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Abstract. In this article we consider a simple random walker moving on a random
media. Whilst doing so, the random walker observes at each point of time the
“color” of the location he is at. This process creates a sequence of observations.
We consider the problem of determining when the walker is close to the origin.
For this we are only given, the observations made by the walker as well as a small
portion of the media close to the origin. With that information alone, we show
that we can typically construct an exponential number of stopping times, which all
occur whilst the walker is on the small piece of media available to us. The number
is exponential in the size of that small piece of media. So far this problem could
only be solved when the media contained 5 colors.

In the present article, we use a subtle entropy argument on the set of possi-
ble observations given the point where the walker starts and given the media in
that neighborhood. This allows us to achieve our goal when the media contains 4
equiprobable colors. The random media is often called “scenery”.

An important area of research is Scenery Reconstruction, in which one tries to
retrieve the scenery based on the observations made by the random walker alone.
Finding times when the random walker is close to the origin is the main hurdle for
building a scenery reconstruction algorithm. Our present result, implies that the
Scenery Reconstruction result in Hart et al. (2011) also applies with 4 colors as
opposed to just 5 colors. The less colors the more difficult these problems become.

1. Introduction

Let St denote the position of a random walker at time t. We assume that St

is a simple symmetric random walk starting at the origin. Let ξ : Z → {0, 1, 2, 3}
denote a coloring of the integers with 4-colors. We call the landscape ξ a scenery.
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We assume that at every time t ≥ 0, the random walker sees the color of the point he
is at. This implies that at time t the random walker observes the color χt := ξ(St).

The problem we consider in this article is to figure out times when the random
walker is in a close vicinity of the origin. For this we are given only the observations

χ := χ0χ1χ2 . . .

and the restriction of ξ to [0, n − 1]. The way we try to guess when the random
walk is close to the origin, is by searching in the observations for the word

wn := ξ0ξ1ξ2 . . . ξn−1.

More precisely, consider the stopping times τ1, τ2, . . . defined as follows:

τ1 := min{t ≥ n|wn = χt−n+1χt−n+2 . . . χt}.

By induction on i, τi+1 is the next time the pattern wn appears in the observations:

τi+1 := min{t > τi|w
n = χt−n+1χt−n+2 . . . χt}.

We take the scenery ξ to be random ergodic. The pattern wn will appear infinitely
often in the scenery ξ. So there is no hope that at all the times τi the walker is
close to the origin, because he will also observe the pattern wn in other locations.
Instead, we will prove that an exponential number of the times τi tell us that the
walker is close to the origin. For this Bn, is the event that the walker is close to 0
for all τi with i ≤ (v2)

n. Here v2 is a constant not depending on n satisfying

2

2H2(0.25)
> v2 > 1, (1.1)

where H2(x) is the entropy function:

H2(x) := x log2(1/x) + (1 − x) log2(1/(1 − x)).

(Note that 2/2H2(0.25) > 1, so that a constant v2 satisfying 1.1 really exists!). In
the event Bn, “close to the origin” is defined as in the interval [0, n− 1], so that

Bn := {Sτi
∈ [0, n − 1], ∀i ≤ vn

2 }.

Our main theorem states that when the scenery ξ is taken i.i.d. with four equi-
probable colors then the probability that Bn does not hold is exponentially small
in n. (This is true for any constant v2 satisfying 1.1 but not depending on n). Here
comes our main theorem:

Theorem 1.1. Assume that ξz with z ∈ Z is a collection of i.i.d. variables inde-

pendent of the simple symmetric random walk St starting at the origin. We also

assume that the variables ξz are equally likely to be equal to 0,1, 2 or 3:

P (ξz = 0) = P (ξ = 1) = P (ξ = 2) = P (ξ = 3) = 1/4.

Then, all the stopping times τi up to i = vn
2 stop the random walk S with high

probability in [0, n − 1]:

P (Bn) ≥ 1 − e−cBn

for all n ∈ N, where cB > 0 is a constant not depending on n.

In Hart et al. (2011), it is proven that an exponential number of times τi stop
the random walk close to the origin in the context of a 5-color scenery. However
the proof in Hart et al. (2011) fails with less than 5 colors. We introduce a subtle
entropy argument for the class of observations generated by a walker, which allows
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this improvement. The technique we develop here is important and we expect it to
be useful in many other situations.

