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Abstract. We consider two classes of piecewise expanding maps T of [0, 1]: a
class of uniformly expanding maps for which the Perron-Frobenius operator has a
spectral gap in the space of bounded variation functions, and a class of expanding
maps with a neutral fixed point at zero. In both cases, we give a large class of
unbounded functions f for which the partial sums of f ◦ T i satisfy an almost sure
invariance principle. This class contains piecewise monotonic functions (with a
finite number of branches) such that:

• For uniformly expanding maps, they are square integrable with respect to the
absolutely continuous invariant probability measure.

• For maps having a neutral fixed point at zero, they satisfy an (optimal) tail
condition with respect to the absolutely continuous invariant probability mea-
sure.
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1. Introduction and main results

Our goal in this article is to prove the almost sure invariance principle with
error rate o(

√
n ln lnn) for several classes of one-dimensional dynamical systems,

under very weak integrability or regularity assumptions. We will consider uniformly
expanding maps, and maps with an indifferent fixed point, as defined below.

Several classes of uniformly expanding maps of the interval are considered in
the literature. We will use the very general definition of Rychlik (1983) to allow
infinitely many branches. For notational simplicity, we will assume that there is
a single absolutely invariant measure and that it is mixing (the general case can
be reduced to this one by looking at subintervals and at an iterate of the map).
We will also need to impose a nontrivial restriction on the density of the measure:
it should be bounded away from 0 on its support. This is not always the case,
but it is true if the monotonicity branches have only finitely many different images
(see Zweimüller (1998), for a neat introduction to such classes of maps, or Broise
(1996)).

Definition 1.1. A map T : [0, 1] → [0, 1] is uniformly expanding, mixing and with
density bounded from below if it satisfies the following properties:

(1) There is a (finite or countable) partition of T into subintervals In on which
T is strictly monotonic, with a C2 extension to its closure In, satisfying
Adler’s condition |T ′′|/|T ′|2 ≤ C, and with |T ′| ≥ λ (where C > 0 and
λ > 1 do not depend on In).

(2) The length of T (In) is bounded from below.
(3) In this case, T has finitely many absolutely continuous invariant measures,

and each of them is mixing up to a finite cycle. We assume that T has a
single absolutely continuous invariant probability measure ν, and that it is
mixing.

(4) Finally, we require that the density h of ν is bounded from below on its
support.

From this point on, we will simply refer to such maps as uniformly expanding.
This definition encompasses for instance piecewise C2 maps with finitely many
branches which are all onto, and with derivative everywhere strictly larger than 1
in absolute values.

We consider now a class of expanding maps with a neutral fixed point at zero,
as defined below.

Definition 1.2. A map T : [0, 1] → [0, 1] is a generalized Pomeau-Manneville map
(or GPM map) of parameter γ ∈ (0, 1) if there exist 0 = y0 < y1 < · · · < yd = 1
such that, writing Ik = (yk, yk+1),

(1) The restriction of T to Ik admits a C1 extension T(k) to Ik.

(2) For k ≥ 1, T(k) is C
2 on Ik, and |T ′

(k)| > 1.

(3) T(0) is C2 on (0, y1], with T ′
(0)(x) > 1 for x ∈ (0, y1], T ′

(0)(0) = 1 and

T ′′
(0)(x) ∼ cxγ−1 when x → 0, for some c > 0.

(4) T is topologically transitive.

For such maps, almost sure invariance principles with good remainder estimates
(of the form O(n1/2−α) for some α > 0) have been established by Melbourne and
Nicol (2005) for Hölder observables, and by Merlevède and Rio (2012) under rather
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mild integrability assumptions. For instance, for uniformly expanding maps, Mer-
levède and Rio (2012) obtain such a result for a class of observables f in L

p(ν) for
p > 2. This leaves open the question of the boundary case f ∈ L

2(ν). In this case,
just like in the i.i.d. case, one can not hope for a remainder O(n1/2−α) with α > 0,

but one might expect to get o(
√
n ln lnn). This would for instance be sufficient to

deduce the functional law of the iterated logarithm from the corresponding result
for the Brownian motion. The corresponding boundary case for GPM maps has
been studied in Dedecker et al. (2010): we proved a bounded law of the iterated

logarithm (i.e., almost surely, lim sup
∑n−1

i=0 f ◦ T i/
√
n log logn ≤ A < +∞), but

we were not able to obtain the almost sure invariance principle.
Our goal in the present article is to solve this issue by combining the arguments

of the two above papers: we will approximate a function in the boundary case
by a function with better integrability properties, use the almost sure invariance
principle of Merlevède and Rio (2012) for this better function, and show that the
bounded law of the iterated logarithm makes it possible to pass the results from the
better function to the original function. This is an illustration of a general method
in mathematics: to prove results for a wide class of systems, it is often sufficient
to prove results for a smaller (but dense) class of systems, and to prove uniform
(maximal) inequalities. This strategy gives the almost sure invariance principle in
the boundary case for GPMmaps (see Theorem 1.6 below). In the case of uniformly
expanding maps the almost sure invariance principle for a dense set of functions has
been proved by Hofbauer and Keller (1982) for a smaller class than that given in
Definition 1.1, and follows from Merlevède and Rio (2012) for the class of uniformly
expanding maps considered in the present paper. However, the bounded law of the
iterated logarithm for the boundary case is not available in the literature: we will
prove it in Proposition 5.3.

We now turn to the functions for which we can prove the almost sure invariance
principle. The main feature of our arguments is that they work with the weakest
possible integrability condition (merely L

2(ν) for uniformly expanding maps), and
without any condition on the modulus of continuity: we only need the functions to
be piecewise monotonic. More precisely, the results are mainly proved for functions
which are monotonic on a single interval, and they are then extended by linearity to
convex combinations of such functions. Such classes are described in the following
definition.

Definition 1.3. If µ is a probability measure on R and p ∈ [2,∞), M ∈ (0,∞), let
Monp(M,µ) denote the set of functions f : R → R which are monotonic on some
interval and null elsewhere and such that µ(|f |p) ≤ Mp. Let Moncp(M,µ) be the

closure in L
1(µ) of the set of functions which can be written as

∑L
ℓ=1 aℓfℓ, where

∑L
ℓ=1 |aℓ| ≤ 1 and fℓ ∈ Monp(M,µ).

The above definition deals with L
p-like spaces, with an additional monotonicity

condition. In some cases, it is also important to deal with spaces similar to weak
L
p, where one only requires a uniform bound on the tails of the functions. Such

spaces are described in the following definition.

Definition 1.4. A function H from R+ to [0, 1] is a tail function if it is non-
increasing, right continuous, converges to zero at infinity, and x 7→ xH(x) is inte-
grable. If µ is a probability measure on R and H is a tail function, let Mon(H,µ)
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denote the set of functions f : R → R which are monotonic on some interval and null
elsewhere and such that µ(|f | > t) ≤ H(t). Let Monc(H,µ) be the closure in L

1(µ)

of the set of functions which can be written as
∑L

ℓ=1 aℓfℓ, where
∑L

ℓ=1 |aℓ| ≤ 1 and
fℓ ∈ Mon(H,µ).

Our main theorems follow. For uniformly expanding maps, it involves an L
2-

integrability condition, while for GPM maps the boundary case is formulated in
terms of tails.

Theorem 1.5. Let T be a uniformly expanding map with absolutely continuous

invariant measure ν. Then, for any M > 0 and any f ∈ Monc2(M, ν), the series

σ2 = σ2(f) = ν((f − ν(f))2) + 2
∑

k>0

ν((f − ν(f))f ◦ T k) (1.1)

converges absolutely to some nonnegative number. Moreover,

(1) On the probability space ([0, 1], ν), the process

{ 1√
n

[(n−1)t]
∑

i=0

(f ◦ T i − ν(f)), t ∈ [0, 1]
}

converges in distribution in the Skorokhod topology to σW , where W is a

standard Wiener process.

(2) There exists a nonnegative constant A such that

∞
∑

n=1

1

n
ν
(

max
1≤k≤n

∣

∣

∣

k−1
∑

i=0

(f ◦ T i − ν(f))
∣

∣

∣
≥ A

√

n log logn)
)

< ∞ .

(3) Enlarging ([0, 1], ν) if necessary, there exists a sequence (Zi)i≥0 of i.i.d.

