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Abstract. We consider the interlacement Poisson point process on the space of
doubly-infinite Zd-valued trajectories modulo time shift, tending to infinity at pos-
itive and negative infinite times. The set of vertices and edges visited by at least
one of these trajectories is the random interlacement at level u of Sznitman (2010).
We prove that for any u > 0, almost surely, (1) any two vertices in the random
interlacement at level u are connected via at most ⌈d/2⌉ trajectories of the point
process, and (2) there are vertices in the random interlacement at level u which
can only be connected via at least ⌈d/2⌉ trajectories of the point process. In par-
ticular, this implies the already known result of Sznitman (2010) that the random
interlacement at level u is connected.

1. Introduction

The model of random interlacements was introduced in Sznitman (2010) in order
to describe the local picture left by the trajectory of a random walk on the discrete
torus (Z/NZ)d, d ≥ 3 when it runs up to times of order Nd, or on the discrete
cylinder (Z/NZ)d×Z , d ≥ 2, when it runs up to times of order N2d, see Sznitman
(2009), Windisch (2008). Informally, the random interlacement Poisson point pro-
cess consists of a countable collection of doubly infinite trajectories on Z

d, and the
trace left by these trajectories on a finite subset of Zd “looks like” the trace of the
above mentioned random walks.

In this paper we investigate connectivity properties of the random interlacement,
giving a detailed picture about how the collection of doubly infinite trajectories are
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actually interlaced. Our methods are further developed in Ráth and Sapozhnikov
(2011b,a) to show, respectively, that in dimensions d ≥ 3 for all u > 0, the random
interlacement graph is almost surely transient, and the Bernoulli percolation on it
has a non-trivial phase transition (even in wide enough slabs). Recently, Černý and
Popov (2011) used the techniques of this paper to prove the shape theorem for the
graph distance on random interlacements.

An essentially different proof of the main result of this paper was obtained by
Procaccia and Tykesson (2011). It involves ideas of stochastic dimension theory
developed in Benjamini et al. (2004).

1.1. The model. Let W be the space of doubly-infinite nearest-neighbor trajectories
in Z

d (d ≥ 3) which tend to infinity at positive and negative infinite times, and
let W ∗ be the space of equivalence classes of trajectories in W modulo time shift.
We write W for the canonical σ-algebra on W generated by the coordinates Xn,
n ∈ Z, and W∗ for the largest σ-algebra on W ∗ for which the canonical map π∗

from (W,W) to (W ∗,W∗) is measurable. Let u be a positive number. We say
that a Poisson point measure µ on W ∗ has distribution Pois(u,W ∗) if the following
properties hold: For a finite subset A of Zd, let µA be the restriction of µ to the set
of trajectories from W ∗ that intersect A, and let NA be the number of trajectories

in Supp(µA). Then µA =
∑NA

i=1 δπ∗(Xi), where Xi are doubly-infinite trajectories
from W parametrized in such a way that Xi(0) ∈ A and Xi(t) /∈ A for all t < 0
and for all i ∈ {1, . . . , NA}, and

(1) The random variable NA has Poisson distribution with parameter ucap(A)
(see (2.2) for the definition of the cap(A)).

(2) Given NA, the points Xi(0), i ∈ {1, . . . , NA}, are independent and dis-
tributed according to the normalized equilibrium measure on A (see (2.7)
for the definition).

(3) Given NA and (Xi(0))
NA

i=1, the corresponding forward and backward paths

are conditionally independent, (Xi(t), t ≥ 0)NA

i=1 are distributed as inde-

pendent simple random walks, and (Xi(t), t ≤ 0)NA

i=1 are distributed as
independent random walks conditioned on not hitting A.

Properties (1)-(3) uniquely define Pois(u,W ∗) as proved in Theorem 1.1 in Sznit-
man (2010). In fact, Theorem 1.1 in Sznitman (2010) gives a coupling of the Poisson
point measures µ(u) with distribution Pois(u,W ∗) for all u > 0, but we will not
need such a general statement here. We also mention a couple of properties of the
distribution Pois(u,W ∗), which will be useful in the proofs. Property (4) follows
from the above definition of Pois(u,W ∗), and (5) is a property of Poisson point
measures.

(4) Let µ1 and µ2 be independent Poisson point measures on W ∗ with dis-
tributions Pois(u1,W

∗) and Pois(u2,W
∗), respectively. Then µ1 + µ2 has

distribution Pois(u1 + u2,W
∗).

(5) Let S1, . . . , Sk be disjoint elements of W∗. We denote by I(Si)µ the re-
striction of µ to the set of trajectories from Si. Then I(S1)µ, . . . , I(Sk)µ
are independent Poisson point measures on W ∗.

We refer the reader to Sznitman (2010) for more details. For a Poisson point
measure µ with distribution Pois(u,W ∗), the random interlacement I at level u is
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defined as
I = I(µ) =

⋃

w∈Supp(µ)

range(w). (1.1)

1.2. The result. We consider a random point measure µ on W ∗ distributed as
Pois(u,W ∗). We denote by P the law of µ. Our main result concerns the geo-
metric properties of the support of µ. Remember that the support of µ consists of
a countable set of doubly-infinite random walk trajectories modulo time shift. We
construct the random graph G = (V,E) as follows. The set of vertices V is the set
of trajectories from Supp(µ), and the set of edges E is the set of pairs of different
trajectories from Supp(µ) that intersect. Let diam(G) be the diameter of G. Our
main result is the following theorem.

Theorem 1.1. For d ≥ 3, let

sd = ⌈(d− 2)/2⌉, (1.2)

where ⌈a⌉ is the smallest integer not less than a. Then

P (diam(G) = sd) = 1.

In particular, we get an alternative proof of (2.21) in Sznitman (2010), which states
that the random interlacement I is a connected subgraph of Zd.

