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Abstract. The TASEP (totally asymmetric simple exclusion process) is a basic
model for a one-dimensional interacting particle system with non-reversible dy-
namics. Despite the simplicity of the model it shows a very rich and interesting
behaviour. In this paper we study some aspects of the TASEP in discrete time
and compare the results to the recently obtained results for the TASEP in continu-
ous time. In particular we focus on stationary distributions for multi-type models,
speeds of second-class particles, collision probabilities and the “speed process”. In
discrete time, jump attempts may occur at different sites simultaneously, and the
order in which these attempts are processed is important; we consider various nat-
ural update rules.

1. Introduction

The TASEP in continuous time was introduced by Spitzer (1970) and can be

described as follows. It is a Markov process (ηt)t≥0 on the state space E = {0, 1}Z

where for x ∈ Z we have that site x is occupied with a particle at time t iff
ηt(x) = 1. Otherwise we say that site x is empty at time t. Starting from some
initial configuration η0 ∈ E, updates occur at each site as a Poisson process of rate
1, independently; when an update occurs at site x, if there is a particle at site x
and a hole to its right at site x+ 1, the particle jumps from site x to site x+ 1. If
site x is empty, or if site x+ 1 is already occupied, the update has no effect.

In the model in discrete time, updates occur with some probability β ∈ (0, 1) at
each site at each time-step. Since updates occur simultaneously, we now have to
choose an order in which to update the sites. We will consider sequential updates
(from right to left or from left to right) and sublattice parallel updates (even sites
first then odd sites).
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For the model in continuous time there exists a vast amount of literature. For
an introduction and background to the topic see the books Liggett (1985) (pp.
361-417) and Liggett (1999) (pp. 209-316). However, in some physical models of
interest it might be more natural to use a discrete time scale. For example in
traffic models we can consider the reaction time of individuals as a smallest time
scale (Blythe and Evans, 2007, Chowdhury et al., 2000 and Helbing, 2001) and this
suggests modelling traffic with a model in discrete time. The ASEP (asymmetric
simple exclusion process, particles jump to the right at rate p and to the left at rate
q < p) in discrete time was studied for example in Schütz (1993), Hinrichsen (1996),
Rajewsky et al. (1998) and Blythe and Evans (2007). However, the behaviour of
the models in discrete time has not been analysed in as much depth as the model in
continuous time. The papers mentioned above are mainly concerned with the model
on a finite interval with open boundary conditions and just one type of particles
and analyse density profiles and stationary distributions.

In this paper we derive further results for the TASEP in discrete time that
correspond to recently obtained results for the continuous-time model. These in-
clude stationary distributions for multi-type systems (e.g. Ferrari and Martin, 2006,
2007), laws of large numbers for the path of a second class particle and their con-
nection to competition interfaces in competition growth models (e.g. Ferrari and
Pimentel, 2005; Ferrari et al., 2009), and the TASEP speed process recently studied
by Amir, Angel and Valkó (Amir et al., 2011).

We find that the multi-type invariant distributions for the models with sequential
updates are identical with those for the model in continuous time, and do not
depend on the parameter β. This has the surprising consequence that various
collision probabilities for different particles in a multi-type processes started out of
equilibrium, of the sort considered by Ferrari et al. (2009) and Amir et al. (2011),
are also independent of β and coincide with the values for a continuous-time process.
These probabilities correspond to survival probabilities of clusters in the associated
multi-type competition growth models. At the moment, the only argument we
have for this property is indirect, using the fact that the set of invariant measures
is identical for all β; we do not know of a more direct argument based on local
dynamics or couplings.

By contrast, in the case of sublattice-parallel updates, the value of β plays an
important role in the set of stationary distributions. All the subsequent results will
also heavily depend on the value of the paramter β. We extend the queue-based
construction of the multi-type stationary distributions from Ferrari and Martin
(2006, 2007) by incorporating queues whose arrival and service rates are different
at even and odd times. As Hinrichsen (1996) points out, models with parallel
dynamics arrise in traffic and reaction-diffusion models.

The paper is organized as follows. In Section 2 we will give a more formal
definition of the model and introduce the multi-type TASEP. The main results
are described in Section 3, including results concerning invariant measures and
hydrodynamic limits for single-type models which are required in order to state and
understand the multi-type models described above. The proofs or proof sketches for
the novel results are found in Section 4. In Section 5 we make some brief remarks
about a related discrete-time TASEP model with “fully parallel updates”.
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2. Model

2.1. Models in continuous and discrete time. The TASEP in continuous time can
be described by its generator L. For cylinder functions f : E → R we have

Lf(η) =
∑

x∈Z

η(x) (1 − η(x + 1))
[
f
(
ηx,x+1

)
− f (η)

]

with the configuration ηx,x+1 defined by

ηx,x+1(y) =






η(y) y /∈ {x, x + 1}
η(x+ 1) y = x

η(x) y = x+ 1

Following ideas from Harris (1978) we can use the following graphical construction
for the TASEP. Let {(P x

t )t≥0 : x ∈ Z} be a family of independent mean 1 Poisson

processes on a common probability space (Ω,A,P). For x ∈ Z the process P x marks
possible jumps from site x: If P x

t − P x
t− = 1 and ηt−(x) = 1 then the particle at x

tries to jump one step to the right at time t. The jump is successful if the adjacent
site x + 1 was unoccupied, i.e. ηt−(x + 1) = 0. Note that for every t > 0 with
positive probability (e−t) there was no jump in the Poisson process P x up to time
t. Since all the Poisson processes are independent there will be infinitely many sites
x such that there were no jumps in P x. These sites separate Z into intervals of
finite length. Since no particle can have crossed the boundaries of these intervals,
it is enough to be able to construct the process separately on each of these finite
intervals.

We can use the same graphical construction to define the TASEP in discrete
time. All we have to do is replace the family of Poisson processes with a family
{(Bx

n)n≥0 : x ∈ Z} of independent Bernoulli processes with parameter β ∈ (0, 1)
and decide on an update rule for the sites. As mentioned in the introduction we
will mainly consider the following three update rules:

• Rule R1: Updates are processed in order from right to left.
• Rule R2: Updates are processed in order from left to right.
• Rule R3: All updates at even sites are processed before all updates at odd

sites.

To highlight the difference between the three update rules we can look at the
following example. Say we are at time n in the configuration displayed in Figure
2.1, with particles at sites −1 and 0 and holes at sites 1 and 2. There are jump
attempts at the sites marked with a ∗. The resulting configurations under the three
different update rules are as shown in Figures 2.2–2.4.

Note that in R2, a single particle may jump several times at the same time-step
(but jumps are only possible onto sites that were already empty at the beginning
of the time-step). In R1, several neighbouring particles may jump together at the
same time-step. There is a natural symmetry between systems R1 and R2 - one is
transformed into the other by exchanging left and right and exchanging the roles
of particle and hole. For the last example (R3) the parity of the sites is important.

In connection with the speed process we will also mention the model with
odd/even updates (R4). Again this can be obtained from R3 by a simple transfor-
mation.
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b b b b

* * *
-1 0 1 2

Figure 2.1. Configuration at time n and jump marks

b b b b

-1 0 1 2

Figure 2.2. Configuration at time n+ 1 if we apply R1

b b b b

-1 0 1 2

Figure 2.3. Configuration at time n+ 1 if we apply R2

b b b b

-1 0 1 2

Figure 2.4. Configuration at time n+ 1 if we apply R3

As seen above, each of these models shows a slightly different behaviour, but if
we rescale time by a factor β−1 and let β → 0 then they converge to the model
in continuous time. In this sense the model in discrete time is more general than
the model in continuous time (which in the following we will denote by R0) since
we can recover the model in continuous time from the model in discrete time. In
discrete time we can also consider the model with (fully) parallel updates where all
sites are updated simultaneously. However, many of the methods developed for the
model in continuous time that work in the models R1-R3 fail in this case. We will
mention some questions connected to this model in Section 5.

2.2. Percolation representations. Both in continuous and in discrete time, one im-
portant feature of the TASEP is its connection to last-passage percolation and the
corner growth model. Here we consider a special case which corresponds to a partic-
ular initial condition of the TASEP, in which, at time 0, all non-positive sites x ≤ 0
contain a particle and all positive sites x > 0 are empty. We label the particles
from right to left, so that for i ≥ 1, particle i starts at site −i+ 1 at time 0 (and
always remains to the right of particle i+ 1).

For n, k ≥ 1, let T (n, k) be the time that particle k jumps to its right for the
nth time. Then it is well-known that the variables T (n, k) satisfy the recursions

T (n, k) = max {T (n− 1, k), T (n, k − 1)} + v(n, k) n, k ≥ 1 (2.1)

with boundary conditions T (0, k) = T (n, 0) = 0 for all n, k, where v(n, k) are
i.i.d. exponential random variables with mean 1. The interpretation is that before
particle k can make its nth jump, both particle k must have made its (n − 1)st
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jump, and particle k−1 must have made its nth jump. Once these two events have
happened, an amount of time which is exponentially distributed with rate 1 passes
before particle k makes its nth jump; this is the random variable v(n, k).

The random variables T (n, k) have an interpretation in terms of last-passage
percolation times. For an increasing path π from z ∈ Z

2
+ to z′ ∈ Z

2
+, i.e. a path

with increments in {(0, 1), (1, 0)}, define the weight of π by

S (π) =
∑

z′′∈π

v(z′′).

Write Π(z, z′) for the set of all increasing paths from z to z′; then

R(z, z′) = max
π∈Π(z,z′)

S(π) (2.2)

is the weight of the heaviest path from z to z′. Then, via the recursions (2.1), it
is easy to see that T (n, k) = R((1, 1), (n, k)). In this setting we may interpret the
random variable v(n, k) as a weight at the lattice point (n, k).