Gaussian random variables with mean zero and variance σ2 defined by (1.1),
such that

∣

∣

∣

n−1
∑

i=0

(f ◦ T i − ν(f)− Zi)
∣

∣

∣
= o(

√

n log logn) , almost surely. (1.2)

Theorem 1.6. Let T be a GPM map with parameter γ ∈ (0, 1/2) and invariant

measure ν. Let H be a tail function with
∫ ∞

0

x(H(x))
1−2γ
1−γ dx < ∞ . (1.3)

Then, for any f ∈ Monc(H, ν), the series σ2 defined in (1.1) converges absolutely to

some nonnegative number, and the asymptotic results 1., 2. and 3. of Theorem 1.5

hold.

In particular, it follows from Theorem 1.6 that, if T is a GPM map with pa-
rameter γ ∈ (0, 1/2), then the almost sure invariance principle (1.2) holds for any
positive and nonincreasing function f on (0,1) such that

f(x) ≤ C

x(1−2γ)/2| ln(x)|b near 0, for some b > 1/2.
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Note that (1.2) cannot be true if f is exactly of the form f(x) = x−(1−2γ)/2. Indeed,
in that case, Gouëzel (2004) proved that the central limit theorem holds with the

normalization
√

n ln(n), and the corresponding almost sure result is

lim
n→0

1√
n(ln(n))b

n−1
∑

i=0

(f ◦ T i − ν(f)) = 0 almost everywhere, for any b > 1/2.

We refer to the paper by Dedecker et al. (2010) for a deeper discussion on the
optimality of the conditions.

The plan of the paper is as follows. In Section 2, we explain how functions in
Moncp(M,µ) or Monc(H,µ) can be approximated by bounded variation functions (to
which the results of Merlevède and Rio (2012) regarding the almost sure invariance
principle apply). In Section 3, we show how an almost sure invariance principle for
a sequence of approximating processes implies an almost sure invariance principle
for a given process, if one also has uniform estimates (for instance, a bounded law
of the iterated logarithm). Those two results together with the bounded law of the
iterated logarithm of Dedecker et al. (2010) readily give the almost sure invariance
principle in the boundary case for GPM maps, as we explain in Section 4. In
Section 5, we prove a bounded law of the iterated logarithm under a polynomial
assumption on mixing coefficients, and we use this estimate in Section 6 to obtain
the almost sure invariance principle in the boundary case for uniformly expanding
maps, following the same strategy as above.

2. Approximation by bounded variation functions

Let us define the variation ‖f‖v of a function f : R → R as the supremum of

the quantities |f(a0)| +
∑k−1

i=0 |f(ai+1 − f(ai)| + |f(ak)| over all finite sequences
a0 < · · · < ak. A function f has bounded variation if ‖f‖v < ∞.

In this section, we want to approximate a function in Monc2(M,µ) or Monc(H,µ)
in a suitable way. For Monc(H,µ), we shall use the following compactness lemma.
It is mainly classical (compare for instance Lemma 5 in Hofbauer and Keller (1982)),
but since we have not been able to locate a reference with this precise statement
we will give a complete proof.

Lemma 2.1. Let µ be a probability measure on R. Let fn be a sequence of functions

on R with ‖fn‖v ≤ C. Then there exists f : R → R with ‖f‖v ≤ C such that a

subsequence fϕ(n) tends to f in L
1(µ).

Proof : We will first prove that fn admits a convergent subsequence in L
1(µ). By

a classical diagonal argument, it suffices to show that, for any ǫ > 0, one can find a
subsequence with lim supn→∞ supm≥n

∥

∥fϕ(n) − fϕ(m)

∥

∥

L1(µ)
≤ Dǫ, for some D > 0

not depending on ǫ.
We consider a finite number of points a0 < · · · < ak such that (letting a−1 = −∞

and an+1 = +∞), the measure of every interval (ai, ai+1) is at most ǫ. One can find
a subsequence of fn such that each fϕ(n)(ai) converges, we claim that it satisfies
the desired property. It suffices to show that a function g with |g(ai)| ≤ ǫ for all i
and ‖g‖v ≤ 2C satisfies

‖g‖
L1(µ) ≤ Dǫ. (2.1)
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Consider in each interval (ai, ai+1) a point bi such that sup(ai,ai+1) |g| ≤ 2|g(bi)|.
We have

‖g‖
L1(µ) ≤

∑

µ(ai, ai+1) sup
(ai,ai+1)

|g|+
∑

µ{ai}|g(ai)|

≤ 2
∑

µ(ai, ai+1)(|g(bi)− g(ai)|+ |g(ai)|) +
∑

µ{ai}|g(ai)|.

Since |g(ai)| ≤ ǫ and µ is a probability measure, the contribution of the terms
|g(ai)| to this expression is at most 2ǫ. Moreover,

∑

µ(ai, ai+1)|g(bi) − g(ai)| ≤
ǫ
∑ |g(bi)− g(ai)| ≤ ǫ ‖g‖v. This proves (2.1).
We have proved that fn admits a subsequence (that we still denote fn) that

converges in L
1(µ) to a function f . Extracting further if necessary, we may also

assume that it converges to f on a set Ω with full measure. On Ω − Ω, we define
f(x) to be lim sup f(y) where y tends to x in Ω. Finally, on the open set R − Ω
(which may be nonempty if µ does not have full support), we define f(x) to be
max(f(a), f(b)) where a and b are the endpoints of the connected component of x
in R−Ω (if one of those endpoints is −∞ or +∞, we only use the other endpoint).
Then fn converges to f in L

1(µ), and we claim that f has variation at most C.
Indeed, consider a sequence a0 < · · · < ak, we want to estimate |f(a0)| +

∑ |f(ai+1) − f(ai)| + |f(ak)|. Let bi = ai if ai ∈ Ω. By construction of f , for
all ai 6∈ Ω, one may find a point bi in Ω such that |f(ai) − f(bi)| is small, say
< ǫ/(k + 1), and we may ensure that b0 ≤ · · · ≤ bk. Then

|f(a0)|+
∑

|f(ai+1)−f(ai)|+|f(an)| ≤ 4ǫ+|f(b0)|+
∑

|f(bi+1)−f(bi)|+|f(bk)|

= 4ǫ+ lim
(

|fn(b0)|+
∑

|fn(bi+1)− fn(bi)|+ |fn(bk)|
)

.

Since the variation of fn is at most C, this is bounded by 4ǫ + C. Letting ǫ tend
to 0, we get ‖f‖v ≤ C. �

Lemma 2.2. Let H be a tail function, and consider f ∈ Monc(H,µ). For any

m > 0, one can write f = f̄m + gm where f̄m has bounded variation and gm ∈
Monc(Hm, µ) where Hm(x) = min(H(m), H(x)).

Proof : Consider f ∈ Monc(H,µ). By definition, there exists a sequence of functions

fL =
∑L

ℓ=1 aℓ,Lgℓ,L with gℓ,L belonging to Mon(H,µ) and
∑L

ℓ=1 |aℓ,L| ≤ 1, such
that fL converges in L

1(µ) to f . Define then

fL,m =
L
∑

ℓ=1

aℓ,Lgℓ,L1|gℓ,L|≤m .

Note that fL,m is such that ‖fL,m‖v ≤ 3m. Applying Lemma 2.1, there exists
a subsequence fϕ(L),m converging in L

1(µ) to a limit f̄m such that ‖f̄m‖v ≤ 3m.

Hence f − f̄m is the limit in L
1(µ) of

fϕ(L) − fϕ(L),m =

ϕ(L)
∑

ℓ=1

aℓ,ϕ(L)gℓ,ϕ(L)1|gℓ,ϕ(L)|>m .

Now gℓ,ϕ(L)1|gℓ,ϕ(L)|>m belongs to Mon(min(H(m), H), µ). It follows that f − f̄m
belongs to the class Monc(Hm, µ). �

A similar result holds for the space Monc2(M,µ):
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Lemma 2.3. Consider f ∈ Monc2(M,µ). For any m > 0, one can write f =
f̄m + gm, where f̄m has bounded variation and gm ∈ Monc2(1/m, µ).