The stopping time problem considered here is an essential step for scenery re-
construction. Once many stopping times are constructed, it is relatively easy to
reconstruct a large portion of the scenery around the origin. Once the stopping
times are available, the scenery reconstruction can be performed exactly as in Hart
et al. (2011). The present result implies that the scenery reconstruction result
proven in Hart et al. (2011) for 5 color sceneries also holds with 4-color sceneries.
We explain more details on this in subsection 1.1.

Let us at this stage explain the scenery reconstruction problem: This problem
goes back to questions from Kolmogorov, Kesten, Keane, Benjamini, Perez, Den
Hollander and others. The scenery reconstruction problem considers the same
setting as in the present article. This means that a recurrent random walk makes
observations of a random media, called scenery. One tries to reconstruct the random
media based on the observations alone. In general it is only possible to reconstruct
the scenery up to translation and reflection around the origin. There exist sceneries
which can not be reconstructed. (Lindenstrauss in [12] exhibited sceneries which
can not be reconstructed.) To overcome this obstacle, we take the scenery to
be random and prove that almost every scenery can a.s. be reconstructed up to
translation and reflection.

The first positive result Matzinger (1999) on Scenery Reconstruction was
Matzinger’s PhD-thesis in which he showed that one can reconstruct up to equiva-
lence almost every 2-color i.i.d scenery seen along the path of a simple symmetric
random walk with holding. Many other results followed: for non skip-free walker
Löwe et al. (2004); Lember and Matzinger (2008, 2003) in two dimensions Löwe
and Matzinger (2002) a very different approach to Matzinger (2005) is needed.
The reconstruction of a finite piece in polynomial time is treated in Matzinger and
Rolles (2003a, 2006b,a), whilst reconstruction with errors in the observations is the
subject of Matzinger and Rolles (2003b); Hart and Matzinger (2006). In Matzinger
and Popov (2007), a continuous analogon is considered. Scenery reconstruction me-
thods differ greatly depending on the distribution of the scenery and the random
walk.

1.1. Implication of present result for scenery reconstruction. The research in this
area started with people investigating the ergodic properties of the observations
made by a random walker on a random media. Kesten Kesten (1996) proved that
with five colors, if one knows the scenery in every point except in one, then, it
becomes possible to reconstruct the missing color in that one location. For this
purpose, the observations ξ are “observable”. This problem is called “distinguishing
a single defect in a scenery”. But, at that time, specialists believed that it might
not be possible to distinguish single defects with less than 5 colors in the scenery.
Hence, the result in Matzinger (1999) came as a surprise. Nontheless, the general
question remains open: when does it become impossible to reconstruct a scenery?
When does reducing the entropy in the scenery whilst increasing it for the walker
lead to a critical phenomena where the scenery becomes unreconstructable?

The article Hart et al. (2011) is the first and only, where scenery reconstruc-
tion is shown to be possible despite the increment of the random walk having a
non-bounded support. In Hart et al. (2011), a symmetric random walk has its
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distribution close to a symmetric random walk, but with small probability δ > 0
the steps can be larger than 1 unit. The conditions in Hart et al. (2011) for the
random walk can be written as

P (|St+1 − St| 6= 1) ≤ δ (1.2)

and

P (|St+1 − St| = m | |St+1 − St| 6= 1) ≤ e−cm, ∀m ∈ N (1.3)

for a constant c > 0 not depending on m. Hence, the step length has an exponen-
tially decaying tail, but non-bounded support. Even when δ > 0 is taken very small
and c > 0 very large, all other reconstruction methods fail. The algorithm in Hart
et al. (2011) achieves reconstruction for δ > 0 small enough and c > 0 large enough.
It reconstructs the scenery on larger and larger intervals. Once it has reconstructed
the restriction of ξ to [−n, n], it proceeds in determining ξn+1 and ξ−n−1. For this,
it first obtains an exponential number of stopping times. It uses the observations χ
and the already reconstructed piece ξ−nξ−n+1 . . . ξn−1ξn. These stopping times are
shown to typically all occur whilst the walker is in [−n, n]. With the availability of
these stopping times, the reconstruction of ξn+1 and ξ−n−1 is relatively easy. We
can use the stopping times constructed in this paper in the same way as in Hart
et al. (2011) to obtain ξn+1 and ξ−n−1. The stopping times are even defined in the
same way, both here and in Hart et al. (2011). The only difference is that here we
prove them to work with only 4 colors instead of 5. The fact that in Hart et al.
(2011), we do not only consider a simple random walk but also a slightly disturbed
version of a simple random walk does not matter: the proof and methods provided
here does also carry over to that case. This implies that scenery reconstruction is
possible with a slightly disturbed random walk (i.e. taking δ > 0 small enough and
c > 0 large and assuming that 1.2 and 1.3 hold for a symmetric random walk S),
even if there are only 4 equiprobable colors in the scenery.