Remark 1.2. In dimensions 3 and 4, the result is a trivial consequence of Theo-
rem 2.6 in Lawler (1980) (see also remark at the bottom of page 661 in Lawler,
1980) which states that two independent random walks in dimension 3 or 4 intersect
infinitely often with probability 1. Therefore, it remains to prove the theorem for
d ≥ 5.

The structure of the proof of Theorem 1.1 can be non-rigorously summarized as
follows: first we pick one of the doubly infinite trajectories from Supp(µ). Denote
by A(1) the set of vertices of Zd visited by this trajectory. The second layer A(2)

consists of the vertices visited by those trajectories of Supp(µ) that intersect A(1),
and recursively let A(s) denote the set of vertices visited by the trajectories that
intersect A(s−1). We prove that P(diam(G) = sd) = 1 by showing that, almost
surely, A(sd) 6= I and A(sd+1) = I.

Let us recall the following well-known fact (see, e.g., Proposition 2.3 in Lawler,
1980): For d ≥ 3, the probability that a simple random walk from 0 hits x is
comparable with min(1, |x|2−d). We will use this fact and the following elementary
lemma to show that A(sd) 6= I.

Lemma 1.3. There exists a finite constant C = C(d) such that for any positive
integer n and for any z0, zn+1 ∈ Z

d,

∑

z1,...,zn∈Zd

n∏

i=0

min
(
1, |zi − zi+1|

2−d
)
{
≤ C|z0 − zn+1|2n+2−d if n < sd,

= ∞ otherwise.

(See, e.g. (1.38) of Proposition 1.7 in Hara et al., 2003 for a proof of Lemma 1.3.)
Lemma 1.3 gives bounds on n-fold convolutions of the probability that a random
walk from z0 ever visits zn+1. We will see that P(0, x ∈ A(s)) can be estimated as a
(s−1)-fold convolution of such hitting probabilities, and, therefore, we will conclude
from Lemma 1.3 that P(0, x ∈ A(s)) ≤ C|x|2s−d. In particular, P(0, x ∈ A(sd)) → 0
as |x| → ∞. This contradicts A(sd) = I, since I has positive density.
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In order to show that A(sd+1) = I, we argue as follows. Heuristically, A(s) is a
2s-dimensional object as long as 2s < d. The capacity of A(s) intersected with a
ball of radius R (see (2.2) for the definition of the capacity) is comparable to R2s

as long as 2s ≤ d− 2. The set A(sd) already saturates the ball in terms of capacity,
thus it is visible for an independent random walk started somewhere inside the
ball of radius R. We apply a variant of Wiener’s test (see, e.g., Proposition 2.4 in
Lawler, 1980) to show that any random walk hits A(sd) almost surely.

This is the general strategy of the proof. Instead of following it directly, we
benefit from property (4) of Pois(u,W ∗) by decomposing µ into a sum of sd i.i.d.
point measures µ(s) with distribution Pois(u/sd,W

∗) and constructing each A(s)

from the “new” measure µ(s).
The paper is organized as follows. In Section 2 we collect most of the notation

and facts used in the paper. The most important of those are the definitions and
properties of the Green function and the capacity. We prove the lower bound of
Theorem 1.1 in Section 3, and the upper bound in Section 4. The structure of the
proof of the upper bound of Theorem 1.1 is given at the beginning of Section 4.

2. Notation and facts about Green function and capacity

In this section we collect most of the notation, definitions and facts used in the
paper. For a ∈ R, we write |a| for the absolute value of a, ⌊a⌋ for the integer part
of a, and ⌈a⌉ for the smallest integer not less than a. For x ∈ Z

d, we write |x| for
max (|x1|, . . . , |xd|). For a set S, we write |S| for the cardinality of S. For R > 0
and x ∈ Z

d, let B(x,R) = {y ∈ Z
d : |x− y| ≤ R} be the ball of radius R centered

at x. We denote by I(A) the indicator of event A, and by E[X ;A] the expected
value of random variable XI(A). Throughout the text, we write c and C for small
positive and large finite constants, respectively, that may depend on d and u. Their
values may change from place to place.

For x ∈ Z
d, let Px be the law of a simple random walk X on Z

d with X(0) = x.
We write g(·, ·) for the Green function of the walk:

g(x, y) =

∞∑

t=0

Px(X(t) = y), x, y ∈ Z
d.

We also write g(·) for g(0, ·). The Green function is symmetric and, by translation
invariance, g(x, y) = g(y − x). It follows from Lawler (1991, Theorem 1.5.4) that
for any d ≥ 3 there exist a positive constant cg = cg(d) and a finite constant
Cg = Cg(d) such that for all x and y in Z

d,

cg min
(
1, |x− y|2−d

)
≤ g(x, y) ≤ Cg min

(
1, |x− y|2−d

)
. (2.1)

Definition 2.1. Let K be a subset of Zd. The energy of a finite Borel measure ν
on K is

E(ν) =

∫

K

∫

K

g(x, y)dν(x)dν(y) =
∑

x,y∈K

g(x, y)ν(x)ν(y).

The capacity of K is

cap(K) =
[
inf
ν
E(ν)

]−1

, (2.2)

where the infimum is over probability measures ν on K. (We assume that ∞−1 = 0,
i.e., the capacity of the empty set is 0.)
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The following properties of the capacity immediately follow from (2.2):

Monotonicity: for any K1 ⊂ K2 ⊂ Z
d, cap(K1) ≤ cap(K2); (2.3)

Subadditivity: for any K1,K2 ⊂ Z
d,

cap(K1 ∪K2) ≤ cap(K1) + cap(K2); (2.4)

Capacity of a point: for any x ∈ Z
d, cap({x}) = 1/g(0). (2.5)

It will be useful to have an alternative definition of the capacity in d ≥ 3.