The above proof does not work to obtain this result (the problem is that the
function gℓ1|gℓ|>m usually does not satisfy better L

2 bounds than the function
gℓ, at least not uniformly in gℓ). To prove this lemma, we will therefore need to
understand more precisely the structure of elements of Monc2(M,µ). We will show
that they are extended convex combinations of elements of Mon2(M,µ), i.e., they
can be written as

∫

gdβ(g) for some probability measure β on Mon2(M,µ) (the
case

∑

aℓgℓ corresponds to the case where β is an atomic measure).
To justify this assertion, the first step is to be able to speak of measures on

Mon2(M,µ). We need to specify a topology on Mon2(M,µ). We use the weak
topology (inherited from the space L

2(µ), that contains Mon2(M,µ)): a sequence
fn ∈ Mon2(M,µ) converges to f if, for any continuous compactly supported func-
tion u : R → R (or, equivalently, for any L

2(µ) function u),
∫

fn(x)u(x)dµ(x) →
∫

f(x)u(x)dµ(x).

Lemma 2.4. The space Mon2(M,µ), with the topology of weak convergence, is a

compact metrizable space.

Proof : Consider a countable sequence of continuous compactly supported functions
uk : R → R, which is dense in this space for the topology of uniform convergence.
We define a distance on L

2(µ) by

d(f1, f2) =
∑

2−k min

(

1,

∣

∣

∣

∣

∫

(f1 − f2)ukdµ

∣

∣

∣

∣

)

.

Convergence for this distance is clearly equivalent to weak convergence.
Let us now prove that Mon2(M,µ) is compact. Consider a sequence fn in this

space. In particular, it is bounded in L
2(µ). By weak compactness of the unit ball

of a Hilbert space, we can find a subsequence (still denoted by fn) which converges
weakly in L

2(µ), to a function f . In particular,
∫

fnudµ converges to
∫

fudµ for
any continuous compactly supported function u. Moreover, f is bounded by M in
L
2(µ). To conclude, it remains to show that f has a version which is monotonic on

an interval, and vanishes elsewhere.
A function in Mon2(M,µ) can be either nonincreasing or nondecreasing, on an

interval which is half-open or half-closed to the left and to the right, there are
therefore eight possible combinatorial types. Extracting a further subsequence if
necessary, we may assume that all the functions fn have the same combinatorial
type. For simplicity, we will describe what happens for one of those types, the
other ones are handled similarly. We will assume that all the functions fn are
nondecreasing on an interval (an, bn]. We may also assume that an and bn are
either constant, or increasing, or decreasing (since any sequence in R = R ∪ {±∞}
admits a subsequence with this property). In particular, those sequences converge
in R to limits a and b. Let I be the interval with endpoints a and b, where we
include a in I if an is increasing and exclude it otherwise, and where we include b
if bn is decreasing or constant and exclude it otherwise. The Banach-Saks theorem
shows that (extracting further if necessary) we may ensure that the sequence of

functions gN = 1
N

∑N
n=1 fn converges to f in L

2(µ) and on a set A of full measure.
It readily follows that f is nondecreasing on A ∩ I and vanishes on A ∩ (R − I).
Modifying f on the zero measure set R − A, we get a function in Mon2(M,µ) as
claimed. �
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The Borel structure coming from the weak topology on L
2(µ) coincides with

the Borel structure coming from the norm topology (since an open ball for the
norm topology can be written as a countable intersection of open sets for the weak
topology, by the Hahn-Banach theorem). Therefore, all the usual functions on
Mon2(M,µ) are measurable.

If β is a probability measure on Mon2(M,µ), we can define a function f ∈ L
2(µ)

by f(x) =
∫

g(x)dβ(g). We claim that the elements of Monc2(M,µ) are exactly such
functions:

Proposition 2.5. We have

Monc2(M,µ) =

{

∫

Mon2(M,µ)

gdβ(g) : β probability measure on Mon2(M,µ)

}

.

Proof : We have two inclusions to prove.
Consider first f ∈ Monc2(M,µ), we will show that it can be written as

∫

gdβ(g)
for some measure β. By definition of Monc2(M,µ), there exists a sequence of
atomic probability measures βn on Mon2(M,µ) such that fn =

∫

gdβn(g) con-
verges in L

1(µ) to f . Since the space Mon2(M,µ) is compact, the sequence of
measures βn admits a convergent subsequence (that we still denote by βn), to
a measure β. By definition of vague convergence, for any continuous function
Ψ on Mon2(M,µ),

∫

Ψ(g)dβn(g) tends to
∫

Ψ(g)dβ(g). Fix a continuous com-
pactly supported function u on R. By definition of the topology on Mon2(M,µ),
the map Ψu : g 7→

∫

u(x)g(x)dµ(x) is continuous. Therefore,
∫

Ψu(g)dβn(g)
tends to

∫

Ψu(g)dβ(g), i.e.,
∫

u(x)fn(x)dµ(x) tends to
∫

u(x)fβ(x)dµ(x), where
fβ =

∫

gdβ(g). This shows that fn converges weakly to fβ. However, by assump-
tion, fn converges in L

1(µ) to f . We deduce that f = fβ , as desired.
Conversely, consider a function fβ for some probability β on Mon2(M,µ), let us

show that it belongs to Monc2(M,µ). Let us consider a sequence of atomic probabil-
ity measures βn converging vaguely to β. The arguments in the previous paragraph
show that the functions fβn converge weakly to fβ. By Banach-Saks theorem,

extracting a subsequence if necessary, we can ensure that fN = N−1
∑N

n=1 fβn

converges almost everywhere and in L
2(µ) to fβ. In particular, it converges to

fβ in L
1(µ). Since fN can be written as

∑

aℓ,Nfℓ,N for some functions fℓ,N ∈
Mon2(M,µ) and some coefficients aℓ,N with sum bounded by 1, this shows that fβ
belongs to Monc2(M,µ). �

Proof of Lemma 2.3: Consider f ∈ Monc2(M,µ), and ǫ > 0. By Proposition 2.5,
there exists a measure β on Mon2(M,µ) such that f =

∫

gdβ(g). For each g ∈
Mon2(M,µ), let K(g) be the smallest number such that

∫

g21|g|≥K(g) ≤ ǫ2. Fix
some K > 0. We have

f(x) =

∫

K(g)<K

g(x)dβ(g) +

∫

K(g)≥K

g(x)dβ(g)

=

∫

K(g)<K

g(x)1|g(x)|≤K(g)dβ(g) +

∫

K(g)<K

g(x)1|g(x)|>K(g)dβ(g)

+

∫

K(g)≥K

g(x)dβ(g).

The first term has variation bounded by 3K. In the second term, each function
g1|g|>K(g) is monotonic on an interval and null elsewhere, with L

2(µ) norm bounded
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by ǫ. Therefore, the second term belongs to Monc2(ǫ, µ). Writing A(K) = {g :
K(g) ≥ K} and α(K) = β(A(K)), the third term is the average over A(K) of
the functions α(K)g ∈ Mon2(α(K)M,µ) with respect to the probability measure
1A(K)dβ(g)/α(K). Therefore, it belongs to Monc2(α(K)M,µ). Taking K large
enough so that α(K)M ≤ ǫ, we infer that f is the sum of a function of bounded
variation and a function in Monc2(2ǫ, µ). �

3. Strong invariance principle by approximation

Let (Xi)i≥1 be a sequence of random variables. Assume that

(1) For each m ∈ N there exists a sequence (Xi,m)i≥1 such that

lim sup
n→∞

∣

∣

∣

∣

∑n
i=1 Xi −Xi,m√
n log logn

∣

∣

∣

∣

≤ ǫ(m) almost surely,

where ǫ(m) tends to 0 as m tends to infinity.
(2) For each m ∈ N, the sequence (Xi,m)i≥1 satisfies a strong invariance prin-

ciple: there exists a sequence (Zi,m)i≥1 of i.i.d. Gaussian random variables
with mean 0 and variance σ2

m such that

lim
n→∞

∑n
i=1 Xi,m − Zi,m√

n log logn
= 0 almost surely.

We also assume that σ2
m converges as m → ∞ to a limit σ2.

(3) There exists an infinite subset A of N such that, for any A ∈ A, the σ-
algebras σ(Zi,m)i<A,m∈N and σ(Zi,m)i≥A,m∈N are independent.

Proposition 3.1. Under the assumptions 1, 2 and 3, there exists a sequence

(Zi)i≥1 of i.i.d. Gaussian random variables with mean zero and variance σ2 such

that

lim
n→∞

∑n
i=1 Xi − Zi√
n log logn

= 0 almost surely. (3.1)

Proof : The idea of the proof is to use a diagonal argument: we will use the Zi,0 for
some time, then the Zi,1 for a longer time, and so on, to construct the Zi.