Let us explain a little more on how the present proof in this article can be
adapted for the situation where the random walk is not exactly simple but very
close to it. At the beginning of the next section we define a constant r > 0 which
does not depend on n. We then go on defining T to be the first time that the
random walk S visits the set {−rn, rn}. Our main theorem 1.1 asserts that with
high probability the first vn

2 stopping times τi all stop S in the interval [0, n − 1].
But, in the proof of theorem 1.1 we actually prove slightly more: we also show that
with high probability those first vn

2 stopping times all occur before time T . (See
lemma 2.1.) Now, the proof of the main theorem in this paper, which is valid for
S being a simple random walk, can be summarized as follows:

let Pn
x to be the set of all nearest neighbor paths of length n starting at x and

such that the percentage of back-forth steps is less than q0 > 1/4. (Defined at the
beginning of the next section). Let x be a non-random point so that |x| > 2n. Then
for any (non-random) nearest neighbor path R in Pn

x , we have that the probability
that the word w is generated by R is equal to (1/4)n. That is:

P (wn = ξ ◦ R) =
1

4n
.

The above probability follows from the fact that in the scenery ξ there are 4 equally
likely colors and the scenery is i.i.d.. Also, since the scenery ξ is i.i.d., we get that
ξ ◦ R is independent of the word wn = ξ0ξ1 . . . ξn−1. (This is because, R can not
enter the interval [0, n− 1], since it starts outside [−2n, 2n] and moves by one unit
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at a time). Hence, the probability that there exists a path R in Pn
x generating w

can be bounded as follows:

P (∃R ∈ Pn
x , so that ξ ◦ R = w) ≤

|Pn
x |

4n
. (1.4)

In other words, if the cardinality |Pn
x |, is of a much lesser order than 4n, then

with high probability there will be no nearest neighbor path starting in x and
generating w. Now, our main proof works by showing that the right side of 1.4 is
even of much lesser order than rn. From this it follows then immediately that with
high probability:

within the interval [−rn, rn], there is no place where a simple nearest neighbor
walk can generate w except very close to the origin. The only thing needed to show
the above is that

|Pn
x | < rn · 4n, (1.5)

where < stands for “lesser exponential order than”. The inequality 1.5 is what
truly makes the present paper “work”. By itself it guaranties that with high proba-
bility, until the random walk hits {rn, rn}, all the stopping times τi stop the random
walk S in [−2n, 2n]. Inequality 1.5 is shown in the proof of lemma 2.3. For proving
the main theorem in the case of a random walk which is not simple, but only close
to simple, we only need to prove inequality 1.5 for that case. So, instead of the
set of nearest neighbor walks Pn

x , we need the set Pn
x (λ, s) of λ, s-walks: a map

R : [0, n − 1] → Z is a called λ, s-walk if the number of i’s in [0, n − 2] for which
|R(i+1)−R(i)| 6= 1 are less than λn. We also require that the sum of the absolute
value of the steps which are not + − 1 does not exceed sn:

∑

i∈[0,n−2],|R(i+1)−R(i)|6=1

|R(i + 1) − R(i)| ≤ sn.

Note that by taking the constants s, δ > 0 small enough (not depending on n), the
exponential rate of

|Pn
x (λ, s)|

gets as close as we want to |Pn
x |. In this manner, since equation 1.5 holds, we get

by choosing s, λ > 0 small enough (but not depending on n), that

|Pn
x (λ, s)| < rn · 4n, (1.6)

This would then make the stopping time work for a “close to simple” random walk
S, provided we can show that with high probability, up to time T , S only follows
λ, s-paths. More precisely, let Gn be the event that for all t ≤ T , we have that

St, St+1, . . . , St+n−1

is a λ, s-path. By taking the parameters δ > 0 and c > 0 in 1.2 and 1.3 small
enough (but not depending on n), we get that the event Gn has probability close
to 1 up to an exponentially small quantity in n. Together with inequality 1.6, this
does the trick of proving the present result for a non-simple random walk given
that the parameters λ, s > 0 are small enough

The new idea used here gives us hope for sceneries with lower entropy. When
entropy is low, scenery reconstruction becomes way more difficult. However, the
present technique offers a new approach: If the string

wn := ξ0ξ1 . . . ξn−1
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has low entropy, then we should also be able to very much restrict the collection of
strings generated by a walker starting in a given point x on the scenery ξ and which
might lead to wn. (See below the argument restricting path which might generate
wn).

