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Abstract. We consider the area A =
∫∞

0
(
∑∞

i=1 Xi(t)) dt of a self-similar fragmen-
tation process X = (X(t), t ≥ 0) with negative index. We characterize the law of A
by an integro-differential equation. The latter may be viewed as the infinitesimal
version of a recursive distribution equation that arises naturally in this setting. In
the case of binary splitting, this yields a recursive formula for the entire moments
of A which generalizes known results for the area of the Brownian excursion.

1. Introduction

The distribution of the area AExc =
∫ 1

0 esds of a standard Brownian excursion
(es, 0 ≤ s ≤ 1) appears in a variety of settings, including random graphs cf. Spencer
(1997); Takács (1991a), random trees and branching processes cf. Takács (1991b,
1994), order statistics cf. Takács (1992), hashing with linear probing cf. Flajolet
et al. (1998), ..., not to mention of course the study of Brownian motion for its
own interest cf. Louchard (1984a,b). The entire moments E(Ak

Exc) have a special
importance, as they are related, for instance, to asymptotics as n → ∞ for the
number of connected graphs with n labelled vertices and n + k − 1 edges, see
Spencer (1997) and the survey by Janson (2007). We refer to Perman and Wellner
(1996); Janson (2007) and references therein for a detailed presentation and reviews
of known results on this topic.

The starting point of this work lies in the observation that one can express the
area in the form

AExc =

∫ ∞

0

|θ(t)|dt

where |θ(t)| denotes the Lebesgue measure of the random open set θ(t) = {s ∈
[0, 1] : es > t}. The point is that the process θ = (θ(t), t ≥ 0) is a self-similar
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interval-fragmentation in the sense of Bertoin (2002, 2006). One can derive an
integro-differential equation for the distribution of AExc from the branching and self-
similarity properties of θ. In particular this yields recursive formulas for the entire
moments of AExc that have been obtained in the literature by analytic techniques
based on the Feynman-Kac formula or the analysis of continued fractions and of
singularities of the generating functions of discrete approximations.

The same approach applies more generally to self-similar fragmentation pro-
cesses, a class of Feller processes with values in the space of mass-partitions

Pm = {x = (x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0 and
∞
∑

i=1

xi ≤ 1} .

Specifically, a self-similar fragmentation X = (X(t), t ≥ 0) fulfills the following two
fundamental properties. For x ∈ [0, 1], let us denote by Px the law of the version
of X started from a single fragment of mass x, i.e. X(0) = (x, 0, . . .). First, the
self-similarity means that there exists an index α ∈ R such that for every x ∈ (0, 1]
the distribution of the rescaled process (xX(xαt), t ≥ 0) under P1 is Px. Second, the
process X satisfies the branching property, in the sense that for every mass-partition
x = (x1, x2, . . .), if X(1),X(2), . . . are independent fragmentations with respective
laws Px1

, Px2
, . . ., then the process resulting from the decreasing rearrangement of

all the fragments of X(1)(t),X(2)(t), . . . is a version of X(t) started from X(0) = x.
We assume that the index of self-similarity α is negative, which implies that

small fragments split faster than the large ones. A well-known consequence is that
the process of the total mass t 7→

∑∞
i=1 Xi(t) decreases and reaches 0 in finite time

a.s.; in other words the entire mass is eventually ground down to dust. This has
been observed first by Filippov (1961), see also Proposition 2(i) in Bertoin (2003).
We may thus define the area

A =

∫ ∞

0

(

∞
∑

i=1

Xi(t)

)

dt

which is the main object of interest in this work. The denomination area is better
understood if we remember that a fragmentation admits an interval representation;
cf. Section 3.2 in Bertoin (2002). There exists a nested right-continuous family
(θ(t), t ≥ 0) of open subsets of the unit interval such that for every t ≥ 0, the
sequence of the lengths of the interval components of θ(t) listed in the decreasing
order is precisely X(t) = (X1(t), . . .). If we define a lower semi-continuous path
F : [0, 1] → R+ by

F (u) = sup{t ≥ 0 : u ∈ θ(t)} , u ∈ [0, 1] ,

then θ(t) = {u : F (u) > t}, and since
∑∞

i=1 Xi(t) = |θ(t)|, we can express A in

the form A =
∫ 1

0
F (u)du. Of course F is the Brownian excursion in the situation

discussed at the beginning of this introduction.
The area A has another natural interpretation in terms of continuous random

trees. Indeed, Haas and Miermont (2004) obtained a representation of self-similar
fragmentations in terms of some random rooted real tree (T, µ) (where µ denotes a
probability measure on the metric space T) which enjoys self-similarity and branch-
ing properties. More precisely, for every t ≥ 0, X(t) = (X1(t), . . .) can be viewed
as the ranked sequence of the masses of connected components of T(t), the sub-
set of the points in T at distance at least t from the root. Thus in this setting,
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µ(T(t)) =
∑∞

i=1 Xi(t) and

A =

∫ ∞

0

µ(T(t))dt .