Let Am be a sequence of elements of A tending to infinity fast enough. More
precisely, we choose Am in such a way that there exists a set Ωm with probability
greater than 1− 2−m on which, for any n ≥ Am,

∣

∣

∣

∣

∑n
i=1 Xi,m − Zi,m√

n log logn

∣

∣

∣

∣

≤ ǫ(m) and

∣

∣

∣

∣

∑n
i=1 Xi −Xi,m√
n log logn

∣

∣

∣

∣

≤ 2ǫ(m).

The assumptions 1 and 2 ensure that these two properties are satisfied provided
Am is large enough. We also choose Am in a such a way that, for j < m− 1,

ǫ(j)
√

Aj+1 log logAj+1 < 2−(m−j)ǫ(m)
√

Am log logAm. (3.2)

Indeed, if the Aj ’s have been defined for j < m, it suffices to take Am large enough
for (3.2) to hold.

With this choice of Am, we infer that for any ω ∈ Ωm and any n ≥ Am,
∣

∣

∣

∣

∣

n
∑

i=1

Xi − Zi,m

∣

∣

∣

∣

∣

≤ 3ǫ(m)
√

n log logn.
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Hence, for any ω ∈ Ωm and any n ≥ Am,
∣

∣

∣

∣

∣

n
∑

i=Am

Xi − Zi,m

∣

∣

∣

∣

∣

≤ 6ǫ(m)
√

n log logn. (3.3)

For i ∈ [Am, Am+1 − 1], let m(i) = m. Let (δk)k≥1 be a sequence of i.i.d.
Gaussian random variables with mean zero and variance σ2, independent of the
array (Zi,m)i≥1,m≥1. We now construct the sequence Zi as follows: if σm(i) = 0,
then Zi = δi, else Zi = (σ/σm(i))Zi,m(i). By construction, thanks to the assumption

3, the Zi’s are i.i.d. Gaussian random variables with mean zero and variance σ2.
Let us show that they satisfy (3.1).

LetDi = Zi−Zi,m(i) and note that (Di)i≥1 is a sequence of independent Gaussian

random variables with mean zero and variances Var(Di) = (σ−σm(i))
2. Since σm(i)

converges to σ as i tends to infinity, it follows that

letting vn =
1

n
Var

(

n
∑

i=1

Di

)

, then lim
n→∞

vn = 0.

From the basic inequality

P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

Di

∣

∣

∣
> x

)

≤ 2 exp
(

− x2

2nvn

)

,

it follows that

lim
n→∞

∑n
i=1 Zi,m(i) − Zi√

n log logn
= 0 almost surely.

To conclude the proof, it remains to prove that

lim
n→∞

∑n
i=1 Xi − Zi,m(i)√

n log logn
= 0 almost surely. (3.4)

Let B = {ω : ω ∈ lim inf Ωm}. By Borel-Cantelli, P(B) = 1. For ω ∈ B, there
exists m0(ω) such that ω belongs to all the Ωm for m ≥ m0(ω). For n ≥ Am0(ω),
we have (denoting by M the greater integer such that AM ≤ n)

∣

∣

∣

∣

∣

n
∑

i=1

Xi − Zi,m(i)

∣

∣

∣

∣

∣

≤
Am0(ω)−1

∑

i=1

|Xi − Zi,m(i)|+
M−1
∑

m=m0(ω)

∣

∣

∣

∣

∣

∣

Am+1−1
∑

i=Am

Xi − Zi,m

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n
∑

i=AM

Xi − Zi,M

∣

∣

∣

∣

∣

.

Taking into account (3.2) and (3.3), we obtain
∣

∣

∣

∣

∣

n
∑

i=1

Xi − Zi,m(i)

∣

∣

∣

∣

∣

≤ C(ω) +

M−1
∑

m=1

6ǫ(m)
√

Am+1 log logAm+1 + 6ǫ(M)
√

n log logn

≤ C(ω) +
M−2
∑

m=1

6ǫ(M)
√

AM log logAM2−(M−m)

+ 6ǫ(M − 1)
√

AM log logAM + 6ǫ(M)
√

n log logn

≤ C(ω) + 9(ǫ(M − 1) + ǫ(M))
√

n log logn.
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Since ǫ(M − 1) + ǫ(M) tends to zero as n tends to infinity, this proves (3.4) and
completes the proof of Proposition 3.1. �

Remark 3.2. The proposition would also apply to random variables taking values
in R

d or in Banach spaces (with the same proof), but we have formulated it only
for real-valued random variables in view of our applications. Indeed, the class
of functions we consider relies on monotonicity which is a purely one-dimensional
notion.

4. Proof of Theorem 1.6 on GPM maps

To prove Theorem 1.6, we should establish the convergence of the series (1.1)
as well as the asymptotic results 1., 2. and 3. described in Theorem 1.5. The
convergence of (1.1) and the asymptotics 1. and 2. have been proved in Dedecker
et al. (2010). Therefore it only remains to prove the almost sure invariance principle.

To do this, we apply Proposition 3.1 to the sequences Xi = f ◦ T i − ν(f) and
Xi,m = f̄m ◦T i−ν(f̄m), where the function f̄m has been constructed in Lemma 2.2.

Let us denote by Sn(f) =
∑n−1

i=0 (f ◦ T i− ν(f)). To apply Proposition 3.1, we have
to check the assumptions 1., 2. and 3. of Section 3.

The function gm = f − f̄m belongs to Monc(Hm, ν) where Hm = min(H(m), H),
by Lemma 2.2. Therefore, it belongs to the class of functions to which the results
of Dedecker et al. (2010) apply: Sn(gm) satisfies a central limit theorem and a
bounded law of the iterated logarithm. In particular, applying Theorem 1.5 of this
article (and Section 4.5 there to compute the constant M(m)) we get that, almost
surely,

lim sup
1√

n log logn

∣

∣

∣

∣

∣

n−1
∑

i=0

(gm ◦ T i − ν(gm))

∣

∣

∣

∣

∣

≤ M(m),

where M(m) = C
∫∞
0 x(Hm(x))

1−2γ
1−γ dx, C being some positive constant. Since

M(m) tends to zero as m tends to infinity, the assumption 1. of Section 3 follows
by choosing ǫ(m) = 2M(m).

Since the function f̄m has bounded variation, we can apply Item 2 of Theorem
3.1 of Merlevède and Rio (2012) to the sequence (Xi,m) (see their Remark 3.1 for
the case of GPM maps). Hence there exists a sequence (Zi,m)i≥1 of i.i.d. Gaussian
random variables with mean 0 and variance σ2

m = σ2(f̄m) such that

lim
n→∞

∑n
i=1 Xi,m − Zi,m√

n log logn
= 0 almost surely.

More precisely, it follows from their construction (see the definition of the variables
V ∗
k,L in Section 4.2 of Merlevède and Rio (2012)) that the assumption 3. of Section 3

is satisfied with A = {2L, L ∈ N
∗}.

To check the assumption 2. of Section 3, it remains only to prove that σ2
m con-

verges to σ2 as m tends to infinity. We have f = f̄m + gm, therefore

Sn(f)√
n

=
Sn(f̄m)√

n
+

Sn(gm)√
n

.

The term on the left converges in distribution to a Gaussian with variance σ2, and
the terms on the right converge to (non-independent) Gaussians with respective
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variances σ2
m and σ2(gm). To conclude, it suffices to show that σ2(gm) converges

to 0 when m tends to infinity.
As we have explained above, the results of Dedecker et al. (2010) apply, and show

that Sn(gm) satisfies a central limit theorem. From the same paper (see Sections
2.2 and 4.1 there), we get the following estimate on the asymptotic variance σ2(gm)
of n−1/2Sn(gm) : there exists a positive constant C such that

σ2(gm) ≤ C

∫ ∞

0

x(Hm(x))
1−2γ
1−γ dx ,

and the second term on right hand tends to zero asm tends to infinity by using (1.3)
and the dominated convergence theorem. The result follows.

Hence, we have checked that the assumptions 1., 2. and 3. of Section 3 are
satisfied. This completes the proof of the almost sure invariance principle. �

5. A bounded LIL for φ-dependent sequences

Let (Ω,A,P) be a probability space, and let θ : Ω 7→ Ω be a bijective bimeasur-
able transformation preserving the probability P. Let F0 be a sub-σ-algebra of A
satisfying F0 ⊆ θ−1(F0).

