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Abstract. We consider excited random walk on a strip. We assume that the
cookies are positive and that the total expected drift per site is less than 1/L where
L is the width of the strip. We prove a quenched limit theorem claiming that
the position of the walker converges after the diffusive rescaling to a perturbed
Brownian Motion.

Let Y = Z× (Z/LZ), where L > 1 is an integer, G = {−e1, e1,−e2, e2} where ej
are coordinate vectors. We denote the coordinates of points y ∈ Y by (x(y), s(y)).
Consider a cookie environment on Y, that is, for each y ∈ Y, j ∈ N, there is a
probability distribution ω(y, j, e) on G. Consider an excited random walk Yn =
(Xn, Sn) that is

P(Yn+1 − Yn = e|Y1, . . . , Yn) = ω(Yn, ln, e)

where ln is the number of visits to Yn by time n. (We denote by P and E the
quenched probability and expectation with fixed ω and by P and E the annealed
probability and expectation.) Yn is called (multi-)excited random walk (ERW). We
make the following assumptions:

(A) δ(y, j) := ω(y, j, e1)− ω(y, j,−e1) ≥ 0,
(B) There exists κ > 0 such that ω(y, j, e) ≥ κ,
(C) ω is stationary with respect to G-shifts and ergodic.
(D) Let δ(y) =

∑∞
j=1 δ(y, j) then

δ := E(δ(y)) <
1

L
.

(E) For each ε > 0 there exists N(ε, y) such that for each j ≥ N, for each e ∈ G
|ω(y, j, e)− 1

4 | < ε. Moreover E(N(ε, y)) < ∞.
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The quantity δ introduced in (D) plays a crucial role in description of the be-
havior of ERW. In particular Yn is recurrent in the sense that every site is visited
infinitely often iff δL ≤ 1, see Zerner (2005, 2006); Aschenbrenner (2010). (In case
δL < 1 which is a subject of the our work recurrence also follows from Lemma 8
of the present paper.) Several papers addressed the limiting behavior of the ERW
in the transient regime Mountford et al. (2006); Basdevant and Singh (2008a,b);
Kosygina and Zerner (2008); Kosygina and Mountfors (2011). Our paper deals with
recurrent ERW.

Let B(t) denote the Brownian motion with variance t
2 . Recall (Chaumont and

Doney, 1999) that for all α, β < 1 and for almost every realization of B there exists
a unique solution W(t) of the equation

W(t) = B(t) + αmax
[0,t]

W(s) + βmin
[0,t]

W(s) (1)

which is called (α, β)-perturbed Brownian Motion.

Define Wn(t) by setting Wn(m/n) = Xm√
n

and interpolating linearly in between.

Theorem 1. For almost every ω, Wn converges weakly as n → ∞ to (α, β)-
perturbed Brownian Motion where α = −β = δL.

Remark 2. A similar result is valid for ERW on Z with obvious modifications.
Namely, G = {−e,+e}, condition (E) becomes |ω(y, j, e)− 1

2 | < ε and the variance
of the limiting Brownian Motion equals t.

Remark 3. Our result leaves open the critical case δL = 1. (Observe that (1) is not
well posed if α = 1.)

We divide the proof into several steps. Fix T > 0.

Lemma 4. For any m there is a constant γ−
m such that for any ω, for any stopping

time σ, for any numbers R ∈ R+, N ∈ N we have

P

(

min
k≤N

(Xσ+k −Xσ) ≤ −R
√
N

)

≤ γ−
m

R2m
.

In particular

P

(

min
[0,T]

Wn(t) < −R

)

≤ γ̂−
m

R2m

where γ̂−
m = Tmγ−

m.

Proof : Denote

∆k = Xk+1 −Xk, ∆̄k = E(∆k|Y1, . . . , Yk) = δ(Yk, lk),

Cn =
n−1
∑

k=0

∆̄k, Bn =
n−1
∑

k=0

[

∆k − ∆̄k

]

.

