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Abstract. We consider two variations on the Mandelbrot fractal percolation model.
In the k-fractal percolation model, the d-dimensional unit cube is divided in Nd

equal subcubes, k of which are retained while the others are discarded. The pro-
cedure is then iterated inside the retained cubes at all smaller scales. We show
that the (properly rescaled) percolation critical value of this model converges to
the critical value of ordinary site percolation on a particular d-dimensional lattice
as N → ∞. This is analogous to the result of Falconer and Grimmett (1992) that
the critical value for Mandelbrot fractal percolation converges to the critical value
of site percolation on the same d-dimensional lattice.

In the fat fractal percolation model, subcubes are retained with probability pn

at step n of the construction, where (pn)n≥1 is a non-decreasing sequence with
∏∞

n=1 pn > 0. The Lebesgue measure of the limit set is positive a.s. given non-
extinction. We prove that either the set of connected components larger than one
point has Lebesgue measure zero a.s. or its complement in the limit set has Lebesgue
measure zero a.s.
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1. Introduction

Mandelbrot (1982) introduced the following fractal percolation model. Let N ≥
2, d ≥ 2 be integers and consider the unit cube [0, 1]d. Divide the unit cube into
Nd subcubes of side length 1/N . Each subcube is retained with probability p and
discarded with probability 1 − p, independently of other subcubes. The closure of
the union of the retained subcubes forms a random subset D1

p of [0, 1]d. Next, each

retained subcube in D1
p is divided into Nd cubes of side length 1/N2. Again, each

smaller subcube is retained with probability p and discarded with probability 1−p,
independently of other cubes. We obtain a new random set D2

p ⊂ D1
p. Iterating this

procedure in every retained cube at every smaller scale yields an infinite decreasing
sequence of random subsets D1

p ⊃ D2
p ⊃ D3

p ⊃ · · · of [0, 1]d. We define the limit set

Dp :=
⋂∞

n=1 Dn
p . We will refer to this model as the Mandelbrot fractal percolation

(MFP) model with parameter p.
It is easy to extend and generalize the classical Mandelbrot model in ways that

preserve at least a certain amount of statistical self-similarity and generate random
fractal sets. It is interesting to study such models to obtain a better understanding
of general fractal percolation processes and explore possible new features that are
not present in the MFP model. In this paper we are concerned with two natural
extensions which have previously appeared in the literature, as we mention below.
We will next introduce the models and state our main results.

1.1. k-fractal percolation. Let N ≥ 2 be an integer and divide the unit cube [0, 1]d,
d ≥ 2, into Nd subcubes of side length 1/N . Fix an integer 0 < k ≤ Nd and retain
k subcubes in a uniform way, that is, all configurations where k cubes are retained
have equal probability, other configurations have probability 0. Let D1

k denote the
random set which is obtained by taking the closure of the union of all retained cubes.
Iterating the described procedure in retained cubes and on all smaller scales yields a
decreasing sequence of random sets D1

k ⊃ D2
k ⊃ D3

k ⊃ · · · . We are mainly interested
in the connectivity properties of the limiting set Dk :=

⋂∞
n=1 Dn

k . This model was
called the micro-canonical fractal percolation process by Chayes (1995) and both
correlated fractal percolation and k out of Nd fractal percolation by Dekking and
Don (2010). We will adopt the terms k-fractal percolation and k-model.

For F ⊂ [0, 1]d, we say that the unit cube is crossed by F if there exists a
connected component of F which intersects both {0}× [0, 1]d−1 and {1}× [0, 1]d−1.
Define θ(k, N, d) as the probability that [0, 1]d is crossed by Dk. Similarly, σ(p, N, d)
denotes the probability that [0, 1]d is crossed by Dp. Let us define the critical
probability pc(N, d) for the MFP model and the critical threshold value kc(N, d)
for the k-model by

pc(N, d) := inf{p : σ(p, N, d) > 0}, kc(N, d) := min{k : θ(k, N, d) > 0}.