Definition 2.2. Let K be a finite subset of Zd. The equilibrium measure of K is
defined by

eK(x) = Px (X(t) /∈ K for all t ≥ 1) I(x ∈ K), x ∈ Z
d. (2.6)

The capacity of K is then equal to the total mass of the equilibrium measure of K:

cap(K) =
∑

x

eK(x),

and the unique minimizer of the variational problem (2.2) is given by the normalized
equilibrium measure

ẽK(x) = eK(x)/cap(K). (2.7)

(See, e.g., Lemma 2.3 in Jain and Orey, 1973 for a proof of this fact.)

As a simple corollary of the above definition, we get for d ≥ 3,

Px (H(K) < ∞) =
∑

y∈K

g(x, y)eK(y), for x ∈ Z
d. (2.8)

Here, we write H(K) for the first entrance time in K, i.e., H(K) = inf{t ≥
0 : X(t) ∈ K}. We will repeatedly use the following bound on the capacity
of B(0, R) in d ≥ 3 (see (2.16) on page 53 in Lawler, 1991): There exist constants
cb = cb(d) > 0 and Cb = Cb(d) < ∞ such that for all positive R,

cbR
d−2 ≤ cap (B(0, R)) ≤ CbR

d−2. (2.9)

3. Proof of Theorem 1.1: lower bound on the diameter

Remember the definition of sd in (1.2). In this section we prove that
P(diam(G) ≥ sd) = 1. Since, almost surely, diam(G) ≥ 1, we only need to consider
the case d ≥ 5. For two trajectories v and w in V , we write ρ(v, w) for the dis-
tance between v and w in G. In order to prove that the probability of the event
{diam(G) ≥ sd} is 1, we assume by contradiction that this probability is ≤ 1 − δ,
for some positive δ. In other words, the probability of event

E = {ρ(v, w) ≤ sd − 1 for all v, w ∈ V }

is bounded from below by δ.
For x, y ∈ Z

d, we denote by S(x, y) the subset of doubly-infinite trajectories
in W ∗ that intersect both vertices x and y. Remember the definition (1.1) of the
random interlacement I. The next lemma gives an estimate on the probability that
E occurs and two different vertices x and y of Zd are in I:
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Lemma 3.1. For any x, y ∈ Z
d,

P({x, y ∈ I} ∩ E) ≤
sd−1∑

n=0

∑

z1,...,zn∈Zd

n∏

i=0

E [µ (S(zi, zi+1))] , (3.1)

where we take z0 = x and zn+1 = y.

We postpone the proof of Lemma 3.1 until the end of this section. Each of
the expectations E [µ (S(zi, zi+1))] in (3.1) is bounded from above by 2ug(zi, zi+1).
(This follows, for example, from (1.33) in Sznitman, 2011 applied to K = {zi} and
K ′ = {zi+1}.) Therefore, we obtain

P({x, y ∈ I} ∩ E) ≤
sd−1∑

n=0

(2u)n+1
∑

z1,...,zn∈Zd

n∏

i=0

g(zi, zi+1),

where we again assume z0 = x and zn+1 = y. Recall from (2.1) that g(x, y) ≤
Cg min(1, |x− y|2−d). Therefore, by Lemma 1.3,

sd−1∑

n=0

∑

z1,...,zn∈Zd

n∏

i=0

g(zi, zi+1) ≤ C|z0 − zn+1|
2sd−d ≤ C|z0 − zn+1|

−1.

In particular, P({x, y ∈ I} ∩ E) ≤ C|x − y|−1 → 0, as |x − y| → ∞. By property
(1) of Pois(u,W ∗), for any R > 0,

P (I ∩B(0, R) 6= ∅) = P
(
NB(0,R) ≥ 1

)
= 1− e−ucap(B(0,R)).

By (2.9), we can take R big enough so that

P (I ∩B(0, R) 6= ∅) ≥ 1−
δ

3
.

With this choice of R, for any z ∈ Z
d, we obtain

P ({I ∩B(0, R) 6= ∅} ∩ {I ∩B(z,R) 6= ∅} ∩ E)

≥ P(E)− 2P (I ∩B(0, R) = ∅) ≥ δ/3.

On the other hand, for z ∈ Z
d with |z| > 3R,

P ({I ∩B(0, R) 6= ∅} ∩ {I ∩B(z,R) 6= ∅} ∩ E)

≤
∑

x∈B(0,R)

∑

y∈B(z,R)

P({x, y ∈ I} ∩E) ≤ CR2d|z|−1,

which tends to 0 as |z| tends to infinity. This is a contradiction, and we conclude
that P-a.s. the diameter of G is at least sd. �

Proof of Lemma 3.1: One can deduce the result almost immediately from the Palm
theory for general Poisson point processes (see, e.g. Chapter 13.1 in Daley and Vere-
Jones, 2008). Remember the definition of the set S(x, y) given before the statement
of Lemma 3.1. Let D(x, y) be the event that S(x, y) ∩ Supp(µ) 6= ∅. In other
words, D(x, y) = {µ(S(x, y)) 6= 0}. For x, y, x′, y′ ∈ Z

d, we write D(x, y)◦D(x′, y′)
for the event that there exist different trajectories w and w′ in Supp(µ) such that
w ∈ S(x, y) and w′ ∈ S(x′, y′). Let

∑∗ be the sum over all (n+1)-tuples of pairwise
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different doubly-infinite trajectories modulo time-shift w0, . . . , wn ∈ Supp(µ). We
have

P({x, y ∈ I} ∩ E) ≤
sd−1∑

n=0

∑

z1,...,zn∈Zd

P (D(z0, z1) ◦ . . . ◦D(zn, zn+1))

≤
sd−1∑

n=0

∑

z1,...,zn∈Zd

E

[
∑∗

n∏

i=0

I(wi ∈ S(zi, zi+1))

]
,

where we take z0 = x and zn+1 = y. The result then follows from the Slivnyak-
Mecke theorem (See, e.g. Theorem 3.3 in Møller and Waagepetersen (2004), where
it is proved for point processes in R

d, and Chapter 13.1 in Daley and Vere-Jones
(2008) for the theory of Palm distributions in general spaces.):

E

[
∑∗

n∏

i=0

I(wi ∈ S(zi, zi+1))

]
=

n∏

i=0

E [µ (S(zi, zi+1))] .