In other words, A represents the average height in T, i.e. the average distance of
points to the root, where averaging is taken with respect to the probability measure
µ on T. Beware that this differs from the typical height H , that is the distance from
the root of a point chosen uniformly at random according to µ. More precisely, A
is the conditional expectation of H given (T, µ). We also refer to Takács (1994) for
results on this quantity in the framework of certain discrete random trees.

In the next section, we will present our main result which determines the law
of A as the unique solution to an intro-differential equation expressed in terms
of the characteristics of X. In the case of binary dislocations, this enables us to
derive explicit recursive formulas for the moments of A. We recover in particular
identities due to Takács (1991a) for the moments of the area of the Brownian
excursion. Section 3 is devoted to the proof of this integro-differential equation.
We shall start by establishing a priori bounds for the moments of A. Then we
proceed with the simpler case when the dislocation measure is finite, and derive
the equation from a recursive distribution equation which is naturally induced by
the dynamics of fragmentation. The general case when the dislocation measure is
infinite is then deduced by approximation. This relies on a weak limit theorem for
the area of fragmentation processes. The proof of the latter is somewhat technical
and will be postponed to the final subsection.

2. Main results

We denote by ν the dislocation measure of X, so ν is a sigma-finite measure on
the space of mass-partitions Pm with no atom at the trivial mass-partition (1, 0, . . .)
and fulfills the integral condition

∫

Pm

(1 − x1)ν(dx) < ∞ . (2.1)

We implicitely exclude the degenerate case when ν ≡ 0 and further assume absence
of erosion. Roughly speaking, this means that X is a purely discontinuous process
that only evolves by sudden dislocations whose rates are determined by ν and the
index of self-similarity α. We refer to Chapter 3 of Bertoin (2006) or Bertoin (2002)
for background.

For an arbitrary mass partition x, we denote by

ηx(da) = Px(A ∈ da) , a ≥ 0 ,

the law of the area under the probability measure Px for which the fragmentation
X starts from X(0) = x. For the sake of simplicity, we will work from now on
under the law P = P1, i.e. when the fragmentation starts from a single fragment of
mass 1, and write then η = η1. This induces no loss of generality since, combining
self-similarity and the branching property, we get that for every mass-partition
x = (x1, x2, . . .), there is the identity

ηx(da) = P

(

∞
∑

i=1

x1−α
i Ai ∈ da

)

(2.2)
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where (Ai)i∈N is a family of i.i.d. copies of A. Note that when x has only finitely
many non-zero terms, say x1, . . . , xn, then ηx can be expressed as a convolution
product ηx = ηx1

∗ · · · ∗ ηxn
where ηy stands for the image of η by the dilation

a 7→ y1−αa. Finally, we let 〈µ, f〉 =
∫

fdµ denote the integral of some function f
with respect to a measure µ when the integral makes sense. We are now able to
state our main result.

Theorem 2.1. Let X be a self-similar fragmentation with index α < 0, dislocation
measure ν and without erosion. Then for every C1 function f : R+ → R such that
f ′(y) = O(yp) as y → ∞ for some p > 0, the law η of A solves

〈η, f ′〉 =

∫

Pm

ν(dx) (〈η, f〉 − 〈ηx, f〉) , (2.3)

where the quantities above are finite. Further (2.3) characterizes η.

If we introduce the concave increasing function Φ : R+ → R+ by

Φ(q) =

∫

Pm



1 −
∞
∑

j=1

x1+q
j



 ν(dx) , (2.4)

then we immediately see from Theorem 2.1 that the first moment of A is given
simply by

E(A) = 〈η, Id〉 = 1/Φ(−α) .