By assumption (A),Xσ+k−Xσ ≥ Bσ+k−Bσ. SinceMk = Bσ+k−Bσ is a martingale
with respect to the σ-algebra generated by ∆0, . . . ,∆σ+k−1 and the quadratic vari-
ation of M grows at most linearly, it follows from Hall and Heyde (1980), Theorem
2.11 that that for each m ∈ N there is a constant γ−

m such that

E((max
k≤n

|Mk|)m) ≤ γ−
mnm
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and so by Markov inequality

P(max
k≤n

|Mk| ≥ R
√
n) ≤ γ−

m

R2m
. (2)

which implies the result we need. �

Denote

An0 =











ω :

n
∑

x(y)=− (1−δL)n
3

δ(y) <
(2 + δL)n

3
for all n ≥ n0











.

Note that by the Ergodic Theorem

P(An0) → 1 as n0 → ∞. (3)

Let T denote the space shift (T kω)((x, s), j, e) = ω((x+ k, s), j, e)

Lemma 5. There is a constant γ+
m such that for any n0 ∈ N, for any ω such

that T xω ∈ An0 for any stopping time σ such that Xσ = x, for any numbers

R ∈ R+, N ∈ N such that R
√
N ≥ n0 we have

P

(

max
k≤N

(Xσ+k −Xσ) ≥ R
√
N

)

≤ γ+
m

Rm
.

In particular for almost every ω we have

P(max
[0,T]

Wn(t) > R) ≤ γ̂+
m

Rm

provided that n is large enough, where γ̂+
m = Tmγ+

m.

Proof : Denote

X̃k = Xmin(σ+k,σ̃) −Xσ, M̃k = Mmin(k,σ̃−σ)

where M is the martingale from the proof of Lemma 4 and σ̃ is the first time after

σ when Xσ̃ = Xσ−
[

R
√
N 1−δL

3

]

. In view of Lemma 4 it suffices to show that given

m there is a constant γ̄m such that

P

(

max X̃k ≥ R
√
N
)

≤ γ̄m
R2m

.

By the definition of An0 we have X̃k ≥ M̃k + R
√
N 2+δL

3 so if X̃k ≥ R
√
N then

M̃k ≥ R
√
N 1−δL

3 . Now the statement of the lemma follows from (2). �

Let rn = maxk≤n(Xk)−mink≤n(Xk) denote the range of the walk. Define Bn(t)

by setting Bn(
m
n ) = Bm√

n
and interpolating linearly in between.

Lemma 6. For almost every ω Bn converges weakly to B as n → ∞.

Proof : Since Bn is a martingale it suffices, due to Hall and Heyde (1980), Theorem
4.4, to show that for almost every ω

sup
t∈[0,T]

∣

∣

∣

∣

V[nt]

n
− t

2

∣

∣

∣

∣

→ 0 in probability as n → ∞
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where Vn is the quadratic variation of Bn. For the discrete time process it is enough
to show that for almost every ω

max
0≤m≤n

∣

∣

∣

∣

Vm

n
− m

2n

∣

∣

∣

∣

→ 0 in probability as n → ∞.

Fix ε > 0. Choose N0 such that

E([N(ε, y)−N0]
+) < ε (4)

where N(ε, y) is a constant from condition (E). Split Vm = V −
m + V +

m where

V −
m =

m−1
∑

k=0

E

(

[

∆k − ∆̄k

]2 |Y1 . . . Yk

)

I(lk ≤ N0),

V +
m =

m−1
∑

k=0

E

(

[

∆k − ∆̄k

]2 |Y1 . . . Yk

)

I(lk > N0).

Then V −
m ≤ 4N0Lrm ≪ n (by Lemmas 4 and 5) whereas

V +
m =

m

2
+ ǫ′m + ǫ′′m

where

ǫ′m =
∑

k

(

E

(

[

∆k − ∆̄k

]2 |Y1 . . . Yk

)

− 1

2

)

I(lk > max(N(ε, Yk), N0)),

ǫ′′m =
∑

k

(

E

(

[

∆k − ∆̄k

]2 |Y1 . . . Yk

)

− 1

2

)

I(N0 < lk ≤ N(ε, Yk)).