Definition 5.1. For any integrable random variable X , let us write X(0) = X −
E(X). For any random variable Y = (Y1, . . . , Yk) with values in R

k and any σ-
algebra F , let

φ(F , Y ) = sup
(x1,...,xk)∈Rk

∥

∥

∥

∥

∥

∥

E

(

k
∏

j=1

(1Yj≤xj )
(0)

∣

∣

∣
F
)(0)

∥

∥

∥

∥

∥

∥

∞

.

For a sequence Y = (Yi)i∈Z, where Yi = Y0 ◦ θi and Y0 is an F0-measurable and
real-valued random variable, let

φk,Y(n) = max
1≤l≤k

sup
n≤i1≤...≤il

φ(F0, (Yi1 , . . . , Yil)).

The interest of those mixing coefficients is that they are not too restrictive,
so they can be used to study several classes of dynamical systems, and that on
the other hand they are strong enough to yield correlation bounds for piecewise
monotonic functions (or, more generally, functions in Moncp(M,µ)). In particular,
we have the following:

Lemma 5.2. Let Y = (Yi)i∈Z, where Yi = Y0 ◦ θi and Y0 is an F0-measurable

random variable. Let f and g be two functions from R to R which are monotonic

on some interval and null elsewhere. Let p ∈ [1,∞]. If ‖f(Y0)‖p < ∞, then, for

any positive integer k,

‖E(f(Yk)|F0)− E(f(Yk))‖p ≤ 2(2φ1,Y(k))(p−1)/p‖f(Y0)‖p .

If moreover p ≥ 2 and ‖g(Y0)‖p < ∞, then for any positive integers i ≥ j ≥ k,

‖E(f(Yi)
(0)g(Yj)

(0)|F0)− E(f(Yi)
(0)g(Yj)

(0))‖p/2
≤ 8(4φ2,Y(k))(p−2)/p‖f(Y0)‖p‖g(Y0)‖p .



The almost sure invariance principle for expanding maps 153

Proof : Note first that, for any positive integers i ≥ j ≥ k,

φ(F0, f(Yk)) ≤ 2φ(F0, Yk) ≤ 2φ1,Y(k),

φ(F0, (f(Yj), g(Yi))) ≤ 4φ(F0, (Yj , Yi)) ≤ 4φ2,Y(k) .

This follows from definition (5.1), by noting that {f ≤ t} (and also {g ≤ s}) is
either an interval or the complement of an interval.

To prove the first inequality of the lemma, let us note that

‖E(f(Yk)|F0)− E(f(Yk))‖p = sup
Z∈Bp/(p−1)(F0)

Cov(Z, f(Yk)) ,

where Bq(F0) is the set of F0-measurable random variables Z such that ‖Z‖q ≤ 1.

We have |Cov(Z, Y )| ≤ 2φ(σ(Z), Y )(p−1)/p‖Y ‖p‖Z‖p/(p−1) by Proposition 2.1 of
Dedecker (2004). Since φ(σ(Z), f(Yk)) ≤ φ(F0, f(Yk)) ≤ 2φ1,Y(k), we obtain the
first inequality of Lemma 5.2 as desired.

For the second inequality, we note in the same way that

‖E(f(Yi)
(0)g(Yj)

(0)|F0)− E(f(Yi)
(0)g(Yj)

(0))‖p/2
= sup

Z∈Bp/(p−2)(F0)

Cov(Z, f(Yi)
(0)g(Yj)

(0)) .

Proposition 6.1 of Dedecker et al. (2009) gives a control of the covariance in terms
of φ(F0, (f(Yj), g(Yi))). Since this quantity is bounded by 4φ2,Y(k), the result
follows. �

The main result of this section is the following proposition, showing that a suit-
able polynomial assumption on mixing coefficients implies a bounded law of the
iterated logarithm for piecewise monotonic L

2 functions.

Proposition 5.3. Let Xi = f(Yi) − E(f(Yi)), where Yi = Y0 ◦ θi and Y0 is an

F0-measurable random variable. Let

Sn = Sn(f) =

n
∑

k=1

Xk ,

and let PY0 be the distribution of Y0. Assume that

∑

k≥1

k1/
√
3−1/2φ

1/2
2,Y(k) < ∞ . (5.1)

If f belongs to Monc2(M,PY0) for some M > 0, then

∑

n>0

1

n
P

(

max
1≤k≤n

|Sk| > 3CM
√

n log logn
)

< ∞ , (5.2)

where C = 16
∑

k≥0 φ
1/2
1,Y(k).

Proof : Let f ∈ Monc2(M,PY0). By definition of Monc2(M,PY0), there exists fL =
∑L

ℓ=1 aℓ,Lgℓ,L with gℓ,L belonging to Mon2(M,PY0) and
∑L

ℓ=1 |aℓ,L| ≤ 1, and such
that fL converges in L

1(PY0) to f . It follows that Xi,L = fL(Yi) − E(fL(Yi))
converges in L

1 to Xi as L tends to infinity. Extracting a subsequence if necessary,
one may also assume that the convergence holds almost surely.
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Hence, for any fixed n, Sn(fL) =
∑n

k=1 Xk,L converges almost surely and in L
1

to Sn(f). Assume that one can prove that, for any positive integer L,

∑

n>0

1

n
P

(

max
1≤k≤n

|Sk(fL)| > 3CM
√

n log logn
)

< K , (5.3)

for some positive constant K not depending on L. Let us explain why (5.3) im-

plies (5.2). Let Zn = max1≤k≤n |Sk(f)|/
√

M2n log logn. By Beppo-Levi,

∑

n>0

1

n
P

(

max
1≤k≤n

|Sk(f)| > 3CM
√

n log logn
)

= lim
k→∞

E

(

∑

n>0

1

n
1Zn>3C+k−1

)

.

(5.4)
Let hk be a continuous function from R to [0, 1], such that hk(x) = 1 if x > 3C+k−1

and hk(x) = 0 if x < 3C. Let Zn,L = max1≤k≤n |Sk,L|/
√

M2n log log n. By Fatou’s
lemma,

E

(

∑

n>0

1

n
1Zn>3C+k−1

)

≤ E

(

∑

n>0

1

n
hk(Zn)

)

≤ lim inf
L→∞

E

(

∑

n>0

1

n
hk(Zn,L)

)

≤ lim inf
L→∞

E

(

∑

n>0

1

n
1Zn,L>3C

)

. (5.5)

From (5.3), (5.4) and (5.5), we infer that

∑

n>0

1

n
P

(

max
1≤k≤n

|Sk(f)| > 3C
√

M(f)n log log n
)

≤ lim inf
L→∞

E

(

∑

n>0

1

n
1Zn,L>3C

)

≤ K ,

and (5.2) follows.

Hence, it remains to prove (5.3), or more generally that: if f =
∑L

ℓ=1 aℓfℓ with

fℓ belonging to Mon2(M,PY0) and
∑L

ℓ=1 |aℓ| ≤ 1, then

∑

n>0

1

n
P

(

max
1≤k≤n

|Sk(f)| > 3CM
√

n log logn
)

< K , (5.6)

for some positive constant K not depending on f .
We now prove (5.6). We will need to truncate the functions. It turns out that the

optimal truncation level is at
√
n/

√
log logn: the large part can then be controlled

by a simple L
1 estimate, while the truncated part can be estimated thanks to

a maximal inequality of Pinelis (1994) (after a reduction to a martingale). Let
gn(x) = x1|x|≤Mn1/2/

√
log logn. For any i ≥ 0, we first define

X ′
i,n =

L
∑

ℓ=1

aℓ gn ◦ fℓ(Yi)−
L
∑

ℓ=1

aℓE(gn ◦ fℓ(Yi)) and X ′′
i,n = Xi −X ′

i,n .

Let

di,n =
∑

j≥i

E(X ′
j,n|Fi)− E(X ′

j,n|Fi−1) and Mk,n =

k
∑

i=1

di,n .