This identity can also be established directly; see the forthcoming Lemma 3.1.
More generally, we shall now derive from Theorem 2.1 a recursive formula for the

entire moments of A. For the sake of simplicity, we shall focus on the special case
of binary dislocations, although more general situations could be dealt with at the
price of heavier notation. This means that we assume that the dislocation measure
ν has support in the subset of binary mass-partitions {x = (x, 1 − x, 0, . . .), x ∈
[1/2, 1)}. By a slight abuse, we shall then identify the dislocation measure ν with
its image by the map x → x1, i.e. we view ν as a measure on [1/2, 1). Specializing
Theorem 2.1 to f(x) = xk and applying the binomial formula, we immediately
obtain:

Corollary 2.2. Let X be a self-similar fragmentation with index α < 0, binary
dislocation measure ν and without erosion. For every integer k ≥ 0, let Mk = E(Ak)
denote the k-th moment of the area; in particular M0 = 1. Then there is the identity

akMk = kMk−1 +

k−1
∑

j=1

aj,kMjMk−j , k ≥ 1 ,

with

ak =

∫

[1/2,1)

(1 − xk(1−α) − (1 − x)k(1−α))ν(dx) = Φ(k(1 − α) − 1) ,

and

aj,k =

(

k
j

)∫

[1/2,1)

xj(1−α)(1 − x)(k−j)(1−α)ν(dx) .

We stress that (2.1) ensures the finiteness of ak and aj,k.
We now discuss some examples, starting with the case of the Brownian fragmen-

tation A = AExc which has motivated this work. The Brownian fragmentation has
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self-similarity index α = −1/2, no erosion, and its dislocation measure is binary
and specified by

ν(dx) =
2

√

2πx3(1 − x)3
dx , 1/2 ≤ x < 1 ;

see Bertoin (2002) on its pages 339-340. One gets by symmetry

ak =

∫ 1

0

1 − x3k/2 − (1 − x)3k/2

√

2πx3(1 − x)3
dx = 23/2 Γ((3k − 1)/2)

Γ(3k/2 − 1)

and

aj,k =

(

k
j

)∫ 1

0

x3j/2(1 − x)3(k−j)/2

√

2πx3(1 − x)3
dx

=
k! Γ((3j − 1)/2) Γ((3(k − j) − 1)/2)√

2π j! (k − j)! Γ(3k/2 − 1)

Following Takács (1991a), if we set

Mk =
4
√

π2−k/2k!

Γ((3k − 1)/2)
Kk ,

then after some cancellations, Corollary 2.2 reduces to

Kk = (3k/4 − 1)Kk−1 +

k−1
∑

j=1

KjKk−j

with K0 = −1/2. This is the recursive equation found by Takács, which in turn
yields a Riccati type ODE by considering the exponential generating function of the
Kk; see Flajolet et al. (1998). We mention the existence of other recursive formulas
for the moments of AExc, see in particular Louchard (1984a) and the discussion in
Janson (2007).

Similar calculations apply when more generally the dislocation measure is of
beta-type, i.e. is binary with

ν(dx) = cxβ(1 − x)βdx , 1/2 < x < 1

for some −2 < β < −1. These beta-splitting measures have appeared in works
of Aldous (1996) on cladograms; see also Section 5.1 in Haas et al. (2008). One
obtains

2

c
ak

=

∫ 1

0

(

1 − xk(1−α) − (1 − x)k(1−α)
)

xβ(1 − x)βdx

= B(β + 1, β + 1) − 2B(β + 1 + k(1 − α), β + 1)

=
2(2β + 3)

β + 1
B(β + 2, β + 2) − 2

2β + 2 + k(1 − α)

β + 1
B(β + 1 + k(1 − α), β + 2)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function, and

2

c
aj,k =

(

k
j

)∫ 1

0

xβ+j(1−α)(1 − x)β+(k−j)(1−α)dx

=

(

k
j

)

B(β + j(1 − α) + 1, β + (k − j)(1 − α) + 1) .
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Finally, note that we can also deal with linear combinations of the beta disloca-
tion measures, which covers for instance the case of Ford’s alpha model; see Section
5.2 in Haas et al. (2008).

3. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1; it relies in four main steps.
In the first sub-section, we establish a priori bounds for the moments of the area,
relying on known properties of the so-called tagged fragment. In the second sub-
section, we prove the equation (2.3) in the special case when the dislocation measure
is finite. In the third sub-section, we provide the proof of Theorem 2.1 by approx-
imation, taking for granted a weak convergence result for the area that will be
established in the final sub-section.

3.1. Bounds for the moments of the area. The purpose of this subsection is to
establish some a priori bounds on the moments Mk = E(Ak) of the area. Recall
the notation (2.4) and that α < 0.

Lemma 3.1. We have

M1 = 1/Φ(−α)

and for k ≥ 1

Mk ≤ k!

Φ(−α) · · ·Φ(−kα)
.

As a consequence E(exp(cA)) < ∞ whenever c < Φ(∞), and in particular the law
η of A is determined by its entire moments.