Let L
d be the d-dimensional lattice with vertex set Z

d and with edge set given by
the adjacency relation: (x1, . . . , xd) = x ∼ y = (y1, . . . , yd) if and only if x 6= y, |xi−
yi| ≤ 1 for all i and xi = yi for at least one value of i. Let pc(d) denote the critical
probability for site percolation on L

d. It is known (see Falconer and Grimmett
(1992)) that pc(N, d) → pc(d) as N → ∞. We have the following analogous result
for the k-model.
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Theorem 1.1. For all d ≥ 2, we have that

lim
N→∞

kc(N, d)

Nd
= pc(d).

Remark 1.2. Note that the choice for the unit cube in the definitions of θ(k, N, d)
and σ(p, N, d) (and thus implicitly also in the definitions of kc(N, d) and pc(N, d))
is rather arbitrary: We could define them in terms of crossings of other shapes such
as annuli, for example, and obtain the same conclusion, i.e. kc(N, d)/Nd → pc(d)
as N → ∞, where θ(k, N, d) and kc(N, d) are defined using the probability that Dk

crosses an annulus. One advantage of using annuli is that the percolation function
σ(p, N, d) is known to have a discontinuity at pc(N, d) for all N, d and any choice of
annulus (Broman and Camia (2010, Corollary 2.6)). (This is known to be the case
also when pc(N, d) is defined using the unit cube if d = 2 (Chayes et al. (1988);
Dekking and Meester (1990)), but for d ≥ 3 it is proven only for N sufficiently large
(Broman and Camia (2008)).) In the present paper we stick to the “traditional”
choice of the unit cube.

Remark 1.3. For the MFP model it is the case that, for p > pc(d),

σ(p, N, d) → 1, (1.1)

as N → ∞. This is part (b) of Theorem 2 in Falconer and Grimmett (1992).
During the course of the proof of Theorem 1.1 we will prove a similar result for the
k-model, see Theorem 3.2.

Next, consider the following generalization of both the k-model and the MFP
model. Let d ≥ 2, N ≥ 2 be integers and let Y = Y (N, d) be a random variable
taking values in {0, . . . , Nd}. Divide the unit cube into Nd smaller cubes of side
length 1/N . Draw a realization y according to Y and retain y cubes uniformly.
Let D1

Y denote the closure of the union of the retained cubes. Next, every retained
cube is divided into Nd smaller subcubes of side length 1/N2. Then, for every
subcube C in D1

Y (where we slightly abuse notation by viewing D1
Y as the set

of retained cubes in the first iteration step) draw a new (independent) realization
y(C) of Y and retain y(C) subcubes in C uniformly, independently of all other
subcubes. Denote the closure of the union of retained subcubes by D2

Y . Repeat
this procedure in every retained subcube at every smaller scale and define the limit
set DY :=

⋂∞
n=1 Dn

Y . We will call this model the generalized fractal percolation
model (GFP model) with generator Y . Define φ(Y, N, d) as the probability of the
event that [0, 1]d is crossed by DY .

By taking Y equal to an integer k, resp. to a binomially distributed random vari-
able with parameters Nd and p, we obtain the k-model, resp. the MFP model with
parameter p. If Y is stochastically dominated by a binomial random variable with
parameters Nd and p, where p < pc(N, d), then by standard coupling techniques
it follows that φ(Y, N, d) = 0. Likewise, if Y (N, d) dominates a binomial random
variable with parameters Nd and p, where p > pc(d), then φ(Y (N, d), N, d) ≥
σ(p, N, d) → 1 as N → ∞, as mentioned in Remark 1.3. The following theo-
rem, which generalizes (1.1), shows that the latter conclusion still holds if for some
p > pc(d), P(Y (N, d) ≥ pNd) → 1 as N → ∞.

Theorem 1.4. Consider the GFP model with generator Y (N, d). Let p > pc(d).
Suppose that P(Y (N, d) ≥ pNd) → 1 as N → ∞. Then

lim
N→∞

φ(Y (N, d), N, d) = 1.