The following decomposition holds

X0 = d0,n +
∑

k≥0

E(X ′
k,n|F−1)−

∑

k≥0

E(X ′
k+1,n|F0) +X ′′

0,n .
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Let hn =
∑

k≥0 E(X
′
k,n|F−1). One can write

Xi = d0,n ◦ θi + hn ◦ θi − hn ◦ θi+1 +X ′′
0,n ◦ θi ,

and consequently

Sk = Mk,n + hn ◦ θ − hn ◦ θk+1 + S′′
k,n ,

with S′′
k,n =

∑k
i=1 X

′′
0,n ◦ θi. Hence, for any x > 0,

P( max
1≤k≤n

|Sk| ≥ 3x) ≤ P( max
1≤k≤n

|Mk,n| ≥ x)

+ P( max
1≤k≤n

|hn ◦ θ − hn ◦ θk+1| ≥ x) + P( max
1≤k≤n

|S′′
k,n| ≥ x) . (5.7)

Let us first control the coboundary term. We have

‖E(X ′
k,n|F0)‖∞ ≤

L
∑

ℓ=1

|aℓ|‖E(gn ◦ fℓ(Yk)|F0)− E(gn ◦ fℓ(Yk))‖∞ .

Applying Lemma 5.2,

‖E(gn ◦ fℓ(Yk)|F0)− E(gn ◦ fℓ(Yk))‖∞ ≤ 4Mφ1,Y(k)
√
n/

√

log logn .

It follows that

‖hn‖∞ ≤ 4M
(

∞
∑

k=1

φ1,Y(k)
)

√
n√

log logn
.

Hence, there exists a positive constant K1 such that
∑

n>0

1

n
P

(

max
1≤k≤n

|hn ◦ θ − hn ◦ θk+1| ≥ CM
√

n log logn
)

< K1 . (5.8)

Let us now control the large part X ′′. We will prove the existence of a positive
constant K2 such that

∑

n>0

1

n
P

(

max
1≤k≤n

|S′′
k,n| ≥ CM

√

n log logn
)

< K2 . (5.9)

We shall use the following lemma, whose proof is straightforward:

Lemma 5.4.

P

(

max
1≤k≤n

|S′′
k,n| ≥ x

)

≤ 2n

x

L
∑

ℓ=1

|aℓ|E(|fℓ(Y0)|1|fℓ(Y0)|>Mn1/2/
√
log logn) .

Applying Lemma 5.4 with x = CM
√
n log logn, we obtain that

P

(

max
1≤k≤n

|S′′
k,n| ≥ CM

√

n log logn
)

≤ 2n

CM
√
n log logn

L
∑

ℓ=1

|aℓ|E(|fℓ(Y0)|1|fℓ(Y0)|>Mn1/2/
√
log logn).

Now, via Fubini, there exists a positive constant A1 such that
∑

n>0

1

n

n√
n log logn

E(|fℓ(Y0)|1|fℓ(Y0)|>Mn1/2/
√
log logn) < A1‖fℓ(Y0)‖22 ≤ A1M

2 ,

and (5.9) follows with K2 = (2A1M)/C.
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Next, we turn to the main term, that is the martingale term. We will prove that
there exists a positive constant K3 such that

∑

n>0

1

n
P

(

sup
1≤j≤n

|Mj,n| ≥ CM
√

n log logn
)

< K3 . (5.10)

The main contribution will be controlled through the following maximal inequality.

Lemma 5.5. Let

cn =
8M

√
n√

log logn

∑

k≥0

φ
1/2
1,Y(k) .

The following upper bound holds: for any positive reals x and y,

P

(

sup
1≤j≤n

|Mj,n| ≥ x,
n
∑

j=1

E(d2j,n|Fj−1) ≤ 2y
)

≤ 2 exp

(

−2y

c2n
h
(xcn
2y

)

)

,

where h(u) = (1 + u) ln(1 + u)− u ≥ u ln(1 + u)/2.

Proof : Note first that

‖d0,n‖∞ ≤ 2
∑

k≥0

‖E(X ′
k,n|F0)‖∞

≤ 2
∑

k≥0

L
∑

ℓ=1

|aℓ|‖E(gn ◦ fℓ(Yk)|F0)− E(gn ◦ fℓ(Yk))‖∞ .

Now, applying Lemma 5.2,

‖E(gn ◦ fℓ(Yk)|F0)− E(gn ◦ fℓ(Yk))‖∞ ≤ 4M
√
n√

log logn
φ1,Y(k) ,

so that

‖d0,n‖∞ ≤ 8M
√
n√

log logn

(

∑

k≥0

φ1,Y(k)
)

≤ cn .

Proposition A.1 in Dedecker et al. (2010) shows that any sequence of martingale
differences dj which is bounded by a constant c satisfies

P

(

sup
1≤j≤n

|Mj | ≥ x,

n
∑

j=1

E(d2j |Fj−1) ≤ 2y
)

≤ 2 exp

(

−2y

c2
h
(xc

2y

)

)

.

The sequence dj = dj,n satisfies the assumptions of this proposition for c = cn.
Therefore, Lemma 5.5 follows. �

Notice that
n
∑

j=1

E(d2j,n) = nE(d21,n) ≤ 4n
∥

∥

∥

∑

j≥0

E(X ′
j,n|F0)

∥

∥

∥

2

2
.

Now,

‖E(X ′
k,n|F0)‖2 ≤

L
∑

ℓ=1

|aℓ|‖E(gn ◦ fℓ(Yk)|F0)− E(gn ◦ fℓ(Yk))‖2 .

Applying Lemma 5.2, ‖E(gn◦fℓ(Yk)|F0)−E(gn◦fℓ(Yk))‖2 ≤ 2
√
2φ

1/2
1,Y(k)‖fℓ(Y0)‖2.

It follows that
‖E(X ′

k,n|F0)‖2 ≤ 2
√
2φ

1/2
1,Y(k)M
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and consequently
n
∑

j=1

E(d2j,n) ≤ 32n
(

∑

k≥0

φ
1/2
1,Y(k)

)2

M2 .

We apply Lemma 5.5 with

y = yn = 32n
(

∑

k≥0

φ
1/2
1,Y(k)

)2

M2 . (5.11)

Letting xn = CM
√
n log log n, we have

∑

n>0

1

n
P

(

sup
1≤j≤n

|Mj,n| ≥ xn,

n
∑

j=1

E(d2j,n|Fj−1) ≤ 2yn

)

≤ 2
∑

n>0

1

n
exp

(

− xn

2cn
ln(1 + xncn/(2yn))

)

.

Now, the choice of C imply that xn = 4yn/cn and 2yn = c2n(log logn). It follows
that

∑

n>0

1

n
exp

(

− xn

2cn
ln(1 + xncn/(2yn))

)

=
∑

n>0

1

n
exp

(

− (log logn) log 3
)

< ∞ .

To prove (5.10), it remains to prove that there exists a positive constant K4 such
that

∑

n≥1

1

n
P

(

n
∑

j=1

E(d2j,n|Fj−1) ≥ 2yn

)

< K4 .

Since
∑n

j=1 E(d
2
j,n) ≤ yn, it suffices to prove that

∑

n≥1

1

n
P

(
∣

∣

∣

n
∑

j=1

(E(d2j,n|Fj−1)− E(d2j,n))
∣

∣

∣
≥ yn

)

< K4 . (5.12)

To prove (5.12), we shall use the following lemma:

Lemma 5.6. If (5.1) holds, there exists a positive constant C2(φ) such that for

any y > 0,

P

(
∣

∣

∣

n
∑

j=1

(E(d2j,n|Fj−1)− E(d2j,n))
∣

∣

∣
≥ y

)

≤ nC2(φ)

y2

L
∑

ℓ=1

|aℓ|E(fℓ(Y0)
41|fℓ(Y0)|≤Mn1/2) .

Before proving Lemma 5.6, let us complete the proof of (5.12), (5.10) and (5.2).
Since yn is given by (5.11), we infer from Lemma 5.6 that there exists a positive
constant C3(φ) such that

∑

n>0

1

n
P

(∣

∣

∣

n
∑

j=1

(E(d2j,n|Fj−1)− E(d2j,n))
∣

∣

∣
≥ yn

)

≤ C3(φ)

M4

L
∑

ℓ=1

|aℓ|
∑

n>0

1

n2
E(fℓ(Y0)

41|fℓ(Y0)|≤Mn1/2) .

By Fubini, the last sum in this equation is bounded by 4M2‖fℓ(Y0)‖22 ≤ 4M4.
Therefore, (5.12) follows with K4 = 4C3(φ). This completes the proof of (5.10).
Now, the proof of (5.6) follows from (5.7), (5.8), (5.9) and (5.10). The inequal-
ity (5.2) of Proposition 5.3 is proved. �
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It remains to prove Lemma 5.6.