We turn to the discrete-time case. Now let w(n, k) be i.i.d. random variables
whose distribution is geometric with parameter β ∈ (0, 1) (by which we mean that

P [w(z) = k] = (1 − β)kβ for k = 0, 1, 2, . . . ). We define passage-times T̃ (n, k)
analogous to T (n, k) above by the recursions

T̃ (n, k) = max
{
T̃ (n− 1, k), T̃ (n, k − 1)

}
+ w(n, k) n, k ≥ 1.

We will describe three variants on these recursions, which pertain to the different
update rules R1, R2 and R3. As above, w(n, k) will correspond to the delay before
particle k makes its nth jump, once it is free to do so. For i = 1, 2, 3, let T (i)(n, k)
be the nth jump of particle k under update rule Ri with boundary conditions
T (i)(0, k) = T (i)(n, 0) = −1 for all n, k.

Rule R1 (updates from right to left)

• Recursions:

T (1)(n, k) = max
{
T (1)(n− 1, k) + 1, T (1)(n, k − 1)

}
+ w(n, k)

= T̃ (n, k) + n− 1 (2.3)

• In accordance with the updates from right to left, particles k and k− 1 can
make their nth jumps at the same time-step, but two jumps by the same
particle must be separated by at least one time-step.

• This corresponds to a percolation model in which as well as weights w(n, k)
at the vertices (n, k) ∈ Z

2
+, we have weights of size 1 on each horizontal

edge between (n− 1, k) and (n, k).

Rule R2 (updates from left to right)

• Recursions:

T (2)(n, k) = max
{
T (2)(n− 1, k), T (2)(n, k − 1) + 1

}
+ w(n, k)

= T̃ (n, k) + k − 1 (2.4)

• With updates from left to right, a particle may make several jumps at the
same time-step, but at least one time-step must separate the nth jump of
particles k − 1 and k.
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• In the corresponding percolation model, the weights of size 1 are now on
the vertical edges of the lattice.

Rule R3 (even updates then odd updates)

• Recursions:

T (3)(n, k) =





max
{
T (3)(n− 1, k) + 1, T (3)(n, k − 1) + 1

}
+ w(n, k)

n+ k even

max
{
T (3)(n− 1, k), T (3)(n, k − 1)

}
+ w(n, k)

n+ k odd

=

{
T̃ (n, k) + n+k−2

2 n+ k even

T̃ (n, k) + n+k−3
2 n+ k odd

(2.5)

• Now the edge weights of size 1 are added to all edges with an upper/right
point (n, k) such that n+ k is even.

For the model in continuous time we have, for x > 0,

lim
n→∞

T ([xn], n)

n
=
(√
x+ 1

)2
a.s. (2.6)

This was essentially first shown in Rost (1981). Replacing the exponential weights
by geometric weights gives

lim
n→∞

T̃ ([xn], n)

n
=

(1 − β)x + 2
√

(1 − β)x+ (1 − β)

β
a.s.; (2.7)

see for example O’Connell (2000). Using (2.3)-(2.5), this can easily be used to give
similar laws of large numbers for T (i)([xn], n), i = 1, 2, 3.

We may also view the system as a growth model. For the continuous-time case,

Gt =
{
(x, y) ∈ Z

2
+ : T (x, y) ≤ t

}
(2.8)

be the set of vertices whose passage-time is less than t. This gives a cluster in Z
2
+

which grows over time; there is a 1-1 correspondence relatingGt to the configuration
of the TASEP at time t; the length of the row at height k ∈ Z+ is the number of
jumps particle k has made in the TASEP. In a similar way we can define G(1)(t),
G(2)(t) and G(3)(t) by replacing T in (2.8) by T (1), T (2) or T (3) respectively.

2.3. Multi-type models. In the multi-type TASEP each particle belongs to a class
y ∈ Z (or more generally y ∈ R). All particles can still jump into unoccupied sites.
When a particle of class k tries to jump into a site which is occupied by a particle
of class j two things can happen: If k ≥ j the jump is suppressed and if k < j then
the two particles swap. This means that the lower the class of a particle the higher
is its priority.

An N -type TASEP (containing N classes of particles and holes) can be regarded
as a coupling of N ordered single-type TASEPs. If η1

0 , . . ., η
N
0 are N TASEP

configurations such that η1
0(x) ≤ . . . ≤ ηN

0 (x) for all x ∈ Z, we can use the same
Poisson or Bernoulli processes (this is called basic coupling) to get a joint realization
of the TASEPs η1, . . ., ηN .

The basic coupling preserves the ordering between the processes (since the up-
dates are processed one by one, this is true for the discrete-time models just as in
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the continuous-time case). Thus we can define a multi-type process ξ by

ξt(x) = N + 1 −
N∑

k=1

ηk
t (x).

We write ξt = Rηt. Particles of class k occur at sites x where ξ(x) = k. For k > 1,
these sites represent discrepancies between the processes ηk−1 and ηk. We may
regard particles of type N + 1 as holes. Then ξ behaves like a multi-type TASEP
with N classes of particles and holes. See for example Ferrari and Martin (2006)
for further details.

3. Results

We will divide this section into three subsections: The first deals with invariant
measures for single- and multi-type models, the second with hydrodynamic limits
and the third with multi-type models out of equilibrium.

3.1. Invariant measures.

Proposition 3.1. For the TASEP in continuous time as well as the discrete time
TASEPs R1 and R2, the Bernoulli product measures νρ with marginals ρ ∈ [0, 1] are
the only translation invariant stationary ergodic measures with constant marginals.
For the TASEP R3, the Bernoulli product measures µρ with marginals ρ ∈ [0, 1]

on even sites and marginals ρ(1−β)
1−ρβ

on odd sites are the only stationary ergodic

measures with marginals that are translation invariant under even shifts.

Remark 3.2. Interestingly, the marginals of the invariant Bernoulli product mea-
sures for the models R1 and R2 do not depend on the model parameter β, and
coincide with the invariant measures for the model in continuous time. In the
model R3 however, the densities at even and odd sites differ (with a specific rela-
tion between them) and the measure depends on the parameter β.

Proof : For references see for example Liggett (1985) for R0, Blythe and Evans
(2007) for R1, R2 and Rajewsky, Santen, Schadschneider and Schreckenberg (Ra-
jewsky et al., 1998) for R3. The uniqueness statements can be proved following the
approach of Mountford and Prabhakar (1995). �

We now turn to the construction of invariant measures for systems with more
than one class of particles. We use the construction based on a system of queues
in tandem developed in Ferrari and Martin (2006), and begin by recalling notation
from that paper.

Given two processes α1 and α2, taking values in {0, 1}Z and representing the
arrival and service processes of a queue respectively, let D(α1, α2) be the pro-
cess of departures from the queue. Now define D(1)(α) = α, D(2)(α1, α2) =
D(α1, α2), and recursively D(n) (α1, . . . , αn) = D

(
D(n−1) (α1, . . . , αn−1) , αn

)
for

n > 2. (The process D(n) can be seen as the departure process from a system
of n − 1 queues in tandem). Now for α = (α1, . . . , αn) we can define a system
of n ordered single-type TASEP configurations, denoted Tα = η =

(
η1, . . . , ηn

)

by ηk = D(n−k+1) (αk, . . . , αn). Then the corresponding multi-type configuration
ξ = ξ(1,...,n) is given by ξ = Rη = RTα, with ξ(x) = n+ 1−∑n

k=1 η
k(x) (as in the
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1 2 1 1 2 1 1 1 1 2 1 1

1 3 1 2 3 1 2 1 3 1 1 1 2 3 1 1

α1

α2

α3

ξ(1,2)

ξ(1,2,3)

Figure 3.5. Queues in tandem and multi-type configurations ξ(1,2)

and ξ(1,2,3)

last paragraph of Section 2). See Remark 3.4 below for further explanation of the
construction.

We can now state the main result.
To state this result, we work with systems with jumps from right to left. To return

to the systems defined before, one simply takes the space-reversal (η̃t(x) = ηt(−x)).
Note that time in the queueing system corresponds to space in the particle system.

Theorem 3.3. If α = (α1, . . . , αn) has distribution ν = νρ1 × . . . × νρn
(µ =

µρ1×. . .×µρn
respectively for model R3) with ρ1 < . . . < ρn, then the law of Tα = η

is invariant for the coupled multi-line TASEPs R0,R1 and R2 (R3 respectively) and
the law of RTα = Rη = ξ is invariant for the multi-type TASEPs R0, R1 and R2
(R3 respectively) with jumps from right to left. These are the unique stationary
translation invariant (invariant under even shifts respectively) ergodic measures
with density ρ1 of first class particles (density ρ1 of first class particles on even
sites), density ρ2 − ρ1 of second class particles (density ρ2 − ρ1 of second class
particles on even sites), etc.

Remark 3.4. The mechanism to construct an invariant distribution as described
above can be depicted in the following way: Take α1 as the arrival process and
α2 as the service process of a queue. Using α1 and α2 we can construct a process
consisting of the departures from this queue (first class particles), unused services
(second class particles) and times when no service was offered (holes). We then use
this process as the arrival process for a queue with service process α3 where first
class particles have priority over second class particles: If there is a service and a
first and a second class particle are waiting in the queue then the first class particles
gets served first. In this way we get a resulting process consisting of departures of
first class particles (first class particles), departures of second class particles (second
class particles), unused services (third class particles) and holes. Now we can feed
this process into a queue with service process α4 and so on. If α = (α1, . . . , αn)
has distribution ν = νρ1 × . . . × νρn

(µ = µρ1 × . . . × µρn
respectively) then the

distribution of the resulting multi-type configuration is invariant for the multi-type
TASEP. See Figure 3.5 for an illustration. Note that for models R0, R1, R2, the
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queues involved are simply M/M/1 queues in discrete-time; the same is almost
true for R3, except that we have different arrival and service rates at odd and even
times.

Remark 3.5. We observe again that the invariant measures for the multi-type
TASEPs R1 and R2 are the same as the invariant measures for the multi-type
TASEP in continuous time and that they do not depend on β. Since the invari-
ant measures for the single-type TASEP R3 depend on β the same is true for the
invariant measures for the multi-type TASEP R3.