2. Proof of main theorem

2.1. Definition of events and combinatorics. Recall that wn designates the word
obtained by restricting the scenery ξ to [0, n− 1]:

wn := ξ0ξ1ξ2 . . . ξn−1.

Note that
4

2H2(0.25)
> 2.

In the introductory section we defined the constant v2 > 1 to be any constant not
depending on n and satisfying 1.1. We will also need the constants r and v1 which
shall not depend on n, but satisfy the equation

4

2H2(0.25)
> r > v1 > 2v2 > 2. (2.1)

Let q0 > 0.25 denote a constant not depending on n such that

4

2H2(0.25)
>

4

2H2(q0)
> r. (2.2)

Note that we can always find such a constant q0 because the entropy function H2(.)
is strictly increasing in the interval [0, 0.5].

Let us quickly give a sneak preview of where the constants r, v1 and v2 make
their appearance:

-With high likelihood, within a radius rn of the origin there is no place where
the word wn can be read except at the origin.

-Typically at least (v1)
n visits to the origin occur before the random walk S

leaves the interval [−rn, rn].
-Typically, a number (v2)

n of stopping times all stop the random walk in [0, n−1].
Let R be a map from the integer interval [0, n− 1] into Z, i.e, R : [0, n− 1] → Z,

and such that

|R(i + 1) − R(i)| = 1

for all i ∈ [0, n − 2]. We call R a nearest neighbor walk path of length n and say R
starts in x if R(0) = x.

Let Pn
x denote the set of all nearest neighbor paths of length n starting at x

and such that the percentage of back-forth steps is less than q0 > 1/4. Hence,
R : [0, n − 1] → Z is in Pn

x iff both of the following conditions hold

(1) R(0) = x, and
(2) |{ i ∈ [1, n − 2] | (R(i) − R(i − 1))(R(i + 1) − R(i)) = −1}| ≤ q0(n − 2).

Let T denote the first visit by the random walk S to the set of two points
{−rn, rn}:

T := min { t | |St| = rn } .

Next we define the events which we will use:
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• Let νi denote the i-th visit after 0 by S to the origin:

νi+1 := {t > νi|St = 0},

whilst ν0 = 0. (The random walk starts at the origin). Let Cn be the event
that the random walk visits the origin at least (v1)

n times before time T :

Cn :=
{

νi ≤ T, ∀i ≤ (v1)
n
}

.

• Let Dn
1 be the event that there is no path R starting in [−rn, rn]− [−2n, 2n]

with less than q0-percentage of back-forth steps and generating the word
wn. In other words, the event Dn

1 means that if

x ∈ [−rn, rn] and x /∈ [−2n, 2n]

and R ∈ Pn
x then

ξ(R0)ξ(R1)ξ(R2) . . . ξ(R(n−1)) 6= wn.

• Let Dn
2 be the event that no path starting in [−2n, 2n] and ending outside

[0, n− 1] whilst having less than q0-percentage of back-forth steps can gen-
erate the word wn. More precisely, the event Dn

2 means that ∀x ∈ [−2n, 2n]
and all R ∈ Pn

x , we have that

ξ(R0)ξ(R1)ξ(R2) . . . ξ(R(n−1)) 6= wn,

if R(n − 1) /∈ [0, n − 1].
• Let En be the event that the random walk crosses the interval [0, n− 1] in

a straight way at least (v2)
n times among the first (v1)

n visits to the origin.
More precisely, let En be the event the (random) set

{

νi|i ≤ (v1)
n ; Sj+1 − Sj = +1, ∀j ∈ [νi, νi + n − 1]

}

contains more than (v2)
n elements.

• Finally let Fn denote the event that the word wn has a proportion less or
equal to q0 of letters wi such that wi = wi+2. Hence, Fn is the event that

Cardinality{i ∈ [1, n − 1]|wi+1 = wi−1} ≤ q0(n − 2).

Recall that Bn stands for the event that the first (v2)
n stopping times τi all occur

whilst the random walk S is in the interval [0, n− 1].

Lemma 2.1. We have that

Cn ∩ Dn
1 ∩ Dn

2 ∩ En ∩ Fn ⊂ Bn.

