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Abstract. We consider excited random walk on a strip. We assume that the
cookies are positive and that the total expected drift per site is less than 1/L where
L is the width of the strip. We prove a quenched limit theorem claiming that
the position of the walker converges after the diffusive rescaling to a perturbed
Brownian Motion.

Let Y = Z x (Z/LZ), where L > 1is an integer, G = {—e1, 1, —€2, €2} where ¢;
are coordinate vectors. We denote the coordinates of points y € Y by (x(y), s(y))-
Consider a cookie environment on ), that is, for each y € ), 7 € N, there is a
probability distribution w(y,j,e) on G. Consider an excited random walk Y, =
(Xn, Sn) that is

P(Y,41 =Y, =¢lY1,...,Y,) =w(Ya,ln, €)

where [,, is the number of visits to Y,, by time n. (We denote by P and E the
quenched probability and expectation with fixed w and by P and E the annealed
probability and expectation.) Y, is called (multi-)ezcited random walk (ERW). We
make the following assumptions:
(A) 6(y, ) = w(y, jr 1) — w(ys j, —e1) = 0,
(B) There exists £ > 0 such that w(y, j,e) > &,
(C) w is stationary with respect to G-shifts and ergodic.
(D) Let 6(y) = Z;’i 0(y,j) then
1

6 :=E(6(y)) < 7.

(E) For each e > 0 there exists N(e,y) such that for each j > N, for each e € G
lw(y, j,e) — 1| < e. Moreover E(N(e,y)) < oo
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The quantity ¢ introduced in (D) plays a crucial role in description of the be-
havior of ERW. In particular Y,, is recurrent in the sense that every site is visited
infinitely often iff L < 1, see Zerner (2005, 2006); Aschenbrenner (2010). (In case
0L < 1 which is a subject of the our work recurrence also follows from Lemma &
of the present paper.) Several papers addressed the limiting behavior of the ERW
in the transient regime Mountford et al. (2006); Basdevant and Singh (2008a,b);
Kosygina and Zerner (2008); Kosygina and Mountfors (2011). Our paper deals with
recurrent ERW.

Let B(t) denote the Brownian motion with variance % Recall (Chaumont and
Doney, 1999) that for all o, 8 < 1 and for almost every realization of B there exists
a unique solution W(t) of the equation

W(t) = B(t) + arf%i?W(s) +p I[Iontr]l W(s) (1)

which is called (o, 8)-perturbed Brownian Motion.
Define W, (t) by setting W,,(m/n) = )5% and interpolating linearly in between.

Theorem 1. For almost every w, W, converges weakly as n — oo to (a,f)-
perturbed Brownian Motion where o = —f3 = L.

Remark 2. A similar result is valid for ERW on Z with obvious modifications.
Namely, G = {—e, +e}, condition (E) becomes |w(y, j,e) — 3| < € and the variance
of the limiting Brownian Motion equals ¢.

Remark 3. Our result leaves open the critical case L = 1. (Observe that (1) is not
well posed if a = 1.)

We divide the proof into several steps. Fix T > 0.

Lemma 4. For any m there is a constant v,, such that for any w, for any stopping
time o, for any numbers R € Ry, N € N we have

. Tm
P (in (s~ Xo) < —RVN ) < 2

In particular

P (min Wi(t) < —R) < Jm
[0.T]

where 4, = T"y,..
Proof: Denote
Ak:Xk+1—Xk, Ak:E(Ak|Y1,...,Yk):5(Yk,lk),

n—1 n—1
Co=Y Ar, B.=)Y [Ax—A].
k=0 k=0

By assumption (A), Xy1r— Xy > Byyr—By. Since My, = B, — B, is a martingale
with respect to the o-algebra generated by Ay, ..., As1r—1 and the quadratic vari-
ation of M grows at most linearly, it follows from Hall and Heyde (1980), Theorem
2.11 that that for each m € N there is a constant ~,, such that

E((glgf |M|)™) < vpn™
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and so by Markov inequality

Tm
P(?§S|Mk| > Ry/n) < R (2)
which implies the result we need. ([
Denote
" 24+0L)n
Apy = w: Z 5(y)<%foralln2no
w(y)=— 51"

Note that by the Ergodic Theorem
P(A4,,) = 1 as ng — . (3)
Let T denote the space shift (T%w)((z, s),j,e) = w((z + k, s), j, €)

Lemma 5. There is a constant 5, such that for any ng € N, for any w such
that T%w € A,, for any stopping time o such that X, = x, for any numbers
R e Ry, N €N such that RV N > ng we have