3.2. Hydrodynamic limits. We now move to considering systems out of equilibrium.
We consider the particular initial configuration given by

η0(x) =

{
1 x ≤ 0

0 x ≥ 1

This “step” initial condition corresponds to the corner growth model and to the
particular initial conditions for the percolation models described in Section 2.2.
We define the following functions f0, f1, f2 and f3, which will describe the evolv-
ing density profile for the continuous-time TASEP and for the TASEPs R1-R3 in
discrete time:

f0(u) = 1 (−∞,−1 ](u) +
1

2
(1 − u) · 1[−1,1](u)

f1(u) = 1 (−∞,− β

1−β ](u) +
1

β

(
1 −

√
1 − β

1 − u

)
· 1[− β

1−β
,β](u)

f2(u) = 1 (−∞,−β ](u) +

(
1 − 1

β

(
1 −

√
1 − β

1 + u

))
· 1[−β,

β

1−β ](u) = 1 − f1(−u)

f3(u) = 1 (−∞,− 2β

2−β ](u) +

(
1

2
− u

β

√
1 − β

4 − u2

)
· 1[− 2β

2−β
,

2β

2−β ](u)

We let a3 be defined by f3(u) =
1

2

(
a3(u) +

a3(u)(1 − β)

1 − a3(u)β

)
, so

a3(u) = 1 (−∞,− 2β

2−β ](u) +
1

β

(
1 − (2 + u)

√
1 − β

4 − u2

)
· 1[− 2β

2−β
,

2β

2−β ](u)

For i = 0, 1, 2, 3 let τi(k, t) (t ∈ R+ or t ∈ N respectively) be the distribution of
(ηt(k + l), l ∈ Z) in the corresponding model. We have the following result for the
TASEP in continuous time and the discrete TASEPs R1-R3.

Theorem 3.6. For any u ∈ R and i = 0, 1, 2 the measure τi ([ut] , t) converges
weakly to the Bernoulli product measure with marginals fi(u) and τ3 ([ut] , t) con-
verges weakly to the Bernoulli product measure with marginals a3(u) on even sites

and a3(u)(1−β)
1−a3(u)β on odd sites. In particular we have that for any u ∈ R the limit

limt→∞ E [ηt(k)] exists and is equal to fi(u), i = 0, 1, 2 depending on which
model we are considering, whenever k

t
tends to u, and limt→∞ E

[
ηt(2[k

2 ])
]

= a3(u)

and limt→∞ E
[
ηt(2[k

2 ] + 1)
]

= a3(u)(1−β)
1−a3(u)β in the model R3. Furthermore, for

i = 0, 1, 2, 3, the quantities 1
t

∑
ut<k<vt ηt(k) converge a.s. to the constant value∫ v

u
fi(w)dw, for u < v.
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Figure 3.6. Black: Simulation of the corner growth model (R2) for
β = 0.5 and time n = 1000; Red: Limiting shape given
by a rescaled version of g2

The first part of the theorem states convergence to local equilibrium: suitably
rescaled the models converge locally to the unique invariant measures from Theorem
3.1. This implies the other statements of the theorem. However, in the models R0,
R1 and R2 we can prove the second part without proving convergence to local
equilibrium first, while in the model R3 our proof for the second part requires
convergence to local equilibrium. The statements for the model in continuous time
were proved for the first time by Rost (1981). O’Connell (2000) used the connection
between the TASEP and last-passage percolation to prove an equivalent result
about the asymptotic shape of the corner growth model (as defined in Section 2).
The parts of Theorem 3.6 concerning the models in discrete time can be proved
using exactly the same methods as Rost (1981) and O’Connell (2000). In Section
4 we will outline the proof for the model R3.

Remark 3.7. From the convergence to the density profiles f0, f1,f2 and f3 we can
easily deduce a shape theorem for the corner growth model defined in Section 2.
The asymptotic shape in the models R1, R2 and R3 (after rescaling by t) are for
example given by the functions

g1(x) =
1

1 − β

(√
β −

√
x
)2

(3.1)

for x ∈ [0, β],

g2(x) =
(√

β −
√

(1 − β)x
)2

(3.2)

for x ∈ [0, β
1−β

], see Figure 3.6 (simulation with β = 0.5 up to time n = 1000), and

g3(x) =
1

(2 − β)2

(√
4x(1 − β) −

√
4β − β2x− 2β2

)2

(3.3)

for x ∈
[
0, 2β

2−β

]
.
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Remark 3.8. We may rescale time as well as space in Theorem 3.6, and look at
the limit f(u, t) = limN→∞ E [ηNt(k)] for limN→∞

k
N

= u. For the continuous-time
model, this density profile is governed by Burgers’ equation,

∂f

∂t
+
∂(f(1 − f))

∂u
= 0; (3.4)

the solution, with initial condition f(u, 0) = 1(−∞,0] (u), is

f(u, t) = 1 (−∞,−t ](u) +
t− u

2t
· 1[−t,t](u)

The differential equation also governs the evolution of the density profile for more
general initial configurations than the “step” initial condition. We can get equations
analogous to (3.4) for the models in discrete time. For example, for model R1,

f1(u, t) = 1 (−∞,− βt

1−β ](u) +
1

β

(
1 −

√
t(1 − β)

t− u

)
· 1[− βt

1−β
,βt](u)

solves {
∂f1

∂t
+ ∂

∂u

βf1(1−f1)
1−βf1

= 0

f1(u, 0) = 1(−∞,0] (u)
(3.5)

Here βf1(1−f1)
1−βf1

=
∑∞

n=1 β
nfn

1 (1 − f1) is the probability that a particle jumps from

a given site to its neighbour in a model in equilibrium with marginal density f1.

3.3. Multi-type models out of equilibrium. In this section we consider multi-type
TASEPs ξt ∈ Z

Z similar to Section 2.3. With the results from Theorem 3.6 we can
calculate the distribution of the asymptotic speed of a single second class particle
in the TASEP with initial configuration

ξ0(x) =






1 x ≤ −1

2 x = 0

3 x ≥ 1

As the particles of class 3 are weaker than all other particles in the model we can
think of these particles as holes. So the second-class particle sees only particles
to its left and only holes to its right. The second-class particle can be seen as a
discrepancy between two copies of the “step” initial condition considered in the
last section, one of which is shifted by one step to the right. Hence the path of the
second-class particle corresponds to the propagation of the discrepancy under the
basic coupling. The results for the models in discrete time correspond to the result
for the model in continuous time first obtained by Ferrari and Kipnis (1995). They
prove convergence in distribution. In order to prove a.s. convergence we can use
the connection to last-passage percolation and the growth model: As in Ferrari and
Pimentel (2005) the path of the second class particle corresponds to a competition
interface in the growth model which has a.s. an asymptotic direction.

Theorem 3.9. For i = 0, 1, 2, 3 let X(i)(t) denote the position of the second class
particle at time t in the corresponding model. Then we have

X(i)(t)

t

a.s.−−−→
t→∞

U (i)

for random variables U (i) with distribution functions 1 − fi for i = 0, 1, 2 and a3

for i = 3.
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Remark 3.10. The proofs for convergence in distribution are analogous to those
for the model in continuous time (see for example Ferrari and Kipnis, 1995) apart
from a small complication in the model R3 with the particle-particle coupling. We
will give an account of this proof in Section 4. For the almost sure convergence we
will explain the construction of the competition interface for the models in discrete
time and prove that the second class particle has almost sure an asymptotic speed
by using results about semi-infinite geodesics in the percolation models similar to
Ferrari and Pimentel (2005). An interesting observation will be that the distribution
of the asymptotic direction of the competition interface corresponding to the path
of the second class particle is the same in the models R1 and R3, see Remark 4.12.
However, this does not imply that the distribution of the speed of the second class
particle is the same in the two models.

Remark 3.11. In the continuous model the distribution of the asymptotic speed of
the second class particle turns out to be uniform on [−1, 1]. The distributions in
the models in discrete time are more complicated.

Using Theorem 3.9 we can define the following so-called speed process: Consider
the multi-type TASEP with initial configuration ξ0(n) = n. By Theorem 3.9 we
know that each particle has a.s. an asymptotic speed Un: Particle n has only
stronger particles to its left and only weaker particles (that can be seen as holes)
to its right just like the second class particle in the initial configuration of Theorem
3.9 and therefore we can apply Theorem 3.9 to the speed of every particle. We
call the process {Un}n∈Z

the speed process and denote its distribution by µ. This
process is stationary, and its marginals (for the various models) are given by the
distributions in Theorem 3.9. Furthermore, we write Yn(m) instead of ξm(n) and
denote the position of particle n at time m by Xn(m) in order to be consistent
with the notation introduced in Amir et al. (2011). They have studied the speed
process for the model in continuous time. Note that both Yn and Xn can be seen
as permutations of the set Z, and are inverse to each other. We define gi = 1 − fi

for i = 0, 1, 2 and g3 = 1 − a3, g4 = 1 − a3(1−β)
1−a3β

and our first result is the following

theorem corresponding to Theorem 1.5 of Amir et al. (2011) (note that the labels
of particles can now be in R instead of just Z):

Theorem 3.12. For i = 0, 1, 2, µ(i), the distribution of the speed process in model
Ri, is the unique stationary ergodic measure for the TASEP R0 whose marginals
have distribution function gi. Correspondingly, for i = 3, 4, µ(i) is the unique
stationary measure for the TASEP Rj(i), which has marginals distributed according
to gi on even sites and gj(i) on odd sites, where j(3) = 4 and j(4) = 3.