Proof : It is convenient to work in the framework of interval-fragmentation, i.e.
when the fragmentation X describes the ranked sequence of the lengths of the
interval components of a family (θ(t), t ≥ 0) of nested open subsets of the unit
interval. Recall from the introduction that if we set

F (u) = sup{t ≥ 0 : u ∈ θ(t)} , u ∈ [0, 1] ,

then A =
∫ 1

0
F (u)du, and then for every integer k ≥ 1, there is the identity

Ak =

∫ 1

0

du1 . . .

∫ 1

0

dukF (u1) · · ·F (uk) .

In this setting, we have

E(Ak) = E(F (U1) · · ·F (Uk))

where U1, . . . , Uk are i.i.d. uniform variables on [0, 1]. This yields

M1 = E(F (U)) and Mk ≤ E(F (U)k)

where U has the uniform distribution on [0, 1].
The variable F (U) should be viewed as the lifetime of the tagged-fragment, i.e.

it is the first instant t when the size χ(t) of the interval component of θ(t) that
contains the randomly tagged point U reaches the absorbing state 0. This variable
has the distribution of an exponential functional,

F (U)
(law)
= I =

∫ ∞

0

exp(αξt)dt
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where ξ = (ξt, t ≥ 0) is a subordinator with Laplace exponent Φ; see Corollary 2 in
Bertoin (2002). Since it is well-known that

E(Ik) =
k!

Φ(−α) · · ·Φ(−kα)

(cf. for instance Theorem 2 in Bertoin and Yor, 2005), the first two claims are
proved, and the last ones follow immediately. Indeed, since the function Φ increases,
we have for every c < b < Φ(∞) that Φ(−α) · · ·Φ(−kα) ≥ bk provided that k
is sufficiently large. In particular, we deduce from the bounds for Mk that the

series
∑∞

k=0
ckMk

k! converges, that is E(exp(cA)) < ∞. It is well-known that this
guaranties that the moment problem for the law of A is determined. �

3.2. The case with finite dislocation rates. In this subsection, we assume that the
fragmentation process has a finite dislocation measure, i.e. ν(Pm) ∈ (0,∞). This
means that under P, the process X stays in state (1, 0, . . .) during an exponential
time T with parameter ν(Pm), and then, independently of the waiting time T ,
jumps at some random mass partition X(T ) whose distribution is given by the
normalized dislocation measure ν/ν(Pm). We stress that the jump times of X may
nonetheless accumulate right after T ; in particular then X is not a continuous-time
Markov chain. Indeed, the first dislocation may produce fragments of arbitrarily
small sizes, which then split again almost instantaneously by self-similarity.

The proof of the following weaker version of Theorem 2.1 in this setting is
straightforward.

Proposition 3.2. Assume that X has no erosion and finite dislocation measure
ν. Then for every C1 function f : R+ → R such that the derivative f ′ has a finite
limit at ∞, we have

〈η, f ′〉 =

∫

Pm

ν(dx) (〈η, f〉 − 〈ηx, f〉) .

Proof : An application of the strong Markov property at the first dislocation time
T and (2.2) yields the recursive distributional equation (see the survey by Aldous
and Bandyopadhyay (2005) for much more this topic)

A = T +

∞
∑

i=1

Xi(T )1−αAi

where (Ai)i∈N is a sequence of i.i.d. copies of A which is further independent of
X(T ). This entails

`(q) =
1

ν(Pm) + q

∫

Pm

ν(dx)
∞
∏

i=1

`(x1−α
i q) , q ≥ 0

where `(q) = E(exp(−qA)) is Laplace transform of the area. By rearrangement, we
arrive at

−q`(q) =

∫

Pm

ν(dx)

(

`(q) −
∞
∏

i=1

`(x1−α
i q)

)

,

which is the equation in the statement specified for the exponential function f(a) =
e−qa.

We shall now extend this to more general functions by an application of the
Stone-Weierstrass theorem. Recall that the latter ensures that linear combinations
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of exponential functions a → e−qa with q ≥ 0 are everywhere dense in the space
C([0,∞], R) of continuous functions on the half-line with a finite limit at infinity,
endowed with the uniform norm ‖g‖∞ = supx≥0 |g(x)|. Let f : R+ → R be a

C1 function such that its derivative f ′ belongs to C([0,∞], R). So there exists a
sequence (fn)n∈N of linear combinations of exponential functions with fn(0) = f(0)
for all n ∈ N and limn→∞ ‖f ′

n−f ′‖∞ = 0. In particular fn converges to f uniformly
on compact sets and there exists some constant c > 0 such that |fn(x)| ≤ c(1 + x)
and |f(x)| ≤ c(1 + x) for all x ≥ 0.