+
/Ym
P(Egﬁ(xﬁk X,) R\/N) -

In particular for almost every w we have

5+

Aok
P(max Wy (t) > R) < 2™
([O,E}E](W(>> )< R

provided that n is large enough, where 4% = T™~ .
Proof: Denote
Xk = Xmin(chrk,&) - X, Mk = Mmin(k,&fa')

where M is the martingale from the proof of Lemma 4 and & is the first time after
o when X5 = X, — [R\/N%} . In view of Lemma 4 it suffices to show that given

m there is a constant 7, such that

P (maxf(k > R\/N) < Jm

- R2m’
By the definition of A,, we have X, > My, + R\/N% so if X; > RVN then
My, > R\/N%. Now the statement of the lemma follows from (2). O

Let ry, = maxg<n (Xp) —ming<, (Xy) denote the range of the walk. Define B, (t)

by setting B, (%) = B—\/% and interpolating linearly in between.

Lemma 6. For almost every w By, converges weakly to B as n — oo.

Proof: Since B,, is a martingale it suffices, due to Hall and Heyde (1980), Theorem
4.4, to show that for almost every w
Ving

n

sup
t€[0,T)

t
5‘ — 0 in probability as n — oo
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where V,, is the quadratic variation of B,,. For the discrete time process it is enough
to show that for almost every w

V
max |— — n — 0 in probability as n — oc.
0<m<n| n 2n
Fix ¢ > 0. Choose Ny such that

E([N(e,y) — Nol") <e (4)
where N (g,y) is a constant from condition (E). Split V,, = V= + VI where

m—1

V, =3 E ([Ak — AP .Yk) I, < No),
k=0
m—1

vi-S"E ([Ak AP ...Yk) I(1, > No).
k=0
Then V, < 4NyLr,, < n (by Lemmas 4 and 5) whereas
V+ _ m + 6/ + 6l/
m 2 m m

where

) (B (180 = 85 ¥2) = ) 20 > max(¥ (e, 1), No)),

¢ = zk: (E ([Ak ~ AP ...Yk) - %) I(No < lx < N(, V).

Observe that on I > N(e,Y)) we have

‘E([Ak—ﬁkﬁn..yk) _%’ _

1
|:w(Yk,lk,61) —l—w(Yk,lk, —61) — §:| — [w(Yk,lk,el) — w(Yk,lk, —61)]2' S 2¢e + (25‘)2

and so || < (2¢ 4 (2¢)2) n. On the other hand

leml < D [N(e,y) = Nol, ()
where the summation in (*) runs over y with
i < < .
min(Xy) < 2(y) < max(Xy)
So (4) and the ergodic theorem ensure that e/ | is less than 2¢Lr, provided that

ry, is large enough (if r,, is small then our claim that |/ | < n is obvious). This
concludes the proof of Lemma 6. (I

Lemma 7. {W,} is tight.

Proof: Since Xy = 0 Billingsley (1999), Lemma 8.3 implies that in order to prove
tightness it suffices to show that for almost all w given positive constants &, 7 there
exists a positive constant § such that if n is sufficiently large then for all ¢ <T

1
<P sup |Wn(5) - Wn(t)| e <n.
0 \selt,i+d)
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Without rescaling this amounts to showing that for all n; < nT we have

%P( max | X, — n1|>5\/_>

n1<nz<ni+dn

Take § such that

750 750
(&25)4 < mn and (2_3?5)4 <n (6)
25 25

By Lemmas 4 and 5 given 7, § there exists R such that
P (max | Xk| > R\/ﬁ) < on
k<Tn 3

so it suffices to show that

1 2
—P( max |Xm—Xm|2aﬁam¢&“§}h%>§ i

4] n1<nz<ni+in ?
We shall show that
L n
N > < < !
5]P’ <n1<nr;137)7,(1+5an2 > X, +evn and |X,,,| < R\/ﬁ> <3 (7)
the lower bound on X, is similar. Take ng such that P(Ay, ) < 1555 Then by the

Ergodic Theorem for large n

2RV 2¢e
Do Lag, (T7w) < v
z=—2R\/n
where I denotes the indicator function. Hence there exists « such that X,, <z <

X, + g—; n such that T%w € A,,. Let o be the first time after ny when X, = x.
Applying Lemma 5 with m = 2 we get

EP(XUM X, >&f) <

<n

1) 25 ( 235 )
where the last inequality follows from (6). This proves (7) and completes the proof
of Lemma 7. O
Let

Z(a,b)= Y i)

(z,8):a<z<b

denote the total amount of cookies stored between a and b. We shall denote by 7
the first time X, = z. Let

’ Te—m ifax <0

The next lemma is a quantitative version of the recurrence results of Zerner
(2005, 2006).