�

4. Proof of Theorem 1.1: upper bound on the diameter

The proof of the upper bound on the diameter of G in Theorem 1.1 is organized
as follows. Section 4.1 contains preliminary lemmas. Lemma 4.2 gives some bounds
on the expected capacity of a certain family of traces of random walks. Lemma 4.3
provides bounds on the expected capacity of a set of vertices visited by trajectories
from Supp(µ) that intersect a given set of vertices. Both lemmas state that the
capacity of such sets of vertices is either comparable with the volume of the set
(when trajectories are “well spread-out”) or with the capacity of the ball that
contains the set (when the set is “dense” in the ball). In Lemma 4.5, we show that
the exclusion of a (small) number of trajectories from Supp(µ) that visit a certain
ball does not decrease too much the capacity of sets in Lemma 4.3. This step
is needed to benefit from property (5) of Pois(u,W ∗) and create some additional
independence.

In Section 4.2 we use these bounds on the capacity to construct certain subsets
of Supp(µ) (see (4.10) and (4.11)) that are visible by an independent random walk
started near the origin.

In Section 4.3 we construct a sequence of almost independent visible subsets of
Supp(µ) and use ideas similar in spirit to Wiener’s test to show that, almost surely,
infinitely many of these sets are visited by an independent random walk. This is
done in Lemma 4.11.

We finish Section 4.3 by completing the proof of Theorem 1.1.

4.1. Bounds on the capacity of certain collection of random walk trajectories.

Lemma 4.1. Let d ≥ 5. Let (xi)i≥1 be a sequence in Z
d, and let Xi be a sequence

of independent simple random walks on Z
d with Xi(0) = xi. Then for all positive

integers N and n and for all (xi)i≥1, we have

E




N∑

i,j=1

2n∑

s,t=n+1

g (Xi(s), Xj(t))


 ≤ C

(
Nn+N2n3−d/2

)
. (4.1)
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Proof : Let X be a simple random walk with X(0) = 0, then for all y ∈ Z
d and for

all positive integers s,

Eg (X(s), y) ≤ Cs1−d/2. (4.2)

Indeed, by the Markov property,

Eg (X(s), y) =
∞∑

t=s

P (X(t) = y) ≤ C
∞∑

t=s

t−d/2 ≤ Cs1−d/2.

Here we used the fact that (see, e.g., Spitzer, 2001, Proposition 7.6)

sup
y∈Zd

P (X(t) = y) ≤ Ct−d/2.

In order to prove (4.1), we consider separately the cases i = j and i 6= j. In the
first case, the Markov property and the fact that g(x, y) = g(x− y) imply

E

[
N∑

i=1

2n∑

s,t=n+1

g (Xi(s), Xi(t))

]
= NE

[
2n∑

s,t=n+1

g (X(|s− t|))

]

(4.2)

≤ CNn

(
1 +

n∑

s=1

s1−d/2

)
(d≥5)

≤ CNn.

In the case i 6= j, an application of (4.2) gives

E

[
2n∑

s,t=n+1

g (Xi(s), Xj(t))

]
≤ n2Cn1−d/2.

This completes the proof. �

Let (Xi(t) : t ≥ 0)i≥1 be a sequence of nearest-neighbor trajectories on Z
d,

and XN = (X1, . . . , XN ). For positive integers N and R, we define the subset
Φ(XN , R) of Zd by

Φ(XN , R) =

N⋃

i=1

({
Xi(t) : 1 ≤ t ≤ R2/2

}
∩B(Xi(0), R)

)
. (4.3)

Lemma 4.2. Let Xi be a sequence of independent simple random walks on Z
d

with Xi(0) = xi. There exists a positive constant c such that for any sequence
(xi)i≥1 ⊂ Z

d and for all positive integers N and R,

cap
(
Φ(XN , R)

)
≤

NR2

2g(0)
, (4.4)

and for d ≥ 5,

Ecap
(
Φ(XN , R)

)
≥ cmin

(
NR2, Rd−2

)
. (4.5)

Proof : The upper bound on the capacity of Φ(XN , R) follows from properties (2.4)
and (2.5), and the fact that the number of vertices in Φ(XN , R) is at most NR2/2.

We proceed with the lower bound on Ecap
(
Φ(XN , R)

)
. The following inequality

follows from Kolmogorov’s maximal inequality applied coordinatewise: For each
λ > 0 and n ≥ 1,

P

(
max
1≤t≤n

|X(t)| ≥ λ

)
≤

n

λ2
. (4.6)
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Take positive integers N and R, random walks X1, . . . , XN with Xi(0) = xi, and
set

n = ⌊R2/4⌋. (4.7)

We define the random subset J of {1, . . .N} by

J = {i : sup
1≤t≤2n

|Xi(t)− xi| ≤ R}.

We also consider the event A = {|J | ≥ N/4}. It follows from (4.6) that

E|J | ≥ N

(
1−

2n

R2

)
≥

N

2
.

Since |J | ≤ N , we get P (A) ≥ 1
3 .

By the definition (2.2) of the capacity of Φ(XN , R), we have

Ecap
(
Φ(XN , R)

)
≥ E

[
E(ν)−1

]
≥ E

[
E(ν)−1;A

]
,

where ν stands for the probability measure

ν(x) =
1

|J |n

∑

i∈J

2n∑

t=n+1

I(Xi(t) = x), x ∈ Z
d.

The energy of ν equals

E(ν) =
1

|J |2n2

∑

i,j∈J

2n∑

s,t=n+1

g(Xi(s), Xj(t)).