For i = 0 this gives the result from Amir et al. (2011) saying that the distri-
bution of the speed process is itself a stationary ergodic measure for the TASEP
in continuous time (the marginals are uniform on [−1, 1] in this case). The other
parts of Theorem 3.12 follow from nice dualities between the models R1 and R2
and between the models R3 and R4, and the fact that R0, R1 and R2 all have the
same set of stationary distributions, whatever the value of β (as given in Theorem
3.3). The dualities are given by the following result:

Theorem 3.13. Consider the starting configuration Yn(0) = n. For i = 0, 1, 2, 3, 4

and any fixed m > 0 the process {X(i)
n (m)}n∈Z has the same distribution as the

process {Y (j(i))
n (m)}n∈Z where j(0) = 0, j(1) = 2, j(2) = 1, j(3) = 4 and j(4) = 3.
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The following theorems provide some explicit results about the joint distributions
of the speeds of adjacent particles (and particles 0 and 2 in model R3). The first
result is Theorem 1.7 of Amir et al. (2011). The remaining theorems and remarks
give analogous results for the TASEPs R1, R2 and R3.

Theorem 3.14 (TASEP R0). The joint distribution of (U0, U1), supported on

[−1, 1]2, is

s(x, y)dxdy + r(x)1{x=y}dx

with

s(x, y) =

{
1
4 x > y
y−x

4 x ≤ y
and r(x) =

1 − x2

8

In particular, P [U0 > U1] = 1
2 , P [U0 = U1] = 1

6 and P [U0 < U1] = 1
3 .

Theorem 3.15 (TASEP R1). The joint distribution of (U0, U1) has support on[
− β

1−β
, β
]2

and is given by

s1(x, y)dxdy + r1(x)1{x=y}dx

with

s1(x, y) =






1−β
4β2 (1 − x)−

3
2 (1 − y)−

3
2 = g′1(x)g

′
1(y) x > y

1−β
2β3 (1 − x)

− 3
2 (1 − y)

− 3
2

(√
1−β
1−y

−
√

1−β
1−x

)
x ≤ y

and

r1(x) =

( √
1−β

2β2(1−u)
3
2

(
1 − 1

β

)
+ 1−β

2β2(1−u)2

(
2
β
− 1
)
−

√
1−β(1−β)

2β3(1−u)
5
2

)

In particular, P [U0 > U1] = 1
2 , P [U0 = U1] = 1

6 and P [U0 < U1] = 1
3 .

Remark 3.16. By symmetry, the joint distribution of (U0, U1) in the model R2 is
the same as that of (−U1,−U0) in the model R1.

Theorem 3.17 (TASEP R3). The joint distribution of (U0, U1) has support on[
− 2β

2−β
, 2β

2−β

]2
and is given by

s2(x, y)dxdy + r2(x)1{x=y}dx

with

s2(x, y) =





g′3(x)g
′
4(y) x > y

g′3(x)g
′
4(y) (g4(y) − g4(x))

· (2 − g4(x)β − g4(y)β)
(

2+y
2−y

)
x ≤ y

and

r2(x) = 1−β
β3

(
2(2−β)
4−x2 − 8

4−x2

√
1−β
4−x2

)

In particular,

P [U0 > U1] =
1

β2

(
β − (1 − β) log

(
1

1 − β

))

P [U0 = U1] =
(1 − β)(2 − β)

β3
log

(
1

1 − β

)
−

2(1 − β)

β2

and

P [U0 < U1] =
(1 − β)(2 − β)

β2
+

2(1 − β)2

β3
log(1 − β)
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Remark 3.18. Again by symmetry, we have that under rule R3, (U1, U2) has the
same distribution as (−U1,−U0).

Theorem 3.19 (TASEP R3). The joint distribution of (U0, U2) has support on[
− 2β

2−β
, 2β

2−β

]2
and is given by

s3(x, y)dxdy + r3(x)1{x=y}dx

with

s3(x, y) =





g′3(x)g
′
3(y) x > y

g′3(x)g
′
3(y)

(
g4(x)

2 − g4(y)
2

− 2(g4(x)−1)(g4(y)2−2g4(x)g4(y)+g4(x)−1
1−βg4(x)

+ 2(g4(y)−1)(g4(x)2−2g4(x)g4(y)+g4(y)−1
1−βg4(y) − 1

)
x ≤ y

and

r3(x) = g3(u)(1−g3(u))(1−g4(u)(1−g4(u)))
(2−u)β

2

√
4−u2

1−β

In particular,

P [U0 > U2] =
1

2

P [U0 = U2] =
1

6
+

1

3β
−

13

3β2
+

8

β3
−

4

β4
−

(1 − β)2

β3

(
log

(
1

1 − β

)) (
2

β
−

4

β2

)

and

P [U0 < U2] =
1

3
−

1

3β
+

13

3β2
−

8

β3
+

4

β4
+

(1 − β)2

β3

(
log

(
1

1 − β

)) (
2

β
−

4

β2

)

We see that in every model we have that the speeds are independent on the set
where U0 > U1 (U0 > U2 respectively). This agrees with the result in continuous
time. The striking result, shown by Amir et al. (2011) for the continuous model,
that with positive probability the two continuous random variables U0 and U1 are
equal, holds also in the discrete models.

Interestingly, the probabilities P [U0 > U1], P [U0 = U1] and P [U0 < U1] are the
same for models R0, R1 and R2, and do not depend on the parameter β. This is
rather surprising since β is not just a scaling parameter (i.e. we cannot produce
models with different values of β by just applying a time change). In fact, much
more is true. From the first part of Theorem 3.3, we see that, although the marginal
distribution of each Ui depends on the model and the value of β, we can obtain the
distribution for either of R1 and R2 and any value of β by applying an appropriate
monotone function to each entry Ui (see the proof of Theorem 3.15 for further
details). Hence the relative ordering of the variables Ui is not affected by the model
or the value of β.

To go further, consider particles i and j with i < j. It’s clear that if Ui < Uj

then particle i can never overtake particle j, while if Ui > Uj then particle i must
overtake particle j. In Amir et al. (2011), it’s shown that for the continuous-time
model, with probability 1, if Ui = Uj then particle i overtakes particle j. The
same result can be shown for the discrete-time models, although the calculations
involved in the argument are rather more complicated than those used to prove
Theorem 1.14 of Amir et al. (2011), and we omit them here. So, for example, the
probability that particle i overtakes particle j is the same for models R0, R1 and
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R2. Indeed, more completely one can define an ordering ≺ on Z by i ≺ j iff particle
j is eventually to the right of particle i. Then we have the following result:

Corollary 3.20. The ordering ≺ has the same distribution for R0, R1 and R2 and
for any value of β.

It would certainly be interesting to have a more direct understanding of this
property, based for example on couplings or local dynamics, as well as the indirect
argument based on the equivalence of multi-type equilibrium distributions.

Overtaking probabilities in the multi-type TASEP can also be interpreted in
terms of questions of survival or extinction in multi-type growth models. In Ferrari
et al. (2009) a coupling is given between the multi-type TASEP and a three-type
version of the corner growth model, under which a given cluster survives for ever if
and only if particle 0 never overtakes particle 1. (The extinction of the cluster occurs
if two interfaces in the growth model meet – the paths of these interfaces are related
to the paths of the two particles). Different overtaking events in the TASEP can be
represented by varying the initial condition in the competition growth model. Using
the results above, we find that the survival probabilities in the growth model will
remain unchanged if we move from the continuous-time model to natural discrete-
time models which correspond to models R1 or R2 in the TASEP. Again, this is
certainly not obvious from the local dynamics of the processes.

Unlike in models R1 and R2, in the model R3 the probabilities P [U0 > U1],
P [U0 = U1] and P [U0 < U1] do depend on β and the behaviour of the model is
qualitatively different for different values of β (Theorem 3.17): For small β we have
P [U1 < U0] > P [U1 > U0], but P [U1 < U0] < P [U1 > U0] for large β (the transition
occurs at β = 0.38860064568 . . .).

Note however that for β → 1 the probabilities relating U0 and U2 in Theorem
3.19 converge to 1

2 , 1
6 and 1

3 , i.e. to the probabilities we get in the continuous model
and R1 and R2 for the speeds of particle 0 and 1. In a sense, for large β the particles
0 and 2 in the model R3 behave like adjacent particles in the models R1 and R2.
This can heuristically be seen in the following way: We consider the particles in
the model R3 (with large β close to 1) starting on even sites. In general, particles
starting on an even site will move two steps to the right in each time-step since β
is large and we update even sites first. If a particle does not jump either during
the even or the odd update (which happens with probability 2β(1− β)) it ends up
on an odd site and starts moving left until either

• (A) it hits a weaker particle to the left by which it cannot be overtaken
• (B) it does not get jumped over either during an even or odd update because

the adjacent particle to the left did not try to jump

In both cases the particle itself will return to an even site (with high probability)
and resume moving to the right. The particle that caused the stop (either because
it was weaker or because it did not try to jump) will itself start moving to the left
until (A) or (B) happens. Now consider the model R1 with large β. Most particles
will move one step to the right in each time-step, but some particles do not jump
and therefore get overtaken until again either (A) or (B) happens (where we remove
the part “either during and even or odd update”). Particles in these two models
have different speeds, but the probabilities P [U0 > U1], P [U0 = U1], P [U0 < U1] in
R1 and P [U0 > U2], P [U0 = U2] and P [U0 < U2] in R3 are (almost) the same.
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4. Proofs

4.1. Invariant Measures.

Proof of Theorem 3.3: The idea of the proof for Theorem 3.3 for the discrete-time
models is the same as for the continuous-time model R0 (see Ferrari and Martin,
2006), but here we will use a slightly different definition for the so-called dual
points: In Ferrari and Martin (2006) the authors used an explicit construction that
transformed a set ω of Bernoulli points into a corresponding set 4(ω) of dual points.
Here we provide a more general method to obtain these dual points. We will not
provide an explcit set of dual points, but only explain how to obtain one that has the
required properties. When thinking about the model R3 bear in mind that we have
different densities on even and odd sites. We start with the following Proposition,
that asserts that for every particle density ρ and every set of Bernoulli marks ω
there is essentially only one stationary and space-ergodic TASEP trajectory. This
corresponds to Proposition 8 in Ferrari and Martin (2006).

