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Abstract. We consider (discrete time) branching particles in a random environ-
ment which is i.i.d. in time and possibly spatially correlated. We prove a represen-
tation of the limit process by means of a Brownian snake in random environment.

1. Introduction

1.1. Superprocesses in random environments. Superprocesses in random environ-
ments were introduced in Mytnik (1996) as the scaling limits of particle systems
whose branching are affected by random environments. In particular the limiting
behavior of the following model has been studied. At time t = 0, Kn ∼ n particles
are located in R

d. Each of these Kn particles follows the path of an independent
Brownian motion until time t = 1/n. At time 1/n each particle independently of
the others either splits into two or dies and then the individual particles in the
new population again follow the paths of independent Brownian motions starting
at their place of birth, in the interval [1/n, 2/n), and the pattern of alternating
branching and spatial spreading continues. Let us describe in details the branching
mechanism that was suggested in Mytnik (1996). Let {ξk(·)}k≥0 be a sequence of
i.i.d. R

d-indexed random fields with mean 0 and covariance

g(x, y) = Cov(ξk(x), ξk(y)), x, y ∈ R
d.
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At time k/n each particle, independently of the others conditionally on ξ, either
splits into two with probability

1

2
+

1

2
√

n
ξk(x)

or dies with probability
1

2
− 1

2
√

n
ξk(x),

where x is the location of the particle. That is, the fields {ξk}k≥0 create the
random environment that affects the branching of the particles. Define the following
measure-valued process that describes the evolution of the population:

Xn
t (A) =

number of particles in A at time t

n
, A ⊂ R

d. (1.1)

Before proceeding we introduce some notation. For a locally compact Polish space
E, let MF (E) (respectively, M(E)) be the space of finite (respectively Radon) non-
negative measures on E, equipped with the weak (respectively, vague) topology (see
Section 3.1 in Dawson, 1993). In the case of E = R

d, we will also write MF =
MF (Rd) and M = M(Rd). Both µ(φ) and 〈φ, µ〉 denote the integral of a function
φ with respect to measure µ. For any metric space E let DE = DE [0,∞) (resp.
CE = CE [0,∞)) be the space of cadlag (resp. continuous) E-valued functions on
[0,∞) endowed with the Skorohod topology. Let Ck(Rd) (resp. Ck

b (Rd)) be the set
of continuous (resp. bounded continous) functions with continuous (resp. bounded
continuous) partial derivatives of order k or less. Also we define B(Rd) to be the
set of bounded measurable functions on R

d.
It was shown in Mytnik (1996), under some additional technical assumptions on

ξ, that if

Xn
0 ⇒ X0 =: µ , in MF ,

then

Xn ⇒ X, in DMF [0,∞) .

Here X is a process in CMF [0,∞) which is the unique solution to the following
martingale problem: ∀ φ ∈ C2

b (Rd),

Mφ
t ≡ 〈Xt, φ〉 − 〈µ, φ〉 − 1

2

∫ t

0

〈Xs, ∆φ〉 ds, t ≥ 0 (1.2)

is a continuous martingale with quadratic variation process

〈
Mφ

〉
t

=

∫ t

0

〈
Xs, φ

2
〉
ds (1.3)

+

∫ t

0

∫

Rd

∫

Rd

g(x, y)φ(x)φ(y)Xs(dx)Xs(dy)ds, t ≥ 0.

In this paper we introduce some minor changes into the above model. Instead
of the binary branching we assume that each particle gives birth to a number of
particles distributed according to the geometric distribution with parameter 1

2 −
1

4
√

n
ξk(x); that is, if N is the number of offspring of the particle located at x at

time k/n, then

P(N = m|ξ) =

(
1

2
+

1

4
√

n
ξk(x)

)m(
1

2
− 1

4
√

n
ξk(x)

)
, m = 0, 1, 2, . . . . (1.4)
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In particular, conditioned on the environment ξ, the expected number of offspring
of a particle at x at time k/n is

1
2 + 1

4
√

n
ξk(x)

1
2 − 1

4
√

n
ξk(x)

= 1 +
1√
n

ξk(x) +
1

2n
ξk(x)2 + o

(
1

n

)
. (1.5)

Compared with Mytnik (1996), we also allow ξ to be slightly more general, that
is, we assume that {ξk(·)}k≥1 = {ξn

k (·)}k≥1 is a sequence of i.i.d. random fields
with mean ν/

√
n, for some ν ∈ R, and covariance

g(x, y) = Cov(ξk(x), ξk(y)), x, y ∈ R
d. (1.6)

Let Xn be defined for this model as in (1.1). By the same argument as in Mytnik
(1996) one can prove that the limit of {Xn}n≥1 is the (unique) solution to the
following martingale problem: ∀ φ ∈ C2

b (Rd),

Mφ
t ≡ 〈Xt, φ〉 − 〈µ, φ〉 − 1

2

∫ t

0

(〈Xs, ∆φ〉 + 〈Xs, (ν + ḡ/2)φ〉) ds, t ≥ 0 (1.7)

is a continuous martingale with quadratic variation process

〈
Mφ

〉
t

= 2

∫ t

0

〈
Xs, φ

2
〉
ds (1.8)

+

∫ t

0

∫

Rd

∫

Rd

g(x, y)φ(x)φ(y)Xs(dx)Xs(dy)ds, t ≥ 0

where ḡ(x) = g(x, x). (Note the different factor multiplying the term
〈
Xs, φ

2
〉

here
compared with (1.3), which comes from the different variances of the geometric and
Bernoulli distributions.)

1.2. Brownian snake. The main purpose of this paper is to study the Brownian
snake representation of the process that solves the above martingale problem (1.7-
1.8). For a nice introduction into the topic the reader is referred to Le Gall
(1999). The classical Brownian snake was used to study different properties of
super-Brownian motion. Loosely speaking if {Ws}s≥0 is a Brownian snake then for
each s ≥ 0, Ws is a stopped Brownian path. To be more precise we call the pair
w = (w, ζ) ∈ CRd [0,∞) × R+ a stopped path in R

d if for each t ≥ ζ, w(t) = w(ζ).
ζ is called the lifetime of the path w and sometimes is denoted by ζw or ζ(w). Let
W denote the space of all stopped paths in R

d equipped with the distance

d(w, w′) = sup
t≥0

|w(t) − w′(t)| + |ζw − ζw′ |.

We will also use the notation ŵ = w(ζw) for the terminal point of w. For any x ∈ R
d

we denote by x̄ the path with lifetime 0 constantly equal to x. If w = (w, ζ) is a
stopped path then with some abuse of notation we will sometimes set w(s) = w(s)
for any s ≥ 0.

The usual Brownian snake can be thought of as a limit of the so-called discrete
snakes that we will now define. Let {Y n

k/n2}k=0,1,... be a rescaled simple random

walk on Z+/n reflected at the origin, that is, the time between the steps is 1/n2

and the size of the jump is ±1/n with equal probabilities. Explicitely,

P

(
Y n

(k+1)/n2 − Y n
k/n2 = ±1/n

)
=

1

2
, if Y n

k/n2 ≥ 1/n, k = 0, 1, . . . ,

Y n
(k+1)/n2 = 1/n, if Y n

k/n2 = 0, k = 0, 1, . . . .
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We also let Y n
· be constant between the jumps. The process Y n

· is called the
contour or lifetime process of the discrete snake W

n. That is for each s ≥ 0, the
snake W

n
s = (Wn

s , Y n
s ) is a stopped path with life time Y n

s . We next define the
paths of the snake. Fix x ∈ R

d and set

W
n
0 = x̄.

Let η1, η2, . . . be a sequence of independent Brownian paths stopped at time 1/n,
independent of the contour process. Let W

n
k/n2 = (Wn

k/n2 , Y n
k/n2) be the stopped

path at time k/n2 with lifetime ζWn
k/n2

= Y n
k/n2 . Then define

Wn
(k+1)/n2(·) =

{
Wn

k/n2(· ∧ (Y n
k/n2 − 1/n)), if Y n

(k+1)/n2 = Y n
k/n2 − 1/n,

Wn
k/n2 � ηk(·), if Y n

(k+1)/n2 = Y n
k/n2 + 1/n,

(1.9)

where η1 � η2 denotes the concatenation of two paths η1 and η2 in the obvious way.
In words, if the lifetime Y n goes down by 1/n we erase the path of the snake from
the tip by 1/n, or to put it differently, we reduce its lifetime by 1/n. If Y n goes up
by 1/n we add the path η to the tip of the snake. Then we define

W
n
(k+1)/n2(·) = (Wn

(k+1)/n2(·), Y n
(k+1)/n2 (·)).

This way we constructed a sequence of discrete snakes. As is the case for Y n
· , we

define W
n
s (·) = W

n
bsn2c/n(·). The sequence of processes W

n converges, as n → ∞,

to a continuous time Brownian snake (see e.g. Proposition 2.2 in Gall, 1996).
We next describe the connection between the snake process and the branching

Brownian motion. Define the discrete version of the local time as the rescaled
number of upcrossings of Y n from the corresponding level:

`n,m/n
s = n−1

bsn2c∑

i=0

1{Y n
i/n2=m/n,Y n

(i+1)/n2=(m+1)/n}. (1.10)

We also define, for t ≥ 0,

`n,t
s = `n,btnc/n

s . (1.11)

Since s 7→ `n,t
s is increasing we define the measure `n,t(ds) in an obvious way. In fact

this convention will be used throughout the paper: for any non-decreasing function
r 7→ fr on R+, f(dr), with a slight abuse of notation, will denote the corresponding
measure defined via f((a, b]) = fb − fa, for any b ≥ a.

For any a ≥ 0 introduce the inverse local time at level a as

τn,a
r =

1

n2
inf{k : `n,a

k/n2 > r}. (1.12)

For any a ≥ 0 and r1 < r2 define the measure valued process Xn,r1,r2

a,t so that,

for φ ∈ B(Rd)

Xn,r1,r2

a,t (φ) ≡
∫ τn,a

r2

τn,a
r1

φ(Wn
s (Y n

s ))`n,t(ds) , t ≥ a. (1.13)

It is easy to see that Xn,r1,r2

a,k/n , k ≥ banc, is the measure-valued process constructed

in the previous section starting at “time” an = banc/n such that

Xn,r1,r2
a,an

(1) = Xn,r1,r2
an,an

(1) = r2 − r1 ,
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Figure 1.1. Geneology of the particle system (top) and contour

process (bottom). In this picture, τ1,0
1 = 23, τ1,0

2 = 33 and τ1,1
4 =

26.

and therefore

Xn,r1,r2
a,· ⇒ Xr1,r2

a,· , (1.14)

where Xr1,r2
a,· solves the martingale problem starting at time a such that

Xr1,r2
a,a (1) = r2 − r1

and, ∀ φ ∈ C2
b (Rd),

Mφ
a,t ≡

〈
Xr1,r2

a,t , φ
〉
−
〈
Xr1,r2

a,a , φ
〉
− 1

2

∫ t

a

〈
Xr1,r2

a,s , ∆φ
〉
ds, t ≥ a, (1.15)

is a continuous martingale with quadratic variation process

〈
Mφ

a

〉
t

= 2

∫ t

a

〈
Xr1,r2

a,s , φ2
〉
ds, t ≥ a. (1.16)
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1.3. Our model. We finally define the discrete snake in random environment cor-
responding to the branching processes in random environment described in Sec-
tion 1.2. The main difference with the “fixed environment” case is that here the
snake cannot be constructed conditionally on the lifetime process. Both processes
have to be constructed simultaneously.

The environment {ξk(·)}k≥0 = {ξn
k (·)}k≥0 is assumed to consist of a sequence

of i.i.d. random fields, satisfying |ξn
k (x)| ≤ √

n/2 and supn E(|ξn
k (x)|3) < ∞, with

mean ν/
√

n, for some ν ∈ R, and covariance g(x, y) as in (1.6), with ‖ḡ‖∞ < ∞.
Now define the snake with lifetime processes W

n = (Wn, Y n) as follows. Fix a
constant K1 > 0. Let Y n

0 = 0 and W
n
0 = x̄ with x ∈ R

d. Suppose we are given
(Wn

k/n2 , Y n
k/n2) for some k ≥ 0. (Wn

(k+1)/n2 , Y n
(k+1)/n2) will be defined as follows.

If Y n
k/n2 6∈ {0, K1}, then conditionally on ξ and (Wn

l/n2 , Y n
l/n2), l ≤ k we set

P

(
Y n

(k+1)/n2 − Y n
k/n2 = ±1/n|ξ,Wn

l/n2, Y n
l/n2 , l ≤ k

)
=

1

2
± 1

4
√

n
ξY n

k/n2

(
Ŵ

n
n−2k

)
,

where we introduced above the notation for the “tip” of the snake:

Ŵ
n
k/n2 = Wn

k/n2

(
Y n

k/n2

)
.

If Y n
k/n2 = 0, then with probability one we set Y n

(k+1)/n2 = 1/n. If Y n
k/n2 = K1,

then with probability one we set Y n
(k+1)/n2 = K1 − 1/n. (That is, the process is

reflected at height K1; a similar approach of introducing a super-critical branching
mechanism via a reflection of the lifetime process was used by Delmas, 2008.)

Let η1, η2, . . . be a sequence of independent Brownian motions stopped at time
1/n. Given the evolution of the lifetime process Y n until time (k + 1)/n2, the path
of the Brownian snake W at time (k + 1)/n2 is defined exactly as in (1.9).