Therefore we have

lim
n→∞

〈η, f ′
n〉 = 〈η, f ′〉

and for every a > 0 and every mass-partition x ∈ Pm (including possibly x =
(1, 0, . . .))

lim
n→∞

〈ηx,1[0,a]fn〉 = 〈ηx,1[0,a]f〉.
Recall that ν is assumed to be finite in this section; since the functions 1[0,a]fn are
bounded uniformly in n ∈ N and the ηx are probability measures, we may apply
dominated convergence and obtain

lim
n→∞

∫

Pm

ν(dx)
(

〈η,1[0,a]fn〉 − 〈ηx,1[0,a]fn〉
)

=

∫

Pm

ν(dx)
(

〈η,1[0,a]f〉 − 〈ηx,1[0,a]f〉
)

.

On the other hand, since |fn(x)| ≤ c(1 + x), we have for every mass-partition
x ∈ Pm

|〈ηx,1(a,∞)fn〉| ≤ cEx(1 + A, A > a) ,

and the same upper bound holds with f replacing fn in the left-hand side. Note
that

Ex(A) =

∞
∑

1

x1−α
i E(A) ≤ E(A) = M1 ,

where x = (x1, . . .) denotes an arbitrary mass-partition, so Markov inequality yields
the uniform bound

Px(A > a) ≤ a−1M1 .

Moreover,

Ex(A2) =

∞
∑

i=1

∞
∑

j=1

x1−α
i x1−α

j E(AiAj) ≤ E(A2) = M2

where (Ai)i∈N is a sequence of i.i.d. copies of A, so by Hölder inequality

Ex(A, A > a) ≤
√

Px(A > a)Ex(A2) ≤
√

a−1M1M2 .

Putting the pieces together, we derive from the triangle inequality that
∣

∣

∣

∣

∫

Pm

ν(dx)
(

〈η,1(a,∞)fn〉 − 〈ηx,1(a,∞)fn〉
)

∣

∣

∣

∣

≤ 2cν(Pm)
(

a−1M1 +
√

a−1M1M2

)

and the same inequality holds when f replaces fn in the left-hand side. Recall from
Lemma 3.1 that the moments M1 and M2 are finite, so the right-hand side can be
made as small as we wish by choosing a sufficiently large.

We know from the first part of the proof that for the linear combinations fn of
exponential functions, there is the identity

〈η, f ′
n〉 =

∫

Pm

ν(dx) (〈η, fn〉 − 〈ηx, fn〉) ,
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and we have all the ingredients to take limits as n → ∞. We conclude that the
same formula holds with f replacing fn. �

Let us briefly discuss the elementary example when ν = δ(1/2,1/2,0,...). We thus
start with a single fragment of unit size which splits in two fragments each of size
1/2 after an exponential time with parameter 1, and so on. It should be plain that
the area can then be expressed in the form

A = e0,1 + 2α−1(e1,1 + e1,2) + 22(α−1)(e2,1 + e2,2 + e2,3 + e2,4) + · · · ,

where the ei,j for j = 1, . . . , 2i and i = 0, 1, . . . are i.i.d. standard exponential
variables. The Laplace transform of A is thus given by

`(q) =

∞
∏

n=0

(

1

1 + 2n(α−1)q

)2n

,

and the equation

−q`(q) = `(q) − `(2α−1q)2

provided by Proposition 3.2 can be checked directly.
It may be interesting to observe that the very same argument as in the proof of

Proposition 3.2 can be applied when analyzing the distribution of the total length
rather than the area of a self-similar fragmentation. Specifically, consider another
self-similar fragmentation X′ with no erosion, finite dislocation measure ν and index
of self-similarity α′ = α−1. Since α′ < −1, it is known (see Proposition 2 in Bertoin
(2003) and its proof) that the variable

L′ =

∫ ∞

0

Card{i ∈ N : X ′
i(t) > 0}dt

is finite a.s. The quantity L′ should be viewed as the total length of the fragmen-
tation tree T′ associated by Haas and Miermont (2004) to X′. Just as in the proof
of Proposition 3.2, it is easily seen that there is the identity

L′ = T ′ +

∞
∑

i=1

X ′
i(T

′)1−αL′
i

where T ′ denotes the first dislocation time of X′ and (L′
i)i∈N is a sequence of i.i.d.

