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I knew I should have taken that left turn

at Albuquerque

Gady Kozma and Ariel Yadin

Abstract. We study the Laplacian-∞ path as an extreme case of the Laplacian-α
random walk. Although, in the finite α case, there is reason to believe that the
process converges to SLEκ, with κ = 6/(2α + 1), we show that this is not the case
when α = ∞. In fact, the scaling limit depends heavily on the lattice structure,
and is not conformal (or even rotational) invariant.

1. Introduction

In recent years, much study has been devoted to the phenomena of conformally
invariant scaling limits of processes in Z2, the two-dimensional Euclidean lattice.
The invention of SLE, Schramm (2000), and subsequent development, have lead to
many new results regarding such limits.

The first process considered by Schramm was loop-erased random walk, or
LERW. This is a process in which one considers a random walk (on some graph)
and then erases the loops in the path of that walk, obtaining a self-avoiding path.
LERW was first defined in Lawler (1980). In Lawler et al. (2004), Lawler, Schramm
and Werner proved that the scaling limit of LERW on Z2 is SLE2.

LERW is related to another process, the so called Laplacian-α random walk,
defined in Lyklema et al. (1986). In fact, LERW and Laplacian-1 random walk are
the same process, Lawler (1987). For completeness, let us define the Laplacian-α
random walk.

Let α ∈ R be some real parameter. Let G = (V, E) be a graph, and let w be a
vertex (the target). Let S ⊂ V be a set not containing w. Let fw,S;G : V → [0, 1]
be the function defined by setting fw,S;G(x) to be the probability that a random
walk on G started at x hits w before S. fw,S;G is 1 at w, 0 on S and harmonic in
G\(S∪{w}), and if the graph G is finite and connected, then it is the unique function
satisfying these three conditions. Hence fw,S;G is usually called the solution to the
Dirichlet problem in G with boundary conditions 1 on w and 0 on S.

Definition 1.1 (Laplacian-α random walk). Let G be a graph. Let s 6= w be
vertices of G. The Laplacian-α random walk on G, starting at s with target w, is
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the process (γt)t≥0 such that γ0 = s, and such that for any t > 0 the distribution
of γt given γ0, γ1, . . . , γt−1 is

P[γt = x | γ0, γ1, . . . , γt−1] = 1{x∼γt−1} ·
fα(x)

∑

y∼γt−1
fα(y)

,

where f = fw,γ[0,t−1];G is the solution to the Dirichlet problem in G with boundary
conditions 1 on w and 0 on γ[0, t − 1] = {γ0, γ1, . . . , γt−1} and where x ∼ y means
that x and y are neighbors in the graph G. The process terminates when first
hitting w. Here and below we use the convention that 0α = 0 even for α ≤ 0.

As already remarked, the case α = 1 is equivalent to LERW in any graph, and
therefore in two dimensional lattices has SLE2 as its scaling limit. Another case
which is understood is the case α = 0 which is simply a random walk which chooses,
at each step, equally among the possibilities which do not cause it to be trapped by
its own past. Examine this process on the hexagonal (or honeycomb) lattice. This
is a lattice with degree 3 so the walker has at most 2 possiblities at each step. A
reader with some patience will be able to resolve some topological difficulties and
convince herself that this process is exactly equivalent to an exploration of critical
percolation on the faces of the hexagonal lattice (say with black-white boundary
conditions and the edges between boundary vertices unavailable to the Laplacian
random walk)1. This has SLE6 as its scaling limit, see Smirnov (2001); Werner
(2009),

Lawler (2006) gives an argument that leads one to expect that the scaling limit
of the Laplacian-α random walk on Z

2 should be SLEκ, for κ = 6
2α+1 , for the range

of parameters α > −1/2. In a public talk about this heuristic argument given in
Oberwolfach in 2005 (which GK attended) Lawler stated (paraphrasing) that the
argument can be trusted less and less as α increases. Therefore it seems natural to
stress it as far as possible by setting α = ∞. Let us define the process formally.