282 Erik I. Broman et al.

Remark 1.5. Observe that by Chebyshev’s inequality the condition of Theorem
1.4 is satisfied if, for some p > pc(d), EY (N, d) ≥ pNd for all N ≥ 2 and
Var(Y (N, d))/N2d → 0 as N → ∞.

Open problem 1.6. It is a natural question to ask whether a “symmetric version”
of Theorem 1.4 is true. That is, if e.g. P(Y (N, d) ≤ pNd) → 1 as N → ∞, for some
p < pc(d), implies φ(Y (N, d), N, d) → 0 as N → ∞. The proof of Theorem 1.4 can
not be adapted to this situation.

1.2. Fat fractal percolation. Let (pn)n≥1 be a non-decreasing sequence in (0, 1]
such that

∏∞
n=1 pn > 0. We call fat fractal percolation a model analogous to

the MFP model, but where at every iteration step n a subcube is retained with
probability pn and discarded with probability 1 − pn, independently of other sub-
cubes. Iterating this procedure yields a decreasing sequence of random subsets
D1

fat ⊃ D2
fat ⊃ D3

fat ⊃ · · · and we will mainly study connectivity properties of the
limit set Dfat :=

⋂∞
n=1 Dn

fat. In Chayes et al. (1997) it is shown that if pn → 1 and
∏∞

n=1 pn = 0, then the limit set does not contain a directed crossing from left to
right.

For a point x ∈ Dfat, let Cx
fat denote its connected component :

Cx
fat := {y ∈ Dfat : y connected to x in Dfat}.

We define the set of “dust” points by Dd
fat := {x ∈ Dfat : Cx

fat = {x}}. Define
Dc

fat := Dfat \ Dd
fat, which is the union of connected components larger than one

point. Let λ denote the d-dimensional Lebesgue measure. It is easy to prove that
λ(Dfat) > 0 with positive probability, see Proposition 4.1. Moreover, we can show
that the Lebesgue measure of the limit set is positive a.s. given non-extinction, i.e.
Dfat 6= ∅.

Theorem 1.7. We have that λ(Dfat) > 0 a.s. given non-extinction.

It is a natural question to ask whether both Dc
fat and Dd

fat have positive Lebesgue
measure. The following theorem shows that they cannot simultaneously have pos-
itive Lebesgue measure.

Theorem 1.8. Given non-extinction of the fat fractal process, it is the case that
either

λ(Dd
fat) = 0 and λ(Dc

fat) > 0 a.s. (1.2)

or

λ(Dd
fat) > 0 and λ(Dc

fat) = 0 a.s. (1.3)

Part (ii) of the following theorem gives a sufficient condition under which (1.2)
holds. Furthermore, the theorem shows that the limit set either has an empty
interior a.s. or can be written as the union of finitely many cubes a.s.

Theorem 1.9. We have that

(i) If
∏∞

n=1 pNdn

n = 0, then Dfat has an empty interior a.s.;

(ii) If
∏∞

n=1 pNn

n > 0, then λ(Dd
fat) = 0 a.s.;

(iii) If
∏∞

n=1 pNdn

n > 0, then Dfat can be written as the union of finitely many
cubes a.s.
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Open problem 1.10. Part (ii) of Theorem 1.9 shows that if
∏∞

n=1 pNn

n > 0, then
(1.2) holds. However, we do not have an example for which (1.3) holds, and we do
not know whether (1.3) is possible at all.

In two dimensions, we have the following characterizations of λ(Dc
fat) being pos-

itive a.s. given non-extinction of the fat fractal process.

Theorem 1.11. Let d = 2. The following statements are equivalent.

(i) λ(Dc
fat) > 0 a.s., given non-extinction of the fat fractal process;

(ii) There exists a set U ⊂ [0, 1]2 with λ(U) > 0 such that for all x, y ∈ U it is
the case that P(x is in the same connected component as y) > 0;

(iii) There exists a set U ⊂ [0, 1]2 with λ(U) = 1 such that for all x, y ∈ U it is
the case that P(x is in the same connected component as y) > 0.