Therefore, in order to prove the lower bound on Ecap
(
Φ(XN , R)

)
, it suffices to

show that

E





 1

|J |2n2

∑

i,j∈J

2n∑

s,t=n+1

g(Xi(s), Xj(t))




−1

;A


 ≥ cmin

(
NR2, Rd−2

)
.

By the Cauchy-Schwarz inequality and the definition of the event A, we get

E






 1

|J |2n2

∑

i,j∈J

2n∑

s,t=n+1

g(Xi(s), Xj(t))




−1

;A




≥ (N/4)2n2P(A)2



E




∑

i,j∈J

2n∑

s,t=n+1

g(Xi(s), Xj(t));A








−1

.

Since J is a subset of {1, . . . , N}, the right-hand side is bounded from below by

(N/4)2n2P(A)2



E




N∑

i,j=1

2n∑

s,t=n+1

g(Xi(s), Xj(t))








−1

(4.1)

≥
N2n2

144C(Nn+N2n3−d/2)

(4.7)

≥ cmin
(
NR2, Rd−2

)
.

This completes the proof. �
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Let A be a finite set of vertices in Z
d. For a point measure ω =

∑
i≥0 δwi

with wi ∈ W ∗, we denote by NA(ω) the number of trajectories from Supp(ω) that
intersect A. (In particular, for a point measure µ with distribution Pois(u,W ∗), we
have NA = NA(µ).) Let X1, . . . , XNA(ω) be these trajectories parametrized in such
a way that Xi(0) ∈ A and Xi(t) /∈ A for all t < 0 and for all i ∈ {1, . . . , NA(ω)}.
We write XA(ω) for (X1, . . . , XNA(ω)). We also define Ψ(ω,A,R) as Φ(XA(ω), R)
(see (4.3)), i.e.,

Ψ(ω,A,R) =

NA(ω)⋃

i=1

({
Xi(t) : 1 ≤ t ≤ R2/2

}
∩B(Xi(0), R)

)
. (4.8)

Lemma 4.3. Let d ≥ 5. Let µ be a Poisson point measure with distribution
Pois(u,W ∗), then for all finite subsets A of Zd and for all positive R, one has

Ecap(Ψ(µ,A,R)) ≥ c min
(
ucap(A)R2, Rd−2

)
.

Proof : Let λ = ucap(A). Properties (2) and (3) of Pois(u,W ∗) and Lemma 4.2
imply that

Ecap(Ψ(µ,A,R)) ≥ c Emin
(
NAR

2, Rd−2
)
.

Property (1) of Pois(u,W ∗) implies that ENA = λ, E[N2
A] = λ2 + λ, and P(NA =

0) = exp(−λ). If λ ≤ 1/2, we estimate

Emin
(
NAR

2, Rd−2
)
≥ R2

P(NA ≥ 1) = R2(1− e−λ) ≥ R2λ/2.

If λ ≥ 1/2, we write

Emin
(
NAR

2, Rd−2
)
≥ min

(
R2λ

2
, Rd−2

)
P

(
NA ≥

λ

2

)
.

Remember the Paley-Zygmund inequality (see, e.g., Paley and Zygmund, 1932): Let
ξ be a non-negative random variable with finite second moment. For any θ ∈ (0, 1),

P(ξ ≥ θEξ) ≥ (1− θ)2
[Eξ]

2

E[ξ2]
. (4.9)

An application of (4.9) to NA gives

P

(
NA ≥

λ

2

)
≥

1

4

λ2

λ2 + λ
≥

1

12
.

This completes the proof. �

Definition 4.4. For positive integers r and R with r < R, and a point measure
ω =

∑
i≥0 δwi

with wi ∈ W ∗, we write ωr for the restriction of ω to the set of

trajectories that intersectB(r), ωr,∞ for the restriction of ω to the set of trajectories
that do not intersect B(r), and ωr,R for the restriction of ω to the set of trajectories
that intersect B(R) but do not intersect B(r). By property (5) of Pois(u,W ∗), the
measures µr and µr,R are independent for any r > 0 and R ∈ (r,∞]. Moreover, for
any r > 0, we have µ = µr + µr,∞.

Lemma 4.5. Let d ≥ 5. For all finite subsets A of Zd and for all positive integers
r and R with r < R,

Ecap(Ψ(µr,∞, A,R)) ≥ c min
(
ucap(A)R2, Rd−2

)
− Curd−2R2.
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Proof : By the subadditivity of the capacity and the fact that µ = µr + µr,∞,

Ecap(Ψ(µr,∞, A,R)) ≥ Ecap(Ψ(µ,A,R))− Ecap(Ψ(µr, A,R)).

We use Lemma 4.3 to bound Ecap(Ψ(µ,A,R)) from below. As for an upper bound
on Ecap(Ψ(µr, A,R)), note that |Supp(µr)| = µr(W

∗) = NB(r)(µr) = NB(r).
Therefore, by Lemma 4.2,

Ecap(Ψ(µr, A,R)) ≤
R2

ENB(r)

2g(0)
=

R2ucap(B(r))

2g(0)

(2.9)

≤ Curd−2R2.

�

4.2. Construction of visible sets. Let X be a simple random walk on Z
d with

X(0) = x. We denote the corresponding probability measure and the expecta-
tion by Px and Ex, respectively. Let µ(2), µ(3), . . . be independent random point
measures with distribution Pois(u,W ∗) (The parameter u is fixed here.), which are
also independent of X . The corresponding probability measures and expectations
are denoted by P (2), P (3), . . . and E(2), E(3), . . ., respectively. For s ≥ 1, we write

P
(s)
x for Px ⊗ P (2) ⊗ . . .⊗ P (s).
Let r and R be positive integers with r < R and |x| < R. Let TB(R) be the first

exit time of X from B(R), i.e., TB(R) = inf{t ≥ 0 : X(t) /∈ B(R)}. We denote
by Y the random walk X(TB(R) + ·). We define the following sequence of random

subsets of Zd:

A(1)(r, R) = A(1)(R) = Φ(Y,R)
(4.3)
=
{
Y (t) : 1 ≤ t ≤ R2/2

}
∩B(Y (0), R), (4.10)

and for s ≥ 2 (see (4.8) for notation),

A(s)(r, R) = Ψ
(
µ(s)
r,∞, A(s−1)(r, R), R

)
= Ψ

(
µ
(s)
r,sR, A

(s−1)(r, R), R
)
, (4.11)

where the last equality follows from the fact that A(s−1)(r, R) is a subset of B(sR)
by construction.