Proposition 4.1. For any particle density ρ ∈ (0, 1) and Bernoulli marks ω we
can get an essentially unique stationary and space-ergodic trajectory (ηn, n ∈ Z) for
the TASEP governed by ω with time-marginals νρ.

Remark 4.2. Essentially unique means that if we have two stationary and space-
ergodic trajectories then they are the same with probability 1.

Proof : The Proposition can be proved using an argument similar to the one used
in Mountford and Prabhakar (1995); see also Ferrari and Martin (2006). �

Now we define for each of the three models a set of dual points 4ρ(ω) such that
the time reflections of these dual points govern the time reversal of the TASEP.
Given the Bernoulli process ω and the trajectory (ηn, n ∈ Z) we define C1 ⊂ ω
as the set of jump marks that actually lead to a particle jumping one step to the
left (i.e. the site that was updated was occupied and the particle was not blocked).
Now we look at the time reversal (η̃n, n ∈ Z) = (η−n, n ∈ Z) of (ηn, n ∈ Z). Because
we want the time reflections of the dual points to govern the time reversal of the
TASEP we have to have C1 ⊂ 4ρ(ω).

The time reversal has the same distribution as the space reversal. The space
reversal is governed by a Bernoulli process (the space reversal of ω) and particles
jump to the right. In particular, all possible jumps happen at rate β. That means
that in the time reversal all possible jumps happen at rate β, as well.

Let C2 be the set of points x ∈
((

Z + 1
2

)
× Z

)
\C1 for which adding x to 4ρ(ω)

would not change the trajectory of the time reversal (i.e. if we let the time reversal
be governed by the time reflections of the dual points then the trajectory does not
change if we add or remove x from 4ρ(ω)). Let ω̃ be a Bernoulli process with rate
β on C2, independent of everything else. That means ω̃ ⊂ C2 and each point from
C2 is present in ω̃ independently with probability β. Now put 4ρ(ω) = C1 ∪ ω̃.
The properties of these dual points are stated in the following Proposition that
corresponds to Proposition 10 in Ferrari and Martin (2006).

Proposition 4.3. The time reflections of the dual points 4ρ(ω) defined above
govern the time reversal of (ηn, n ∈ Z) and they form a Bernoulli process with rate
β on

(
Z + 1

2

)
×Z. Furthermore, the set of dual points before time m is independent

of the configuration ηm.
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Proof : The first two statements are true by the construction of the dual points.
The dual points {(x, n) ∈ 4ρ(ω) : n < m} govern the evolution of the time reversal
on the time interval (−m,∞) starting from the configuration η̃−m and they are
independent of this configuration. But η̃−m = ηm. So the set of dual points
{(x, n) ∈ 4ρ(ω) : n < m} is independent of ηm. �

We now take ρ1 < . . . < ρn and let αm = (α1
m, . . . , α

n
m) be the multiline TASEP

trajectory governed by ω. This means that ωn = ω, ωk = 4ρk+1
(ωk+1) and

(αk
m)m∈Z is the TASEP trajectory governed by ωk with density ρk. Then by the

independence of the dual points before time m from the configuration ηm we get
that the multiline process is stationary with product measure ν = νρ1 × . . .× νρn

(Proposition 11 in Ferrari and Martin, 2006). As in the paragraph preceding Theo-
rem 3.3 we define η =

(
η1, . . . , ηn

)
by ηk = D(n−k+1) (αk, . . . , αn). Then induction

arguments and some case-by-case checking for n = 2 as done in Ferrari and Martin
(2007) show that (ηk

n)n∈Z is the TASEP trajectory governed by ω with particle
density ρk (Proposition 12 in Ferrari and Martin, 2006) and this implies Theorem
3.3. �

Remark 4.4. As mentioned in the beginning of this section, for the model R3 we
have to think of the ρk as densities on even sites and we have to replace the νρk

by
µρk

.

Remark 4.5. Inherent in the tandem queue construction for the multi-type station-
ary distribution in model R3 is a version of Burke’s theorem for the queues with
different arrival and service rates on even and odd sites. Consider a queue with
arrival process An, service process Sn and departure process Dn. Let An be a
Bernoulli process with rate ρ1 = (γ1, γ2) ∈ (0, 1)2 which means that on even sites
arrivals happen with probability γ1 and on odd sites they happen with probability
γ2. Motivated by the invariant distributions for the TASEP R3 with just one type
of particles we want γ1 and γ2 to satisfy

γ2 =
γ1 (1 − β)

1 − γ1β
(4.1)

where β ∈ (0, 1) is the rate at which jumps in the TASEP happen. Analogously,
we let Sn be a Bernoulli process with rate ρ2 = (δ1, δ2) ∈ (0, 1)2 where

δ2 =
δ1 (1 − β)

1 − δ1β
(4.2)

(and γ1 < δ1, γ2 < δ2). The main observation in Burke’s Theorem (see for ex-
ample Burke, 1956) that shows that arrival and departure process have the same
distribution is that the queue length process is reversible and that departures look
in the reversed process like arrivals in the original process. Interestingly, it turns
out that in the queueing model described above there exists a stationary reversible
distribution π for the queue length process which is independent of whether we just
observed arrivals and services at even sites or at odd sites. π is given by

π(j) =

(
1 − γ1 (1 − δ1)

(1 − γ1) δ1

)(
γ1 (1 − δ1)

(1 − γ1) δ1

)j

j = 0, 1, . . .

and it is reversible because it satisfies the two systems of detailed balance equations

π(j)γi (1 − δi) = π(j + 1) (1 − γi) δi j = 0, 1, . . .
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for i = 1, 2 (i = 1 corresponds to even sites, i = 2 corresponds to odd sites). This
follows from the relations (4.1) and (4.2). As in Burke’s Theorem it follows from
the reversibility of the queue length process that the departure process has the
same distribution as the arrival process, i.e. Dn is a Bernoulli process with rate
ρ1 = (γ1, γ2).

Indeed, the multi-type construction yields extensions of this result which give
input-output theorems for the priority queues with more than one type of customer.
For a discussion of the analogous result in the context of constant arrival and service
rates, see for example Section 6 of Ferrari and Martin (2006).

4.2. Hydrodynamic limits.

Proof outline for Theorem 3.6 for the TASEP R3: The following Propositions cor-
respond to Propositions 2,3 and 5 in Rost (1981) and the proofs are essentially the
same as in Rost (1981).

Proposition 4.6. For every u ∈ R the random variables 1
n
S([un] , n) =

1
n

∑
k>[un] ηn(k) converge a.s. and in L1 to a constant h3(u), as n goes to in-

finity. The function h3 is decreasing, convex; one has h3(u) = 0 for u > 2β
2−β

and

h3(u) = −u for u < − 2β
2−β

.

Proposition 4.7. If h3 is differentiable at u, one has

lim
n→∞

E

[
ηn

(
2

[
k

2

])
+ ηn

(
2

[
k

2

]
+ 1

)]
= −2h′3(u)

whenever k
n

tends to u.

Proposition 4.8. Let µ3(k, n) be the distribution of (ηn(k + l), l ∈ Z). If h′3(u)
exists, any weak limit µ∗

3 of the measures µ3

(
2
[

un
2

]
, n
)

for n→ ∞ is of the form

µ∗
3 =

∫ 1

0

τxσ(dx)

with some probability σ on [0, 1]. τx is the Bernoulli product measure with den-

sity b(x) on even sites and density b(x)(1−β)
1−b(x)β on odd sites where b(x) is such that

the average density is given by x = 1
2

(
b(x) + b(x)(1−β)

1−b(x)β

)
. That means that from

Proposition 4.7 it follows that the measure σ satisfies

∫ 1

0

xσ(dx) = f3(u) = −h′3(u)

We can use the results from O’Connell (2000) about last-passage percolation (see
(2.7)) to calculate the function h3:

h3(u) =





−u u ≤ − 2β
2−β

1
β

(
2 − uβ

2 −
√

(4 − u2) (1 − β)
)
− 1 − 2β

2−β
≤ u ≤ 2β

2−β

0 u ≥ 2β
2−β



Multi-type TASEP in discrete time 321

Since h3 is differentiable we can identify f3 = −h′3 from Proposition 4.8 as

f3(u) = −h′3(u) =





1 u ≤ − 2β
2−β

1
2 − u

β

√
1−β
4−u2 − 2β

2−β
≤ u ≤ 2β

2−β

0 u ≥ 2β
2−β

As mentioned after Theorem 3.6 in the models R0, R1 and R2 this is enough to
prove the convergence statements at the end of Theorem 3.6; this is done using
the monotonicity of the distribution of ηn(k) in k. However, due to the different
behaviour at odd and even sites, this monotonicity does not hold for the model
R3, and the average density f3 does not pick up the density fluctuations between
even and odd sites. Hence without knowing that the model converges to local
equilibrium (which would allow us to calculate the function a3 from f3) we cannot
prove the last part of Theorem 3.6. The essential step for proving convergence to
local equilibrium is the following proposition, the proof of which is again the same
as in Rost (1981) (Proposition 6). Let ρ(k;F ;n) = P [ηn(k + i) = 1, i ∈ F ] for a set
F ⊂ Z.

Proposition 4.9. For any finite set F and any ε > 0 there exists a δ > 0, n0 such
that ∣∣∣∣ρ

(
2
[un

2

]
;F ;n

)
− ρ

(
2

[
un

2

]
;F ;n

)∣∣∣∣ ≤ ε

for |u− u| ≤ δ and n ≥ n0. Also
∣∣∣∣ρ
(

2

[
un

2

]
;F ;n+ l

)
− ρ

(
2

[
un

2

]
;F ;n

)∣∣∣∣ ≤ ε

for 0 ≤ l ≤ [δn], n ≥ n0.

Using this proposition and Jensen’s inequality we can prove that the measure
σ from Proposition 4.8 is the unit mass on f3(u) and since b(f3(u)) = a3(u) this
implies convergence to local equilibrium (see Rost, 1981, Section 4 for the details).