Let us now outline the rest of the paper. The next section will be devoted to a
formal introduction of the fractal percolation processes in the unit cube. We also
define an ordering on the subcubes which will facilitate the proofs of Theorems
1.1 and 1.4 in Section 3. In Section 4 we prove our results concerning fat fractal
percolation.

2. Preliminaries

In this section we set up an ordering for the subcubes of the fractal processes in
the unit cube which will turn out to be very useful during the course of the proofs.
We also give a formal probabilistic definition of the different fractal percolation
models. We follow Falconer and Grimmett (1992) almost verbatim in this section;
a simple reference to Falconer and Grimmett (1992) would however not be very
useful for the reader, so we repeat some definitions here.

Order Jd := {0, 1, . . . , N−1}d in some way, say lexicographically by coordinates.
For a positive integer n, write Jd,n := {(i1, . . . , in) : ij ∈ Jd, 1 ≤ j ≤ n} for the
set of n-vectors with entries in Jd. Set Jd,0 := {∅}. With I = (i1, . . . , in) =
((i1,1, . . . , i1,d), . . . , (in,1, . . . , in,d)) we associate the subcube of [0, 1]d given by

C(I) = c(I) + [0, N−n]d,

where

c(I) =





n
∑

j=1

N−jij,1, . . . ,

n
∑

j=1

N−jij,d





and c(∅) is defined to be the origin. Such a cube C(I) is called a level-n cube and
we write |I| = n. A concatenation of I ∈ Jd,n and j ∈ Jd is denoted by (I, j), which
is in Jd,n+1. We define the set of indices for all cubes until (inclusive) level-n as
J (n) := Jd,0 ∪Jd,1 ∪ · · · ∪Jd,n and we order them in the following way. We declare
I = (i1, . . . , ia) < I′ = (i′1, . . . , i

′
b) if and only if

• either ir < i′r (according to the order on Jd) where r ≤ min{a, b} is the
smallest index so that ir 6= i′r holds;

• or a > b and ir = i′r for r = 1, . . . , b.

To clarify this ordering we give a short example, see Figure 2.1. Suppose N = 2,
d = 2 and J2 is ordered by (1, 1) > (1, 0) > (0, 1) > (0, 0), then the ordering of
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J (2) starts with

∅ > ((1, 1)) > ((1, 1), (1, 1)) > ((1, 1), (1, 0))

> ((1, 1), (0, 1)) > ((1, 1), (0, 0)) > ((1, 0)) > . . .
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Figure 2.1. Illustration of the ordering of subcubes in J (2), for
N = 2 and d = 2. A black dot denotes the corner point c(I) of a
subcube C(I). The number in the lower left corner of a subcube
indicates the rank of the subcube in the ordering: e.g. the unit
cube, i.e. C(∅), has rank 1 and C((0, 0)) has rank 17.

We introduce the following formal probabilistic definition of the fractal percola-
tion models. As noted before, the k-model and MFP model can be obtained from
the GFP model with generator Y by setting Y ≡ k, resp. Y binomially distributed
with parameters Nd and p ∈ [0, 1]. Therefore, we only provide a formal probabilis-
tic definition of the GFP model and the fat fractal percolation model. Define the
index set J :=

⋃∞
n=0 Jd,n. We define a family of random variables {Zmodel(I)},

where I ∈ J and – here as well as in the rest of the section – “model” stands for
either p, fat, k or Y .

1. GFP model with generator Y : For every I ∈ J , let y(I) denote a realization
of Y , independently of other I′. We define J(I) as a uniform choice of y(I)
different indices of Jd, independently of other J(I′). For j ∈ Jd define

ZY (I, j) =

{

1, j ∈ J(I),
0, otherwise.