We next explain the connection between the snake and branching particle system
in random environment which is analogous to the connection that exists between
the processes in a constant environment. Define the rescaled local time `n,t

s for Y n

as in (1.10), (1.11) and the inverse local time as in (1.12). For any r1, r2 > 0, a ≥ 0,
we define the measure-valued process in the same way as it is done in (1.13):

Xn,r1,r2

a,t (φ) ≡
∫ τn,a

r2

τn,a
r1

φ(Wn
s (Y n

s ))`n,t(ds), t ≥ a, (1.17)

for all φ ∈ B(Rd). This process characterizes the branching particle picture in
random environment with offspring distribution given by (1.4) and starting with
b(r2 − r1)nc particles at the site x ∈ R

d at time t = a. In the case of r1 = 0, r2 =
r, a = 0, we will use the notation

Xn,r
0,t ≡ Xn,r1,r2

0,t , t ≥ 0, (1.18)

for the corresponding process.
The following is our first main result.

Theorem 1.1. Fix K1 > 0. Then the sequence of processes {W
n}n≥1 =

{(Wn, Y n)}n≥1 is C-tight in DW Let W = (W, Y ) be an arbitrary limiting point,
let `a be a local time of Y at level a and let τa(r) be the inverse of the local time.
Fix an arbitrary r > 0. Then

Xr
t (φ) =

∫ τ0
r

0

φ(Ŵs)`
t(ds), φ ∈ B(Rd), t ∈ [0, K1], (1.19)
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is the measure-valued process satisfying the martingale problem (1.7-1.8) on [0, K1],
with Xr

0 = rδx.

(The uniqueness of solutions to (1.7)–(1.8) can be read off Mytnik, 1996, however
the uniqueness of the snake W is an open problem.)

In the particular case of a spatially “smooth” random environment we can give
another description of the snake process. It is easy to check from our assumptions
on ξn that if we define

Bn
s (x) ≡ 1√

n

bsnc∑

i=1

ξn
i (x), (1.20)

then

Bn → B,

where ∂Bt(y)
∂t is a Gaussian generalized noise on R+ ×R

d, white in time and colored
in space, such that

E(Bt(x)) = tν, ∀t ≥ 0,

Cov

(
∂Bt(x)

∂t
,
∂Bs(y)

∂s

)
= δ0(t − s)g(x, y), (1.21)

B0 = 0,

where δ0(·) is the Dirac measure at 0. Given the result on the tightness of {W
n}n≥1,

one can easily deduce that the pair {(Wn, Bn)}n≥1 is tight. In what follows we
assume that (W, B) is a limit point of the tight sequence {(Wn, Bn)}n≥1, and we
recall that W = (W, Y ).

Our aim is to introduce a particular functional of the limiting snake that has a
simple semimartingale decomposition. The definition of the functional is motivated
by the one used by Dhersin and Serlet (2000) and also by a functional used to
transform Brox’s diffusion into a martingale, see Shi (2001). For w ∈ W , let

F (w) =

∫ ζ(w)

0

e−Br(w(r))dr.

Our second main result is the following. For technical reasons, we restrict atten-
tion to branching laws constructed directly from smooth Gaussian fields.

Theorem 1.2. Fix K1 > 0. Let B̃ be a Gaussian field as in (1.21) so that B̃ ∈
CC2(Rd)[0,∞), a.s.., and set

ξn
j (y)√

n
=
(
B̃ j

n
(y) − B̃ j−1

n
(y)
)

1{|B̃ j
n

(y)−B̃ j−1
n

(y)|<1/2} . (1.22)

Let (W, B) denote a limit point of (Wn, Bn). Then B has the distribution of B̃,
and there exists a Brownian motion β such that

F (Wt) =

∫ t

0

e−BYs (Ŵs)

{
−1

2
∆BYs(Ŵs) +

1

2

d∑

i=1

(
∂

∂xi
BYs(Ŵs)

)2
}

ds

+`0
t −

∫ t

0

e−BK1 (Ŵs) `K1(ds) +

∫ t

0

e−BYs (Ŵs) dβs . (1.23)
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Remark 1.3. The first term on the right side of (1.23) can be written as
∫ t

0

1

2
∆xe−BYs (x)|x=Ŵs

ds,

and it comes from the fact that Ws(·) is a Brownian path.

Remark 1.4. It is plausible that one may relax the assumptions on the fields {ξn}
in Theorem 1.2; however, some strong assumptions that ensure good spatial ap-
proximation of B by partial sums of the ξns seem to be crucial.

Note that in the case of constant function g, for every s, Bs(·) is a constant
function in space, and hence we immediately have the following corollary, which for
simplicity we state only in case ν = 0. A similar result (without the reflection) can
be found in Seignourel (2000).

Corollary 1.5. Let g ≡ 1 and ν = 0. Then Y is the Brox diffusion reflected at 0
and K1.

See the appendix for the definition of the Brox diffusion.

1.4. Structure of the paper. In the next section, we derive some standard estimates
on survival probability for branching processes in a random environment. Section
3 is concerned with the proof of tightness of the contour process. (Because of
dependence through the environment, natural arguments involving stopping times
such as Aldous’ tightness criterion cannot be applied directly, and extra care has
to be employed in separating dependence on the level of the contour process from
dependence on the lifetime of the process.) Most of the work is devoted to proving
that large upward jumps of the contour process are unlikely; downward jumps are
then handled by a time reversal argument. Section 4 is devoted to the proof of
tightness of the snake process and its local time, and a completion of the proof
of Theorem 1.1. Section 5 is devoted to the description of the snake provided in
Theorem 1.2, while the appendix is devoted to the description of the contour process
for environments with no spatial dependence, providing in particular a direct proof
of Corollary 1.5, that bypasses the need to consider the Brownian snake.
Notation Throughout, C, K denote generic constants whose values may change
from line to line. Numbered constants (such as K1, c0, Cm, δ4.2, etc.) are fixed and
do not change throughout the paper.

2. Asymptotics for survival probability and useful bounds

We start with a lemma that describes the asymptotics for survival probability
for classical branching processes. For any n ≥ 1 let {Mn

l , l = 0, 1, 2, . . .} be the
branching process with geometric offspring distribution with parameter

p = 1/2 − bn/4n

for some bn ∈ (−2n, 2n). That is if Zn is the number of offspring in the process
Mn, then

P(Zn = k) = p(1 − p)k, k = 0, 1, 2, . . . .

For δ > 0 define

h(b, δ) =

{
b

1−e−bδ , b 6= 0,
1
δ , b = 0.
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Lemma 2.1. Assume
lim

n→∞
bn = b,

and Mn
0 = 1 for all n ≥ 1. Then for any δ > 0,

lim
n→∞

nP(Mn
[nδ] > 0) = h(b, δ).

Proof: For b = 0 the result is well-known (see e.g. Perkins, 2002, Theorem II.1.1 for
a more general result). While we believe that the result is also known for b > 0, we
were unable to locate a reference and thus for the sake of completeness we provide
a proof.

Let f(s) be the generating function of Zn, that is

f(s) =
1/2 − bn/4n

1 − (1/2 + bn/4n)s
, 0 ≤ s ≤ 1.

Define f0(s) = s, f1(s) = f(f0(s)) = f(s) and in general

fk(s) = f(fk−1(s)), 0 ≤ s.

Then by the branching property,

E[sMn
k |Mn

0 = 1] = fk(s).

Therefore,

P(Mn
k = 0|Mn

0 = 1) = fk(0) = f(fk−1(0))

=
1/2 − bn/4n

1 − (1/2 + bn/4n)fk−1(0)
.

Fix k = bnδc and define

yl = k(1 − fl(0)), l = 0, 1, . . . , k.

One has

yl =
(1/2 + bn/4n)yl−1

1 − (1/2 + bn/4n)(1 − yl−1/k)
. (2.1)

Let
zl = 1/yl , l = 0, . . . , k .

Then z0 = 1/k and
zl = zl−1dn + 1/k, l = 1, . . . , k,

with

dn =
1/2 − bn/4n

1/2 + bn/4n
. (2.2)

By iterating we get

zk =
1

k

(
dk

n +
1 − dk

n

1 − dn

)
. (2.3)

Now as n → ∞ we have

1 − dn =
bn

n(1 + bn

2n )
∼ bn

n
.

Also recall that k = bnδc and hence

dk
n =

(
1/2 − bn/4n

1/2 + bn/4n

)bnδc
∼ (1 − bn/n)nδ ∼ e−bnδ.
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Therefore

lim
n→∞

zbnδc = lim
n→∞

e−bnδ + 1−e−bnδ

bn/n

nδ
=

1 − e−bδ

bδ
.

Since nP(Mbnδc] > 0) ∼ ybnδc
δ = 1

δzbnδc
, this concludes the proof.

Returning to the random environment case, let M̃n denote the total mass of the
branching Brownian motion in random environment Xn (with geometric offspring

distribution) defined in Section 1.1 (that is, n−1M̃n
k = 〈Xn

k/n, 1〉) and let Mn be as

above with

b = ν + ‖ḡ‖∞/2. (2.4)

Remark 2.2. With our assumptions, it is easy to see that the m-th moment (for
any m ≥ 2) of the absolute value of the expected (conditioned in the environment)
number of offspring minus 1 of a particle at x at time k/n, see (1.5), is bounded by
Cm/n, for an appropriate constant Cm. Moreover, the absolute value of the first
moment of the number of offspring minus 1 of a particle at x at time i/n, see (1.5),
is bounded by C1/n, for an appropriate constant C1.

Lemma 2.3. Let M̃n
0 = 1 for all n ≥ 1. Then

lim sup
n→∞

nP(M̃n
bnδc > 0) ≤ h(b, δ).

Proof: For i = 1, 2, . . . , M̃n
k we denote by Ui,k(t), t ∈ [k/n, (k + 1)/n], the position

at time t of the i-th particle that was born at time k/n. That is we have

Xn
k/n =

1

n

M̃n
k∑

i=1

δUi,k(k/n) .

Moreover if Zn
i,k+1 is the number of offspring at time (k + 1)/n of the i-th particle

that was born at time k/n, then we also have

Xn
k/n =

1

n

M̃n
k−1∑

i=1

Zn
i,kδUi,k−1(k/n) .

We write for simplicity ξi,k = ξk(Ui,k−1(k/n)) and denote by Fξ
k the sigma-algebra

generated by the environment {ξj(·), j ≤ k}. We have, for s ∈ (0, 1),

E

(
sM̃n

k

)
= E

(
Π

M̃n
k−1

i=1 sZn
i,k

)

= E

(
Π

M̃n
k−1

i=1 E

(
sZn

i,k

∣∣∣Xn
k
n−,Fξ

k

))

= E




(

1

2 − s

)M̃n
k−1

Π
M̃n

k−1

i=1

1 − ξi,k

2
√

n

1 − ξi,ks

2(2−s)
√

n



 .
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Therefore,

E

(
sM̃n

k

)
= E



(

1

2 − s

)M̃n
k−1

E


Π

M̃n
k−1

i=1

1 − ξi,k

2
√

n

1 − ξi,ks

2(2−s)
√

n

∣∣∣∣∣∣
Xn

k
n−




 (2.5)

≥ E




(

1

2 − s

)M̃n
k−1

exp



E




M̃n

k−1∑

i=1

log




1 − ξi,k

2
√

n

1 − ξi,ks

2(2−s)
√

n





∣∣∣∣∣∣
Xn

k
n−











 ,

where the last inequality follows by Jensen inequality. Since |ξi,k| <
√

n/2 we get
by trivial estimates that for n large enough

1 − ξi,k

2
√

n

1 − ξi,ks

2(2−s)
√

n

≥
(

1 − ξi,k

2
√

n

)(
1 +

ξi,ks

2(2 − s)
√

n
+

(
ξi,ks

2(2 − s)
√

n

)2

+

(
ξi,ks

2(2 − s)
√

n

)3
)

= 1 +
ξi,k

2
√

n

(
s

2 − s
− 1

)
+

ξ2
i,ks

4(2 − s)n

(
s

2 − s
− 1

)

+

(
ξi,ks

2(2 − s)
√

n

)2
ξi,k

2
√

n

(
s

2 − s
− 1

)

≥ 1 − ξi,k(1 − s)

(2 − s)
√

n
−

ξ2
i,ks(1 − s)

2(2 − s)2n

−c2.6(1 − s)n−3/2|ξi,k|3. (2.6)

Again by trivial estimate on the logarithmic function we get

log




1 − ξi,k

2
√

n

1 − ξi,ks

2(2−s)
√

n



 ≥ log

(
1 − ξi,k(1 − s)

(2 − s)
√

n
−

ξ2
i,ks(1 − s)

2(2 − s)2n

−c2.6(1 − s)n−3/2|ξi,k|3
)

≥ −ξi,k(1 − s)

(2 − s)
√

n
−

ξ2
i,ks(1 − s)

2(2 − s)2n

−
ξ2
i,k−1(1 − s)2

2(2 − s)2n
− c2.7(1 − s)n−3/2|ξi,k|3

= −ξi,k(1 − s)

(2 − s)
√

n
−

ξ2
i,k(1 − s)

2(2 − s)2n

−c2.7(1 − s)n−3/2|ξi,k|3, (2.7)
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for all n sufficiently large. Take an expectation to get

E

(
−ξi,k(1 − s)

(2 − s)
√

n
−

ξ2
i,k(1 − s)

2(2 − s)2n
− c2.7(1 − s)n−3/2|ξi,k|3

∣∣∣∣∣X
n
k
n−

)

= − ν(1 − s)

(2 − s)n
− (ν2/n + ḡ(Ui,k−1(k/n))(1 − s)

2(2 − s)2n
− c2.7’(1 − s)n−3/2

≥ − (1 − s)

(2 − s)n

(
ν +

‖ḡ‖∞
2

+ ν2/n + 2c2.7’n
−1/2

)

≥ − (1 − s)

(2 − s)n

(
ν +

‖ḡ‖∞
2

+ c2.8n
−1/2

)
. (2.8)

Substituting in (2.7) we get

E

(
sM̃n

k

)
≥ E

((
1

2 − s

)M̃n
k−1

exp

{
−M̃n

k−1

(1 − s)

(2 − s)n

(
ν +

‖ḡ‖∞
2

+c2.8n
−1/2

)})

≥ E

((
1

2 − s
− (1 − s)

(2 − s)2n

(
ν +

‖ḡ‖∞
2

+ c2.8n
−1/2

))M̃n
k−1

)

=: E

(
f̃(s)M̃n

k−1

)
. (2.9)

Let f(s) be the generating function of the geometric distribution with parameter

p = 1
2 − bn

4n , then

f(s) =
1/2 − bn/4n

1 − (1/2 + bn/4n)s

=
1

2 − s

(
1 − bn(1 − s)

(2 − s)n(1 − bns
2n(2−s) )

)

≤ 1

2 − s

(
1 − bn(1 − s)

(2 − s)n

)
. (2.10)

If one takes bn = ν + ‖ḡ‖∞
2 + c2.8n

−1/2 then we get that

f̃(s) ≥ f(s), 0 ≤ s ≤ 1,

and hence by iterating (2.9) we get

E

(
sM̃n

k

)
≥ E

(
sMn

k

)
, 0 ≤ s ≤ 1.