Proof : With the event Cn we know that before time T , there are at least (v1)
n

visits to the origin before time T . The event En guaranties that among the first
(v1)

n visits to the origin, there are at least (v2)
n followed by a direct crossing of

the interval [0, n − 1]. When, the random walk S crosses the interval [0, n − 1]
in a straight way, then during that time we see the pattern wn = ξ0ξ1 . . . ξn−1

appearing in the observations. Thus, when Cn and En both hold, we see the
pattern wn appear at least (v2)

n times in the observations χ before time T . So,
there will be at least (v2)

n stopping times τi before time T :

τi ≤ T , ∀i ≤ (v2)
n.

The next question is if those stopping times really stop the random walk in the
interval [0, n− 1]. With the event Fn, in the word wn there are less than q0(n− 2),
letters wi such that wi = wi+1. So, any nearest neighbor walk path with more than
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q0(n − 2) “back and forth” steps can not generate wn on the scenery ξ. In other
words, any nearest neighbor walk path R : [0, n − 1] → Z starting in x but not in
Pn

x can not generate wn:

ξ(R0)ξ(R1) . . . ξ(Rn−1) 6= wn.

So, when Fn holds, for a nearest neighbor walk path R : [0, n− 1] → Z to generate
wn, we need to have R ∈ Pn

x where x := R(0). By the event Dn
1 ∩ Dn

2 , for all
x ∈ [−rn, rn], and all R ∈ Pn

x , R can generate wn only if it ends in [0, n− 1]. That
means that with the event Dn

1 ∩ Dn
2 , for all x ∈ [−rn, rn] and all R ∈ Pn

x , we have

ξ(R0)ξ(R1) . . . ξ(Rn−1) = wn

implies R(n − 1) ∈ [0, n − 1]. Summarizing: when Fn and Dn
1 ∩ Dn

2 both hold,
then the only way a nearest neighbor walk R : [0, n− 1] → Z can start in [−rn, rn]
and generate wn on ξ, is when it ends in [0, n− 1], i.e. when R(n− 1) ∈ [0, n− 1].
Recall that by definition, up to time T the random walk S remains in [−rn, rn].
So, up to time T , when Fn and Dn

1 ∩Dn
2 both hold, we can “only observe wn when

the random walk S follows a nearest neighbor walk path of length n − 1 ending in
[0, n− 1]”. In other words, for all τi ≤ T , we have that

Sτi
∈ [0.n − 1].

We have seen in the beginning of this proof, that when Cn and En both hold, then
before time T we see the pattern wn appear at least (v2)

n times in the observations
χ. So, there are at least (v2)

n stopping times τi before time T . With Fn and
Dn

1 ∩Dn
2 holding all these stopping times occur when Sτi

is in [0, n− 1]. Hence, all
this together implies that the first (v2)

n stopping times τi happen whilst Sτi
is in

[0, n− 1]. Formally, we have proven that when all the events

Cn, En, Fn, Dn
1 , Dn

2

hold then Sτi
∈ [0, n − 1] for all i ≤ (v2)

n. This is the definition of the event Bn,
so we have that

Cn ∩ En ∩ Fn ∩ Dn
1 ∩ Dn

2 ⊂ Bn.

�

2.2. High probability of events.

Lemma 2.2. We have that

P (Cn) ≥ 1 −
(v1

r

)n

.

Proof : Let S1
t be a simple random walk such that S1

0 = 1. Define the stopping time

τ1 = min
t

{

S1
t = 0 or S1

t = rn
}

.

We know that for a stopping time thus defined

E(S1
τ1

) = E(S1
0 ),

then

rnP
(

S1
τ1

= rn) = 1

and

P
(

S1
τ1

= rn) =
1

rn
,

but it is just the probability of S1
t visits rn before visits the origin.
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For the case of a simple random walk starting at minus one, S−1
t , the probability

that it visits −rn before visiting the origin is also 1
rn . So the probability of a simple

random walk hitting rn or −rn before hitting the origin is p = 1
rn .