Definition 1.2 (Laplacian-∞ path). Let G be a graph. Let s 6= w be vertices of
G. The Laplacian-∞ path on G, starting at s with target w, is the path (γt)t≥0

such that γ0 = s, and such that for any t > 0, given γ0, γ1, . . . , γt−1, we set γt to
be the vertex x ∼ γt−1 that maximizes fw,γ[0,t−1];G(x) over all vertices adjacent to
γt−1. If there is more than one maximum adjacent to γt−1, one is chosen uniformly
among all maxima. The path terminates when first hitting w.

Note that except for the rule in the case of multiple maxima, the Laplacian-∞
path is not random.

The conjecture that the Laplacian-α random walk converges to SLEκ for κ =
6

2α+1 naturally leads one to ask whether this also holds for α = ∞; that is, does

the Laplacian-∞ path on δZ2 converge to the (non-random) path SLE0, as δ tends
to 0? Specifically, if this is true, the conformal invariance of SLE0 hints that this
should hold regardless of the lattice one starts with, or at least for any rotated
version of Z2.

We will show that, perhaps surprisingly, this is not the case. In fact, the process
on Z2 can be described almost completely. Without further ado let us do so

1To the best of our knowledge this was first noted in Lawler (2006), in the last paragraph of
§2.
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Theorem 1.3. There exists a universal constant C such that for any (a, b) ∈ Z2

with a > |b| ≥ C the following holds. The Laplacian-∞ path starting at (0, 0) with
target (a, b) has γt = (t, 0) for all t with probability 1.

If a = b ≥ C then γt = (t, 0) with probability 1/2 and γt = (0, t) with probability
1/2.

In other words (and using the symmetries of the problem), the walker does the
first step in the correct direction but then continues forward, missing the target
(unless the target is extremely close to the axis which is the path of the walker)
and goes on to infinity, never “turning left”. If the target is on a diagonal the
walker chooses among the two possible first steps equally. Comparing to SLE0,
which is a deterministic (conformal image of a) straight line from the start to the
target, we see that the process is indeed deterministic, and is indeed a straight line,
but is not (necessarily) aimed at the target, is not rotationally invariant and is not
independent of the lattice — rotated versions of Z2 give rise to different scaling
limits.

To explain the reason for this behavior in a single sentence, one may say that
the pressure of the past of the process outweighs the pull of the target. For those
interested in the proof, let us give a rough description of the ideas involved by
applying them to prove the following lemma.

Lemma. Let t > 2, and let x ≥ 1. Let py be the probability that a random walk
starting from some y ∈ Z2 avoids the interval [(−x, 0), (0, 0)] up to time t. Then

p(1,0) > (1 + c)p(0,1)

for some absolute constant c > 0.

Proof sketch: Couple two walkers starting from these two points so that their paths
are a reflection through the diagonal {(x, x) : x ∈ Z} until they first hit, and then
they move together. This shows that p(1,0) ≥ p(0,1). Further, since it is possible for
the walker starting from (0, 1), in 2 steps, to hit (−1, 0) without the other walker
hitting the forbidden interval, we see that the difference p(1,0)−p(0,1) is of the same
order of magnitude as each of them. �

1.1. Generalizations and speculations. Although we use a planar argument, some
simple adaptations of our methods should work also for higher dimensions; i.e. for
Laplacian-∞ paths on Zd (instead of reflecting through a diagonal, one needs to
reflect through a hyperplane orthgonal to a vector of the form e1±ei where ei is the
ith standard basis vector). Also, slight variations on the methods used can produce
a similar result for the Laplacian-∞ path on the triangular lattice.

There is some awkwardness in our comparison to SLE since we prove our results
on the whole plane, where SLE is not well defined. To rectify this one might
examine our process in a large domain D , directed at one point w on its boundary
(i.e. solve the Dirichlet problem with boundary conditions 0 on the path γ and on
∂D \ w and 1 on w). This process may be readily compared to (time reversed)
radial SLE0. While we cannot analyze this process until the time it hits w, our
methods do show that the process is a straight line along one of the axes until
almost hitting the boundary of D ; this process is very far from radial SLE0 which
should be the conformal image of a straight line from 0 to w, that is, a smooth
path but not necessarily a straight line, and definitely not necessarily aligned with
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Figure 1.1. Laplacian-∞ on a 600 × 600 torus.