Lemma 8. For each N, ¢ there exists a number M and a set Qar such that P(Qar) >
1 — ¢ and for each x € Z, for each w such that T*w € Quy, for each s € Z/LZ we
have

P(Y,, wvisits (z,s) at least N times before 7(x,M)) > 1 — €. (8)
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Proof: To fix our ideas consider the case x > 0. Thus 7(z, M) = 7,4 um-
By ellipticity (condition (B)) it is enough to prove the result with (8) replaced
by
P(X,, visits  at least N times before 7,43/) > 1 —e.

Let 7., be the first time strictly greater than 7, when either |X; — 2| = m or
X> = x. Pick two numbers p, p’ such that L < p’ < p < 1. We claim that if m; is
large enough then for most environments

P(X:

mi

=z)>1—p. (9)

There are two cases to consider: X, 41 = 2+ 1 and X, 11 = = — 1 (the case
X, 41 = x is trivial). We consider the first case (the second case is easier).
By Optional Stopping Theorem

B(X; E(Cs,,, —Cr,) +1 < Z(x,x—l—ml)—kl.

m1

=r+m|X 41 =2+1)=

my my
So (9) holds if Z(xz,x + m1) < m1p’ (observe that we need not impose any restric-

tions in case X, 41 = — 1). Next

E(Cs,, — Cs,,,) +mi < Z(z,x +ma) +my

P(Xz,, =x+ma|Xz, =z+m) =
m2 m2

Thus if 72 < p%ﬂ and Z(x,x + mgy) < p'ma then
P(Xz,, =z +ma|Xz, =z+m) <p.
Thus if both Z(z,z + m1) < p'my and Z(z,x + ma) < p'ma then

P(X;

Tm2

=2+ mg) < pt

Inductively let my be the smallest number such that

mg > TM—1-

Then on ﬂ?zl{Z(:zr, z +m;) < p'm;} we have
P(X7,, =z +mg) < pr.

Thus on this set

P(X returns to x before T,4m,) > 1 — pF.
Since the amount of cookies between z and x + m; only decreases between the
returns the same argument shows that
P(X returns to z at least N times before 7,4, ) > (1 — p*)V.
Choose k so that (1—p¥)N > 1—¢. Let M = my, and Qp = ﬂ?zl{Z(O, mj) < p'm;}.
Then the Ergodic Theorem implies that if my is large enough then P(Qy;) >
1—e. g
C,—ary,

Lemma 9. For almost all w, === — (0 in probability.

Tn
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Proof: Let € > 0. Take N such that

S B(.) <

J=N+1

Split C,, = C;; + C;F, where
Cp =Y ApI(lk <N), CF=> Al >N).
k k

o

By ergodicity we have C;I < 2er,, for large n so the main contribution comes from
C,, . Next

* N
Co =Y. 0y, )HI(Qy, 4 n))
j=1

where Q(y, j,n) is the event that Y visits y at least j times before time n and the

meaning of Z is the same as in (5). Take a large number M (the precise conditions
on M will be given in equations (15) and (17) below) and split C;; = C2+C" where
C9 contains the terms y = (z, s) where  is within distance M from either maximum
or minimum of X, k < n and C,il contains the remaining terms. Then Cg <2LMN
since there are 2L M sites within distance M from either maximum or minimum of
X,k < n and for each site only the first NV visits give a non-zero contribution to
C, . On the other hand

**% N *% N
Ch= 33 o) = 33 s HQ (v o) (10)

where the summation in (**) runs over y with

i < < —
min(Xy) + M < o(y) < max(Xy) — M

Due to ergodicity for large n

N

*x N
DD 0:9) — (LY By, i)lra| < ern

Jj=1

and by the choice of N, L Zjvzl E(4(y, 7)) within € from «. The second term in (10)
is less than

where Q((z,s),7, M) is the event that the j-th visit to (z,s) occurs after time
7(x, M). Therefore to complete the proof of Lemma 9 it remains to show that for
almost every w given ¢ there exists M such that for large n we have

P(C,, > ery) < e. (11)

To this end we show that there exists n such that

P(r, < nyv/n) < % (12)
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Indeed X,, = B,, + C,, and by the Ergodic Theorem for almost every w there is a
constant K (w) such that for all n we have

0<Cp<rp+ K(w).

Since we also have | X,,| < r,, the inequality 7, < n/n implies that |B,| < 2nv/n +
K(w) but by Lemma 6 P(|B,| < 2ny/n + K(w)) can be made as small as we wish
by taking n small. This proves (12).