Observe that on lk > N(ε, Yk) we have
∣

∣

∣

∣

E

(

[

∆k − ∆̄k

]2 |Y1 . . . Yk

)

− 1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

[

ω(Yk, lk, e1) + ω(Yk, lk,−e1)−
1

2

]

− [ω(Yk, lk, e1)− ω(Yk, lk,−e1)]
2

∣

∣

∣

∣

≤ 2ε+ (2ε)2

and so |ε′′m| ≤
(

2ε+ (2ε)2
)

n. On the other hand

|ε′′m| ≤
∗
∑

[N(ε, y)−N0]+ (5)

where the summation in (*) runs over y with

min
k≤n

(Xk) ≤ x(y) ≤ max
k≤n

(Xk).

So (4) and the ergodic theorem ensure that |ε′′m| is less than 2εLrn provided that
rn is large enough (if rn is small then our claim that |ε′′m| ≪ n is obvious). This
concludes the proof of Lemma 6. �

Lemma 7. {Wn} is tight.

Proof : Since X0 = 0 Billingsley (1999), Lemma 8.3 implies that in order to prove
tightness it suffices to show that for almost all ω given positive constants ε, η there
exists a positive constant δ such that if n is sufficiently large then for all t ≤ T

1

δ
P

(

sup
s∈[t,t+δ]

|Wn(s)−Wn(t)| ≥ ε

)

≤ η.
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Without rescaling this amounts to showing that for all n1 ≤ nT we have

1

δ
P

(

max
n1≤n2≤n1+δn

|Xn2 −Xn1 | ≥ ε
√
n

)

≤ η.

Take δ such that
γ−
2 δ

(

23ε
25

)4 < η and
γ+
2 δ

(

23ε
25

)4 < η (6)

By Lemmas 4 and 5 given η, δ there exists R such that

P

(

max
k≤Tn

|Xk| ≥ R
√
n

)

≤ δη

3

so it suffices to show that

1

δ
P

(

max
n1≤n2≤n1+δn

|Xn2 −Xn1 | ≥ ε
√
n and |Xn1 | ≤ R

√
n

)

≤ 2η

3
.

We shall show that

1

δ
P

(

max
n1≤n2≤n1+δn

Xn2 ≥ Xn1 + ε
√
n and |Xn1 | ≤ R

√
n

)

≤ η

3
, (7)

the lower bound on Xn2 is similar. Take n0 such that P(Ac
n0
) ≤ ε

100R . Then by the
Ergodic Theorem for large n

2R
√
n

∑

x=−2R
√
n

IAc
n0
(T xω) ≤ 2ε

25

√
n

where I denotes the indicator function. Hence there exists x such that Xn1 ≤ x ≤
Xn1 +

2ε
25

√
n such that T xω ∈ An0 . Let σ be the first time after n1 when Xσ = x.

Applying Lemma 5 with m = 2 we get

1

δ
P

(

Xσ+k −Xσ >
23ε

25

√
n

)

≤ γ+
2 δ

(

23ε
25

)4 < η

where the last inequality follows from (6). This proves (7) and completes the proof
of Lemma 7. �

Let

Z(a, b) =
∑

(x,s):a≤x≤b

δ(x, s)

denote the total amount of cookies stored between a and b. We shall denote by τx
the first time Xτ = x. Let

τ̂(x,M) =

{

τx+M if x ≥ 0

τx−M if x < 0
.

The next lemma is a quantitative version of the recurrence results of Zerner
(2005, 2006).

Lemma 8. For each N, ε there exists a numberM and a set ΩM such that P(ΩM ) >
1 − ε and for each x ∈ Z, for each ω such that T xω ∈ ΩM , for each s ∈ Z/LZ we

have

P(Yn visits (x, s) at least N times before τ̂(x,M)) ≥ 1− ε. (8)
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Proof : To fix our ideas consider the case x ≥ 0. Thus τ̂(x,M) = τx+M .
By ellipticity (condition (B)) it is enough to prove the result with (8) replaced

by

P(Xn visits x at least N times before τx+M ) ≥ 1− ε.