Proof of Lemma 5.6. In a sense, the contribution coming from Lemma 5.6 is less
essential than the contribution we estimated thanks to the maximal inequality.
However, it is rather technical to estimate. To handle this term, we will argue in
the other direction, and go from the martingale to the partial sums of the original
random variables.

We apply Theorem 3 in Wu and Zhao (2008): for any q ∈ (1, 2] there exists a
positive constant Cq such that

E

(∣

∣

∣

n
∑

j=1

(E(d2j,n|Fj−1)− E(d2j,n))
∣

∣

∣

q)

≤ CqnE(|d1,n|2q) + Cqn∆
∗
n,q

where

∆∗
n,q =

(

n
∑

k=1

1

k1+1/q
‖E(M2

k,n|F0)− E(M2
k,n)‖q

)q

.

Hence, by Markov’s inequality with q = 2, one has

P

(∣

∣

∣

n
∑

j=1

(E(d2j,n|Fj−1)− E(d2j,n))
∣

∣

∣
≥ y

)

≤ C2n

y2

(

E(|d1,n|4) + ∆∗
n,2

)

.

Note first that

E(|d1,n|4) ≤ 16
(

∑

j≥0

‖E(X ′
j,n|F0)‖4

)4

.

Now

‖E(X ′
k,n|F0)‖4 ≤

L
∑

ℓ=1

|aℓ|‖E(gn ◦ fℓ(Yk)|F0)− E(gn ◦ fℓ(Yk))‖4 .

Applying Lemma 5.2, ‖E(gn ◦ fℓ(Yk)|F0)− E(gn ◦ fℓ(Yk))‖4 ≤ 2(2φ1,Y(k))3/4‖gn ◦
fℓ(Y0)‖4. It follows that

E(|d1,n|4) ≤ 211
(

∑

k>0

φ1,Y(k)3/4
)4( L

∑

ℓ=1

|aℓ|‖gn ◦ fℓ(Y0)‖4
)4

.

Applying Jensen’s inequality,

E(|d1,n|4) ≤ 211
(

∑

k>0

φ1,Y(k)3/4
)4 L

∑

ℓ=1

|aℓ|E(fℓ(Y0)
41|fℓ(Y0)|≤Mn1/2) . (5.13)

Now, letting S′
k,n =

∑k
i=1 X

′
i,n, one has Mk,n = S′

k,n −Rk,n, with

Rk,n =
∑

i≥1

E(X ′
i,n|F0)−

∑

i≥k+1

E(X ′
i,n|Fk) .

Hence

∆∗
n,2 ≤ 3

(

n
∑

k=1

1

k3/2
‖E(S′2

k,n|F0)− E(S′2
k,n)‖2

)2

+ 3
(

n
∑

k=1

1

k3/2
‖R2

k,n‖2
)2

+ 12
(

n
∑

k=1

1

k3/2
‖E(S′

k,nRk,n|F0)− E(S′
k,nRk,n)‖2

)2

.
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Arguing as for the proof of (5.13), we obtain that

‖R2
k,n‖2 ≤ 4

∥

∥

∥

∑

i≥1

E(X ′
i,n|F0)

∥

∥

∥

2

4

≤ 32
√
2
(

∑

k>0

φ1,Y(k)3/4
)2( L

∑

ℓ=1

|aℓ|E(fℓ(Y0)
41|fℓ(Y0)|≤Mn1/2)

)1/2

.

From the proof of Corollary 2.1 in Dedecker et al. (2012), for any γ ∈ (0, 1] (to
be chosen later), there exists a positive constant B such that

(

n
∑

k=1

1

k3/2
‖E(S′2

k,n|F0)− E(S′2
k,n)‖2

)2

≤ BI21 +BI22 (5.14)

where

I1 =
∑

m>0

mγ

m1/2
sup

i≥j≥m
‖E(X ′

i,nX
′
j,n|F0)− E(X ′

i,nX
′
j,n)‖2

I2 =
(

∑

k>0

k1/(2γ)

k1/4
‖E(X ′

k,n|F0)‖4
)2

.

Arguing as for the proof of (5.13), we obtain that

I2 ≤ 8
√
2
(

∑

k>0

k1/(2γ)

k1/4
φ1,Y(k)3/4

)2( L
∑

ℓ=1

|aℓ|E(fℓ(Y0)
41|fℓ(Y0)|≤Mn1/2)

)1/2

. (5.15)

To bound I1, note that

‖E(X ′
i,nX

′
j,n|F0)− E(X ′

i,nX
′
j,n)‖2 ≤

L
∑

k=1

L
∑

ℓ=1

|ak||aℓ|×

× ‖E((gn ◦ fk(Yi))
(0)(gn ◦ fℓ(Yj))

(0)|F0)− E((gn ◦ fk(Yi))
(0)(gn ◦ fℓ(Yj))

(0))‖2 .

Applying Lemma 5.2, for i ≥ j ≥ m,

‖E((gn ◦ fk(Yi))
(0)(gn ◦ fℓ(Yj))

(0)|F0)− E((gn ◦ fk(Yi))
(0)(gn ◦ fℓ(Yj))

(0))‖2
≤ 16φ2,Y(m)1/2‖gn ◦ fk(Y0)‖4‖gn ◦ fℓ(Y0)‖4 .

It follows that

I1 ≤
(

16
∑

m>0

mγ

m1/2
φ2,Y(m)1/2

)(

L
∑

ℓ=1

|aℓ|E(fℓ(Y0)
41|fℓ(Y0)|≤Mn1/2)

)1/2

. (5.16)

Let γ = 1/
√
3. If the condition (5.1) holds, then

∑

k>0

k
√
3/2

k1/4
φ1,Y(k)3/4 < ∞ and

∑

m>0

m1/
√
3

m1/2
φ2,Y(m)1/2 < ∞.

To see that the convergence of the second series implies the convergence of the
first series, it suffices to note that φ1,Y(n) ≤ φ2,Y(n) and that, since φ2,Y(n) is

nonincreasing, φ2,Y(n) = o(n−(2+
√
3)/

√
3).
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We infer from (5.14), (5.15) and (5.16) that, if (5.1) holds, there exists a positive
constant C4(φ) such that

(

n
∑

k=1

1

k3/2
‖E(S′2

k,n|F0)− E(S′2
k,n)‖2

)2

≤ C4(φ)
L
∑

ℓ=1

|aℓ|E(fℓ(Y0)
41|fℓ(Y0)|≤Mn1/2) .

(5.17)
Let us consider now the term

(

n
∑

k=1

1

k3/2
‖E(S′

k,nRk,n|F0)− E(S′
k,nRk,n)‖2

)2

.

As for the proof of (5.13), one has

∥

∥

∥
E(S′

k,n|F0)
∑

i≥1

E(X ′
i,n|F0)

∥

∥

∥

2

2
≤

(

∑

i≥1

‖E(X ′
i,n|F0)‖4

)2

≤ 8
√
2
(

∑

i≥1

φ
3/4
1,Y(i)

)2( L
∑

ℓ=1

|aℓ|E(fℓ(Y0)
41|fℓ(Y0)|≤Mn1/2)

)1/2

.

Next, we need to bound

(

n
∑

k=1

1

k3/2

∥

∥

∥
E(S′

k,n

∑

i≥k+1

E(X ′
i,n|Fk)|F0)− E(S′

k,n

∑

i≥k+1

E(X ′
i,n|Fk))

∥

∥

∥

2

)2

.

First, we see that
∑

i≥k+1

E(X ′
i,n|Fk) = E(S′

2k,n − S′
k,n|Fk) +

∑

j≥2k+1

E(X ′
j,n|Fk) .

Since S′
k,n is Fk-measurable, we get that

‖E(S′
k,nE(S

′
2k,n − S′

k,n|Fk)|F0)− E(S′
k,nE(S

′
2k,n − S′

k,n|Fk))‖2
= ‖E(S′

k,n(S
′
2k,n − S′

k,n)|F0)− E(S′
k,n(S

′
2k,n − S′

k,n))‖2 .
Next using the identity 2ab = (a+ b)2−a2− b2 and the stationarity, we obtain that

2‖E(S′
k,nE(S

′
2k,n − S′

k,n|Fk)|F0)− E(S′
k,nE(S

′
2k,n − S′

k,n|Fk))‖2
≤ ‖E(S′2

2k,n|F0)− E(S′2
2k,n)‖2 + 2‖E(S′2

k,n|F0)− E(S′2
k,n)‖2 ,

which combined with (5.17) implies that

(

n
∑

k=1

1

k3/2
‖E(S′

k,nE(S
′
2k,n − S′

k,n|Fk)|F0)− E(S′
k,nE(S

′
2k,n − S′

k,n|Fk))‖2
)2

≤ 6C4(φ)

L
∑

ℓ=1

|aℓ|E(fℓ(Y0)
41|fℓ(Y0)|≤bn1/2) .