Remark 4.6. Note that for each y ∈ A(s)(r, R), there exist doubly-infinite trajecto-

ries wi ∈ Supp(µ
(i)
r,∞), 2 ≤ i ≤ s, such that (1) the vertex y is visited by ws, (2) the

random walk X intersects w2, and (3) for all i ∈ {2, . . . , s− 1}, the trajectories wi

and wi+1 intersect.

Lemma 4.7. Let s be a positive integer. There exist finite constants Cs = C(u, d, s)
such that for all positive integers r and R with r < R and for all x ∈ B(R),

E
(s)
x cap

(
A(s)(r, R)

)
≤ CsR

min(d−2,2s), (4.12)

and

E
(s)
x

[
cap

(
A(s)(r, R)

)2]
≤ CsR

2min(d−2,2s). (4.13)

Proof : We fix r and R throughout the proof, and we write A(s) for A(s)(r, R). Since
A(s) is a subset of B((s+ 1)R), the monotonicity of the capacity implies that

cap
(
A(s)

)
≤ cap (B((s+ 1)R))

(2.9)

≤ CsR
d−2.
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Therefore, it suffices to show that the first and the second moments of cap
(
A(s)

)

are bounded from above by CsR
2s and CsR

4s, respectively. It follows from (4.4)
that

E
(s)
x cap

(
A(s)

)
≤

R2

2g(0)
E
(s)
x NA(s−1)(µ(s)

r,∞) ≤
R2

2g(0)
E
(s)
x NA(s−1)(µ(s)).

Remember that NA(s−1)(µ(s)) is a Poisson random variable with parameter
ucap

(
A(s−1)

)
, therefore, we have

E
(s)
x cap

(
A(s)

)
≤

R2

2g(0)
E
(s−1)
x ucap

(
A(s−1)

)
.

The bound on the first moment of cap
(
A(s)

)
follows by induction. The bound on

the second moment of cap
(
A(s)

)
is also obtained using (4.4). In a similar fashion

as above, we obtain the relations:

E
(s)
x

[
cap

(
A(s)

)2]
≤

R4

4g(0)2
E
(s)
x

[
NA(s−1)(µ(s)

r,∞)2
]
,

and

E
(s)
x

[
NA(s−1)(µ(s)

r,∞)2
]

≤ E
(s)
x

[
NA(s−1)(µ(s))2

]

= E
(s−1)
x

[
u2cap

(
A(s−1)

)2]
+ E

(s−1)
x ucap

(
A(s−1)

)
.

The bound on the second moment of cap
(
A(s)

)
follows from these inequalities and

from the first statement of the lemma. �

Lemma 4.8. Let d ≥ 5. Let s be a positive integer. There exist positive constants
cs = c(u, d, s) and ε = ε(u, d, s) such that for all positive integers r and R with

rd−2 ≤ εR (4.14)

and for all x ∈ B(R),

E
(s)
x cap

(
A(s)(r, R)

)
≥ csR

min(d−2,2s). (4.15)

Remark 4.9. Remember that A(s)(r, R) is constructed as a subset of a (random)
number of pieces of random walk trajectories of lengths ⌊R2/2⌋. The expected
capacity of a single random walk is comparable with its length in dimension ≥ 5,
as shown in Lemma 4.2. Note that min(d − 2, 2s) is 2s for s < ⌈(d − 2)/2⌉ and
d− 2 for s ≥ ⌈(d− 2)/2⌉. One can interpret the results of Lemma 4.8 as follows. If
s ≤ ⌈(d − 2)/2⌉, the random walk pieces that form A(s)(r, R) are well spread-out,
so that the expected capacity of A(s)(r, R) is comparable with its volume. On the
other hand, if s ≥ ⌈(d− 2)/2⌉, the set A(s)(r, R) saturates the ball B((s+1)R) and
its expected capacity becomes comparable with the capacity of the ball, which is
of order Rd−2 by (2.9).

Proof : We prove (4.15) by induction on s.
It follows from (4.5) that

Excap
(
A(1)(R)

)
≥ c1R

2.

Let s ≥ 2, and assume that the induction hypothesis holds:

E
(s−1)
x cap

(
A(s−1)(r, R)

)
≥ cs−1R

min(d−2,2s−2).
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With this lower bound on the expected value of cap
(
A(s−1)(r, R)

)
and the corre-

sponding upper bound (4.13), the Paley-Zygmund inequality (4.9) yields that there
exists a positive constant c = c(u, d, s) such that

P
(s−1)
x

(
cap

(
A(s−1)(r, R)

)
≥ cRmin(d−2,2s−2)

)
≥ c. (4.16)

Lemma 4.5 implies that

E
(s)
x cap

(
A(s)(r, R)

)
≥ c E

(s−1)
x min

(
ucap(A(s−1)(r, R))R2, Rd−2

)

−Curd−2R2

(4.16)

≥ c min
(
Rmin(d−2,2s−2)R2, Rd−2

)
− Curd−2R2

= c Rmin(d−2,2s) − Curd−2R2

(4.14)

≥ (c/2) Rmin(d−2,2s).

(The last inequality holds if ε in (4.14) is taken small enough, since we only consider
d ≥ 5 and s ≥ 2.) �

In the next lemma we study the probability that a simple random walk hits
A(s)(r, R). Remember the definitions of X and µ(s), s ≥ 2 at the beginning of
Section 4.2, and sd in (1.2).