copies of L′ which is further independent of X′(T ′) and T ′. Because the dislocation
measures of X and X′ are identical, X′(T ′) has the same law as X(T ) and T ′ is
also an exponential variable with parameter ν(Pm). We can then deduce from the
arguments similar to those in the proof of Proposition 3.2 that

〈η′, f ′〉 =

∫

Pm

ν(dx) (〈η′, f〉 − 〈η′
x
, f〉) ,

where η′
x

denote the distribution of L′ under P
′
x

and η′ = η′
1. Observe that self-

similarity implies that

η′
x
(da) = P

(

∞
∑

i=1

x1−α
i L′

i ∈ da

)

,

so we conclude from Theorem 2.1 that L′ has the same law as A. We point out that
this identity in distribution can also be established from Equation (10) of Bertoin
(2003) as a consequence of the connexion between self-similar fragmentations with
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the same dislocation measure but different indices of self-similarity, and also holds
when the dislocation measure ν is infinite.

3.3. Proof of Theorem 2.1 by approximation. In this subsection, we shall derive
Theorem 2.1 by approximation from the case when the dislocation measure is finite,
taking for granted the weak convergence of the corresponding areas. Specifically,
we introduce the finite measures

ν(n)(dx) = 1{1−x1>1/n}ν(dx) , x ∈ Pm ,

where n is a sufficiently large integer so that ν(n) 6≡ 0. We write A(n) for the area
of a self-similar fragmentation process with index α, dislocation measure ν(n) and
without erosion, and denote by η(n) the distribution of A(n). Recall (2.2) and set
for a generic mass-partition x

η(n)
x

(da) = P

(

∞
∑

i=1

x1−α
i A

(n)
i ∈ da

)

where (A
(n)
i : i ∈ N) is a sequence of i.i.d. copies of A(n). The following crucial

lemma will be established in the next sub-section.

Lemma 3.3. The sequence (η(n), n ∈ N) converges weakly to η as n → ∞.

The next step to the proof of Theorem 2.1 is the following technical result.

Lemma 3.4. (i) Let f : R+ → R be continuous and bounded. Then for every
x ∈ Pm,

lim
n→∞

〈η(n)
x

, f〉 = 〈ηx, f〉 .

(ii) Let f : R+ → R be a C1 function with f ′(y) = O(yp) as y → ∞ for some p > 0,
and set ‖f ′‖ = sup{|f ′(x)|/(1 + x)p : x ≥ 0}. There is a constant c depending only
on p and the characteristics of the fragmentation such that for every mass-partition
x and every n

|〈η(n), f〉 − 〈η(n)
x

, f〉| ≤ c‖f ′‖(1 − x1) .

Proof : (i) Denote by κ the cumulant of A, i.e. E(exp(−qA)) = exp(−κ(q)) for

q ≥ 0, and by κ(n) that of A(n). If (A
(n)
i , i ∈ N) is a sequence of i.i.d. copies of

A(n), then we have

E

(

exp

(

−q
∞
∑

i=1

x1−α
i A

(n)
i

))

= exp

(

−
∞
∑

i=1

κ(n)(x1−α
i q)

)

.

We know from Lemma 3.3 that limn→∞ κ(n)(x1−α
i q) = κ(x1−α

i q) for every q ≥ 0

and i ∈ N. Further, κ(n) is a concave increasing function with κ(n)(0) = 0, and its
derivative at 0 is given by E(A(n)). Recall also from Lemma 3.1 that E(A(n)) =
1/Φ(n)(−α) where

Φ(n)(q) =

∫

Pm

(

1 −
∞
∑

i=1

x1+q
i

)

ν(n)(dx) =

∫

Pm

1{1−x1>1/n}

(

1 −
∞
∑

i=1

x1+q
i

)

ν(dx) .

Plainly the sequence Φ(n)(−α) increases and there are thus the bounds

κ(n)(x1−α
i q) ≤ x1−α

i q/Φ(n)(−α) ≤ cx1−α
i q .
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Since
∑∞

i=1 x1−α
i ≤ 1, we conclude by dominated convergence that

lim
n→∞

∞
∑

i=1

κ(n)(x1−α
i q) =

∞
∑

i=1

κ(x1−α
i q) .

By Laplace inversion, this yields our claim.