Let τ̃m be the first time strictly greater than τx when either |Xτ̃ − x| = m or
Xτ̃ = x. Pick two numbers p, p′ such that δL < p′ < p < 1. We claim that if m1 is
large enough then for most environments

P(Xτ̃m1
= x) > 1− p. (9)

There are two cases to consider: Xτx+1 = x + 1 and Xτx+1 = x − 1 (the case
Xτx+1 = x is trivial). We consider the first case (the second case is easier).

By Optional Stopping Theorem

P(Xτ̃m1
= x+m1|Xτx+1 = x+ 1) =

E(Cτ̃m1
− Cτx) + 1

m1
≤ Z(x, x +m1) + 1

m1
.

So (9) holds if Z(x, x+m1) < m1p
′ (observe that we need not impose any restric-

tions in case Xτx+1 = x− 1). Next

P(Xτ̃m2
= x+m2|Xτ̃m1

= x+m1) =
E(Cτ̃m2

− Cτ̃m1
) +m1

m2
≤ Z(x, x+m2) +m1

m2
.

Thus if m1

m2
< p−p′

2 and Z(x, x+m2) < p′m2 then

P(Xτ̃m2
= x+m2|Xτ̃m1

= x+m1) < p.

Thus if both Z(x, x+m1) < p′m1 and Z(x, x+m2) < p′m2 then

P(Xτ̃m2
= x+m2) < p2.

Inductively let mk be the smallest number such that

mk >
2

p− p′
mk−1.

Then on
⋂k

j=1{Z(x, x+mj) < p′mj} we have

P(Xτ̃mk
= x+mk) < pk.

Thus on this set

P(X returns to x before τx+mk
) ≥ 1− pk.

Since the amount of cookies between x and x + mj only decreases between the
returns the same argument shows that

P(X returns to x at least N times before τx+mk
) ≥ (1 − pk)N .

Choose k so that (1−pk)N > 1−ε. LetM = mk and ΩM =
⋂k

j=1{Z(0,mj) ≤ p′mj}.
Then the Ergodic Theorem implies that if m1 is large enough then P(ΩM ) ≥
1− ε. �

Lemma 9. For almost all ω, Cn−αrn
rn

→ 0 in probability.
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Proof : Let ε > 0. Take N such that

∞
∑

j=N+1

E(δ(y, j)) <
ε

L
.

Split Cn = C−
n + C+

n , where

C−
n =

∑

k

∆̄kI(lk ≤ N), C+
n =

∑

k

∆̄kI(lk > N).

By ergodicity we have C+
n ≤ 2εrn for large n so the main contribution comes from

C−
n . Next

C−
n =

∗
∑

N
∑

j=1

δ(y, j)I(Q(y, j, n))

where Q(y, j, n) is the event that Y visits y at least j times before time n and the

meaning of

∗
∑

is the same as in (5). Take a large number M (the precise conditions

on M will be given in equations (15) and (17) below) and split C−
n = C∂

n+Ci
n where

C∂
n contains the terms y = (x, s) where x is within distanceM from either maximum

or minimum ofXk, k ≤ n and Ci
n contains the remaining terms. Then C∂

n ≤ 2LMN
since there are 2LM sites within distance M from either maximum or minimum of
Xk, k ≤ n and for each site only the first N visits give a non-zero contribution to
C−

n . On the other hand

Ci
n =

∗∗
∑

N
∑

j=1

δ(y, j)−
∗∗
∑

N
∑

j=1

δ(y, j)I(Qc(y, j, n)) (10)

where the summation in (**) runs over y with

min
k≤n

(Xk) +M ≤ x(y) ≤ max
k≤n

(Xk)−M

Due to ergodicity for large n
∣

∣

∣

∣

∣

∣

∗∗
∑

N
∑

j=1

δ(y, j)− [L

N
∑

j=1

E(δ(y, j))]rn

∣

∣

∣

∣

∣

∣

≤ εrn

and by the choice of N, L
∑N

j=1 E(δ(y, j)) within ε from α. The second term in (10)
is less than

Ĉn =

∗∗
∑

N
∑

j=1

I(Q̂(y, j,M))

where Q̂((x, s), j,M) is the event that the j-th visit to (x, s) occurs after time
τ̂(x,M). Therefore to complete the proof of Lemma 9 it remains to show that for
almost every ω given ε there exists M such that for large n we have

P(Ĉn > εrn) < ε. (11)

To this end we show that there exists η such that

P(rn < η
√
n) <

ε

3
. (12)
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Indeed Xn = Bn + Cn and by the Ergodic Theorem for almost every ω there is a
constant K(ω) such that for all n we have

0 < Cn < rn +K(ω).