Therefore

P(M̃n
k > 0) ≤ P(Mn

k > 0), ∀k ≥ 1, (2.11)

and hence by Lemma 2.1 we get that

lim sup
n→∞

nP(M̃n
bnδc > 0) ≤ lim sup

n→∞
nP(Mn

bnδc > 0) ≤ h(b, δ). (2.12)

Lemma 2.4. Let M̃n, Xn be as above.
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(a) For any δ > 0,

lim sup
n→∞

E

(
M̃n

bnδc

)
≤ lim sup

n→∞
M̃n

0 ebδ,

and hence,

lim sup
n→∞

E

(
Xn

bnδc/n(1)
)
≤ lim sup

n→∞
Xn

0 (1)ebδ.

(b) For any δ, a > 0,

lim sup
n→∞

P

(
sup

k≤bnδc
Xn

k/n(1) ≥ a

)
≤ lim supn→∞ Xn

0 (1)
(
ebδ ∨ 1

)

a
.

Proof: (a) The proof of goes along the similar lines as the proof of the previous
lemma. First recall that

E

(
Zn

i,k|Xn
(k−1)/n

)
≤ 1 +

ν

n
+

‖ḡ‖∞
2n

, (2.13)

for all i, k, n. Hence, by iteration, we get

E

(
M̃n

bnδc

)
≤ M̃n

0

(
1 +

ν

n
+

‖ḡ‖∞
2n

)bnδc
, (2.14)

and the result follows.
(b) For all k ≥ 0, define

V n
k = Xn

k/n(1)

(
1 +

ν

n
+

‖ḡ‖∞
2n

)−k

.

Then using (2.13) it is easy to check that {V n
k }k≥0 is a nonnegative {FXn

k }k≥0-
supermartingale. Therefore by maximal inequalities for non-negative supermartin-
gales we get

P

(
sup

k≤bnδc
V n

k ≥ a

)
≤ E (V n

0 )

a
=

Xn
0 (1)

a
. (2.15)

To prove the result we consider the cases ν + ‖ḡ‖∞
2 < 0 and ν + ‖ḡ‖∞

2 ≥ 0 separately.

First suppose that ν + ‖ḡ‖∞
2 < 0. Recall the definition of V n

k to get that, in this
case,

P

(
sup

k≤bnδc
V n

k ≥ a

)
(2.16)

= P

(
sup

k≤bnδc
Xn

k/n(1)

(
1 +

ν

n
+

‖ḡ‖∞
2n

)−k

≥ a

)

≥ P

(
sup

k≤bnδc
Xn

k/n(1) ≥ a

)
.

By putting (2.15), (2.16) together we get that

P

(
sup

k≤bnδc
Xn

k/n(1) ≥ a

)
≤ Xn

0 (1)

a
, for ν +

‖ḡ‖∞
2

< 0. (2.17)
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Now let ν + ‖ḡ‖∞
2 ≥ 0. Then we get

P

(
sup

k≤bnδc
V n

k ≥ a

(
1 +

ν

n
+

‖ḡ‖∞
2n

)−bnδc)
(2.18)

= P

(
sup

k≤bnδc
Xn

k/n(1)

(
1 +

ν

n
+

‖ḡ‖∞
2n

)−k

≥ a

(
1 +

ν

n
+

‖ḡ‖∞
2n

)−bnδc)

≥ P

(
sup

k≤bnδc
Xn

k/n(1) ≥ a

)

Apply this and (2.13) with a
(
1 + ν

n + ‖ḡ‖∞
2n

)−n

instead of a to get

P

(
sup

k≤bnδc
Xn

k/n(1) ≥ a

)
(2.19)

≤
Xn

0 (1)
(
1 + ν

n + ‖ḡ‖∞
2n

)bnδc

a
, for ν +

‖ḡ‖∞
2

≥ 0.

By combining (2.17), (2.19), we get

P

(
sup

k≤bnδc
Xn

k/n(1) ≥ a

)
≤

Xn
0 (1)

((
1 + ν

n + ‖ḡ‖∞
2n

)bnδc
∨ 1

)

a
, (2.20)

and by letting n → ∞ we are done.

The next result generalizes the previous lemma.

Lemma 2.5. Let f be a bounded non-negative measurable function on R
d. Then,

for any δ > 0,

E

(
Xn

bnδc/n(f)
)
≤
(

1 +
ν

n
+

‖ḡ‖∞
2n

)bnδc
Xn

0 (Sδf) ,

where {St}t≥0 is the semigroup of the Brownian motion.
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Proof: The proof goes along the similar lines as the proof of the previous lemma.
For any k ≥ 1 we have

E

(
Xn

k/n(f)|Xn
(k−1)/n

)
= E



 1

n

M̃n
k−1∑

i=1

Zn
i,kf(Ui,k−1(k/n))|Xn

(k−1)/n





=
1

n

M̃n
k−1∑

i=1

E

(
E

(
Zn

i,kf(Ui,k−1(k/n))
∣∣Xn

k
n−

)∣∣∣Xn
(k−1)/n

)

=
1

n

M̃n
k−1∑

i=1

E

(
f(Ui,k−1(k/n))E

(
Zn

i,k

∣∣Xn
k
n−

)∣∣∣Xn
(k−1)/n

)

≤
(

1 +
ν

n
+

‖ḡ‖∞
2n

)
1

n

M̃n
k−1∑

i=1

E

(
f(Ui,k−1(k/n))|Xn

(k−1)/n

)

=

(
1 +

ν

n
+

‖ḡ‖∞
2n

)
1

n

M̃n
k−1∑

i=1

S1/nf(Ui,k−1((k − 1)/n))

=

(
1 +

ν

n
+

‖ḡ‖∞
2n

)
Xn

(k−1)/n

(
S1/nf

)
,

for all k, n and hence by iteration

E

(
Xn

bnδc/n(f)
)

≤
(

1 +
ν

n
+

‖ḡ‖∞
2n

)bnδc
Xn

0

(
Sbnδc/nf

)
, (2.21)

and the result follows.

3. Tightness of the contour process

In this section we will prove the tightness of the sequence of the contour processes
{Y n}n≥1. The following proposition is the main result of this section.

Proposition 3.1 (Tightness of {Y n}n≥1). For any δ > 0, T > 0,

lim
ε↓0

lim sup
n→∞

P

(
sup

0≤t≤T
sup

0≤s≤ε
|Y n

t+s − Y n
t | > δ

)
= 0, (3.1)

that is, {Y n}n≥1 is C-tight in DR[0,∞).

The proof of the proposition will be given in this section. Recall the definition of
the discrete version of the local time for Y n and its inverse (see (1.10), (1.11) and
(1.12) for the same definitions in the case without environment). Fix an arbitrary
c0 > 0. We will first handle the tightness on the time interval

t ∈ [0, τn,0
c0

],

and we start with the following proposition.

Proposition 3.2 (Tightness of {Y n}n≥1 — no jumps up). For any δ > 0,

lim
ε↓0

lim sup
n→∞

P

(
sup

0≤t≤τn,0
c0

sup
0≤s≤ε

(Y n
t+s − Y n

t )+ > δ

)
= 0. (3.2)
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The proof of the proposition will be given after we present several preliminary
lemmas. For any a ≥ 0 and r1 < r2, recall the measure-valued process Xn,r1,r2

an,an+t,
see (1.17). Fix an arbitrary δ > 0. Recall that b was defined in (2.4). We have the
following lemma.

Lemma 3.3. For any δ > 0, r > 0, ε′ > 0,

lim sup
n→∞

P

(
Xn,r,r+ε′

a,an+δ (1) > 0
)

≤ ε′h(b, δ). (3.3)

Proof:

P

(
Xn,r,r+ε′

a,an+δ (1) > 0
)

≤
bnε′c∑

i=0

P

(
X

n,r+i/n,r+(i+1)/n
a,an+δ (1) > 0

)
. (3.4)

Since, by Lemma 2.3,

lim sup
n→∞

nP

(
X

n,r+i/n,r+(i+1)/n
a,an+δ (1) > 0

)
≤ h(b, δ),

the result follows.

The following corollary is immediate.

Corollary 3.4. For any δ > 0, r > 0, ε′ > 0,

lim sup
n→∞

P( sup
τn,a

r ≤t≤τn,a

r+ε′

(Y n
t − Y n

τn,a
r

)+ > δ) ≤ ε′h(b, δ). (3.5)

The next corollary gives a bound on the positive increment of Y n.

Corollary 3.5. For any δ > 0, r > 0,

lim
ε↓0

lim sup
n→∞

P( sup
τn,a

r ≤t≤τn,a
r +ε

(Y n
t − Y n

τn,a
r

)+ > δ) = 0. (3.6)

Proof: We first prove that for any ε′ > 0,

lim
ε↓0

lim sup
n→∞

P
(
τn,a
r+ε′ ≤ τn,a

r + ε
)

= 0. (3.7)

Suppose that there exist deterministic ε′ > 0, δ′′ ∈ (0, 1/2) and subsequences nk →
∞, εk ↓ 0 such that

lim
k→∞

P
(
τnk,a
r+ε′ ≤ τnk,a

r + εk

)
≥ δ′′. (3.8)

To avoid cumbersome notation, for the rest of the proof we write n and εn for nk

and εk respectively. Note that it follows from (3.7) that

`n,an

τn,a

r+ε′
− `n,an

τn,a
r

= ε′. (3.9)

Then as in Lemma 3.3, we may define the sequence of measure-valued processes
Xn with total mass

Xn
a,an+s(1) = `n,an+s

τn,a

r+ε′
− `n,an+s

τn,a
r

. (3.10)

This process starts at the total mass

Xn
a,an

(1) = ε′,
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and, appealing to Mytnik (1996), as n → ∞, it converges weakly in DR[0,∞)
to the continuous process s 7→ Xa,a+s(1) starting at ε′. Therefore, by the weak
convergence properties, there exists δ̄ > 0 such that

lim inf
n→∞

P

(
inf
s≤δ̄

(
`n,an+s
τn,a

r+ε′
− `n,an+s

τn,a
r

)
≥ ε′/2

)
≥ 1 − δ′′. (3.11)

Note that on the event in (3.11), we have

ε′

2
≤ `n,an+s

τn,a

r+ε′
− `n,an+s

τn,a
r

≤ n−1
∑

l: τn,a
r <l/n2≤τn,a

r+ε′

1Y n
l/n2=an+s.

Summing over s = i
n ≤ δ̄, we get that with probability greater than 1 − 2δ′′ > 0,

the occupation time of Y n on the time interval (τn,a
r , τn,a

r+ε′ ] is bounded from below
by

1

n2

∑

l: τn,a
r <l/n2≤τn,a

r+ε′

1Y n
l/n2≥an ≥ 1

2
δ̄ε′ > 0. (3.12)

On the other hand the total occupation time of Y n on the interval

[τn,a
r , τn,a

r+ε′ ] ⊂ [τn,a
r , τn,a

r + εn]

is bounded by εn ↓ 0, which contradicts (3.12). Hence (3.7) follows.
Continuing with the proof of the lemma, we have from (3.7) that for any ε′ > 0,

lim
ε↓0

lim sup
n→∞

P

(
sup

τn,a
r ≤t≤τn,a

r +ε

(Y n
t − Y n

τn,a
r

)+ ≥ δ

)
(3.13)

≤ lim
ε↓0

lim sup
n→∞

P



 sup
τn,a

r ≤t≤τn,a

r+ε′

(Y n
t − Y n

τn,a
r

)+ ≥ δ





+ lim
ε↓0

lim sup
n→∞

P
(
τn,a
r+ε′ ≤ τn,a

r + ε
)
≤ ε′h(b, δ),

where the last inequality follows by (3.7) and Corollary 3.4. Since ε′ was arbitrary
we are done.

We now introduce further notation. Let

¯̀n,a ≡ `n,a

τn,0
c0

. (3.14)

We will prove the following lemma.

Lemma 3.6. For any δ > 0,

lim
ε↓0

lim sup
n→∞

P

(
sup

0≤r≤¯̀n,a

sup
0≤s≤ε

(Y n
τn,a

r +s − Y n
τn,a

r
)+ > δ

)
= 0. (3.15)

Proof: Now we will need some further notation. Denote

Na,n
s = {number of excursions of Y n starting at level an

above the level an + s on the time interval [0, τn,0
c0

]}
= {number of particles in the original branching particle system

at time ann whose descendants survive till time (an + s)n}
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By Lemmas 2.3, 2.4 and the Markov property of the branching system we immedi-
ately get

lim sup
n→∞

E (Na,n
s ) ≤ lim sup

n→∞
E (Xn

a (1))nP(M̃n
bnsc > 0|M̃n

0 = 1)

≤ c0e
bah(b, s). (3.16)

For i = 1, . . .Na,n
δ/2 define

σn
i = inf{t > τ̂n

i−1 : Y n
t ≥ an + δ/2},

where

τ̂n
0 = 0,

τ̂n
i = inf{t > σn

i : Y n
t = an}.