2. Fat fractal percolation with parameters (pn)n≥1: For every I ∈ J and
j ∈ Jd, let n = |I| and define

Zfat(I, j) =

{

1, with probability pn+1,
0, with probability 1 − pn+1,

independently of all other Zfat(I
′).
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For each I ∈ J we define the indicator function 1model(I) by

1model(∅) = 1, 1model(I) = Zmodel(i1)Zmodel(i1, i2) · · ·Zmodel(I),

where I = (i1, i2, . . . , in) ∈ Jd,n. We retain the subcube C(I) if 1model(I) = 1 and
we write Dn

model for the set of retained level-n cubes. Note that D1
model, D

2
model, . . .

correspond to the sets informally constructed in the introduction. We denote by
Pmodel the distribution of the corresponding model on Ω = {0, 1}C, where C :=
{C(I) : I ∈ J } denotes the collection of all subcubes, endowed with the usual
sigma algebra generated by the cylinder events. To simplify the notation, we will
drop the subscripts fat, k, p, Y when there is no danger of confusion.

3. Proofs of the k-fractal results

In this section we prove Theorem 1.1 and Theorem 1.4. The proof of Theorem
1.1 is divided in two parts. First we treat the subcritical case and show that
lim infN→∞ kc(N, d)/Nd ≥ pc(d).

Theorem 3.1. Consider the k-model. We have

lim inf
N→∞

kc(N, d)/Nd ≥ pc(d).

In the supercritical case, we prove that the crossing probability converges to 1 as
N → ∞. Again, for future reference we state this as a theorem.

Theorem 3.2. Let p > pc(d) and let (k(N))N≥2 be a sequence of integers such
that k(N)/Nd ≥ p, for all N ≥ 2. We have

lim
N→∞

θ(k(N), N, d) = 1.

Theorem 1.1 follows immediately from these two theorems.
We prove Theorems 3.1 and 3.2 in Sections 3.1 and 3.2, respectively. In Section

3.3 we prove Theorem 1.4, using the idea of the proof of Theorem 3.1 and the result
of Theorem 3.2.

3.1. Proof of Theorem 3.1. Let p < pc(d) and consider a sequence (k(N))N≥2 such
that k(N)/Nd ≤ p, for all N ≥ 2, and k(N)/Nd → p as N → ∞. Our goal is to
show that the probability that the unit cube is crossed by Dk(N), is equal to zero
for all N large enough. Let N ≥ 2 and let Dp0

be the limit set of an MFP process
with parameters p0 and N , where p < p0 < pc(d). First, part (a) of Theorem 2 in
Falconer and Grimmett (1992) states that

pc(d) ≤ pc(N, d), (3.1)

for all N . Hence, the MFP process with parameter p0 < pc(d) is subcritical.
Therefore, a natural approach to prove that the probability that Dk(N) crosses the
unit cube equals zero for N large enough would be to couple the limit set Dk(N) to
the limit set Dp0

in such a way that Dk(N) ⊂ Dp0
. However, a “direct” coupling

between the limit sets Dk(N) and Dp0
is not possible, since with fixed positive

probability at each iteration of the MFP process the number of retained subcubes
is less than k(N). We therefore need to find a more refined coupling.

The following is an informal strategy of the proof. We will define an event E
on which the MFP process contains an infinite tree of retained subcubes, such that
each subcube in this tree contains at least k(N) retained subcubes in the tree.
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Next, we perform a construction of two auxiliary random subsets of the unit cube,
from which it will follow that the law of Dk(N) is stochastically dominated by the
conditional law of Dp0

, conditioned on the event E. In particular, the probability
that Dk(N) crosses [0, 1]d is less than or equal to the conditional probability that Dp0

crosses the unit cube, given E. The latter probability is zero for N large enough,
since the event E has positive probability for N large enough and the MFP process
is subcritical.

Let us start by defining the event E. Consider an MFP process with parameters
p0 and N . For notational convenience we call the unit cube the level-0 cube.
A level-n cube, n ≥ 0, is declared 0-good if it is retained and contains at least
k(N) retained level-(n + 1) subcubes. (We adopt the convention that [0, 1]d is
automatically retained.) Recursively, we define the notion m-good, for m ≥ 0. A
level-n cube, for n ≥ 0, is (m + 1)-good if it is retained and contains at least k(N)
m-good subcubes. We say that the unit cube is ∞-good if it is m-good for every
m ≥ 0. Define the following events

Em := {[0, 1]d is m-good},

E := {[0, 1]d is ∞-good}. (3.2)

The following lemma states that we can make the probability of E arbitrary
close to 1, for N large enough. In particular, E has positive probability for large
enough N , which will be sufficient for the proof of Theorem 3.1.