one of the axes. Another natural variation is starting from the boundary namely
letting s ∈ ∂D and solving the Dirichlet problem with 0 on γ ∪ ∂D and 1 on some
w ∈ D . Analyzing this process using our methods requires some more assumptions
on D but it does work, for example, for D being a square and s not too close to
one of the corners. One gets that the path is a straight line perpendicular to the
boundary almost until hitting the facing boundary, at which point our analysis no
longer works, but again, this is quite enough to see that the process is very far from
SLE0 (radial or chordal — depending on whether w is inside D or on its boundary).
We will not prove either claim as they are similar to those that we do prove with
only some minor additional technical difficulties.

We did some simulations on the behavior of the process on a 600 × 600 torus.
Here the process must hit the target (this is easily seen on any finite graph). See
Figure 1.1. As one can see the process does hit the target but takes its time to do
so, turning only when it is about to hit its past. Some aspects of the picture could
definitely do with some explanation: why does the process turn around quickly
after the first round (the very top of the picture)? We have no proof and only a
mildly convincing heuristic explanation for this behavior.

1.2. Acknowledgements. We wish to thank N. Aran for inspiring the name of the
paper. The torus simulations would not have been possible without Timothy Davis’
SuiteSparseQR, a library for fast solution of sparse self-adjoint linear equations.

2. Proof

Notation. Z2 denotes the discrete two dimensional Euclidean lattice; we denote the
elements of Z2 by their complex counterparts, e.g. the vector (1, 2) is denoted by
1 + 2i.

Px and Ex respectively, denote the measure and expectation of a simple (nearest-
neighbor, discrete time) random walk on Z2, (Xt)t≥0, started at X0 = x. For a set
S ⊂ Z

2, we denote by T (S) the hitting time of S; that is

T (S) = inf {t ≥ 0 : Xt ∈ S} ,
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Occasionally we will use T (S) for a subset S ⊂ C that is not discrete, and in this
case the hitting time of S is the first time the walk passes an edge that intersects S.
We also use the notation T (z, r) = T ({w : |w − z| ≥ r}), the exit time from the
ball of radius r centered at z (we will always use it with the starting point inside
the ball). For a vertex z ∈ Z

2 we use the notation T (z) = T ({z}).
We will denote universal positive constants with c and C where c will refer

to constants “sufficiently small” and C to constants “sufficiently large”. We will
number some of these constants for clarity.

We begin with an auxiliary lemma.

Lemma 2.1. There exists a universal constant C > 0 such that the following holds.
Let w ∈ Z2. Let D = {x + ix : x ∈ Z} be the discrete diagonal. Let I = [−x, 0]∩Z,
for some x > 0. Then,

Pi[T (w) < T (I ∪ D)] ≤ C|w|−1/2
Pi[T (w) < T (I)]. (2.1)

Before starting the proof we need to apologize for some of the choices we made.
It is well known that the probability that a random walk escapes from a corner
of opening angle a to distance r is of the order r−π/a. The case of a = 2π was
famously done by Kesten (1987)2 and a simpler proof can be found in the book
Lawler (1991, §2.4). The general case can be done using multiscale coupling to
Brownian motion, but we could not find a suitable reference, and including a full
proof would have weighed down on this paper. The reader is encouraged to verify
that given the general r−π/a claim, both sides of (2.1) can be calculated explicitly.
Thus, the exponent 1/2 on the right side of (2.1) is not optimal, but is sufficient
for our purpose and the proof is far simpler.

Proof of Lemma 2.1: Let us recall the aforementioned result regarding escape
probabilities. Equations (2.37) and (2.38) of Lawler (1991, §2.4) tell us that for
any r > 0,

Pi[T (0, r) < T (I), Re (XT (0,r)) ≥ 0] ≥ c1r
−1/2, (2.2)

for some universal constant c1 > 0. We will also need the probability of escape from
the diagonal D. This particular case is simple because for simple random walk the
two projections Re X + Im X and ReX − Im X are independent one dimensional
random walks. This makes it easy to calculate escape probabilities in a rhombus.
Namely, if Sr = {x : |Re x|+|Imx| = r} then the question whether, for random walk
starting from i, T (D) ≤ T (S) or not, is equivalent to the question whether a one-
dimensional random walk hits 1 before hitting r and before a second, independent
one-dimensional random walk hits ±r. Both are well known to be ≥ 1 − C/r so
all-in all we get