That is, σn
i are the times when successful excursions of Y n reach the level an + δ/2.

Then we have, for any fixed integer m,

lim
ε↓0

lim sup
n→∞

P

(
sup

0≤r≤¯̀n,a

sup
0≤s≤ε

(Y n
τn,a

r +s − Y n
τn,a

r
)+ > δ

)
(3.17)

≤ lim
ε↓0

lim sup
n→∞

E




Na,n

δ/2∑

i=1

P

(
sup

0≤s≤ε
(Y n

σn
i +s − Y n

σn
i
)+ > δ/2|Xn

an+δ/2

)
; Na,n

δ/2 ≤ m





+ lim
ε↓0

lim sup
n→∞

P

(
Na,n

δ/2 > m
)

.

By an argument similar to the one in Corollary 3.5 we get that

lim
ε↓0

lim sup
n→∞

P

(
sup

0≤s≤ε
(Y n

σn
i +s − Y n

σn
i
)+ > δ/2|Xn

an+δ/2

)
= 0. (3.18)

This implies that

lim
ε↓0

lim sup
n→∞

P

(
sup

0≤r≤¯̀n,a

sup
0≤s≤ε

(Y n
τn,a

r +s − Y n
τn,a

r
)+ > δ

)

≤ lim
ε↓0

lim sup
n→∞

P

(
Na,n

δ/2 > m
)
≤ c0e

bah(b, δ/2)

m
,

where the last inequality follows by the Markov inequality and (3.16). Since m was
arbitrary we are done.

We can now complete the proof of Proposition 3.2.

Proof of Proposition 3.2: For δ > 0 let

T i,δ
n = {t ≤ τn,0

c0
: Y n

t ∈ [iδ/2, (i + 1)δ/2]}. (3.19)
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Then

P

(
sup

0≤t≤τn,0
c0

sup
0≤s≤ε

(Y n
t+s − Y n

t )+ > δ

)

≤
b2K1/δc∑

i=0

P

(
sup

t∈T i,δ
n

sup
0≤s≤ε

(Y n
t+s − Y n

t )+ > δ

)

≤
b2K1/δc+1∑

i=1

P

(
sup

r≤¯̀n,iδ/2

sup
0≤s≤ε

(Y n

τ
n,iδ/2
r +s

− Y n

τ
n,iδ/2
r

)+ > δ/2

)
. (3.20)

However by Lemma 3.6 we get that, for every i,

lim
ε→0

lim sup
n→∞

P

(
sup

r≤¯̀n,iδ/2

sup
0≤s≤ε

(Y n

τ
n,iδ/2
r +s

− Y n

τ
n,iδ/2
r

)+ > δ/2

)
= 0,

and this finishes the proof of Proposition 3.2.

To handle downward jumps, we need the following proposition.

Proposition 3.7 (Tightness of {Y n}n≥1 — no jumps down). For any δ > 0,

lim
ε↓0

lim sup
n→∞

P

(
sup

0≤t≤τn,0
c0

sup
0≤s≤ε

(Y n
t+s − Y n

t )− > δ

)
= 0. (3.21)

Proof: In fact the proof is easy if one considers the process Y n reversed in time,
that is the process Ỹ n

t = Y n
τn,0

c0
−t

, which is easily seen (see the explicit argument

below) to possess the same law (with 0 ≤ t ≤ τn,0
c0

) as the original process Y n
· .

Since any jump down for Y n becomes a jump up for Ỹ n, the claim (3.21) follows

from Proposition 3.2 applied to Ỹ n.
To see the reversibility claim, we introduce a sequence of path transformations

{Tz}z=0,1/n,...,K1−1/n on {(Wn
t , Y n

t )}t=0,1/n2,...,τn,0
c0

, each of which is measure pre-

serving and preserves τn,0
c0

, such that

{(W̃n
t , Ỹ n

t )}t=0,1/n2,...,τn,0
c0

= TK1−1/n ◦TK1−2/n ◦ . . .◦T0{(Wn
t , Y n

t )}t=0,1/n2,...,τn,0
c0

,

where (W̃n
· , Ỹ n

· ) denotes the image of (Wn
· , Y n

· ) under the transformations. This
will prove the claim.

To avoid cumbersome notation, we consider the case of n = 1 only, and we omit
the index n. The general n can be treated the same way with proper scaling. For
z = 0, the transformation T0 is obtained as follows. If t = τ0

j for some integer

j ∈ {0, 1, . . . , c0}, that is t is a return time of Y· to 0, then define t′(t) = τ0
c0

− τ0
j .

If t ∈ (τ0
j−1, τ

0
j ) for some j ∈ {1, . . . , c0}, that is t belongs to the jth excursion of

Y· from 0, then define t′(t) = t′(τ0
j ) + t − τ0

j−1. Then,

T0(W·, Y·)(t) = (Wt′(t), Yt′(t)).

(In words, T0 reverses the order of the excursions from 0 but keeps the time orienta-
tion of each excursion intact; Thus, the total length of the excursions is preserved.)
It is straightforward to check that the law of T0(W·, Y·) is the same as that of
(W·, Y·).
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For z = 1, let

tz(1) = min{k > 0 : Yk = z}, sz(1) = min{k > tz(1) : Yk = z, Yk+1 = z − 1},

and for j ≥ 1,

tz(j + 1) = min{k > sz(j) : Yk = z},
sz(j + 1) = min{k > tz(j + 1) : Yk = z, Yk+1 = z − 1}.

T1 is then defined as T0 applied to the excursions of the path from level z. Explicitly,

let jz = max{j : tz(j) < τ0
c0
}. For t ∈

(
∪jz

j=1[tz(j), sz(j)]
)c

, set t′(t) = t. For each

j, let t̄z(j, 0) = tz(j), t̄z(j, `) = min{t > t̄z(j, `) : Yt = z}, and `z(j) = max{` :
t̄z(j, `) = sz(j)}. Let t′ be defined on the interval [tz(j), sz(j)) in the same way as
the case of z = 0 with τ0

j , j = 0, 1, · · · , c0 replaced by t̄z(j, `), ` = 0, 1, · · · , `z(j).
Then,

Tz(W·, Y·)(t) = (Wt′(t), Yt′(t)).

Again, in words, Tz reverses the order of the excursions from z but keeps the time
orientation of each excursion intact; Thus, the total length of the excursions is
preserved.) It is straightforward to check that the law of Tz(W·, Y·) is the same
as that of (W·, Y·). We can continue this procedure for z = 2, 3, · · · , K1 − 1. As
explained above, this completes the proof.

To finish the proof of the Proposition 3.1 we need the folowing lemmas that
describe the limiting behavior of { ¯̀n,·}n≥1 and {τn,0}n≥1 (recall that ¯̀n,· = `n,·

τn,0
c0

was introduced in (3.14)).

Lemma 3.8. For any c0 > 0, the sequence of processes { ¯̀n,·}n≥1 is C-tight in DR.

Proof: First recall from (3.14) and (1.18), that Xn,c0

0,a (1) = ¯̀n,a is the total mass at

time a of the measure-valued process Xn,c0

0,· defined in the introduction. Since the

sequence of measure-valued processes {Xn,c0

0,· }n≥1 is C-tight in DMF (see Mytnik,

1996 and the comments leading to (1.15)), we get the desired result.

The next lemma studies the limiting behavior of {τn,0}n≥1. Toward this end,
recall that according to our conventions introduced after (1.11), we use the same
notation for an increasing function and the corresponding measure.

Lemma 3.9. (a) For any r > 0, the sequence of random variables {τn,0
r }n≥1

is tight and any limit point τ0
r satisfies

P(τ0
r = 0) = 0.

(b) For any ε > 0, A > 0, there exists R > 0, such that

lim inf
n→∞

P

(
(τn,0

R > A
)
≥ 1 − ε.

(c) The sequence {τn,0}n≥1 is tight in M(R+).
(d) Let τ0 ∈ M(R+) be an arbitrary limit point of {τn,0}n≥1. Then for any

fixed r ∈ R+, τ0
t is continuous at t = r with probability 1.
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Proof: (a) Define

T n
t (y) =

∫ y

0

`n,z
t dz = n−2

bn2tc∑

i=0

1Y n
n−2i

≤y.

Note that
τn,0
r = T n

τn,0
r

(K1). (3.22)

On the other hand

T n
τn,0

r
(K1) =

∫ K1

0

`n,z

τn,0
r

dz ≤ K1 sup
s≤K1

`n,s

τn,0
r

,

and since by Lemma 3.8, {`n,·
τn,0

r
}n≥1 is tight, by (3.22) we get the tightness of

{τn,0
r }n≥1.
Similarly, since {`n,·

τn,0
r

}n≥1 is C-tight for any ε > 0 we can fix δ such that

P(inf
s≤δ

`n,s

τn,0
r

≥ c0/2) ≥ 1 − ε

for all n sufficiently large. Using this, (3.22) and the definition of T n we get

τn,0
r = T n

τn,0
r

(K1) ≥
∫ δ

0

`n,s

τn,0
r

ds ≥ r

2
δ

with probability at least 1 − ε for all n sufficiently large. Since ε was arbitrary we
get that any limit point of τn,0

r is greater than 0 with probability 1.
(b) For any K > 0 we can represent

τn,0
Kr =

K∑

i=1

τn,0
i,r ,

where, for each i, τn,0
i,r is distributed as τn,0

r . Fix arbitrary ε, A > 0. Since, by part

(a) of the lemma, any limit point of τn,0
i,r is strictly greater than 0 with probability

one, we can easily choose K sufficiently large such that τn,0
Kr =

∑K
i=1 τn,0

i,r > A with
probability at least 1 − ε, for all n sufficiently large.
(c) Immediate from (a).
(d) Let τ0 ∈ M(R+) be a limiting point {τn,0}n≥1. To prove this part of the
lemma we have to show that, for any ε > 0, there exists δ > 0, such that

P
(
τ0
r+δ − τ0

r−δ > ε
)
≤ ε. (3.23)

Similarly to what we have done in (a) define,

T n,r
s,t (y) =

∫ y

0

(`n,z
t − `n,z

s )dz, 0 ≤ s ≤ t. (3.24)

Then we have

τn,0
r+δ − τn,0

r−δ = T n,r

τn,0
r−δ

,τn,0
r+δ

(K1) =

∫ K1

0

(`n,z

τn,0
r+δ

− `n,z

τn,0
r−δ

)dz (3.25)

=

∫ K1

0

Xn,r−δ,r+δ
s (1)ds ≤ K1 sup

s≤K1

Xn,r−δ,r+δ
0,s (1),

where recall that Xn,r−δ,r+δ
0,s is the measure-valued process corresponding to the

branching particle system in random environment, constructed in Sec. 1 (see (1.17)),
that starts at time s = 0 with initial mass 2δ. By Lemma 2.4(b)
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P

(
sup

s≤K1

Xn,r−δ,r+δ
s (1) > ε

)
≤ 2Xn,r−δ,r+δ

0 (1)(ebK1 ∨ 1)

ε
(3.26)

=
4δ(ebK1 ∨ 1)

ε
,

for all n sufficiently large. We can take δ sufficiently small such that the right hand
side of (3.26) is less than ε/2, and this together with (3.25) implies that

P

(
τn,0
r+δ − τn,0

r−δ > ε
)
≤ ε/2. (3.27)

for all n sufficiently large. Therefore (3.23) follows for any limit point of {τn,0}n≥1.

Now we are ready to complete the proof of Proposition 3.1.

Proof of Proposition 3.1: Proposition 3.1 follows immediately from Propositions 3.2,
3.7, Lemma 3.9(b), and the fact that c0 was arbitrary.

4. Tightness of {(Wn, `n)}n≥1 and proof of Theorem 1.1

The bulk of this section is devoted to the proof of the following proposition.

Proposition 4.1. The sequence {(Wn, `n, τn,0)}n≥1 is tight in DW×M(R+) ×
M(R+). Let (W, `, τ0) be its arbitrary limiting point. Then (W, `, τ0) belongs to
CW×M(R+) ×M(R+). Moreover, ` is the local time of Y (Y is the lifetime of W),
that is, ∫ t

0

1Ys≤a ds =

∫ a

0

`r
t dr, ∀a ≥ 0, t ≥ 0. (4.1)

Note that following our conventions, we denote by `r(dt) the measure and by
`r
t = lr([0, t]) the corresponding increasing distribution function corresponding to

`.
The proof of Proposition 4.1 is long and we indicate the main steps. We will first

prove the tightness of the sequence of processes {W
n}n≥1, based on the tightness

of the contour process established in Section 3. This will be obtained in Lemma
4.6, after going through a fair amount of preliminary material. The tightness of
the sequence of the local time process {`n}n≥1 is then obtained in Lemma 4.7, thus
completing the proof of Proposition 4.1. The rest of the section is devoted to the
identification of the limiting snake representation. Here we have to identify a limit
point of the sequence of the local times {`n}n≥1 as the local time of the limiting
contour process, and this is done in Lemma 4.11. Additionally, in Lemma 4.14 we
verify that a limiting point of {τn,0

c0
}n≥1 is indeed the value at c0 of the inverse

function of the limiting local time. The proof of Theorem 1.1 is an immediate
corollary of these facts, and is presented at the end of the section.

As in the previous section, where the tightness of the contour processes {Y n}n≥1

was obtained, we first handle tightness on the time interval [0, τn,0
c0

]. Fix an arbitrary
a ∈ [0, K1) and recall that {Xn,c0

0,t }t≥0 (see (1.18)) is the measure-valued process

characterising the branching particle picture, and in particular, nXn,c0

0,an
(1) is the

number of particles alive at time an = banc/n. First we derive a bound on the
maximal displacement of the offsprings from the ancestors during the time interval
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[an , an + δ]. This estimate will be crucial for proving tightness of paths of the
Brownian snake in random environment.