�

4.3. Multi-type models out of equilibrium.

Proof of Theorem 3.9: First we want to outline the proof for convergence of X(i)(t)
t

in distribution (as before we have t ∈ R+ or t ∈ N depending on the model). This
follows the ideas from Ferrari and Kipnis (1995). We want to couple two TASEPs
with initial configurations

η1
0(x) =

{
1 x ≤ 0

0 x ≥ 1
and η2

0(x) =

{
1 x ≤ −1

0 x ≥ 0

in two different ways and calculate the difference E
[
S1([rt], t)

]
− E

[
S2([rt], t)

]
in

both couplings. S1([rt], t) and S2([rt, t]) are the number of particles to the right
of [rt] at time t in η1 and η2. Using basic coupling (i.e. using the same Poisson
processes {(P x

t )t≥0 : x ∈ Z} or Bernoulli processes {(Bx
n)n∈N

: x ∈ Z} for η1 and

η2) gives

E
[
S1([rt], t)

]
− E

[
S2([rt], t)

]
= P

[
X(i)(t) > [rt]

]
(4.3)
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since we can interpret the discrepancy between η1 and η2 as second class particle
(see Section 2.3). This works for all models R0, R1, R2 and R3. The second
coupling we want to use is called particle-particle coupling. We label the particles
in η1

0 and η2
0 from right to left and let particles with the same label jump at the

same time. Then under this coupling

E
[
S1([rt], t)

]
− E

[
S2([rt], t)

]
= P

[
η1

t ([rt] + 1) = 1
]

(4.4)

in the models R0, R1 and R2. By Theorem 3.6 the right hand side of (4.4) converges
to fi(r), so together with (4.3) we have

P

[
X(i)(t) > [rt]

]
−−−→
t→∞

fi(r)

which proves convergence in distribution for i = 0, 1, 2. However, in the model R3
we cannot use the particle-particle coupling as before because this is no longer a
real coupling. If we let particles with the same label jump at the same time in η1

and η2 then the dynamics of the η2 process are different from the η1 process: In η2

we update odd sites first and then even sites. We denote by EPP the expectation
in η1 and η2 if particles with the same label jump at the same time in η1 and η2

where we update in such a way that η1 is still a TASEP with update rule R3. Then
we have

EPP

[
S1([rt], t)

]
= E

[
S1([rt], t)

]

Notice that starting the second process with updating even sites does not change
anything as there is no particle on an even site with an adjacent empty site in
the initial configuration. If we remove the last update of even sites at time t this
changes the value of S2([rt], t) if there is a jump from site [rt] to site [rt]+1 during
this update. But there can only be a jump from [rt] to [rt] + 1 while updating the
even sites if [rt] is even. Let us therefore consider odd sites 2[ rt

2 ] + 1 first. We get

EPP

[
S2

(
2

[
rt

2

]
+ 1, t

)]
= E

[
S2

(
2

[
rt

2

]
+ 1, t

)]
(4.5)

and we still have

EPP

[
S1

(
2

[
rt

2

]
+ 1, t

)]
− EPP

[
S2

(
2

[
rt

2

]
+ 1, t

)]
= P

[
η1

t

(
2

[
rt

2

]
+ 2

)
= 1

]

as before. Hence we get

P

[
X(3)(t) > 2

[
rt

2

]
+ 1

]
= E

[
S1

(
2

[
rt

2

]
+ 1, t

)]
− E

[
S2

(
2

[
rt

2

]
+ 1, t

)]

= P

[
η1

t

(
2

[
rt

2

]
+ 2

)
= 1

]

−−−→
t→∞

a3(r)

by the convergence to local equilibrium (Theorem 3.6). But by monotonicity we
have

P

[
X(3)(t) > 2

[
rt

2

]
− 1

]
≥ P

[
X(3)(t) > 2

[
rt

2

]]
≥ P

[
X(3)(t) > 2

[
rt

2

]
+ 1

]

Hence

lim
t→∞

P

[
X(3)(t)

t
> r

]
= a3(r)
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Figure 4.7. Pair representation of the second class particle: The
figures on the left show the system with the pair; the
figures on the right show the corresponding multi-type
system

Remark 4.10. If the second class particle starts on an odd site (with first class
particles to the left and holes/third class particles to the right) then

X̃(3)(t)

t

a.s.−−−→
t→∞

Ũ (3)

and Ũ (3) has distribution function a3(1−β)
1−a3β

accordingly.

Now we want to prove almost sure convergence of the speed of a second class
particle. Our methods follow the approach in Ferrari and Pimentel (2005). The
idea is to establish a connection between the path of the second class particle and
a competition interface in the corresponding growth model. The cluster in the
growth model can be divided into two clusters corresponding to events happening
to the right and to the left of the second class particle. The interface between
these two clusters is called the competition interface. Using results about semi-
infinite geodesics it can be shown that this competition interface has almost surely
an asymptotic direction. This can be used to deduce that the second class particle
has almost surely an asymptotic speed and since we know the distribution of this
speed we can also calculate the distribution of the random angle of the competition
interface. In the following we will describe this method first for the TASEP in
continuous time, as given in Ferrari and Pimentel (2005), and then explain the
adjustments that have to be made in the TASEPs in discrete time.
In order to establish the connection between the second class particle and the
competition interface we represent the second class particle as a pair consisting of a
hole and a particle. This reduces our multi-type model to a model consisting only of
particles and holes and allows us to use the connection to last-passage percolation
developed in Section 2.2. We let the pair move as follows: If the particle of the pair
jumps to the right the pair moves to the right (A) and if a particle jumps from the
left into the hole of the pair the pair moves to the left (B), see Figure 4.7. Then
the pair behaves indeed like a second class particle. If we label the particles from
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b b b b b b

H1 H2 H3P1P2P3

-2 -1 0 1 2 3

*

Figure 4.8. Pair representation of the second class particle with par-
ticles labelled from right to left and holes labelled from
left to right

right to left and the holes from left to right as in Figure 4.8 then we can consider
the process (ϕn)n≥0 giving the labels of the pair after the nth jump involving the
pair. We have ϕ0 = (1, 1), as initially the pair consists of hole 1 and particle 1, and
ϕn+1 − ϕn ∈ {(0, 1), (1, 0)}. ϕn satisfies the recursion formula

ϕn+1 =

{
ϕn + (1, 0) T (ϕn + (1, 0)) < T (ϕn + (0, 1))

ϕn + (0, 1) T (ϕn + (1, 0)) > T (ϕn + (0, 1))
(4.6)

If the first label increases the second class particle moves one step to the right and
if the second label increases the second class particle moves one step to the left.

Remark 4.11. Note that by inserting an extra site we changed the parity of the
sites to the right of and including the particle of the pair: The first hole to the right
of the second class particle is at an odd site while the first hole to the right of the
pair is at an even site. The second class particle itself is at an even site while the
particle in the pair is at an odd site. This will be important for model R3.

Now we want to define geodesics in the last-passage percolation model to define
a competition interface in the growth model. For z, z′ ∈ Z

2
+ the heaviest increasing

path from z to z′ (i.e. the path that achieves the maximum in R(z, z′)) is called
the geodesic from z to z′. Note that in the model in continuous time geodesics
are unique. (In the models in discrete time we will need a rule to break ties to
achieve uniqueness of the geodesics). A semi-infinite geodesic starting at z is a path
π = (z, z1, z2, . . .) in Z

2
+ such that for every z′ = zk, z

′′ = zl ∈ π the geodesic from
z′ to z′′ is (zk, zk+1, zk+2, . . . , zl) ⊂ π. For α ∈ [0, 90°] a α-geodesic is a semi-infinte
geodesic with direction α. Now we colour every block Q(i, j) = ( i− 1, i]×(j − 1, j]
in (R+)2\[0, 1]2 either red if the geodesic from (1, 1) to (i, j) passes through (1, 2)
or blue if it passes through (2, 1). The interface between these clusters is called
the competition interface and an induction argument together with the recursion
(4.6) shows that it is given by the process ϕn, see Proposition 3 in Ferrari and
Pimentel (2005). Using results about the existence and uniqueness of α-geodesics
(Propositions 7,8 and 9 in Ferrari and Pimentel, 2005) it can be shown that ϕn has
almost surely an asymptotic direction and we can conclude that the second class
particle has almost surely an asymptotic speed (Propositions 4 and 5 in Ferrari
and Pimentel, 2005). Now we want to apply these methods to the discrete time
TASEPs R1, R2 and R3.