Pi[T (0, r) < T (D)] ≤ Pi[T (Sr) < T (D)] ≤ C1r
−1. (2.3)

Let A(r, R) = {z ∈ C : r ≤ |z| ≤ R} denote the closed annulus of inner radius

r and outer radius R. Fix r = |w|
2 . Without loss of generality, by adjusting the

constant in the statement of the lemma, we can assume that r is large enough. Let
A = A(r/4, r). So |w| > r and w 6∈ A. Let V be the set of all v with Re (v) ≥ 0
such that Pi[XT (0,r/2) = v] > 0. So r/2 ≤ |v| ≤ r/2 + 1 and v ∈ A. Let U be

2This result is not stated in Kesten (1987) explicitly but the upper bound can be inferred from
results proved there (particularly lemma 6) easily, and the lower bound can be proved by the same
methods.
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Figure 2.2. On the left, u, v and w. On the right, L, γ and γ′.

the set of all u ∈ Z2 such that Pi[XT (0,r/4−2) = u] > 0. Specifically, |u| < r/4 and
u 6∈ A. See Figure 2.2, left.

Fix u ∈ U and v ∈ V . Consider the function f(z) = Pz[T (w) < T (I)]. This
function is discrete-harmonic in the split ball A(0, r) \ I and 0 on I. Thus, there
exists a path γ = (u = γ0, γ1, . . . , γn) in Z2 from u to some γn 6∈ A(0, r) such that
f(·) is non-decreasing on γ; i.e. f(γj+1) ≥ f(γj) for all 0 ≤ j ≤ n − 1. See Figure
2.2, right.

We now examine the slightly-less-than-half of A, L := {x ∈ A : Re (x) < −r/16}
and divide into two cases according to whether γ ∩ A is contained in L or not. In
the second case, let v′ ∈ γ∩(A\L). By the discrete Harnack inequality, Lawler and
Limic (2010, Theorem 6.3.9), we have f(v) ≥ cf(v′) for some absolute constant. To
aid the reader in using the reference efficiently, here are the sets we had in mind:

(

K & U

from Lawler & Limic

)

K = {x ∈ R
2 : 1

4 ≤ |x| ≤ 1 and x1 ≥ − 1
16}

U = {x ∈ R
2 : 3

16 < |x| < 3
2 and x1 > − 1

8}

Note that f(·) is discrete harmonic in rU. Hence, since f is non-decreasing on γ,
f(v′) ≥ f(u), and in this case

f(v) ≥ cf(u). (2.4)

Showing (2.4) in the case that γ ∩ A ⊂ L is only slightly more complicated. Let
γ′ be the last portion of γ in L i.e. {γm+1, . . . , γn} where m < n is maximal such
that γm 6∈ A (see Figure 2.2, right). In this case γ′ divides L into two components,
and I ∩ L lies completely in one of them. Assume for concreteness it is in the
bottom one. Then every path crossing L counterclockwise will hit γ before hitting
I. Examine therefore the event E that random walk starting from v will exit the slit
annulus A \ {x : Re (x) = −r/16, Im (x) < 0} by hitting the slit from its left side.
By the invariance principle, Lawler and Limic (2010, §3.1), if r is sufficiently large
then P(E ) > c2 for some constant c2 > 0 independent of r, uniformly in v ∈ V .
However, E implies that the random walk traversed L counterclockwise, hence it
hits γ before hitting I. We get

Pv[T (γ) < T (I ∪ {w})] > c2.
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Since f(Xt) is a martingale up to the first time X· hits I or w, we may use the
strong Markov property at the stopping time T (γ) to get

f(v) ≥ c2 E[f(XT (γ)) |T (γ) < T (I ∪ {w})] ≥ c2f(u)

i.e. we have established (2.4) in both cases.
We now use the bounds on escape probabilities above to get

Pi[T (w) < T (I ∪ D)]