Since we also have |Xn| ≤ rn the inequality rn < η
√
n implies that |Bn| < 2η

√
n+

K(ω) but by Lemma 6 P(|Bn| < 2η
√
n +K(ω)) can be made as small as we wish

by taking η small. This proves (12).
Next, by Lemmas 4 and 5

P(rn > R
√
n) <

ε

3
(13)

in R, n are sufficiently large. Combining (12) and (13) we get

P

(

Ĉn

rn
≤
∑

|x(y)|<R
√
n

∑N
j=1 I(Q̂(y, j,M))

η
√
n

)

<
2ε

3
. (14)

Observe that by Lemma 8 we can choose M so large that

P(Q̂((x, s), j,M)) ≤ ε2η

100RNL
+ I(Ωc

M (T xω)). (15)

Therefore

E





∑

|x(y)|<R
√
n

N
∑

j=1

I(Q̂(y, j,M))



 ≤ ε2η
√
n

50
+ LN

∑

|x|<R
√
n

I(Ωc
M (T xω)). (16)

By Lemma 8 we can take M so large that

P(Ωc
M ) ≤ ε2η

200RN
. (17)

Then by ergodicity the last term in (16) is less than ε2η
√
n

50 provided that n is
sufficiently large. Hence

E





∑

|x(y)|<R
√
n

N
∑

j=1

I(Q̂(y, j,M))



 ≤ ε2η
√
n

25
.

Therefore by Markov inequality

P





∑

|x(y)|<R
√
n

N
∑

j=1

I(Q̂(y, j,M)) > εη
√
n



 <
ε

25
.

In view of (14) this completes the proof of (11). Lemma 9 follows. �

Proof of Theorem 1: We have

Wn(t) = Bn(t) + Cn(t) (18)

where Bn(t) and Cn(t) are rescaled versions of the martingale and compensator
parts of Xn respectively. By Lemma 7 {Wn} is tight, by Lemma 6 {Bn} is tight.
Since Cn is a difference of two tight processes it is tight. Accordingly the triple
{(Wn,Bn, Cn)} considered as a family of R3 valued processes is tight. Let (W , B̄, C)
denote a weak limit of (Wn,Bn, Cn).

By Lemma 6 B̄(t) = B(t). By (18) we have

W(t) = B(t) + C(t).
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Therefore it remains to show that

C(t) = α

[

max
[0,t]

W(s)−min
[0,t]

W(s)

]

(19)

since this implies that W(t) satisfies (1) and we will be done by Chaumont and
Doney (1999).

Hence given ε > 0 there exists N such that

P

(

max
|t2−t1|<1/N

|Cn(t2)− Cn(t1)| ≥ ε

)

≤ ε.

Consequently to establish (19) it is enough to show that for each N, ε

P

(

∃j < NT such that

∣

∣

∣

∣

Cn

(

j

N

)

− α

[

max
[0,j/N ]

Wn(s)− min
[0,j/N ]

Wn(s)

]∣

∣

∣

∣

> ε

)

→ 0.

Before rescaling this amounts to showing that

P
(∣

∣Cmj
− αrmj

∣

∣ ≤ ε
√
n for j = 1 . . .N

)

→ 1

where mj = nj/N. Notice that rmj
≤ rn and by Lemmas 4 and 5 P(rn ≥ R

√
n)

can be made as small as we wish by choosing R and n large. Hence it suffices to
check that

P
(∣

∣Cmj
− αrmj

∣

∣ ≤ εrmj
for j = 1 . . .N

)

→ 1. (20)

However for fixed N, mj runs over a set of finite cardinality N and so (20) follows
from Lemma 9. This concludes the proof of (19). Theorem 1 is established. �
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