Let Cn
i be the event that after the i-visit to the origin, the random walk first

gets back to the origin before visiting the set {−rn, rn}.
(Recall that νi denotes the i-th visit after 0 by S to the origin:

νi+1 := min{t > νi|St = 0},

whilst ν0 = 0.) So, Cn
i is the event that

min{t > νi||St| = rn} > min{t > νi|St = 0}.

by the strong Markov property of S, we have that

P (Cnc
i ) =

1

rn
. (2.3)

But we have that

Cn =

(v1)n

⋂

i=0

Cn
i

and hence

P (Cnc) ≤

(v1)n

∑

i=0

P (Cnc
i )

The last inequality together with 2.3, yields

P (Cnc) ≤

(v1)n

∑

i=0

1

rn
=
(v1

r

)n

.

Note that the constants r and v1 where defined so that (v1/r) < 1, which implies
that the last bound above is exponentially small in n. �

Lemma 2.3. We have that

P (Dn
1 ) ≥ 1 − 4

(

r · 2H2(q0)

4

)n

.

Proof : Let Dn
1x denote the event that there is no nearest neighbor walk path R in

Pn
x and generating wn on ξ. In other words, Dn

1x is the event that there is no nearest
neighbor walk path R : [0, n− 1] → Z, starting in x with less than q0-percentage of
back-and-forth steps and such that

ξ(R(0))ξ(R(1))ξ(R(2)) . . . ξ(R(n − 1)) = wn.

We have that
Dn

1 =
⋂

x∈[−rn,rn]−[−2n,2n]

Dn
1x

so that
P (Dnc

1 ) ≤
∑

x∈[−rn,rn]−[−2n,2n]

P (Dnc
1x). (2.4)

Then, if R starts in x (that is R(0) = x), with x /∈ [−2n, 2n] and since the nearest
neighbor walk path moving at most one unit by step, it follows that R can not
enter the interval [0, n − 1]. Assuming that R is non-random, we then obtain that
the observation generated by R, that is the string

ξ(R0)ξ(R1) . . . ξ(Rn−1)
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is independent of ξ restricted to [0, n − 1]. This is because the scenery ξ is i.i.d.
In other words, we obtain that wn is independent of ξ(R0) . . . ξ(Rn−1). Since, we
have 4 equiprobable colors in wn, this leads to

P (wn = ξ(R0)ξ(R1) . . . ξ(Rn−1) ) =

(

1

4

)n

, (2.5)

for any non-random R ∈ Pn
x as soon as x /∈ [−2n, 2n]. Now,

Dn
1x = ∩R∈Pn

x
{wn 6= ξ(R0)ξ(R1) . . . ξ(Rn−1)}

so that
P (Dnc

1x) ≤
∑

R∈Pn
x

P ( wn = ξ(R0) . . . ξ(Rn−1) ) .

Applying now 2.5 to the last inequality above yields

P (Dnc
1x) ≤

∑

R∈Pn
x

(

1

4

)n

, (2.6)

when x /∈ [−2n, 2n].
Since the number of different sequences with length n and proportion q0 of back-

and-forth steps is
(

n − 2
q0(n − 2)

)

,

Using inequality 2.18 from the appendix, we get that there are less than 2H2(q0)(n−2)

elements in the set Pn
x . Thus 2.6 can be written as:

P (Dnc
1x) ≤

2H2(q0)(n−2)

4n

for all x ∈ [rn, rn] − [−2n, 2n]. Applying the last equation above to inequality 2.4,
we obtain

P (Dnc
1 ) ≤

∑

x∈[−rn,rn]−[−2n,2n]

2H2(q0)(n−2)

4n
.

Since in the set [−rn, rn] − [−2n, 2n] there are less than 2rn elements, we find

P (Dnc
1 ) ≤ 2

(r

4

)n

2H2(q0)(n−2).

The expression on the right side of the last equation above is an exponential negative
bound, since by inequality 2.1, we have

r · 2H2(q0)

4
< 1.

�

Lemma 2.4. We have that

P (Dn
2 ) ≥ 1 −

n

4

(

2H2(q0)

4

)(n−2)

.

Proof : Let R : [0, n − 1] 7→ Z be a (non-random) nearest neighbor path ending
outside [0, n − 1]. Assume first that R(n − 1) > n − 1. Then, since each step R
travels no more than one unit, we get that n−1−i < R(n−1−i) for all i ∈ [0, n−1].
Hence, since the scenery ξ is i.i.d., we find that ξn−1−i = wn−1−i is independent of

ξ(Rn−1−i)ξ(Rn−1−i+1) . . . ξ(Rn−1) (2.7)
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Let Zi be the Bernoulli variable which is equal to 1 if ξ(Rn−1−i) = wn−1−i and
Zi = 0 otherwise. Because of the independence of expression 2.7, we get

P (Zi = 1|Zi−1Zi−2 . . . Z0) = 1/4.