Fix η ∈ (0, 1/4) arbitrary small. Define

Zn,η
an ,δ = n

∫ τn,0
c0

0

1(|Ŵn
s −Wn

s (an)|>δ1/2−η)`
an+δ(ds) (4.2)

= #{particles alive at time an + δ that are displaced by more than

δ1/2−η from the ancestor at time an}.
Lemma 4.2. There exists δ4.2 > 0, such that

P(Z
n,3η/2
an ,δ > 0) ≤ e−δ−η

, ∀δ ≤ δ4.2 , ∀n. (4.3)

We postpone the proof of Lemma 4.2, and prepare some preliminary estimates.
Introduce the event

Wn,a,δ,k,η,s = {|Wn
s (an + δ − δ2−k) − Wn

s (an + δ − δ2−(k−1))| > δ1/2−η2−k/4} ,

and define

Z̃k
an ,δ = n

∫ τn,0
c0

0

1Wn,a,δ,k,η,s
`n,an+δ−δ2−k−1

(ds) ,

which gives the number of particles alive at time an + δ − δ2−k−1 whose historical
paths were displaced by distance more than δ1/2−η2−k/4 on the time interval [an +
δ − δ2−(k−1), an + δ − δ2−k].

Lemma 4.3. There exist C = C(K1) and δ4.3 such that, for all n sufficiently large,

P

(
Z̃k

an ,δ > 0
)
≤ Cc0e

−δ−η2k/2

, ∀δ ≤ δ4.3. (4.4)

Proof: Let

Ẑk
an ,δ = n

∫ τn,0
c0

0

1Wn,a,δ,k,η,s
`n,an+δ−δ2−k

(ds),

that is, Ẑk
an ,δ is the total number of particles that are alive at time an + δ − δ2−k

and whose historical paths were displaced by distance more than δ1/2−η2−k/4 on
the time interval [an +δ−δ2−(k−1), an +δ−δ2−k]. We enumerate these particles by

i = 1, . . . , Ẑk
an ,δ and let Ẑi,k

an ,δ be the number of living descendents of the particle i

(i = 1, . . . , Ẑk
an ,δ) at time an + δ − δ2−k−1. Then clearly

Z̃k
an ,δ =

Ẑk
an ,δ∑

i=1

Ẑi,k
an ,δ. (4.5)

Lemma 2.3 and (4.5) imply that for all n sufficiently large

P

(
Z̃k

an ,δ > 0
∣∣∣Xn,c0

0,an+δ(1−2−k)

)
≤

Ẑk
an ,δ∑

i=1

P

(
Ẑi,k

an ,δ > 0
∣∣∣Xn,c0

0,an+δ(1−2−k)

)

≤ Ẑk
an ,δ2h(b, δ2−k−1)/n ≤

4Ẑk
an ,δ

δ2−k−1n
,

where the last inequality follows, for all δ sufficiently small, from the definition of
h. Therefore,

P

(
Z̃k

an ,δ > 0
)

= E

(
P

(
Z̃k

an ,δ > 0
∣∣∣Xn,c0

0,an+δ(1−2−k)

))
≤ 4

δ2−k−1n
E

(
Ẑk

an ,δ

)
.
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We next represent the measure Xn,c0

0,an+δ(1−2−(k−1))
as

Xn,c0

0,an+δ(1−2−(k−1))
=

1

n

nX
n,c0

0,an+δ(1−2−(k−1))
(1)

∑

i=1

δUi (4.6)

where Ui are the positions of the particles alive at time an + δ(1 − 2−(k−1)). For
the rest of the proof of the lemma we call the particle that is located at Ui at time
an + δ(1 − 2−(k−1)) — the i-th particle. Let X̃n,i be the measure describing the
positions of the living descendents of the i-th particle at time an + δ(1 − 2−k) and
similarly to (4.6) we can write

X̃n,i =
1

n

nX̃n,i(1)∑

i=1

δUi,k
(4.7)

where Ui,k is the position of the k-th descendent of the i-th particle at time an +
δ(1 − 2−k). Then we get that

Xn,c0

0,an+δ(1−2−k)
=

nX
n,c0

0,an+δ(1−2−(k−1))
(1)

∑

i=1

X̃n,i.

Define

fz(x) = 1|x−z|>δ1/2−η2−k/4 , x, z ∈ R
d.

Then,

Ẑk
an ,δ =

nX
n,c0

0,an+δ(1−2−(k−1))
(1)

∑

i=1

X̃ i
an+δ(1−2−(k−1),an+δ(1−2−k)(fUi).

Hence, using Lemma 2.5 in the first inequality, there exists δ4.3 sufficiently small
such that

E

(
Ẑk

an ,δ

∣∣∣Xn,c0

0,an+δ(1−2−(k−1))

)

≤
nX

n,c0

0,an+δ(1−2−(k−1))
(1)

∑

i=1

(
1 +

ν

n
+

‖ḡ‖∞
2n

)nδ2−k+1

× 1

n
PUi(|Bδ2−k − Ui| > δ1/2−η2−k/4)

≤ Xn,c0

0,an+δ(1−2−(k−1))
(1)

(
1 +

ν

n
+

‖ḡ‖∞
2n

)nδ2−k+1

e−δ−η2k/2

, ∀δ ≤ δ4.3 ,

where Px is the law of the standard Brownian motion starting at x. By taking the
expectation we conclude that for all n sufficiently large,

E

(
Ẑk

an ,δ

)
≤ Cc0e

−δ−η2k/2

, ∀a ≤ K1, δ ≤ δ4.3,

where C = C(K1), and we are done.
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Proof of Lemma 4.2: Fix δ0 sufficiently small such that 103δ
η/2
0 ≤ 1. Let δ ≤ δ0. If

Z̃k
an ,δ = 0 for each k ≥ 1 then the maximal displacement of the path of any particle

on the time interval [an, an + δ] is bounded by
∞∑

k=1

δ1/2−η2−k/4 ≤ δ1/2−η 1

21/4 − 1
≤ δ1/2−1.5η.

Hence by Lemma 4.3 we get that for δ ≤ (δ0 ∧ δ4.3),

P(Z
n,3η/2
an ,δ > 0) ≤

∞∑

k=1

P(Z̃k
an ,δ > 0) ≤ Cc0

∞∑

k=1

e−δ−η2k/2

.

Now take δ4.2 ≤ (δ0 ∧ δ4.3) sufficiently small so that for any δ ≤ δ4.2

Cc0

∞∑

k=1

e−δ−η2k/2 ≤ e−δ−η

,

and we are done.

Lemma 4.4. For any ε > 0, there exists δ1 > 0 such that

lim sup
n→∞

P

(
sup

a≤K1

sup
δ≤δ1

Zn,2η
a,δ > 0

)
≤ ε. (4.8)

Proof: For any m0 > 0 we have by Lemma 4.2 that

Am0 := P

(
Z

n,3η/2
i2−m,2−m > 0, for some i ≤ K12

m, m ≥ m0

)

≤
∞∑

m=m0

K12
m∑

i=0

P

(
Z

n,3η/2
i2−m,2−m > 0

)
≤

∞∑

m=m0

K12
me−2mη

.

Choose m0 large enough so that 2−m0 ≤ δ4.2, Am0 ≤ e−2m0η/2 ≤ ε, and

10 · (2 · 2−m0)1/2−3η/2 ≤
(
2−m0

)1/2−2η
. (4.9)

Define
C(K1, m0) = {ω : Z

n,3η/2
i2−m,2−m = 0, ∀m > m0, i ≤ K12

m}.
Then

P(C(K1, m0)) ≥ 1 − e−2m0η/2 ≥ 1 − ε.

Fix ω ∈ C(K1, m0). Fix arbitrary a ≤ K1 and δ ≤ 2−m0 . Then there exists
m ≥ m0 such that

2−m−1 ≤ δ ≤ 2−m. (4.10)

For j ≥ m0 let ãj denote the smallest integer multiple of 2−j that is larger than a

and, with b = a + δ, let b̃j denote the largest integer multiple of 2−j that is smaller
than b. Let s be any time such that Y n

s = a + δ. Then since δ ≤ 2−m0 ≤ δ4.2 and
ω ∈ C(K1, m0), we have by (4.10) and the continuity of Wn

s (·) that
∣∣∣Ŵn

s − Wn
s (a)

∣∣∣ ≤
∣∣∣Wn

s (b̃m) − Wn
s (ãm)

∣∣∣+
∑

l=m+1

|Wn
s (ãl) − Wn

s (ãl−1)|

+
∑

l=m+1

∣∣∣Wn
s (b̃l) − Wn

s (b̃l−1)
∣∣∣

≤ 10 · 2−(1/2−3η/2)m ≤ 10 · (2δ)1/2−3η/2 ≤ δ1/2−2η,
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where the last inequality holds by (4.9). By setting δ1 = 2−m0 we are done.

The following corollary is immediate.

Corollary 4.5. For any ε > 0 there exists δ1 > 0 such that,

P

(
sup

s≤τn,0
c0

sup
δ≤δ1

sup
a≤(Y n

s −δ)+

|Wn
s (a + δ) − Wn

s (a)| > δ
1/2−2η
1

)
≤ ε.

We have made all the preparation for the proof of the following lemma, concern-
ing the tightness of the sequence {W

n}n≥1.

Lemma 4.6. The sequence of processes {W
n}n≥1 is C-tight in DW .

Proof: Recall that the C-tightness of the sequence of the contour processes {Y n}n≥1

was proved in Section 3 (see Proposition 3.1). Fix arbitrary β > 0 and α = β1/2−2η.
Then for any δ1 > 0, we have the following inclusion

{ sup
s≤τn,0

c0

sup
δ≤δ1

sup
u≥0

|Wn
s+δ(u) − Wn

s (u)| ≥ α} ⊂

{ sup
s≤τn,0

c0

sup
δ≤δ1

|Y n
s+δ − Y n

s | ≥ β}

⋃
{ sup

s≤τn,0
c0

sup
δ≤β

sup
a≤(Ys−δ)+

|Wn
s (a + δ) − Wn

s (a)| ≥ β1/2−2η}.

The C-tightness of the sequence {W
n}n≥1 now follows from this inclusion together

with Proposition 3.1, Corollary 4.5, and Lemma 3.9(b).

We next turn to the local time processes `n, n ≥ 1.

Lemma 4.7. The sequence of processes {`n,·}n≥1 is C-tight in DM(R+) .

Proof: Fix an arbitrary c0 > 0, and define

˜̀n,s
t ≡ `n,s

t∧τn,0
c0

, s, t ≥ 0,

with ˜̀n,s(dt) being as usual the corresponding measure. Note that since c0 is

arbitrary, it is enough to show the C-tightness of { ˜̀n,·}n≥1 in DMF [0,∞) and
then the result follows immediately from Lemma 3.9(b) (recall the properties of

convergence in vague topology). Since for each t, n, the function s 7→ ˜̀n,t
s is non-

decreasing, to show the C-tightness of { ˜̀n,·}n≥1 in DMF [0,∞), it is sufficient to

prove the tightness of { ˜̀n,·
t }n≥1 for each fixed t. That is, in view of Lemma 3.9, we

need to prove that for any constant C,

lim sup
h→0

lim sup
n→∞

P( sup
0≤r≤C

|˜̀n,r+h
t − ˜̀n,r

t | > ε) = 0 . (4.11)

The proof requires some care since introducing the time t prevents one from directly
exploiting martingale properties and the tightness results in Mytnik (1996).

We use the inverse local times τn,a
r , a ≥ 0, r ≥ 0 to define the collection of

processes

X̄ i,j,δ
s = ˜̀n,iδ+s

τn,iδ
(j+1)δ

− ˜̀n,iδ

τn,iδ
jδ

, s ≥ 0.

Note that X̄ i,j,δ
s represents the total mass of the branching process in random

environment X
n,jδ,(j+1)δ
iδ,iδ+s , defined by (1.17), which starts at “time” iδ, such that

X̄ i,j,δ
0 = X

n,jδ,(j+1)δ
iδ,iδ (1) = δ.



Snake representation of a superprocess in random environment 361

We also denote by F i,j,δ
l the filtration generated by the process X

n,jδ,(j+1)δ
iδ,iδ+· and its

environment by time l/n.
On the event t < τn,0

c0
we have, for any T > 0,

sup
0≤r≤T

|˜̀n,r+h
t − ˜̀n,r

t |

≤ sup
iδ≤T,jδ≤c0

sup
v∈[0,δ]

|˜̀iδ+v+h

τn,iδ
jδ

− ˜̀iδ+v

τn,iδ
jδ

| + sup
iδ≤T,jδ≤c0

sup
s≤δ

X̄ i,j,δ
s

=: sup
iδ≤T,jδ≤c0

Ai,j + sup
iδ≤T,jδ≤c0

Bi,j . (4.12)

By the C-tightness of the sequence {s 7→ ˜̀iδ+s

τn,iδ
jδ

}n≥1, see e.g. Mytnik (1996), Theo-

rem 4.2 (proved there for the binary branching but valid, with similar proof, for the
geometric case under consideration here), we have that for each fixed δ and each
fixed i ≤ T/δ, j ≤ c0/δ,

lim
h→0

lim sup
n→∞

P(Ai,j > ε) = 0 .

In particular, for any δ > 0 fixed,

lim
h→0

lim sup
n→∞

P( sup
iδ≤T,jδ≤c0

Ai,j > ε) = 0 . (4.13)

To control Bi,j , we use the following lemma.

Lemma 4.8. For some universal constant c and all n large,

E sup
0≤s≤δ

((X̄ i,j,δ
s )4) ≤ cδ4 , for all δ ≤ 1

Indeed, Lemma 4.8 and Chebychev’s inequality imply that

P( sup
iδ≤T,jδ≤c0

Bi,j > ε) ≤ Tc0δ
−2δ4 .

Together with (4.13), this yields the proof of Lemma 4.7, once we complete the
proof of Lemma 4.8.

In the proof of Lemma 4.8 we will frequently use the following lemma, whose
immediate proof (using iterations) is omitted.