≤ Pi[T (0, r/4 − 2) < T (I ∪ D)] · max
u∈U

Pu[T (w) < T (I ∪ D)]

≤ Pi[T (0, r/4 − 2) < T (I ∪ D)] · max
u∈U

f(u)

By (2.4) ≤ Pi[T (0, r/4 − 2) < T (D)] · C2 min
v∈V

f(v)

By (2.3) ≤ C3r
−1 · min

v∈V
f(v) (2.5)

where C2, C3 > 0 are universal constants. The lemma now follows from applying
the strong Markov property at the stopping time T (0, r/2),

Pi[T (w) < T (I)] ≥ Pi[T (0, r/2) < T (I), Re (XT (0,r/2)) ≥ 0] · min
v∈V

f(v)

By (2.2) ≥ cr−1/2 min
v∈V

f(v)

By (2.5) ≥ cr1/2
Pi[T (w) < T (I ∪ D)]. �

We now turn to the main lemma, which uses the coupling argument sketched in
the introduction.

Lemma 2.2. There exist universal constants C, ε > 0 such that the following holds.
Let I = [−x, 0] ⊂ R, for some x ≥ 1, and let w ∈ Z2 such that |w| > C. Then,

P1[T (w) < T (I)] > Pi[T (w) < T (I)](1 + ε).

(The proof will give ε = 4−7.)

Proof : We couple two random walks on Z2 started at 1 and i, by constraining
them to be the mirror image of each other around D = {x + ix : x ∈ Z} until
they meet. When they do, they glue and continue walking together. In formulas,
given the random walk (Xt), let (Yt) be a random walk coupled to (Xt) as follows.
Set X0 = 1 and Y0 = i. For t > 0, if Yt−1 6= Xt−1, let Yt = iXt. If Yt−1 = Xt−1,
then let Yt = Xt. It is immediate that (Yt) is also a random walk.

Let τ = min {t ≥ 0 : Xt = Yt} , be the coupling time. For all t ≤ τ , Re (Yt) =
Im (Xt) and Im (Yt) = Re (Xt). Hence, for any t ≤ τ , we have that Yt = Xt if and
only if Yt, Xt ∈ D. So we conclude that τ = T (D).

Now, let T 1(I) = min {t ≥ 0 : Xt ∈ I} and T i(I) = min {t ≥ 0 : Yt ∈ I} be
the hitting times of I for X· and Y· respectively. Similarly, let T 1(w), T i(w) be
the hitting times of w for X· and Y· respectively. Since X0 = 1, we have that D
separates X0 from I, so τ = T (D) ≤ T 1(I). Thus, T 1(I) ≥ T i(I) always.

Let A , B and C be the three events depicted in Figure 2.3. Formally, let A be
the event

{

T (D) ≤ T 1(w), T (D) ≤ T i(w)
}

. Let B be the event {T 1(w) < T (D) ≤

T i(w)}, and let C be the event
{

T i(w) < T (D) ≤ T 1(w)
}

. Note that A , B and
C are pairwise disjoint and their union is the whole space. Furthermore, either
P[B] = 0 or P[C ] = 0, depending on whether Re (w) < Im (w) or Re (w) > Im (w)
respectively (if they are equal both events are empty).
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Figure 2.3. The events A , B and C .

4 5

1
3 2

Y

X

6

Figure 2.4. The event that gives 4−6 in the proof.

Now, on the event A we have that T i(w) = T 1(w). Thus, on the event A , the
event

{

T i(w) < T i(I)
}

is contained in the event
{

T 1(w) < T 1(I)
}

. Hence,

P[T 1(w) < T 1(I), A ] − P[T i(w) < T i(I), A ]

= P[T i(I) < T (D) ≤ T i(w) = T 1(w) < T 1(I)].