It follows that the variables Z0Z1 . . . Zn are i.i.d. so that

P (Z0 = 1, Z1 = 1, . . . , Zn = 1) =

(

1

4

)n

But having all the Zi’s equal to 1 for i = 1, 2, . . . , n is the same as saying that R
generates the word wn on the scenery ξ. Hence,

P (wn = ξ(R0)ξ(R1) . . . ξ(Rn)) =

(

1

4

)n

. (2.8)

The last inequality was obtained assuming R(n− 1) > n − 1. The same inequality
can be obtained for when R(n − 1) < 0 and so inequality 2.8 holds for all nearest
neighbor paths not ending in [0, n − 1]. Now, the event Bn

2 is the event that there
exists no nearest neighbor walk path R ∈ Pn

x , with x ∈ [−2n, 2n] and generating
wn on ξ whilst ending outside [0, n − 1]. Hence

Bn
2 =

⋂

R

{ wn 6= ξ(R0)ξ(R1) . . . ξ(Rn) } , (2.9)

where the intersection is taken over all R in
⋃

x∈[−2n,2n]

Pn
x (2.10)

ending outside [0, n − 1], i.e. such that R(n − 1) /∈ [0, n − 1]. For those paths
ending outside [0, n− 1], equation 2.8 applies. We can use this in conjunction with
equation 2.9, (since in equation 2.9 all paths considered end outside [0, n− 1]). We
obtain:

P (Bnc
2 ) ≤

∑

R

P (wn = ξ(R0)ξ(R1) . . . ξ(Rn)) =
∑

R

(

1

4

)n

. (2.11)

where in the last sums above, R is taken over the set 2.10 and such that R(n−1) /∈
[0, n−1]. The set Pn

x for given x contains less than 2(n−2)H2(q0) elements. So the set
2.10 contains less than 4n2(n−2)H2(q0) elements. Applying this to inequality 2.11,
we get:

P (Bnc
2 ) ≤ 4n

2(n−2)H2(q0)

4n
.

Note that the bound on the last inequality above is exponentially small in n since
by 2.1, we have (2H2(q0)/4) < 0.5 �

Lemma 2.5. We have that

P (Enc) ≤
4n

(v1/2)n
,

for all n large enough.

Proof : As before, let νi denote the i-th visit by the random walk to the origin and
define the following sequence. Let

k1 = ν1

and, for i ≥ 1, let
ki+1 := min{νj ≥ ki + n : j ∈ N},
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The sequence of ki’s denotes a set of visits by S to the origin, such that two
consecutive visits are separated by at least n steps.

Let Yi be a Bernoulli variable, where Yi = 1 if after time ki, S takes n− 1 steps
to the right and Yi = 0 otherwise. Hence Yi = 1 if and only if

Sj+1 − Sj = 1 , ∀j ∈ [ki, ki + n − 1].

The variables Y1, Y2, . . . are i.i.d with

p = P (Yi = 1) =
(1

2

)n−1

.

Note that among the first (v1)
n visits νi to the origin, there are at least (v1)

n/n
visits ki, and hence:

{

vn

1
/n
∑

i=1

Yi ≥ (v2)
n
}

⊆ En.

From the last inequality above it follows that

P (Enc) ≤ P
(

vn

1
/n
∑

i=1

Yi < (v2)
n
)

(2.12)

At this point we simply use the Chebycheff inequality. Set

Z :=

vn

1
/n
∑

i=1

Yi

so that

E[Z] =
(v1)

n

n
E[Y1] =

(v1)
n

n

(

1

2

)n

= (1/n)
(v1

2

)n

and

V AR[Z] =
(v1)

n

n
V AR[Y1] =

vn
1

n

(

1

2

)n(

1 −
1

2n

)

≤
(v1)

n

n

(

1

2

)n

. (2.13)

The constants v1 and v2 do not depend on n and satisfy inequality 2.1, so that
v1/2 > v2. It follows that for n large enough, E[Z] = (v1/2)n/n is much larger
than (v2)

n. So for n large enough, we have
∣

∣

∣
(1/n)

(v1

2

)n

− (v2)
n
∣

∣

∣
≥ (1/2n)

(v1

2

)n

and hence

|E[Z] − (v2)
n| ≥ (1/2n)

(v1

2

)n

. (2.14)

Applying now Chebycheff’s inequality to 2.12, we obtain

P (Enc) ≤
V AR[Z]

(E[Z] − vn
2 )2

.