Lemma 4.9. Let c1 , c2 > 0 and suppose zi , i = 1, 2, . . . satisfies the following
inequalities

zi ≤
c1

n
+ (1 +

c2

n
)zi−1 , i = 1, 2, . . . .

Then there exists c̄ > 0 such that for any δ ∈ [0, 1]

zi ≤ c̄(
c1

c2
δ + z0), ∀i ≤ bnδc.

Proof of Lemma 4.8: The argument uses computations similar to those in Section
2. Throughout the proof, c̄ denotes a constant whose value may change from line
to line, but is independent of n or δ. Note that the estimates on X̄ i,j,δ

s that we
get throughout the proof below are uniform in i, j and thus we may and will just

consider i = j = 1 and write X̄s = X̄1,1,δ
s and Fl = F1,1,δ

l , l = 0, 1, 2, . . .. Note
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that X̄s is the local time at level s accumulated by the random walk during its first
bnδc excursions from 0. We have the representation

X̄(m+1)/n = n−1

nX̄m/n∑

k=1

Zk,m+1 ,

where the Zk,m+1 is the number of offspring of the k-th particle at time (m+1)/n.
Recall that Zk,m , k = 1, 2, . . . , are conditionally indpendent given Fm, and for each
k, Zk,m is geometrically distributed with parameter 1/2 − ξk,m/4

√
n. Here with

some abuse of notation,

ξk,m = ξm/n(xk,m),

ξ is as in Section 1.1, and xk,m is the position of k-th particle at time m. Note that
by (1.5) and our moment assumptions on ξ we have that

αk,m+1 := E(Zk,m+1|Fm) ≤ 1 + c̄/n.

Because the mean of Zk,m is close to 1, the sequence X̄(i+1)/n is almost a martingale.
To make it into a martingale, introduce the variables, M0 = δ,

Mi =
Mi−1

X̄(i−1)/n

1

n

nX̄(i−1)/n∑

k=1

Zk,i

αk,i
, i ≥ 1.

Note that

X̄i/n/Mi ≤ (1 + c̄/n)i, i ≥ 1. (4.14)

On the other hand, i 7→ Mi is a discrete martingale, and hence by the Doob-
Burkholder-Gundy inequality, we have that

E( sup
0≤i≤δn

M4
i ) ≤ c̄E〈M〉2δn = E(

nδ∑

i=1

〈∆M〉i)2 , (4.15)

where

〈∆M〉i = E((Mi − Mi−1)
2|Fi−1) .

We prepare next some estimates. First recall (1.5), our moment assumptions on
ξ and its covariance structure to get the following bound on the correlation between
the {Zk,i+1}:

|E[(Zk,i+1/αk,i+1 − 1)(Zk′,i+1/αk′,i+1 − 1)|Fi]| ≤ c̄/n , ∀k 6= k′.

Then we easily get,

〈∆M〉i+1 = M2
i E






 1

nX̄i/n

nX̄i/n∑

k=1

(
Zk,i+1

αk,i+1
− 1

)


2

|Fi




≤ c̄M2
i

1

nX̄i/n

+ M2
i max
k 6=k′,k,k′≤nX̄i/n

E[(Zk,i+1/αk,i+1 − 1)(Zk′,i+1/αk′,i+1 − 1)|Fi]

≤ c̄
Mi

n
+ c̄

M2
i

n
, (4.16)

Note that EMi = EM0 = δ, and hence to control the right side of (4.16) we need
to bound E(M2

i ). Mi is a martingale and hence with B1,i = E(M2
i ) we use (4.16)
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to get

B1,i ≤ Bi−1 + c̄E(
Mi−1

n
) + c̄E(

M2
i−1

n
) ≤ (1 +

c̄

n
)B1,i−1 +

c̄δ

n
.

By Lemma 4.9 we get

E(M2
i ) = B1,j ≤ c̄(δ2 + M2

0 ) ≤ c̄δ2, i ≤ bnδc.

Now recall again that EMi = EM0 = δ and use the above and (4.16) to obtain that

E(〈M〉i) ≤ c̄δ2, i ≤ bnδc.

A similar computation, using Remark 2.2, gives

E((Mi+1 − Mi)
3|Fi) ≤ c̄n−2Mi + c̄n−3/2M2

i + c̄n−1M3
i .

With B2,j = E(M3
j ) one then obtains the recursions

B2,j+1 ≤ E(M3
j ) + E((Mi+1 − Mi)

3) + c̄E(E(Mi+1 − Mi)
2|Fi)Mi)

≤ (1 +
c̄

n
)B2,j + E(M2

j )(c̄n−3/2 + c̄n−1) + E(Mj)n
−2

≤ (1 +
c̄

n
)B2,j + c̄δ2n−1 ,

for n sufficiently large (n ≥ δ−1), and therefore by Lemma 4.9 we have

B2,j ≤ c̄(δ3 + M3
0 ) ≤ c̄δ3, i ≤ bnδc. (4.17)

Repeating this computation for the fourth moment, one obtains that with B3,j =
E(M4

j ),

B3,j ≤ c̄δ4, i ≤ bnδc, (4.18)

for all n sufficiently large. Substituting (4.16) into (4.15) and using the last esti-
mates, one gets

E( sup
0≤i≤δn

M4
i ) ≤ c̄δ4 , (4.19)

for all n sufficiently large. Since, by (4.14),

sup
0≤s≤δ

X̄4
s ≤

(
1 +

c̄

n

)δn

sup
0≤i≤δn

M4
i ,

this completes the proof of Lemma 4.8.

Corollary 4.10. {(Wn, `n)}n≥1 is C-tight in DW×M(R+).

Proof: Immediately from Lemma 4.7 and Lemma 4.6.

In what follows let (W, Y, `, τ0) be a limiting point of {(Wn, Y n, `, τn,0)}n≥1. To
simplify the notation we omit subsequences and simply assume that
{(Wn, Y n, `n, τn,0)}n≥1 converges to (W, Y, `, τ0). We also switch (by Skorohod’s
theorem) to some probability space where the convergence holds a.s.. Recall again
that we write `n

t and `t for `n([0, t]) and `([0, t]) respectively.

Lemma 4.11. ` is the local time of Y .
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Proof: First note that by properties of weak convergence of measures, for any a ≥ 0

`n,a
t → `a

t (4.20)

for any point of continuity of function t 7→ `a
t . However by a limiting argument and

the convergence of Y n to Y , it is easy to derive that if Ys 6= a then s is a point of
continuity of t 7→ `a

t . Therefore, for all a, t such that Yt 6= a, (4.20) follows. Note
that

T n
t (a) =

1

n2

bn2tc∑

i=0

1Y n
n−2i

≤a =

∫ bn2tc/n2

0

1Y n
s ≤a ds, t ≥ 0.

Also for any a ≥ 0 and δ > 0 we have
∫ t

0

1a−δ≤Y n
s ≤a+δ ds =

∫ a+δ

a−δ

`n,s
t ds ≤ 2δ sup

s≤K1

`n,s
t .

Since {`n,s
t }n≥1 is tight and δ was arbitrary we can make the left side arbitrarily

small by taking δ > 0 sufficiently small with probability as close to 1 as we wish
uniformly in n. This, by a standard argument, that also uses the convergence of
{Y n}n≥1, implies that

∫ bn2tc/n2

0

1Y n
s ≤a ds →

∫ t

0

1Ys≤a ds (4.21)

for any a ≥ 0, t ≥ 0. On the other hand

T n
t (a) =

∫ a

0

`n,r
t dr →

∫ a

0

`r
t dr, t ≥ 0,

where the last convergence follows by convergence of `n,r
t at all the points r, t such

that Yt 6= r (there is just one level r such that Yt = r). This and (4.21) yield
∫ t

0

1Ys≤a ds =

∫ a

0

`r
t dr, t ≥ 0, (4.22)

for all a, r, and hence `r
t is indeed the local time of Y , for any t ≥ 0.

Remark 4.12. The above lemma and Corollary 4.10 finish the proof of Proposi-
tion 4.1.

The next two lemmas are essential for the proof of the “charaterization of the
limit points” part of Theorem 1.1. First we prove the continuity of the local time
at the level zero.

Lemma 4.13. t 7→ `0
t is continuous.

Proof: It is enough to show that for arbitrary c0 > 0,
{

`n,0

·∧τn,0
c0

}

n≥1
is C-tight in

DR[0,∞), that is, for any ε > 0

lim
δ↓0

lim sup
n→∞

P

(
sup

t≤τn,0
c0

`n,0
t − `n,0

t−δ ≥ ε

)
= 0. (4.23)

Suppose (4.23) does not hold, that is, there exist ε, ε1 > 0, such that for all δ > 0

P

(
sup

t≤τn,0
c0

`n,0
t − `n,0

t−δ ≥ ε

)
≥ ε1. (4.24)
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Fix such ε, ε1 > 0; we have the inclusion
{

sup
t≤τn,0

c0

`n,0
t − `n,0

t−δ ≥ ε

}
⊂
{
∃i = 1, . . . ,

⌊
2c0

ε

⌋
: τn,0

(i+1)ε
2

− τn,0
iε
2

< δ

}
.

Since τn,0
(i+1)ε

2

− τn,0
iε
2

, i = 1, . . . ,
⌊

2c0

ε

⌋
are identically distributed we get

P

(
∃i = 1, . . . ,

⌊
2c0

ε

⌋
: τn,0

(i+1)ε
2

− τn,0
iε
2

< δ

)
≤
(⌊

2c0

ε

⌋
+ 1

)
P

(
τn,0
ε/2 < δ

)
.

By Lemma 3.9(a), we can choose δ sufficiently small such that

P

(
τn,0
ε/2 < δ

)
≤ ε1

2
(⌊

2c0

ε

⌋
+ 1
)

for all n sufficiently large, and hence

P

(
sup

t≤τn,0
c0

`n,0
t − `n,0

t−δ ≥ ε

)
≤ ε1

2

and we get a contradiction with (4.24).

Lemma 4.14. For any fixed r > 0, τ0
r equals, with probability one, to the value of

the inverse function of `0
· at r, that is,

τ0
r = inf{s > 0 : `0

s > r} , a.s..

Proof: Recall that we assume that we are considering the probability space where
`n,0, τn,0 → (`0, τ0) in DR+ [0,∞)×M(R+), P-a.s.. Moreover we know that for any
fixed r, τ0(·) is continuous at the point r. This, by properties of convergence in M,
implies that for any fixed r, τn,0

r → τ0
r , P-a.s.. Fix arbitrary c0, δ > 0. Then, by

definition of the local time, we get,

`n,0

τn,0
c0+δ

≥ c0 + δ. (4.25)

Since `n,0
· converges to the continous limit, the convergence is uniform on the

compacts. This and the convergence τn,0
c0+δ → τ0

c0+δ imply, that by passing to the

limit in (4.25) we get

`0
τ0

c0+δ
≥ c0 + δ, (4.26)

and hence

inf{s > 0 : `0
s > c0} ≤ τ0

c0+δ. (4.27)

Similarly we can show that

inf{s > 0 : `0
s > c0} ≥ τ0

c0−δ. (4.28)

Since δ was arbitrary, and by the continuity of τ0 at c0 (see Lemma 3.9(d)) we get

inf{s > 0 : `0
s > c0} = τ0

c0
. (4.29)

and we are done.
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Lemma 4.15. For any φ ∈ Cb(R
d) and fixed c0 > 0,

∫ τn,0
c0

0

φ(Ŵn
s )`n,t(ds) →

∫ τ0
c0

0

φ(Ŵs)`
t(ds), ∀t ≥ 0, P − a.s., (4.30)

as n → ∞, where

τ0
c0

= inf{r > 0 : `0
r > c0}. (4.31)

Proof: τn,0
c0

→ τ0
c0

, where by Lemma 4.14 τ0
c0

is defined by (4.31). Moreover, by

Lemma 4.13, `0
· is continuous at τ0

c0
, therefore by elementary properties of weak

convergence, for any continnuous function f(s)

∫ τn,0
c0

0

f(s)`n,0(ds) →
∫ τ0

c0

0

f(s)`0(ds), P − a.s., as n → ∞.

Now the result for t = 0, follows by uniform on the compacts convergence of Ŵ
n

to Ŵ. The convergence of the integral for t > 0 follows immediately since, by the
continuity of Y , the `t(ds) does not charge the point s = τ0

c0
for every t > 0.

Proof of Theorem 1.1: The tightness statement was proved in Proposition 4.1. To
finish the proof we need to derive the characterization of the limit points. Fix
arbitrary c0 > 0 and let Xn,c0

0,t be the measure-valued process defined as in (1.18),
that is,

Xn,c0

0,t (φ) ≡
∫ τn,0

c0

0

φ(Ŵn
s )`n,t(ds), t ∈ [0, K1], (4.32)

for all φ ∈ B(Rd). Let (W, Y, `, τ0
c0

) be an arbirary limit point of

{(Wn, Y n, `n, τn,0
c0

)}n≥1. Fix arbitrary φ ∈ Cb(R
d). As we have mentioned already,

due to results in Mytnik (1996), the sequence of process {Xn,c0

0,· }n≥1 converges

weakly in DMF [0, K1] to the process Xc0 ∈ CMF [0, K1] satisfying the martingale
problem (1.7-1.8) on [0, K1], with Xc0

0 = c0δx, and hence the left hand side of (4.32)
converges to Xc0

t (φ) for any t ∈ [0, K1]. As for the right hand side of (4.32), due to
Proposition 4.1 and Lemma 4.15 it converges, along an appropriate subsequence,

to
∫ τ0

c0

0 φ(Ŵs)`
t(ds) for t ∈ [0, K1], where ` is the local time Y . This gives us (1.19)

for any φ ∈ Cb(R
d). The extension of the equality to any φ ∈ B(Rd) is trivial.