Multi-type TASEP in discrete time 325

R1. The last-passage percolation model for rule R1 was described in Section 2.2,
and in particular just after (2.3). Now to adapt to the initial configuration

η0(x) =





1 x ≤ −1

0 x = 0

1 x = 1

0 x ≥ 2

we have to remove the ‘+1’ weight from the edge between (1, 1) and (2, 1) and
the weight from the vertex (1, 1) as in the initial configuration we are considering
particle 1 has already jumped over hole 1. We colour Q(1, 2) red, Q(2, 1) blue and

every other block Q(i, j) in (R+)2\ [0, 1]2 either red if

R̃(1)((1, 2), (i, j)) > R̃(1)((2, 1), (i, j))

and blue if

R̃(1)((1, 2), (i, j)) ≤ R̃(1)((2, 1), (i, j))

(recall the defintion of R in (2.2); R̃(1) is the corresponding quantity in model R1
with the changes mentioned above). This implies that if Q(i, j + 1) is red and
Q(i+ 1, j) is blue, then Q(i+ 1, j + 1) is red iff

T̃ (1)(i, j + 1) ≥ T̃ (1)(i+ 1, j) (4.7)

and blue iff

T̃ (1)(i, j + 1) < T̃ (1)(i+ 1, j) (4.8)

where T̃ (1) is defined as in (2.3) but now in the model R1 with the modifications

described above. The line ϕ
(1)
n separating the two clusters is again called the com-

petition interface and due to the way we defined the red and blue cluster we have
again that the competition interface corresponds to the path of the second class

particle. We can rewrite (4.7) and (4.8) in terms of ϕ
(1)
n as

ϕ
(1)
n+1 =

{
ϕ

(1)
n + (1, 0) T̃ (1)(ϕ

(1)
n + (1, 0)) ≤ T̃ (1)(ϕ

(1)
n + (0, 1))

ϕ
(1)
n + (0, 1) T̃ (1)(ϕ

(1)
n + (1, 0)) > T̃ (1)(ϕ

(1)
n + (0, 1))

(4.9)

Note the similarity of (4.6) with (4.9); the difference comes from the fact that in the
models in discrete time ties are possible. As in Ferrari and Pimentel (2005) we want
to prove that this competition interface has almost surely an asymptotic direction.
First we note that the results in Ferrari and Pimentel (2005) about geodesics still
hold with geometric weights attached to the vertices instead of exponential weights.
Secondly, the results still hold in a model where ‘+1’ weights are attached to every
horizontal edge in Z

2
+ as these weights do not affect the geodesics (they just give

a constant weight to every path from z to z′, z, z′ ∈ Z
2
+). The only difference in

our case is that there is no weight attached to the edge from (1, 1) to (2, 1). But
this local change does not affect the almost sure statements in Propositions 7,8 and
9 in Ferrari and Pimentel (2005). We conclude that the competition interface in
our model has almost sure an asymptotic direction and it follows from arguments
analogous to the ones in Ferrari and Pimentel (2005) that the speed of the second
class particle converges almost surely.

R2. The result for model R2 follows again from the symmetry between R1 and R2.
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R3. For the purpose of this section it is convenient to change the last-passage
percolation model corresponding to model R3 a little bit. Instead of updating the
even sites and then the odd sites during a single time-step, we separate the two
batches of updates by a half time-step. Then the percolation model corresponding
to the initial configuration

η0(x) =

{
1 x ≤ 0

0 x ≥ 1

has no weights attached to the edges, while the weights at the vertices are geometric
with an extra 1

2 added. As noticed in the beginning of this section, introducing an
extra site into this model changes the parity of some sites. In order to deal with this
we attach a single ‘+ 1

2 ’ weight to the edge from (1, 1) to (1, 2) in the percolation
model corresponding to the initial configuration

η0(x) =






1 x ≤ −1

0 x = 0

1 x = 1

0 x ≥ 2

(where we also remove the weight from the vertex (1, 1)). This ensures that we apply
even/odd updates to the left of the particle of the pair and odd/even updates to

the right. Then the movement of the pair ϕ
(3)
n corresponds to the movement of the

second class particle in a model with even/odd updates.
Again we colour Q(1, 2) red, Q(2, 1) blue and now every other block Q(i, j) in

(R+)2\ [0, 1]
2

either red if

R̃(3)((1, 2), (i, j)) ≥ R̃(3)((2, 1), (i, j)) (4.10)

and blue if

R̃(3)((1, 2), (i, j)) < R̃(3)((2, 1), (i, j)) (4.11)

The interface between these clusters is again the competition interface and is given

by ϕ
(3)
n . In terms of ϕ

(3)
n we get from (4.10) and (4.11) that

ϕ
(3)
n+1 =

{
ϕ

(3)
n + (1, 0) T̃ (3)(ϕ

(3)
n + (1, 0)) < T̃ (3)(ϕ

(3)
n + (0, 1))

ϕ
(3)
n + (0, 1) T̃ (3)(ϕ

(3)
n + (1, 0)) > T̃ (3)(ϕ

(3)
n + (0, 1))

(4.12)

R̃(3) and T̃ (3) are defined as in (2.2) and (2.5) but now we are considering the model
R3 with the modifications described above. Due to the additional ‘+ 1

2 ’ weight on
the edge from (1, 1) to (1, 2) the competition interface never encounters any ties in

this model, i.e. T̃ (3)(ϕ
(3)
n +(1, 0)) = T̃ (3)(ϕ

(3)
n +(0, 1)) does not occur. As in R1, the

local change given by the extra ‘+ 1
2 ’ edge-weight in this model does not change the

almost sure statements in Propositions 7,8 and 9 in Ferrari and Pimentel (2005).
The rest of the argument is the same as for model R1.

�

Remark 4.12. We can use the known distributions of the speeds of the second
class particles (see Theorem 3.9) together with the hydrodynamic limit results (see
Theorem 3.6 and Remark 3.7) to prove the interesting result mentioned in Remark
3.10 that the distributions of the asymptotic direction of the competition interfaces
in the models R1 and R3 are the same:
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Proof : The proof exploits the connections made in Proposition 5 in Ferrari and

Pimentel (2005). Similar to Ferrari and Pimentel (2005) we let ψ
(1)
t = (I(1)(t),

J (1)(t)), ψ
(3)
t = (I(3)(t), J (3)(t)) be the position of the competition interface (i.e.

the labels of the pair) at time t and denote by θ(1), θ(3) ∈ [0, 90°] the random angle
of the competition interface for model R1 and R3, i.e.

lim
t→∞

ψ
(i)
t∣∣∣ψ(i)
t

∣∣∣
= eiθ(i)

=
(
cos(θ(i)), sin(θ(i))

)
for i = 1, 3

By the arguments in the previous sections we know that these limits exist almost
surely. Using the asymptotic shape of the growth models given in Remark 3.7 we
also have

lim
t→∞

ψ
(i)
t

t
= j(i)(θ(i))eiθ(i)

a.s. for i = 1, 3

where j(i)(θ(i)) is the distance from the origin to the intersection of the line given
by {(u, v) ∈ R

2
+ : tan(θ(i)) = v

u
} and the asymptotic growth interface (x, gi(x))

for i = 1, 3. With the formulas for g1 and g3 in (3.1) and (3.3) we can calculate
j(1)(θ(1)) and j(3)(θ(3)) explicitly:

j(1)(θ(1)) =
β

(√
(1 − β) sin(θ(1)) +

√
cos(θ(1))

)2

and

j(3)(θ(3)) =
2β (2 − β)

(
(2 − β)

√
sin(θ(3)) + 2

√
(1 − β) cos(θ(3))

)2

+ β2 cos(θ(3))

By the connection between the path of the second class particle and the competition
interface (X(i)(t) = I(i)(t) − J (i)(t), i = 1, 3, since the second class particle moves
to the right iff the first label of the pair increases and to the left iff the second label
of the pair increases) it follows that

lim
t→∞

X(i)(t)

t
= lim

t→∞
I(i)(t) − J (i)(t)

t
= j(i)(θ(i))

(
cos(θ(i)) − sin(θ(i))

)
def
= li(θ

(i))

almost surely for i = 1, 3. Using the known distributions of the speed of the second
class particle in model R1 and R3 (see Theorem 3.9) we can calculate

P

[
θ(1) ≤ α

]
= P

[
l1(θ

(1)) ≥ l1(α)
]

= f1(l1(α))

and

P

[
θ(3) ≤ α

]
= P

[
l3(θ

(3)) ≥ l3(α)
]

= a3(l3(α))

A calculation shows that

f1(l1(α)) = a3(l3(α))

�

Proof of Theorem 3.13: Let the operators σn be defined by

σnY =

{
τnY Yn < Yn+1

Y otherwise
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90°

1

90°

1

Figure 4.9. Distribution function for the random angle of the
competition interface in the models R1 and R3 (left)
and R2 (right) for β = 0.1 (red), β = 0.5 (yellow)
and β = 0.9 (blue)

where τn exchanges Yn and Yn+1 in Y . The proof of the following general Lemma
is the same as in Amir et al. (2011) (Lemma 3.1).

Lemma 4.13. For a fixed sequence i1, . . . , ik in Z we have

σik
· · ·σi1

d
= (σi1 · · ·σik

)
−1

We have the relation YXn(m)(m) = n between the X and the Y process. Since
β < 1 each site has a positive probability that no jump occurs at that site at any
given time. At each time-step these sites separate Z into finite intervals and the
events on these intervals during that time-step are independent. In the model with
updates from right to left we apply a finite sequence of operators σi1 · · ·σik

where
i1, . . . , ik is an increasing sequence (since we update from right to left). Lemma 4.13
states that applying σi1 · · ·σik

is the same (in distribution) as applying σik
· · ·σi1

(i.e. updating from left to right) and taking the inverse permutation. But given the

configuration Yn(0) and performing the updates from left to right we get Y
(2)
n (1)

and this is the inverse permutation of X
(2)
n (1). So

Y (1)
n (1)

d
= X(2)

n (1)

Inductively we get that this holds for all m > 0. The other three parts follow in
the same way. In the case with even/odd updates, i1, . . . , ik is a sequence such that
there exists a 1 ≤ j ≤ k+1 such that il is odd for l < j and il is even for l ≥ j. �

In order to prove Theorem 3.12 we will need the following Lemma. We state it
here for the model R1, but analogous results hold for the other models as well. The
Lemma corresponds to Lemma 4.1 in Amir et al. (2011).

Lemma 4.14. Consider two TASEPs, Y (1) and Ỹ (1), as functions of the same

Bernoulli points on Z × N (i.e. under basic coupling). We set Y
(1)
n (0) = n and

Ỹ
(1)
n (0) = σj · · ·σj+kY

(1)
n (0) for some j ∈ Z and k ≥ 0. Let {U (1)

n } be the speed

process of Y (1) and {Ũ (1)
n } be the speed process of Ỹ (1). Then Ũ (1) = σj+k · · ·σjU

(1).