(ii) Recall that A
(n)
1 , . . . are i.i.d. copies of A(n), and set S

(n)
x =

∑∞
i=2 x1−α

i A
(n)
i

where x = (x1, . . .) is a generic mass-partition. We have

|〈η(n), f〉 − 〈η(n)
x

, f〉| ≤ E

(∣

∣

∣
f(A

(n)
1 ) − f

(

x1−α
1 A

(n)
1 + S(n)

x

)∣

∣

∣

)

≤ ‖f ′‖E

(

(1 + A
(n)
1 + S(n)

x
)p
(

(1 − x1−α
1 )A

(n)
1 + S(n)

x

))

.

Recall that
∑∞

1 xi ≤ 1. Applying Rosenthal’s inequality for the moments of
sum of independent nonnegative variables and then Jensen’s inequality, we obtain

E

(

(1 + A
(n)
1 + S(n)

x
)2p
)

≤ c(2p)(1 + M
(n)
2p )

and

E

(

(

(1 − x1−α
1 )A

(n)
1 + S(n)

x

)2
)

≤ c(2)(1 − x1)
2M

(n)
2 ,

where c(2p) and c(2) are some numerical constants and M
(n)
k denotes the k-th

moment of A(n). We conclude from Hölder’s inequality that

|〈η(n), f〉 − η(n)
x

, f〉| ≤ c‖f ′‖(1 − x1)

√

M
(n)
2 (1 + M

(n)
2p ) .

Recall that the sequence n 7→ Φ(n)(q) increases for every q > 0, so we deduce

from Lemma 3.1 that supn

√

M
(n)
2 (1 + M

(n)
2p ) < ∞. Since the dislocation measure

ν fulfills the integral condition (2.1), we can complete the proof by dominated
convergence. �

We can now proceed to the proof of Theorem 2.1.
Proof of Theorem 2.1: We first suppose that f and f ′ are bounded. Then (2.3)
follows from Proposition 3.2 and Lemma 3.4 by dominated convergence. Next, we
only assume that f is of class C1 with f ′(y) = O(yp) as y → ∞. Then it is easy to
construct a sequence (fn : n ∈ N) of functions of class C1 with fn and f ′

n bounded
such that fn → f and f ′

n → f ′ pointwise and supn ‖f ′
n‖ < ∞ in the sense of Lemma

3.3. This implies that we also have supn supx≥0 |fn(x)/(1 + xp+1)| < ∞.
Since all moments of A are finite, we deduce from Lemmas 3.3 and 3.4(i) that

〈η, fn〉 → 〈η, f〉 , 〈η, f ′
n〉 → 〈η, f ′〉 and 〈ηx, fn〉 → 〈ηx, f〉

where x is an arbitrary mass-partition. Since supn ‖f ′
n‖ < ∞, Lemma 3.4(ii) enables

us to apply dominated convergence, and we conclude that (2.3) holds.
We now turn our attention to uniqueness; we consider an arbitrary solution η′

to (2.3) and write M ′
k for the k-th moment of η′. We have already observed in

the introduction that the first moment M ′
1 of η′ can be computed in terms of the

function Φ defined by (2.4). More generally, specifying (2.3) for f(x) = xk yields
an equation of the form

Φ(k(1 − α) − 1)M ′
k = Ψk(M ′

1, . . . , M
′
k−1)
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for a certain multinomial function Ψk. Hence M ′
k = Mk for every k ∈ N, and

since we know from Lemma 3.1 that the moment problem for η is determined, this
concludes the proof. �

3.4. Proof of Lemma 3.3. We shall finally establish Lemma 3.3 using the framework
of homogeneous fragmentations (i.e. self-similar fragmentations with index of self-
similarity α = 0) with values in the space PN of partitions of N. Given a measure ν
which fulfills (2.1), we first consider a homogeneous fragmentation Π = (Π(t), t ≥ 0)
with dislocation measure ν and no erosion. For every t ≥ 0 the random partition
Π(t) is exchangeable and we write |Πi(t)| for the asymptotic frequency of the i-
th block of Π(t). The self-similar fragmentation X is related to Π by a sort of
time-change described in Theorem 3.3 of Bertoin (2006), and if we introduce

A =

∫ ∞

0

(

∞
∑

i=1

|Πi(t)|1−α

)

dt ,

then the connexion between Π and X implies that A and A have the same distri-
bution.

It will be convenient to approximate A by Riemann sums. More precisely, for
every integer k ≥ 1 we define

Ak =
1

k

k2

∑

`=1

∞
∑

i=1

|Πi(`/k)|1−α .

The L1 distance between these two quantities is easily computed in terms of the
function Φ defined in (2.4).

Lemma 3.5. For every k ≥ 1, we have

E(|A − Ak|) =
1

Φ(−α)
− k−1 1 − exp(−kΦ(−α))

exp(Φ(−α)/k) − 1
.