5. Proof of Theorem 1.2

The proof of the result is based on convergence of approximations. For simplicity,
as before, we assume that (Wn, Bn, `n) = (Wn, Y n, Bn, `n) → (W, Y, B, `) =
(W, Y, B, `) a.s. (based on Proposition 4.1 we can always get it by Skorohod’s
theorem via an appropriate subsequence). Further, we localize the snake Wn to
live in a compact, and then it is not hard to check that for n large, the truncation
in the definition of ξn

j (y) can be ignored. Thus, we assume in the sequel that

ξn
j (y)
√

n
=

ξj (y)√
n

= B j
n
(y) − B j−1

n
(y).

On the level of the nth approximation we will be dealing with the following ap-
proximating functional:
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Fn (Wn
n−2k) ≡ 1

n

nY n
k/n2−1∑

l=1

e
− 1√

n

∑ l
l′=1

ξl′
(
W

n
k/n2( l+1

n )
)

.

Note that

Fn

(
W

n
n−2(k+1)

)

=






1
n

∑nY n
k/n2−2

l=1 e
− 1√

n

∑ l
l′=1

ξl′
(
W

n
k/n2( l+1

n )
)

, if Y n
(k+1)/n2 < Y n

k/n2 ,

1
n

∑nY n
k/n2−1

l=1 e
− 1√

n

∑ l
l′=1

ξl′
(
W

n
k/n2( l+1

n )
)

+ 1
ne

− 1√
n

∑nY n
k/n2

l′=1
ξl′
(
W

n
(k+1)/n2(Y n

k/n2+1/n)
)

, if Y n
(k+1)/n2 > Y n

k/n2 .

Further, if Y n
(k+1)/n2 > Y n

k/n2 , then

Wn
(k+1)/n2(Y n

k/n2 + 1/n) = Ŵ
n
(k+1)/n2 = Ŵ

n
k/n2 + η1/n,

where η is a Brownian path independent of W
n
k/n2 . Let

Fk = σ
{

W
n
l/n2 , l ≤ k

}
∨ σ {ξl , l = 0, 1, 2, . . .} .

Define

Vk = F
(

W
n
k/n2

)
− F

(
W

n
(k−1)/n2

)
, k = 1, 2, . . . .

Then by the standard decomposition of F
(
W

n
m/n2

)
we get that

F
(
Wm/n2

)
= Mn

m + An
m, m = 1, 2, . . . ,

where Mn
m , m = 1, 2, . . . , is the {Fm}m≥1-martingale given by

Mn
m =

m−1∑

k=0

(Vk+1 − E (Vk+1|Fk)) , m = 1, 2, . . .

and

An
m =

m−1∑

k=0

E (Vk+1|Fk) , m = 1, 2, . . . .

We first study the limiting behavior of An.

Lemma 5.1.

An
bn2tc →

∫ t

0

e−BYs (Ŵs)

{
−1

2
∆BYs(Ŵs) +

1

2

d∑

i=1

(
∂

∂xi
BYs(Ŵs)

)2
}

ds

+`0
t −

∫ t

0

e−BK1 (Ŵs) `K1(ds), as n → ∞. (5.1)
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Proof: Using Eη to denote expectation with respect to the Brownian path η·, we
have

E (Vk+1|Fk)

= P

(
Y n

(k+1)/n2 < Y n
k/n2 |Fk

)

× E

(
− 1

n
e
− 1√

n

∑nY n
k/n2−1

l′=1
ξl′ (Ŵ

n
n−2k

)

∣∣∣∣Y
n
(k+1)/n2 < Y n

k/n2 , Fk

)

+P

(
Y n

(k+1)/n2 > Y n
k/n2 |Fk

)

× E

(
1

n
e
− 1√

n

∑nY n
k/n2

l′=1
ξl′
(
W

n
n−2(k+1)

[
Y n

k/n2+1/n
]) ∣∣∣∣Y

n
(k+1)/n2 > Y n

k/n2 , Fk

)
.

Therefore,

E (Vk+1|Fk)

= −
[
1

2
− 1

4
√

n
ξY n

k/n2

(
Ŵ

n
n−2k

)] 1

n
e
− 1√

n

∑nY n
k/n2−1

l′=1
ξl′ (Ŵ

n
n−2k

)

+

[
1

2
+

1

4
√

n
ξY n

k/n2

(
Ŵ

n
n−2k

)]
Eη

(
1

n
e
− 1√

n

∑nY n
k/n2

l′=1
ξl′ (Ŵ

n
n−2k

+η1/n)

)

+
1

n
1{Y n

k/n2=0} − 1{Y n
k/n2=K1}

1

n
e
− 1√

n

∑nK1−1

l′=1
ξl′ (Ŵ

n
n−2k

)

=
1

2n

[
Eη

(
e
− 1√

n

∑nY n
k/n2

l′=1
ξl′ (Ŵ

n
n−2k

+η1/n)

)
− e

− 1√
n

∑nY n
k/n2−1

l′=1
ξl′ (Ŵ

n
n−2k

)

]

+
1

4n3/2
ξY n

k/n2

(
Ŵ

n
n−2k

)[
e
− 1√

n

∑nY n
k/n2−1

l′=1
ξl′ (Ŵ

n

n−2k
)

+ Eη

(
e
− 1√

n

∑nY n
k/n2

l′=1
ξl′ (Ŵ

n
n−2k

+η1/n)

)]

+
1

n
· 1{Y n

k/n2=0} −
1

n
· 1{Y n

k/n2=K1}e
− 1√

n

∑nK1−1

l′=1
ξl′ (Ŵ

n
n−2k

)

=
1

2n

[
Eη

(
e
−BY n

k/n2
(Ŵn

n−2k
+η1/n)

)
− e

−BY n
k/n2

−1/n(Ŵn
n−2k

)
]

+
1

4n3/2
ξY n

k/n2

(
Ŵn−2k

)(
e
−BY n

k/n2
−1/n(Ŵn

n−2k
)
+ Eη

(
e
−BY n

k/n2
(Ŵn

n−2k
+η1/n)

))

+
1

n
· 1{Y n

k/n2=0} −
1

n
· 1{Y n

(k−1)/n2=K1−1,Y n
k/n2=K1}e

−BK1−1/n(Ŵn

n−2k
)

= I1,n,k + I2,n,k + I3,n,k − I4,k,n ,
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where we also used the definition of B. We begin with an estimate of

Eη

(
e
−BY n

k/n2
(Ŵn

n−2k
+η1/n)

)
. Set

Rn,k(s) = e
−BY n

k/n2
(Ŵn

n−2k
+ηs)

[
−1

2
∆xBY n

k/n2
(Ŵn

n−2k + x)|x=ηs

+
1

2

d∑

i=1

(
∂

∂xi
BY n

k/n2
(Ŵn

n−2k + x)|x=ηs

)2
]

.

By Itô’s formula we get

Eη

(
e
−BY n

k/n2
(Ŵn

n−2k
+η1/n)

)
= e

−BY n
k/n2

(Ŵn
n−2k

)
+ Eη

(∫ 1/n

0

Rn,k(s)ds

)
.

The first term at the right side above can be further decomposed as

e
−BY n

k/n2
(Ŵn

n−2k
)

= e
−BY n

k/n2
−1/n(Ŵn

n−2k
)
[
1 − 1

n1/2
ξY n

k/n2

(
Ŵn−2k

)
+

1

2n
ξY n

k/n2

(
Ŵn−2k

)2

+ O(n−3/2)Θ

(∣∣∣ξY n
k/n2

(
Ŵn−2k

)∣∣∣
3
)]

,

where Θ(x) is some point in [−x, x]. We get

I1,n,k =
1

2n

[
e
−BY n

k/n2
−1/n(Ŵn

n−2k
)
(
− 1

n1/2
ξY n

k/n2

(
Ŵn−2k

)
+

1

2n
ξY n

k/n2

(
Ŵn−2k

)2

+ O(n−3/2)Θ

[∣∣∣ξY n
k/n2

(
Ŵn−2k

)∣∣∣
3
])

+ Eη

(∫ 1/n

0

Rn,k(s)ds

)]
.

To handle I2,n,k, note that

I2,n,k =
1

4n3/2
ξY n

k/n2

(
Ŵn−2k

) [
e
−BY n

k/n2
−1/n(Ŵn

n−2k
)
(

2 − 1

n1/2
ξY n

k/n2

(
Ŵn−2k

)

+ O(n−1)Θ

[∣∣∣ξY n
k/n2

(
Ŵn−2k

)∣∣∣
2
])

+ Eη

(∫ 1/n

0

Rn,k(s) ds

)]
.

All together we get

I1,n,k + I2,n,k =
1

2n
Eη

(∫ 1/n

0

Rn,k(s) ds

)

+O(n−5/2)e
−BY n

k/n2
−1/n(Ŵn

n−2k
)
Θ

(∣∣∣ξY n
k/n2

(
Ŵn−2k

)∣∣∣
3
)

+O(n−3/2)Θ
(∣∣∣ξY n

k/n2

(
Ŵn−2k

)∣∣∣
)

Eη

(∫ 1/n

0

Rn,k(s) ds

)
.
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From this it follows that for any t > 0

bn2tc∑

k=1

(I1,n,k + I2,n,k) =
1

2n2

bn2tc∑

k=1

nEη

(∫ 1/n

0

Rn,k(s) ds

)

+O(n−5/2)

bn2tc∑

k=1

Θ

(∣∣∣ξY n
k/n2

(
Ŵn−2k

)∣∣∣
3
)

e
−BY n

k/n2
−1/n(Ŵn

n−2k
)

+O(n−5/2)

bn2tc∑

k=1

Θ
(∣∣∣ξY n

k/n2

(
Ŵn−2k

)∣∣∣
)

nEη

(∫ 1/n

0

Rn,k(s) ds

)

→
∫ t

0

e−BYs (Ŵs)

(
−1

2
∆xBYs(Ŵs) +

1

2

d∑

i=1

(
∂

∂xi
BYs(Ŵs)

)2
)

ds,

where, due to the Hölder continuity of the Gaussian field, the second and third

terms on the right side of the first equality converge to 0 (once Ŵn−2k has been
localized in a compact with high probability), and the first term converges to the
first term on the right side of (5.1).

Now we will treat I3,n,k and I4,n,k. By definition of the approximate local time

`n,n−1m we get

bn2tc∑

k=0

(I3,n,k + I4,n,k) = `n,0
t −

∫ t

0

Eη

(
e
−B

K1− 1
n

(Ŵn
s+1/n2)

)
`n,K1−1/n(ds).

Then pass to the limit, use the uniform on compacts convergence of `n and W
n to

` and W, and the continuity of B to get that

bn2tc∑

k=0

(I3,n,k + I4,n,k) → `0
t −

∫ t

0

e−BK1 (Ŵs)`K1(ds),

as n → ∞. Thus, we obtain the second and the third terms in (5.1).

Define the bracket process for the martingale Mn:

〈Mn
· 〉m ≡

m−1∑

k=0

E

((
Mn

k+1 − Mn
k

)2 |Fk

)
, m = 1, 2, . . . . (5.2)

Then we have

Lemma 5.2.

〈Mn
· 〉bn2tc →

∫ t

0

e−2BYs (Ŵs)ds, as n → ∞.

Proof: It is easy to check that for any m ≥ 1,

〈Mn
· 〉m =

m−1∑

k=0

E
(
V 2

k+1|Fk

)
−

m−1∑

k=0

(E (Vk+1|Fk))
2
.
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By Lemma 5.1 we know that as n → ∞

bn2tc∑

k=0

E (Vk+1|Fk) →
∫ t

0

e−BYs (Ŵs)

{
−1

2
∆BYs(Ŵs) +

1

2

d∑

i=1

(
∂

∂xi
BYs(Ŵs)

)2
}

ds

+`0
t −

∫ t

0

e−BK1(Ŵs) `K1(ds)

which is a process of bounded variation. From this it is easy to deduce that

bn2tc∑

k=0

(E (Vk+1|Fk))2 → 0,

as n → ∞. Hence it is enough to consider the limiting behavior of

bn2tc∑

k=0

E
(
V 2

k+1|Fk

)
.

By repeating the argument in the proof of Lemma 5.1 we get

E(V 2
k+1|Fk)

= P

(
Y n

(k+1)/n2 < Y n
k/n2 |Fk

)

× E

(
1

n2
e
− 2√

n

∑nY n
k/n2−1

l′=1
ξl′
(

W
n
n−2k

(
Y n

k/n2

)) ∣∣∣∣Y
n
(k+1)/n2 < Y n

k/n2 , Fk

)

+P

(
Y n

(k+1)/n2 > Y n
k/n2 |Fk

)

× E

(
1

n2
e
− 2√

n

∑nY n
k/n2

l′=1
ξl′
(

W
n
n−2(k+1)

(
Y n

k/n2+1/n
)) ∣∣∣∣Y

n
(k+1)/n2 > Y n

k/n2 , Fk

)

=

[
1

2
− 1

4
√

n
ξY n

k/n2

(
Ŵ

n
n−2k

)] 1

n2
e
− 2√

n

∑nY n
k/n2−1

l′=1
ξl′(Ŵ

n
n−2k

)

+

[
1

2
+

1

4
√

n
ξY n

k/n2

(
Ŵ

n
n−2k

)]
Eη

(
1

n2
e
− 2√

n

∑nY n
k/n2

l′=1
ξl′ (Ŵ

n
n−2k

+η1/n)

)

+
1

n2
1Y n

k/n2=0 + 1Y n
k/n2=K1

1

n2
e
− 2√

n

∑nK1−1

l′=1
ξl′ (Ŵ

n
n−2k

)
.