Applying equation 2.13 and inequality 2.14 to the last inequality above we find

P (Enc) ≤
(v1/2)n

(v1/2)2n

4n2

n
=

4n

(v1/2)n
. (2.15)

Since by inequality 2.1 we have v1/2 > 1 it follows that the bound on the right side
of inequality 2.15, is an exponentially small quantity in n. �
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Lemma 2.6. We have that

P (Fnc) ≤ (cF )n,

where 0 < cF < 1 does not depend on n.

Proof : For any integer z ∈ [1, n − 1], define the event

Az = {ξ(z + 1) = ξ(z − 1)}.

Since the scenery-process {ξ}z∈Z is a sequence of i.i.d random variables with uni-

form probability on a set of 4 colors, we get: P (Az) = 4
(

1
16

)

= 1
4 .

Let Xz be the Bernoulli variable, such that Xz = 1 iff Az holds. Note that any
sequence of colors with size n has exactly (n− 2) possible pairs of positions for Az

to occur, so that

P (Fnc) = P (X1 + X2 + · · · + Xn−2 > (n − 2)q0)

≤ P ((X1 − q0) + · · · + (Xn−2 − q0) ≥ 0)

≤ E(eY1t)n−2,

where Y1 = (X1−q0). Here we use the same argument as in the proof of lemma 2.5.
That is we use that any random variable Z and for any t > 0, P (Z ≥ 0) ≤ E[eZt].

Since q0 > 0.25, it follows that

E(Y1) = E[X1] − q0 = 0.25 − q0 < 0.

Hence, there exists a t0 ≥ 0 such that E(eY1t0) < 1. Call this value cF :

cF := E(eY1t0) < 1.

Thus we have an upper bound for P (Fnc) which decreases exponentially fast to
zero:

P (Fnc) ≤ cn
F .

�

2.3. Proof of main theorem. In lemma 2.1, we prove that

Cn ∩ Dn
1 ∩ Dn

2 ∩ En ∩ Fn ⊂ Bn

It follows that

P (Bnc) ≤ P (Cnc) + P (Dnc
1 ) + P (Dnc

2 ) + P (Enc) + P (Fnc). (2.16)

In Subsection 2.2, we get upper bounds for each of the probabilities P (Cnc),
P (Dnc

1 ), P (Dnc
2 ), P (Enc) and P (Fnc) that are negative exponentially small in n.

Hence, together with inequality 2.16, this implies that P (Bnc) is also exponentially
small in n. Hence, there exists a constant cB > 0 not depending on n such that for
all n, we have

P (Bnc) ≤ e−cBn.
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2.4. Appendix. This appendix contains a proof of an inequality that is used for
bounding the number of paths in Pn

x . This bound is required in Lemma 2.3.
Let q be a value in the open interval (0, 1). Assume that n is an integer such

that nq is an integer. Let Z be a binomial variable with parameter n and q. The
probability that Z is equal to nq is less than 1. Hence:

P (Z = nq) =

(

n

nq

)

qqn(1 − q)(1−q)n ≤ 1.

Dividing on both sides of the last inequality above by qqn(1 − q)(1−q)n, we obtain:
(

n

nq

)

≤

(

(

1

q

)q (
1

1 − q

)1−q
)n

= 2n·H2(q). (2.17)

Next assume that q < 0.5. We are going to show an improved version of inequality
2.17. That is we are going to prove that

nq
∑

i=1

(

n

i

)

≤ 2n·H2(q). (2.18)

For this note that

1 ≥ P (Z ≤ qn) =

nq
∑

i=1

(

n

i

)

qi(1 − q)n−i. (2.19)

But
nq
∑

i=1

(

n

i

)

qi(1 − q)n−i =

nq
∑

i=1

(

n

i

)

2−H2(i/n)n. (2.20)

Now note that from q = 0 up to q = 0.5 the entropy function q 7→ H2(q) is
increasing. Hence −H2(i/n) ≥ −H2(q) for all i ≤ nq. Hence,

nq
∑

i=1

(

n

i

)

2−H2(i/n)n ≥ 2−H2(q)n

nq
∑

i=1

(

n

i

)

.

Combining the last inequality above with inequalities 2.19 and 2.20, we obtain

1 ≥ 2−H2(q)n

nq
∑

i=1

(

n

i

)

,

wish completes the proof of 2.18.
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