Proof : The process |Π(·)|↓ of the ranked sequence of the asymptotic frequencies of
Π(·) is a mass-fragmentation; as a consequence t 7→∑∞

i=1 |Πi(t)|1−α decreases and
we have Ak ≤ A. Hence E(|A −Ak|) = E(A) −E(Ak) and the stated formula now
follows from the fact that

E

(

∞
∑

i=1

|Πi(t)|1−α

)

= exp(−tΦ(−α)) ;

see Corollary 2.4(i) and Theorem 3.2 in Bertoin (2006). �

Next, for every integer n, we write Π(n) for the homogeneous fragmentation with
dislocation measure ν(n)(dx) = 1{1−x1>1/n}ν(dx) and no erosion. We point at the
following weak convergence.

Lemma 3.6. The sequence of processes (Π(n) : n ∈ N) converges in the sense of
finite dimensional distributions to Π as n → ∞.

Proof : If ϕ ∈ PN is a partition and k ≥ 1 an integer, then we denote by ϕ|[k] the
restriction of ϕ to the set of the k first integers, [k] = {1, . . . , k}. We also endow
PN with the ultra-metric

d(ϕ, ϕ′) = 1/ sup{k ≥ 1 : ϕ|[k] = ϕ′
|[k]} ;
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cf. Lemma 2.6 in Bertoin (2006).
The restriction Π|[k](t) of Π(t) to [k] is a Markov chain in continuous time, and

we have to verify that Π
(n)
|[k] converges in the sense of finite dimensional distributions

to Π|[k] as n → ∞, for each k. This is equivalent to checking the convergence of
the corresponding jump rates of the Markov chains.

For every non-trivial partition γ of [k], we write

qγ = lim
t→0

t−1
P(Π|[k](t) = γ) .

Recall from Theorem 3.1 and Proposition 3.2 in Bertoin (2006) that the jump rate
qγ can be expressed in terms of the dislocation measure ν as

qγ =

∫

Pm

%x(γ)ν(dx)

where %x(γ) is the distribution of Kingman’s paintbox process πx based on x. This
means that we consider a sequence ξ1, . . . , ξk of i.i.d. variables with P(ξ1 = i) = xi

for i ≥ 1 and P(ξ1 = 0) = 1−∑∞
1 xi, and πx is the exchangeable random partition

which is obtained by declaring that two integers i 6= j are in the same block of πx

if and only if ξi = ξj 6= 0.

Writing q
(n)
γ for the jump rate of Π(n), we thus have

qγ − q(n)
γ =

∫

Pm

1{1−x1≤1/n}%x(γ)ν(dx) .

It is plain from the paintbox construction that for every mass-partition x, the
probability that the paintbox process based on x yields the trivial partition on [k]
is at least xk

1 . Thus %x(γ) ≤ 1 − xk
1 ≤ k(1 − x1) for every non-trivial partition

γ of [k]. We conclude from (2.1) that limn→∞ q
(n)
γ = qγ , which establishes our

claim. �

We are now in shape to prove Lemma 3.3
Proof of Lemma 3.3: The space Pm of mass-partitions is a compact metric space
when endowed with the uniform distance (Proposition 2.1 in Bertoin (2006)) and the
map x →∑∞

i=1 x1−α
i is continuous and bounded. We write |Π(t)|↓ for the sequence

of the asymptotic frequency of Π(t) ranked in the decreasing order. Recall from
Proposition 2.9 in Bertoin (2006) that Lemma 3.6 entails the convergence in the
sense of finite dimensional distributions of (|Π(n)(t)|↓, t ≥ 0) towards (|Π(t)|↓, t ≥
0). Therefore, for every k ≥ 1, we have also in the obvious notation

lim
n→∞

A(n)
k = Ak in law. (3.1)

Let f : R+ → R be a bounded function which is globally Lipschitz-continuous,
so by the triangle inequality

|E(f(A))−E(f(A(n)))|≤|E(f(Ak))−E(f(A(n)
k ))|+cf (E(|A−Ak |)+E(|A(n)−A(n)

k |)) .

It follows readily from Lemma 3.5 that

lim
k→∞

E(|A(n) −A(n)
k |) = 0 uniformly in n ,

so for every ε > 0, we can find an integer k sufficiently large such that

E(|A − Ak|) + E(|A(n) −A(n)
k |) ≤ ε/2cf for all n ,
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and then we use (3.1) to find an integer nε such that |E(f(Ak))−E(f(A(n)
k ))| ≤ ε/2

whenever n ≥ nε. �
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