It remains to bound
(

n
∑

k=1

1

k3/2

∥

∥

∥
E

(

S′
k,n

∑

j≥2k+1

E(X ′
j,n|Fk)

∣

∣

∣
F0

)∥

∥

∥

2

)2

.

By stationarity,
∑

j≥2k+1

‖E(S′
k,nE(X

′
j,n|Fk))|F0)‖2 ≤ k

∑

j≥k+1

‖X ′
0,nE(X

′
j,n|F0)‖2 .
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Now, as for the proof of (5.13),

∑

j≥k+1

‖X ′
0,nE(X

′
j,n|F0)‖2 ≤ ‖X ′

0,n‖4
∑

j≥k+1

‖E(X ′
j,n|F0)‖4

≤ 2
(

2
∑

j≥k+1

(2φ1,Y(j))3/4
)(

L
∑

ℓ=1

|aℓ|E(fℓ(Y0)
41|fℓ(Y0)|≤bn1/2)

)1/2

,

and consequently, there exists a positive constant D such that

(

n
∑

k=1

1

k3/2

∥

∥

∥
E

(

S′
k,n

∑

j≥2k+1

E(X ′
j,n|Fk)

∣

∣

∣
F0

)∥

∥

∥

2

)2

≤ D
(

∑

j≥2

j1/2φ1,Y(j)3/4
)2 L

∑

ℓ=1

|aℓ|E(fℓ(Y0)
41|fℓ(Y0)|≤Mn1/2) .

The lemma is proved. �

6. Proof of Theorem 1.5 on uniformly expanding maps

Let (Yi)i≥0 be the stationary Markov chain with transition kernel K correspond-
ing to the iteration of the inverse branches of T , and let Xn = f(Yn)− ν(f). Con-
cerning Item 1 in Theorem 1.5, it is well known that it is equivalent to prove it
for the iteration of the map or of the Markov chain, since the distributions are the
same (see for instance the proof of Theorem 2.1 in Dedecker and Merlevède (2009)).
Therefore, it is enough to show that the process

{ 1√
n

[nt]
∑

i=1

Xi, t ∈ [0, 1]
}

converges in distribution in the Skorokhod topology to σW , where W is a standard
Wiener process. Now, as shown by Heyde (1975), this property as well as the
absolute convergence of the series (1.1) will be true provided that the condition of
Gordin (1969) holds, that is

∞
∑

n=0

‖Kn(f)− ν(f)‖L2(ν) < ∞ . (6.1)

By definition of Monc2(M, ν), there exist functions fL =
∑L

ℓ=1 aℓ,Lgℓ,L with gℓ,L
belonging to Mon2(M, ν) and

∑L
ℓ=1 |aℓ,L| ≤ 1, such that fL converges in L

1(ν)
to f . It follows that, for any nonnegative integer n, Kn(fL) − ν(fL) converges to
Kn(f) − ν(f) in L

1(ν). Hence, there exists a subsequence Kn(fϕ(L)) − ν(fϕ(L))

converging to Kn(f)− ν(f) almost surely and in L
1(ν). Applying Fatou’s lemma,

we infer that

‖Kn(f)− ν(f)‖L2(ν) ≤ lim inf
L→∞

‖Kn(fϕ(L))− ν(fϕ(L))‖L2(ν) . (6.2)
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By Lemma 5.2, for any g in Mon2(M, ν), ‖Kn(g) − ν(g)‖L2(ν) ≤ 2
√
2φ

1/2
1,Y(n)M .

Hence

‖Kn(fϕ(L))− ν(fϕ(L))‖L2(ν) ≤
L
∑

ℓ=1

|aℓ,L|‖Kn(gℓ,ϕ(L))− ν(gℓ,ϕ(L))‖L2(ν)

≤ 2
√
2φ

1/2
1,Y(n)M .

From (6.2), it follows that ‖Kn(f) − ν(f)‖L2(ν) ≤ 2
√
2φ

1/2
1,Y(n)M , and (6.1) holds

provided that
∑

n>0 φ
1/2
1,Y(n) < ∞. Now, if T is uniformly expanding, it follows

from Section 6.3 in Dedecker and Prieur (2007) that φ2,Y(n) = O(ρn) for some
ρ ∈ (0, 1), and Item 1 is proved.

According to the inequality (4.1) in Dedecker et al. (2010), we have

ν
(

max
1≤k≤n

∣

∣

∣

k−1
∑

i=0

(f ◦ T i − ν(f))
∣

∣

∣
> x

)

≤ ν
(

2 max
1≤k≤n

∣

∣

∣

k
∑

i=1

Xi

∣

∣

∣
> x

)

.

Therefore, Item 2 follows from Proposition 5.3 applied to the sequences (Xi)i≥1 as
soon as (5.1) holds, which is clearly true.

For Item 3, we proceed exactly as in the case of GPM maps, relying on the
approximation f = f̄m + gm given by Lemma 2.3 to apply Proposition 3.1. Since
gm ∈ Monc2(1/m, ν), Proposition 5.3 shows that almost surely

lim sup
1√

n log logn

∣

∣

∣

∣

∣

n−1
∑

i=0

(gm ◦ T i − ν(gm))

∣

∣

∣

∣

∣

≤ C/m ,

for some constant C. Moreover, the proof of Theorem 3.1 in Merlevède and Rio
(2012) shows that the sequence f̄m ◦ T i − ν(fm) satisfies an almost sure principle,
towards a Gaussian with variance σ2

m. It only remains to show that σ2
m converges

to σ2. We start from the basic inequality

σ2(gm) ≤ 2‖gm‖L2(ν)

∞
∑

n=0

‖Kn(gm)− ν(gm)‖L2(ν) .

Arguing as in (6.2), we infer that

σ2(gm) ≤ 16m−2
∞
∑

k=0

φ
1/2
1,Y(k)

and the series on the right hand side is finite since φ1,Y(n) = O(ρn) for some
ρ ∈ (0, 1). Therefore, σ2(gm) converges to 0. �
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F. Merlevède and E. Rio. Strong approximation of partial sums under dependence
conditions with application to dynamical systems. Stochastic Process. Appl. 122,
386–417 (2012).

I. Pinelis. Optimum bounds for the distributions of martingales in Banach spaces.
Ann. Probab. 22 (4), 1679–1706 (1994). MR1331198.

M. Rychlik. Bounded variation and invariant measures. Studia Math. 76 (1), 69–80
(1983). MR728198.

W. B. Wu and Z. Zhao. Moderate deviations for stationary processes. Statist.

Sinica 18 (2), 769–782 (2008). MR2411619.
R. Zweimüller. Ergodic structure and invariant densities of non-Markovian inter-
val maps with indifferent fixed points. Nonlinearity 11 (5), 1263–1276 (1998).
MR1644385.

http://www.ams.org/mathscinet-getitem?mr=MR2682267
http://www.ams.org/mathscinet-getitem?mr=MR2797940
http://www.ams.org/mathscinet-getitem?mr=MR2506123
http://www.ams.org/mathscinet-getitem?mr=MR2287106
http://www.ams.org/mathscinet-getitem?mr=MR0251785
http://www.ams.org/mathscinet-getitem?mr=MR2027296
http://www.ams.org/mathscinet-getitem?mr=MR0372954
http://www.ams.org/mathscinet-getitem?mr=MR656227
http://www.ams.org/mathscinet-getitem?mr=MR2175992
http://www.ams.org/mathscinet-getitem?mr=MR1331198
http://www.ams.org/mathscinet-getitem?mr=MR728198
http://www.ams.org/mathscinet-getitem?mr=MR2411619
http://www.ams.org/mathscinet-getitem?mr=MR1644385

	1. Introduction and main results
	2. Approximation by bounded variation functions
	3. Strong invariance principle by approximation
	4. Proof of Theorem 1.6 on GPM maps
	5. A bounded LIL for phi-dependent sequences
	6. Proof of Theorem 1.5 on uniformly expanding maps
	References

