441.

K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys.

209 (2), 437–476 (2000a). MR1737991.
K. Johansson. Transversal fluctuations for increasing subsequences on the plane.

Probab. Theory Related Fields 116 (4), 445–456 (2000b). MR1757595.
C. Licea, C. M. Newman and M. S. T. Piza. Superdiffusivity in first-passage per-

colation. Probab. Theory Related Fields 106 (4), 559–591 (1996). MR1421992.
O. Mejane. Upper bound of a volume exponent for directed polymers in a random
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