Next, consider the event {Y1 = i−1, Y2 = −1, Y3 = i−1, Y4 = i, Y5 = 1+i, Y6 = i}
(which is the same as the event {X1 = 1 − i, X2 = −i, X3 = 1 − i, X4 = 1,
X5 = 1 + i, X6 = i}, see Figure 2.4), which implies that T i(I) < T (D) ≤ T i(w) =
T 1(w). (Here we use that x ≥ 1, so −1 ∈ I.) We have that

P[T 1(w) < T 1(I), A ] − P[T i(w) < T i(I), A ] ≥ 4−6
Pi[T (w) < T (I)]. (2.6)

As for the event B, we have that B ⊂
{

T 1(w) < T 1(I)
}

. So,

P[T 1(w) < T 1(I), B] − P[T i(w) < T i(I), B] = P[B] − P[T i(w) < T i(I), B] ≥ 0
(2.7)

Finally, the event C implies T i(w) < T (D) and therefore

P[T 1(w) < T 1(I), C ] − P[T i(w) < T i(I), C ] ≥

− P[T i(w) < T i(I), C ] ≥ −Pi[T (w) < T (I ∪ D)]. (2.8)

Combining (2.6), (2.7) and (2.8), we get that

P1[T (w) < T (I)] − Pi[T (w) < T (I)]

≥ 4−6
Pi[T (w) < T (I)] − Pi[T (w) < T (I ∪ D)]. (2.9)

We have not placed any restrictions on the constant C from the statement of
the lemma so far. Let C4 be the constant from Lemma 2.1. We now choose
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C ≥
(

C44
7
)2

. Thus, if |w| > C then by Lemma 2.1,

Pi[T (w) < T (I ∪ D)] < 4−7
Pi[T (w) < T (I)].

Plugging this into (2.9) completes the proof of the lemma. �

The last piece of the puzzle is to determine the first step of the Laplacian-∞
path.

Lemma 2.3. Let w ∈ Z
2 with Re (w) > |Im w|. Let (γt)t≥0 be the Laplacian-∞

path on Z2, started at γ0 = 0 with target w. Then γ1 = 1.
If Re (w) = Im (w) > 0 then γ1 = 1 with probability 1

2 to be and γ1 = i with

probability 1
2 .

Proof : We start with the case Re (w) > |Im (w)|. Recall that γ1 is the neighbor e
of 0 that maximizes the probability Pe[T (w) < T (0)].

As in the proof of Lemma 2.2, we couple two random walks (Xt), (Yt), start-
ing at X0 = 1 and Y0 = i respectively, by reflecting them around D. We use
T 1(0), T 1(w), T i(0), T i(w) to denote the hitting times of 0 and w by these walks,
in the obvious way. Recall from the proof of Lemma 2.2, that the coupling time of
these walks is T (D), the hitting time of D.

Since D separates w from i, we have that T 1(w) ≤ T i(w). Thus, the event
{T i(w) < T i(0)} implies the event

{

T 1(w) < T 1(0)
}

. Further, this inclusion is
strict — the event that X hits w before D has positive probability. Hence

P1[T (w) < T (0)] > Pi[T (w) < T (0)].

Showing that P1[T (w) < T (0)] > Pe[T (w) < T (0)] for e = −1,−i is done likewise by
reflecting through the imaginary line or the opposite diagonal D∗ = {x−ix : x ∈ Z},
respectively. This completes the proof of the case Re (w) > |Im (w)|. For the case
Re (w) = Im (w) > 0, just note that the problem is now symmetric to reflection
through the diagonal D, so P1[T (w) < T (0)] = Pi[T (w) < T (0)], so the walker
chooses among them equally. Both are larger than the probabilities at −1 and −i,
again by reflecting through the diagonal D∗. �

Proof of Theorem 1.3: We take C > 0 so that Lemma 2.2 holds with this constant
C. We prove the theorem by induction on t. Let w = a + ib. The case of t = 1 is
handled by Lemma 2.3. Assume therefore that γs = s for all 0 ≤ s ≤ t−1. Let I =
{γs : 0 ≤ s ≤ t − 1}. Let f : Z2 → [0, 1] be the function f(z) = Pz[T (w) < T (I)].
Translating by −(t− 1), since |w − (t− 1)| ≥ |Im (w)| > C, we can use Lemma 2.2,
to get that f(t) > f(t − 1 + i). Reflecting through the real line and using Lemma
2.2 again we get f(t) > f(t − 1 − i). Thus, γt = t and the theorem is proved. �
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