Next, by Lemmas 4 and 5

B(r, > Ryi) < (13)
in R,n are sufﬁciently large. Combining (12) and (13) we get
a , M 2
P Z\ )| <Rv/n ZJ 1 I(Q (y J, M)) < _a' (14)
T nn

3
Observe that by Lemma 8 we can choose M so large that
2

A . €N c x
< ——— .
Therefore
E "7 c T
E > ZI (y,4, M \/_+LN > I(Q5(Tw)).  (16)
lz(y)|<Ryn j=1 |z|<Rv/m
By Lemma 8 we can take M so large that
e2n
c < .
PO < 300RN (a7
n\/_

Then by ergodicity the last term in (16) is less than =
sufficiently large. Hence

e2ny/n
E < .
Z ZI yj’ - 25
lz(y)| <Ry j=1

Therefore by Markov inequality

€
P 1Q =
> Z 2y, 4, M)) > eny/n | < 55"

()| <Ry 1=1

In view of (14) this completes the proof of (11). Lemma 9 follows. O

provided that n is

Proof of Theorem 1: We have
Wi (t) = B (t) + Cn(t) (18)

where B, (t) and C,(t) are rescaled versions of the martingale and compensator
parts of X, respectively. By Lemma 7 {W,} is tight, by Lemma 6 {B,} is tight.
Since C,, is a difference of two tight processes it is tight. Accordingly the triple
{Wh, B, Cy)} considered as a family of R3 valued processes is tight. Let (W, B,C)
denote a weak limit of W, B,,C,).

By Lemma 6 B(t) = B(t). By (18) we have

W(t) = B(t) +C(1).
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Therefore it remains to show that

C(t) = —mi 19
0= g - e )
since this implies that W(t) satisfies (1) and we will be done by Chaumont and
Doney (1999).

Hence given € > 0 there exists N such that

1}»( max  |Cn(ts) — Cu(t1)] > g) <e.

|t27t1|<1/N

Consequently to establish (19) it is enough to show that for each N, e

P (Hj < NT such that ’Cn (i) -« [ max W, (s) — min Wn(s)] ’ > 5) — 0.
N [0.3/N] [0.3/N]

Before rescaling this amounts to showing that
P(’ij —armj’ <eynforj=1...N)—1

where m; = nj/N. Notice that r,,, < r, and by Lemmas 4 and 5 P(r, > Ry/n)
can be made as small as we wish by choosing R and n large. Hence it suffices to
check that

]P’(’ij—armjlgarmj forjzl...N)—>1. (20)

However for fixed N, m; runs over a set of finite cardinality N and so (20) follows
from Lemma 9. This concludes the proof of (19). Theorem 1 is established. O

References

D. Aschenbrenner. Master’s thesis, University of Tubingen (2010).

A.-L. Basdevant and A. Singh. On the speed of a cookie random walk. Probab.
Theory Related Fields 141 (3-4), 625-645 (2008a). MR2391167.

A.-L. Basdevant and A. Singh. Rate of growth of a transient cookie random walk.
Electron. J. Probab. 13, no. 26, 811-851 (2008b). MR2399297.

P. Billingsley. Convergence of probability measures. Wiley Series in Probability and
Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second
edition (1999). ISBN 0-471-19745-9. A Wiley-Interscience Publication.

L. Chaumont and R. A. Doney. Pathwise uniqueness for perturbed versions of
Brownian motion and reflected Brownian motion. Probab. Theory Related Fields
113 (4), 519-534 (1999). MR1717529.

P. Hall and C. C. Heyde. Martingale limit theory and its application. Academic
Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). ISBN 0-
12-319350-8. Probability and Mathematical Statistics.

E. Kosygina and T. Mountford. Limit laws of transient excited random walks on
integers. Ann. Henri Poincare, Prob. & Stat. 47, no. 2, 575-600 (2011). ISSN
0246-0203.

E. Kosygina and M. P. W. Zerner. Positively and negatively excited random walks
on integers, with branching processes. Electron. J. Probab. 13, no. 64, 1952-1979
(2008). MR2453552.

T. Mountford, L. P. R. Pimentel and G. Valle. On the speed of the one-dimensional
excited random walk in the transient regime. ALEA Lat. Am. J. Probab. Math.
Stat. 2, 279-296 (2006). MR2285733.


http://www.ams.org/mathscinet-getitem?mr=MR2391167
http://www.ams.org/mathscinet-getitem?mr=MR2399297
http://www.ams.org/mathscinet-getitem?mr=MR1717529
http://www.ams.org/mathscinet-getitem?mr=MR2453552
http://www.ams.org/mathscinet-getitem?mr=MR2285733

268 Dmitry Dolgopyat

M. P. W. Zerner. Multi-excited random walks on integers. Probab. Theory Related
Fields 133 (1), 98122 (2005). MR21971309.

M. P. W. Zerner. Recurrence and transience of excited random walks on Z¢ and
strips. Electron. Comm. Probab. 11, 118-128 (electronic) (2006). MR2231739.


http://www.ams.org/mathscinet-getitem?mr=MR2197139
http://www.ams.org/mathscinet-getitem?mr=MR2231739

	References