Proof : Every other particle than {j, . . . j+k+1} is either stronger than all particles
{j, . . . , j + k + 1} or weaker than all particles {j, . . . , j + k + 1}. Any swap of a

particle other than {j, . . . , j + k + 1} will happen in both Y (1) and Ỹ (1). So for

any i /∈ {j, . . . , j + k + 1} we have X
(1)
i (m) = X̃

(1)
i (m) for all m ≥ 0 and therefore

U
(1)
i = Ũ

(1)
i for those i. In Ỹ (1) particle j + k + 1 is always to the left of all other
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particles {j, . . . , j + k}. So Ũ
(1)
j+k+1 = min{U (1)

j . . . U
(1)
j+k+1}. Define j ≤ r ≤ j+k+1

by

min
{
U

(1)
j . . . U

(1)
j+k+1

}
= U (1)

r

Then for i = r, r + 1, . . . , j + k we have Ũ
(1)
i = U

(1)
i+1 and for i = j, j + 1, . . . , r − 1

Ũ
(1)
j = max

{
U

(1)
j , U

(1)
j+1

}

Ũ
(1)
j+1 = max

{
min

{
U

(1)
j , U

(1)
j+1

}
, U

(1)
j+2

}

Ũ
(1)
j+2 = max

{
min

{
min

{
U

(1)
j , U

(1)
j+1

}
, U

(1)
j+2

}
, U

(1)
j+3

}

. . .

This shows that Ũ (1) = σj+k · · ·σjU
(1). �

Proof of Theorem 3.12: Consider a Bernoulli process on Z×Z. Half of this process
(Z × N) is used to construct the TASEP Y (1). For any l ∈ Z we can translate
the Bernoulli process by l (i.e. take points of the form (n,m + l) where (n,m) is
in the original process). We can restrict this translated process to Z × N and use

this restricted process to construct another TASEP. Let U (1)(l) = {U (1)
n (l)} be the

speed process for the TASEP that has been constructed using the Bernoulli process
translated by l. For every l, U (1)(l) has distribution µ(1). So we have to show that

{U (1)
n (l)} behaves like a TASEP with updates from left to right. In order to do

this we look at a transition {U (1)
n (l)} → {U (1)

n (l + 1)}. The effect on the original
TASEP of changing from translating by l to translating by l+ 1 is that some finite
sequences of σ operators of the form σj · · ·σj+k are added to be applied to the
TASEP before the original sequence of operations. At each location a σ operator
is added with probability β. The previous Theorem shows, that applying each of
these finite sequences has the same effect on the speeds as applying each sequence

in reverse order to the speed process. This shows that {U (1)
n (l)} behaves like a

TASEP with updates from left to right and therefore the measure µ(1) is stationary
for the TASEP with updates from left to right.
The proofs for the other three models are essentially the same (using the appropriate
versions of Lemma 4.14). �

The following Lemma will allow us to do the explicit calculations for the joint
densities of the speeds in Theorems 3.15 - 3.19 using the connection between queue-
ing models and the invariant measures introduced in Theorem 3.3. Here D(gi) is
the domain of the distribution function gi (i = 0, 1, 2, 3, 4).

Lemma 4.15. If F : D(gi) → {1, . . . , N} is non-decreasing then for the TASEP

{Y (i)
n (m)}n,m the distribution of {F (U

(i)
n )}n is the unique ergodic stationary mea-

sure of the multi-type TASEP model Rj(i) with types {1, . . . , N} and densities
λl = gi(sup{F−1(l)}) − gi(inf{F−1(l)}) for type l = 1, . . . , N (j as in Theorem
3.12).

Proof : The proof is analogous to the proof of Corollary 5.4 in Amir et al. (2011). �

With the help of this Lemma we can do all the calculations needed for the results
in Theorems 3.15 - 3.19. Depending on the model we are considering we will choose
the function F from Lemma 4.15 to be Fi = min{j : gi(u) < xj} for some increasing
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sequence (x1, . . . , xN−1) in [0, 1]. Then we put Vn = F (Un) and the distribution
of the V s is given by the invariant measure for the multi-type models and can be
calculated explicitly using the queueing representation.

Proof of Theorem 3.15: By Lemma 4.15 we have with N = 3 that F1(Un) is dis-
tributed according to the unique ergodic stationary measure of a 3-type TASEP
with updates from left to right and densities

λ1 = P [x0 < g1(Un) < x1] = x1 − x0 = x1

λ2 = P [x1 < g1(Un) < x2] = x2 − x1

λ3 = P [x2 < g1(Un) < x3] = x3 − x2 = 1 − x2

λ1 is the density of first class particles, λ2 is the density of second class particles and
λ3 is the density of third class particles (or holes). Recall that Vn = F1(Un). Using
the queueing representation for the unique ergodic stationary measure of a 3-type
TASEP we can calculate the joint distribution (V0, V1) explicitly. This distribution
depends on the xi. Taking suitable derivatives with respect to these xi we get the
density of the corresponding speeds. We have for example

P
[
U0 < g−1

1 (x1) < U1 < g−1
1 (x2)

]
= P [V0 = 1, V1 = 2]

= x1x2 (x2 − x1)

since the probability of having a second class particle at position 1 is x2 −x1 (since
this is the density of second class particles) and to have a first class particle at
position 0 we then have to have an arrival (probability x1) and a service (probability
x2) because having a second class particle at site 1 means that the queue was empty
at that time (so in order to have a departure at site 0 we need an arrival at site 0).
Remember that in Theorem 3.3 the particles in the TASEP jumped from the right
to the left. If we want to consider the TASEP with jumps from the left to the right
(and that is what we are doing here) we have to read the queues from right to left.
So position 1 comes before position 0 and the probability of having a second class
particle at position 1 is independent of arrivals and services at position 0. So for
u0 < u1 we put x1 = g1(u0) and x2 = g1(u1) and get as density

P [U0 ∈ du0, U1 ∈ du1] =
dx1

du0

dx2

du1

d

dx1

d

dx2
x1x2 (x2 − x1)

=
1 − β

4β2
(1 − u0)

− 3
2 (1 − u1)

− 3
2 (2g1(u1) − 2g1(u0))

=
1 − β

2β3
(1 − u0)

− 3
2 (1 − u1)

− 3
2

·
(√

1 − β

1 − u1
−
√

1 − β

1 − u0

)

Similarly, we have

P
[
g−1
1 (x1) < U1 < g−1

1 (x2) < U0

]
= P [V0 = 3, V1 = 2]

= (1 − x2) (x2 − x1)
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and therefore we get as density for u0 > u1 (putting x1 = g1(u1), x2 = g1(u0))

P [U0 ∈ du0, U1 ∈ du1] =

(
−dx1

du0

)(
−dx2

du1

)
d

dx1

d

dx2
(1 − x2) (x2 − x1)

=
1 − β

4β2
(1 − u0)

− 3
2 (1 − u1)

− 3
2

= g′1(u0)g
′
1(u1)

To get the density for u0 = u1 we consider

P
[
g−1
1 (x1) < U0, U1 < g−1

1 (x2)
]

= P [V0 = 2, V1 = 2]

= (1 − x1)x2 (x2 − x1)

and let x1, x2 → g1(u). We get

P [U0, U1 ∈ du] = lim
x1,x2→g1(u)

(1 − x1)x2 (x2 − x1)

g−1
1 (x2) − g−1

1 (x1)

=

√
1 − β (1 − g1(u)) g1(u)

2β (1 − u)
3
2

=

√
1 − β

2β2 (1 − u)
3
2

(
1 − 1

β

)
+

1 − β

2β2 (1 − u)
2

(
2

β
− 1

)

−
√

1 − β (1 − β)

2β3 (1 − u)
5
2

To get the probabilities in the Theorem we only have to integrate the densities over
the appropriate ranges of u0, u1 and u. Alternatively we can use the following:

P

[
U

(1)
0 < U

(1)
1

]
= P

[
g1(U

(1)
0 ) < g1(U

(1)
1 )
]

(∗)
= P

[
g0(U

(0)
0 ) < g0(U

(0)
1 )
]

= P

[
U

(0)
0 < U

(0)
1

]

=
1

3

(∗) follows from the fact that the distribution of {g1(U (1)
n )} is the unique translation

invariant stationary ergodic measure for the TASEP R2 with marginals uniform on

[0, 1]. The distribution of {g0(U (0)
n )} is the unique translation invariant stationary

ergodic measure for the TASEP in continuous time. Since the stationary distri-
butions for the multi-type TASEPs R0 and R2 are the same (see Theorem 3.3)

{g1(U (1)
n )} has the same distribution as {g0(U (0)

n )}. �

The proofs for Theorems 3.17 - 3.19 work in exactly the same way.

5. Fully parallel updates

Finally we mention the model with “fully parallel updates”. If an update occurs
at site x at time t (which happens with probability β as usual), this update causes
a jump from x to x + 1 if and only if ηt−1(x) = 1 and ηt−1(x + 1) = 0 (that is,
the jump is already possible before any other updates at the current time-step are
performed).
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There are several important differences between this model and the models we
have studied earlier. The Bernoulli product measures νρ are no longer invariant.
Furthermore, the basic coupling no longer preserves an ordering between different
initial configurations, and so it is no longer clear how to define a multi-class system.
If we use basic coupling to couple two systems which start with one discrepancy
at the origin then this single discrepancy can generate additional discrepancies. It
would already be interesting to know how the leftmost and rightmost discrepancies
behave. Do they have asymptotic speeds, and if so are the speeds random or
deterministic? There is still a natural percolation representation, and we can still
obtain a hydrodynamic limit result in the sense that 1

n

∑
un<k<vn ηt(n) converges

a.s. to the constant value
∫ v

u
f(w)dw, for u < v and some function f , but the

stronger result that limn→∞ E [ηn(k)] exists and is equal to f(u) whenever k
n

tends
to u does not follow using the same methods as in the proof of Theorem 3.6.

Acknowledgments

JM was supported by the EPSRC. PS was supported by a “DAAD Doktoranden-
stipendium” and the EPSRC. We are grateful to a referee for helpful suggestions
which improved the clarity of the paper.

References
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Stat. 45 (4), 1048–1064 (2009). MR2572163.

P. A. Ferrari and C. Kipnis. Second class particles in the rarefaction fan. Ann.
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