372 Leonid Mytnik, Jie Xiong and Ofer Zeitouni

Therefore,

E(V 2
k+1|Fk)

=
1

2n2

[
Eη

(
e
− 2√

n

∑nY n
k/n2

l′=1
ξl′ (Ŵ

n
n−2k

+η1/n)

)
+ e

− 2√
n

∑nY n
k/n2−1

l′=1
ξl′ (Ŵ

n
n−2k

)

]

+
1

4n5/2
ξY n

k/n2

(
Ŵ

n
n−2k

)[
−e

− 2√
n

∑nY n
k/n2−1

l′=1
ξl′(Ŵ

n

n−2k
)

+ Eη

(
e
− 2√

n

∑nY n
k/n2

l′=1
ξl′ (Ŵ

n
n−2k

+η1/n)

)]

+
1

n2
· 1{Y n

k/n2=0} +
1

n2
· 1{Y n

k/n2=K1}e
− 2√

n

∑nK1−1

l′=1
ξl′ (Ŵ

n

n−2k
)

=
1

2n2

(
Eη

(
e
−2BY n

k/n2
(Ŵn

n−2k
+η1/n)

)
+ e

−2BY n
k/n2

−1/n(Ŵn
n−2k

)
)

+
1

4n5/2
ξY n

k/n2

(
Ŵn−2k

)(
−e

−2BY n
k/n2

−1/n(Ŵn
n−2k

)
+Eη

(
e
−2BY n

k/n2
(Ŵn

n−2k
+η1/n)

))

+
1

n2
· 1{Y n

k/n2=0} +
1

n2
· 1{Y n

k/n2=K1}e
−2BK1−1/n(Ŵn

n−2k
)

= J1,n,k + J2,n,k + J3,n,k + J4,n,k .

Using the bounds from the proof of Lemma 5.1 it is easy to see that

bn2tc∑

k=1

(J2,n,k + J3,n,k + J4,n,k) → 0,

as n → ∞. As for J1,n,k, again using the convergence of (Wn, Y n) and the conti-
nuity of B, it is easy to see that

bn2tc∑

k=1

I1,n,k →
∫ t

0

e−2BYs (Ŵs)ds, as n → ∞,

and we are done.

Corollary 5.3. As n → ∞, Mn converges to a continuous local martingale M
such that

〈M·〉t =

∫ t

0

e−2BYs (Ŵs)ds, t ≥ 0. (5.3)

Proof: The continuity of M is immediate from the continuity of the limiting process
Y and Lemma 5.1. The rest is immediate from Lemma 5.2.

Corollary 5.4. There exists a Brownian motion β such that

Mt =

∫ t

0

e−BYs (Ŵs)dβs, t ≥ 0. (5.4)

Proof: Immediate from the previous corollary.
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Proof of Theorem 1.2: Immediate from Lemma 5.1, Corollary 5.3 and Corollary 5.4.

Finally, we describe the snake process when g is constant. The description for
the general case, more specifically, the uniqueness of the solution for the martingale
problem (1.23) remains a challenging open problem.

When g is constant, say g = 1, we have that Bt(x) = Bt is a Brownian motion
with constant drift ν. It follows from the martingale problem (1.23) that

∫ Yt

0

e−Brdr = `0
t − e−BK1 `K1

t +

∫ t

0

e−BYs dβs.

Therefore, Yt is the Brox diffusion reflected at 0 and K1 (see the Appendix for a
description when ν = 0).

Next, we consider the conditional (given the lifetime process) path process. Let
w = (w, ζw) be an element in W . Fix a ∈ [0, ζw] and b ≥ a. Similar to LeGall
(Le Gall, 1999, p54), we define Ra,b(w, dw′) as the unique probability measure on
W such that
(i) ζw′ = b, Ra,b(w, dw′) a.s.
(ii) w′(t) = w(t) for all t ≤ a, Ra,b(w, dw′) a.s.
(iii) Under Ra,b(w, dw′), (w′(a + t) : t ∈ [0, b − a]) is a Brownian motion.

Denote the time set Qn = {n−2k : k = 0, 1, 2, · · · }. From the construction of
the discrete snake, it follows that W

n
s , s ∈ Qn is a conditional (given Y n) Markov

chain with transition probability

Rmn(s,s′),Y n(s′)(w, dw′), s < s′ ∈ Qn,

where mn(s, s′) = inf{Y n(r) : r ∈ [s, s′] ∩ Qn}.
Taking n → ∞, we see that the limit {Ws, s ≥ 0} is a conditional (given Y )

Markov process with transition probability

Rm(s,s′),Y (s′)(w, dw′), s < s′,

where m(s, s′) = inf{Y (r) : r ∈ [s, s′]}. Namely, it has the same conditional law
as LeGall’s Brownian snake.

6. Appendix: Convergence to a reflected Brox diffusion

We provide in this appendix a short, direct proof of Corollary 1.5 that bypasses
the study of the branching process, relying instead on an embedding of a random
walk in random environment (RWRE) into a diffusion in random environment, in
the spirit of Shi (2001)1. For backround on Brownian motion in random environ-
ments we refer to Brox (1986), Schumacher (1985), Tanaka (1995) and to the nice
overview in Shi (2001). Background for RWRE can be found in Zeitouni (2004).

Recall that a Brownian motion in random environment (BMRE) is a process Xt

given by

dXt = dβt −
1

2
V ′(Xt)dt, (6.1)

where βt is a Brownian motion and V is called the random potential. When V
is itself a Brownian motion independent of β, this (formal) process is the Brox
diffusion Brox (1986).

1While revising this paper we learnt from F. Comets about the paper Seignourel (2000), that
contains a very similar argument for convergence to the Brox diffusion.
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We need to consider reflecting BMRE’s. Let h be the periodic function with
period 2K1 and h(x) = |x| for |x| ≤ K1. Let V be a Brownian motion on x ∈ [0, K1]

and set V̂ (x) = V (h(x)) for x ∈ R. Set formally

dZt = dβt −
1

2
V̂ ′(Zt)dt. (6.2)

(In case V is not smooth, a precise meaning is given to (6.2) by the procedure
described in Shi, 2001, Section 2). Let Yt = h(Zt). A formal application of the
Itô-Tanaka formula yields

dYt = h′(Zt)dZt + d`Y,0
t − d`Y,K1

t (6.3)

= h′(Zt)dβt − h′(Zt)
1

2
V̂ ′(Zt)dt + d`Y,0

t − d`Y,K1

t

= dβ̃t −
1

2
V ′(Yt)dt + d`Y,0

t − d`Y,K1

t ,

where β̃ is a Brownian motion. To justify (6.3), one argues as follows. First, an
application of Ito’s formula for Dirichlet processes, see e.g. Föllmer (1981), gives
that for any g which is twice differentiable, and with Y g

t = g(Zt),

dY g
t = g′(Zt)dZt +

1

2
g′′(Zt)dt . (6.4)

Now note that, by definition of the local time as the occupation time density, the
local times of Z and Y at levels 0 and K1 are equal up to multiplicative constant 2.
Therefore a standard approximation of h by smooth functions g, together with (6.4),

yields (6.3), provided that the local time `Z,x
t of Z· is jointly continuous in t and x,

the latter at x = 0 and x = K1. However, `Z,x
t is a continuous transformation of the

local time of the Brownian motion βt (see e.g. Equation (10) in Andreoletti and Diel
(2011) for an explicit formula which holds for any environment—not necessarily for
the two sided white noise), and thus is jointly continuous in its arguments. This
yields (6.3). Therefore, Y· is a reflecting (at 0 and K1) Brox diffusion.

6.1. Embedding. In this subsection, we introduce an environment and represent Y n

as a RWRE, which we then proceed (after scaling of the environment) to embed in
a diffusion in random environment.

Let the environment be given by a family {ξn(i), i ∈ Z+} of independent random
variables with mean 0 and variance 1. We further assume that |ξn(i)| ≤ √

n. Define
the potential V n(·) on R+ by

V n(x) =

[x]∑

i=1

log

1
2 − 1

4
√

n
ξn(i)

1
2 + 1

4
√

n
ξn(i)

,

and set V̂ n(x) = V n(nh(x/n)) and let Ẑn be the BMRE with potential V̂ n. Set

Zn(t) = n−1Ẑn(n2t). Define the stopping times σn
0 = 0 and

σn
m+1 = inf {t > σn

m : |Zn(t) − Zn(σn
m)| = 1/n} .

By Schumacher’s theorem (cf. Schumacher, 1985 and Shi, 2001), we have

Lemma 6.1. Let Z̃n
m = nZn(σn

m), m = 0, 1, 2, · · · . Then Z̃n is a RWRE with

P
ξ
(
Z̃n

m+1 = i ± 1
∣∣∣Z̃n

m = i
)

=
1

2
± 1

4
√

n
ξn(nh(i/n)),
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where P
ξ is the probability measure conditioned on the environment ξ.

The next proposition is crucial for the proof of Corollary 1.5.

Proposition 6.2. The sequence of processes
{

1
n Z̃n

btn2c , t ≥ 0
}

n≥1
converges weakly

in DR[0,∞) to the process Z which satisfies (6.2).

Remark 6.3. Note that Ỹ n ≡ h(Z̃n) is a sequence of reflecting (at 0 and nK1)
RWRE such that

P
ξ
(
Ỹ n

m+1 = i ± 1
∣∣∣Ỹ n

m = i
)

=
1

2
± 1

4
√

n
ξn(i), i = 1, . . . , nK1 − 1,

and hence by the continuity of the function h and the discussion in the beginning of
the appendix, in order to prove Corollary 1.5 it is sufficient to prove Proposition 6.2.

The rest of the appendix is devoted to the proof of Proposition 6.2.
The following is a straight-forward consequence of Section 3 of Shi (2001).

Lemma 6.4. Zn is the Brownian motion in random environment with potential
V̂ n(nx).

Proof: Let

Ân
x =

∫ x

0

eV̂ n(y)dy.

As Ẑn is the BMRE with potential V̂ n, it is well-known (see (2.3) in Shi, 2001)

that Ân
Ẑn(t)

is a local martingale with quadratic variation Θ̂n(t) such that

(Θ̂n)−1(t) =

∫ t

0

e
−2V̂ n(Ân

Ẑn(u)
)
du.

We now rescale. Let

An
x =

∫ x

0

eV̂ n(ny)dy.

Then

Ân
Ẑn(t)

=

∫ nZn(n−2t)

0

eV̂ n(z)dz = n

∫ Zn(n−2t)

0

eV̂ n(ny)dy = nAn
Zn(n−2t).

Thus An
Zn(t) is a local martingale with quadratic variation process Θn(t)=n2Θ̂n(n2t).

Thus,

(Θn)−1(t) = n−2

∫ n−2t

0

e
−2V̂ n(nAn

Zn(n−2u)
)
du =

∫ t

0

e−2V̂ n(nAn
Zn(u))du.

Therefore (see again (2.3) and (2.5) in Shi, 2001), Zn is the BMRE with potential

V̂ n(nx).

6.2. Scaling limit. As was proved in the previous subsection (see Lemma 6.1), the
scaled RWRE is related to BMRE by

1

n
Z̃n

[n2t] = Zn(σn
[n2t]). (6.5)

In this section, we first prove that

σn
[n2t] → t, as n → ∞, (6.6)
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by the strong law of large numbers. Then, we prove that the scaled potential for
Zn converges to V̂ , and hence Zn converges to a BMRE with potential V̂ . This
by (6.5) and (6.6) will provide the proof of Proposition 6.2.

Lemma 6.5. As n → ∞, we have

σn
[n2t] → t, a.s.

uniformly on compact sets.

Proof: By Proposition 3.2 in Shi (2001) (or a direct computation involving a time
change), we see that θi = n2(σn

i − σn
i−1), i = 1, 2, · · · , are i.i.d. with the same

distribution as

θ = inf{t > 0 : |W (t)| = 1},
where W is a standard Brownian motion. Note that Eθ = 1. By the strong law of
large numbers, we get that

σn
[n2t] = t

1

n2t

[n2t]∑

i=1

θi → t

uniformly on compacts.

For the next lemma, recall that Z is the processes that satisfies (6.2).

Lemma 6.6. As n → ∞, Zn =⇒ Z weakly in CR[0,∞).

Proof: First we consider the weak convergence of V n(nx). Note that

V n(nx) =

[nx]∑

i=1

1√
n

ξn(i) + o(1) ≡ Mn
x + o(1).

Regarding x as the time-parameter, {Mn
x , x > 0} is a martingale with predictable

quadratic variation process

〈Mn〉x =

[nx]∑

i=1

E

(
1√
n

ξn(i)

)2

→ x

uniformly on the compacts. Thus, by Theorem 4.13 (Jacod and Shiryaev, 1987,
P358), Mn converges weakly in DR[0,∞) to a Brownian motion V (x), x ≥ 0. By
switching to another probability space if necessary, we may and will assume that
all weak convergences hold almost surely. Then we get, V n(n·) → V , a.s.. Note
that by the continuity of h, we immediately get that

V̂ n(x) → V̂ (x) = V (h(x)), a.s..,

uniformly on the compacts of R+. Note that (see (2.6) in Shi, 2001),

Zn(t) = (An)−1(Wn((T n)−1(t))),

where

An
x =

∫ x

0

eV̂ n(ny)dy,

T n(t) =

∫ t

0

e
−2V̂ n

(
n(An)−1

W n(u)

)

du,
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and Wn is a Brownian motion. Since Wn trivially converges weakly to the Brownian
motion W , we assume as before that the convergence holds a.s.. Then we have

An
x →

∫ x

0

eV̂ (y)dy = Ax, as n → ∞,

and

T n(t) →
∫ t

0

e
−2V̂

(
A−1

W (u)

)

du = T (t), as n → ∞.

Note that all the convergence above are a.s. and uniform on compacts. We see that

Zn(t) → A−1
W (T−1(t)) ≡ Z(t). (6.7)

By stochastic calculus as in Section 2 of Shi (2001), it follows that (6.7) defines

a BMRE Z(t) with potential V̂ .

Now Proposition 6.2 follows from Lemmas 6.5, 6.6, and (6.5). Then as we have
mentioned already in Remark 6.3, Corollary 1.5 follows immediately from Proposi-
tion 6.2.
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