Lemma 4.10. Let d ≥ 5. Let Z be a simple random walk on Z
d with Z(0) = z,

which is independent of X and µ(s), s ≥ 2, with law Pz. There exist positive
constants c = c(u, d), and ε = ε(u, d) > 0 such that, for all positive integers r and
R with rd−2 ≤ εR, x ∈ B(R), and z ∈ B(R), we have

Pz ⊗ P
(sd)
x

(
H(A(sd)(r, R)) < TB(R2)

)
≥ c,

where H(A(s)(r, R)) is the entrance time of Z in A(s)(r, R) and TB(R2) the exit time

of Z from B(R2).

Proof : We write A for A(sd)(r, R) throughout the proof. We use the identity (2.8):

Pz (H(A) < ∞) =
∑

y∈A

g(z, y)eA(y),

where eA is the equilibrium measure of A (see (2.6)). We have

Pz ⊗ P
(sd)
x (H(A) < ∞) = E

(sd)
x



∑

y∈A

g(z, y)eA(y)


 .

Note that A is a subset of B((sd + 1)R) ⊂ B(dR) by construction. Therefore,
inequality (2.1) implies that, for any y ∈ A and z ∈ B(R), g(z, y) ≥ cg(2dR)2−d.
Also remember that

∑
y∈A eA(y) = cap(A). These observations give

Pz ⊗ P
(sd)
x (H(A) < ∞) ≥ cg(2dR)2−d

E
(sd)
x [cap(A)] .

It follows from the previous lemma that, for d ≥ 5, we can choose ε > 0 so that

E
(sd)
x [cap(A)] ≥ cRmin(d−2,2sd) = cRd−2.

Therefore,

Pz ⊗ P
(sd)
x (H(A) < ∞) ≥ c.
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On the other hand, by the strong Markov property of the random walk Z,

Pz ⊗ P
(sd)
x

(
TB(R2) < H(A) < ∞

)
≤ sup

z′ /∈B(R2)

Pz′ ⊗ P
(sd)
x (H(A) < ∞)

≤ sup
z′ /∈B(R2)

Pz′ (H(B(dR)) < ∞) .

In the second inequality we use the fact that A is a subset of B(dR). We bound
the right-hand side, using (2.1), (2.8) and (2.9):

sup
z′ /∈B(R2)

Pz′ (H(B(dR)) < ∞) ≤ Cg(R
2 − dR)2−dcap (B(dR)) ≤ CR2−d.

Remember that R ≥ rd−2/ε ≥ 1/ε. Therefore, by taking ε small enough, we get

sup
z′ /∈B(R2)

Pz′ (H(B(dR)) < ∞) ≤
1

2
Pz ⊗ P

(s)
x

(
H(A(s)) < ∞

)
.

The result follows. �

4.3. Construction of recurrent sets. We will now use the result of Lemma 4.10 to
construct a sequence of subsets A(sd)(rk, Rk) of Zd such that the union of these
sets ∪kA

(sd)(rk, Rk) is hit by an independent random walk (infinitely often) with
probability 1. Remember the definitions of X and µ(s), s ≥ 2 at the beginning of
Section 4.2.

Lemma 4.11. Let d ≥ 5. For z ∈ Z
d, let Z be a simple random walk on Z

d with
Z(0) = z, which is independent of X and µ(s), s ≥ 2. Let Pz be its law. Let
X(0) = x. There exist sequences of positive integers rk and Rk such that

Pz ⊗ P
(sd)
x

(
lim sup

k

{
H(A(sd)(rk, Rk)) < ∞

})
= 1,

where H(A(s)(r, R)) is the entrance time of Z in A(s)(r, R).

Proof : Let ε be the positive number from Lemma 4.10. We define rk and Rk

recursively:
r0 = max (|x|, |z|) , R0 = ⌈ε−1rd−2

0 ⌉,

and, for k ≥ 1,
rk = dR2

k−1, Rk = ⌈ε−1rd−2
k ⌉.

(Any sequences that grow faster than these would do.) We consider the following
sequence of (random) subsets of Zd:

Ak = A(sd)(rk, Rk) (⊂ B(dRk)).

Note that the following properties hold:

(i) the set of vertices {X(t) : t ≤ TB(Rk) + (R2
k/2)} is contained in B(rk+1),

(ii) rk and Rk satisfy the assumptions of Lemma 4.10, and
(iii) the set Ak is measurable with respect to the sigma-algebra generated by

{X(t) : t ≤ TB(rk+1)} and µ
(i)
rk,rk+1 for 2 ≤ i ≤ sd.

Property (i) follows from the fact that Rk + (R2
k/2) < rk+1. Property (ii) follows

from our choice of ε and from the fact that rd−2
k ≤ εRk. In order to see that

property (iii) holds, note that, by the definition of A(s)(r, R) in (4.10) and (4.11),
set A(i−1)(rk, Rk) is contained in B(iRk). Therefore, set Ak is measurable with re-

spect to the sigma-algebra generated by {X(t) : t ≤ TB(Rk)+(R2
k/2)} and µ

(i)
rk,iRk
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for i ≤ sd. Since sdRk < rk+1 and {X(t) : t ≤ TB(Rk) + (R2
k/2)} ⊂ B(rk+1),

property (iii) follows.

Consider the events Γk = {H(Ak) < TB(R2
k
)} and their indicator functions γk =

I(Γk). In this definition, H(Ak) is the entrance time of Z in Ak and TB(R2
k
) is the

exit time of Z from B(R2
k). We will show that there exists a positive constant c

such that for all k ≥ 1 and for any g1, . . . , gk−1 ∈ {0, 1},

Pz ⊗ P
(sd)
x (Γk | γ1 = g1, . . . , γk−1 = gk−1) ≥ c > 0. (4.17)

The result will then follow from Borel’s lemma (see, e.g., Nash, 1954):

Lemma 4.12. Consider a probability space (Ω,F ,P) and a sequence of events
∆n ∈ F . Let δn = I(∆n) be the indicator function of the event ∆n. If there exists
a sequence bn such that

∑
n bn = ∞ and for any di ∈ {0, 1}, i = 1, . . . , n− 1,

P(∆n | δ1 = d1, . . . , δn−1 = dn−1) ≥ bn > 0

then

P

(
lim sup

k
∆k

)
= 1.

We will now prove (4.17). We denote by E the event {γ1 = g1, . . . , γk−1 =
gk−1}. By property (iii) above and the fact that {Z(t) : t ≤ TB(R2

k−1)
} ⊂ B(rk),

the event E is measurable with respect to the sigma-algebra Fk−1 generated by

{X(t) : t ≤ TB(rk)}, µ
(s)
rk for s ≤ sd, and {Z(t) : t ≤ TB(rk)}. (Here, the

two occurrences of TB(rk) correspond to the exit times of X and Z from B(rk),
respectively, which are, in general, different.) By property (5) of Pois(u,W ∗), the

sets of point measures {µ
(s)
rk }s≥2 and {µ

(s)
rk,rk+1}s≥2 are independent. Therefore,

using strong Markov property for X and Z and integrating over the µ
(s)
rk,rk+1 , s ≥ 2,

we obtain

Pz ⊗ P
(sd)
x (Γk ∩ E) ≥ Ez ⊗ E

(sd)
x

[
Pz′ ⊗ P

(sd)
x′ (Γk) ;E

]
,

where x′ = X(TB(rk)), and z′ = Z(TB(rk)). It follows from Lemma 4.10 that

Pz′ ⊗ P
(sd)
x′ (Γk) ≥ c.

This proves (4.17) and completes the proof of the lemma. �

As a corollary of Lemma 4.11 we obtain the following lemma. Let µ(i),
i ∈ {1, . . . , sd − 1} be independent Poisson point measures with distribution
Pois(u,W ∗), where sd is defined in (1.2). Let P be their joint law. We construct the
graph G′ = (V ′, E′) as follows. The set of vertices V ′ is the set of trajectories from

∪sd−1
i=1 Supp(µ(i)), and the set of edges E′ is the set of pairs of different trajectories

from ∪sd−1
i=1 Supp(µ(i)) that intersect.

Lemma 4.13. Let d ≥ 5 and u > 0. Then, with the above notation,

P(diam(G′) ≤ sd) = 1.

Proof : Take a positive integer r. By Definition 4.4 (see also the notation there),

for each i ∈ {1, . . . , sd − 1}, µ(i) = µ
(i)
r + µ

(i)
r,∞, and the measures µ

(i)
r and µ

(i)
r,∞

are independent by property (5) of Pois(u,W ∗). For any i ∈ {1, . . . , sd − 1}, let
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N (i) be the number of trajectories in Supp(µ
(i)
r ). In other words, N (i) is the num-

ber of doubly-infinite trajectories modulo time-shift from Supp(µ) that intersect
B(r). By property (1) of Pois(u,W ∗), N (i) has the Poisson distribution with pa-
rameter ucap(B(r)). By the definition of Pois(u,W ∗), we know that (recall the

notation from Section 1.1), for each i ∈ {1, . . . , sd − 1}, µ
(i)
r =

∑N(i)

j=1 δ
π∗(X

(i)
j )

,

where X
(i)
1 , . . . , X

(i)

N(i) are doubly-infinite trajectories from W such that (a) they

are parametrized in such a way that X
(i)
j (0) ∈ B(r) and X

(i)
j (t) /∈ B(r) for all

t < 0 and for all j ∈ {1, . . . , N (i)}, and (b) they satisfy properties (2) and (3) of

Pois(u,W ∗). In particular, given N (i) and (X
(i)
j (0))N

(i)

j=1 , the forward trajectories

(X
(i)
j (t), t ≥ 0)N

(i)

j=1 are distributed as independent simple random walks.

Property (5) of Pois(u,W ∗) gives that for each i ∈ {1, . . . , sd − 1}, all the ran-

dom walks (X
(i)
j (t), t ≥ 0)N

(i)

j=1 are independent from µ
(k)
r,∞ for k ∈ {1, . . . , sd − 1}.

Therefore, Lemma 4.11 and Remark 4.6 imply that, given N (i) and (X
(i)
j (0))N

(i)

j=1

for all i ∈ {1, . . . , sd − 1}, almost surely, for each pair of different random

walks (X
(i)
j (t), t ≥ 0) and (X

(k)
l (t), t ≥ 0), there exist doubly-infinite trajecto-

ries wm ∈ Supp(µ
(m)
r,∞), 1 ≤ m ≤ sd − 1, such that X

(i)
j ∩w1 6= ∅, X

(k)
l ∩wsd−1 6= ∅,

and wi ∩ wi+1 6= ∅ for i ∈ {1, . . . , sd − 2}. Since this holds for any r, the result
follows. �

Proof of Theorem 1.1: upper bound on diameter: We complete the proof of Theo-
rem 1.1 by showing that P(diam(G) ≤ sd) = 1. By Remark 1.2, we may and will
assume that d ≥ 5. Let µ(1), . . . , µ(sd−1) be independent Poisson point measures on
W ∗ with distribution Pois(u/(sd − 1),W ∗). We construct the graph G′ = (V ′, E′)

as follows. The set of vertices V ′ is the set of trajectories from ∪sd−1
i=1 Supp(µ(i)), and

the set of edges E′ is the set of pairs of different trajectories from ∪sd−1
i=1 Supp(µ(i))

that intersect. Lemma 4.13 implies that the diameter of G′ is at most sd. On the
other hand, by property (4) of Pois(u,W ∗), graphs G and G′ have the same law.
This completes the proof. �
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