Lemma 3.3. Let p0 < pc(d). Let (k(N))N≥2 be a sequence of integers satisfying
lim supN→∞ k(N)/Nd < p0. Consider an MFP model with parameters p0 and N .
For all ε > 0 there exists N0 such that Pp0

(E) > 1 − ε for all N ≥ N0.

Proof : Let δ > 0 and N0 be such that k(N)/Nd ≤ p0 − 2δ =: p for all N ≥ N0.
Choose N1 ≥ N0 so large that p0/(4δ2Nd) < δ for N ≥ N1. We will show that

Pp0
(Em) ≥ 1 −

1

4δ2Nd
, (3.3)

for all m ≥ 0 and N ≥ N1. Since Em decreases to E as m → ∞, it follows that

Pp0
(E) = lim

m→∞
Pp0

(Em) ≥ 1 −
1

4δ2Nd
,

for N ≥ N1. Now take N2 ≥ N1 so large that 1 − 1
4δ2Nd > 1 − ε for all N ≥ N2. It

remains to show (3.3).
We prove (3.3) by induction on m. Consider the event E0, i.e. the event that the

unit cube contains at least k(N) retained level-1 subcubes. Let X(n, p) denote a
binomially distributed random variable with parameters n ∈ N and p ∈ [0, 1]. Since
the number of retained level-1 cubes has a binomial distribution with parameters
Nd and p0, it follows from Chebyshev’s inequality that, for every N ≥ N1, we have
(writing P for the probability measure governing the binomially distributed random



Fat fractal percolation and k-fractal percolation 287

variables)

Pp0
(E0) = P(X(Nd, p0) ≥ k(N))

≥ P(X(Nd, p0) ≥ pNd)

≥ 1 −
VarX(Nd, p0)

4δ2N2d

= 1 −
p0(1 − p0)N

d

4δ2N2d

≥ 1 −
1

4δ2Nd
.

Next, let m ≥ 0 and N ≥ N1 and suppose that (3.3) holds for this m and
N . Recall that Em+1 is the event that the unit cube contains at least k(N) m-
good level-1 cubes. The probability that a level-1 cube is m-good, given that it is
retained, is equal to Pp0

(Em). Using the induction hypothesis, we get

Pp0
(Em+1) = P(X(Nd, p0Pp0

(Em)) ≥ k(N))

≥ P(X(Nd, p0(1 − 1
4δ2Nd )) ≥ k(N)).

By our choices for δ and N it follows that p0(1 − 1
4δ2Nd ) > p + δ. Hence, using

Chebyshev’s inequality, we get

P(X(Nd, p0(1 − 1
4δ2Nd )) ≥ k(N)) ≥ P(X(Nd, p + δ) ≥ k(N))

≥ P(X(Nd, p + δ) ≥ pNd)

≥ 1 −
VarX(Nd, p + δ)

δ2N2d

≥ 1 −
1

4δ2Nd
.

Therefore, the induction step is valid and we have proved (3.3). �

Proof of Theorem 3.1: Let p, p0 be such that p < p0 < pc(d). Let (k(N))N≥2 be a
sequence such that k(N)/Nd ≤ p, for all N ≥ 2, and k(N)/Nd → p as N → ∞.
Consider an MFP model with parameters p0 and N and define the event E as in
(3.2). Henceforth, we assume that N is so large that Pp0

(E) > 0, which is possible
by Lemma 3.3. In order to prove Theorem 3.1 we will use E to construct two
random subsets, D̃p0

and D̃k(N), of the unit cube, on a common probability space
and with the following properties:

(i) D̃k(N) ⊂ D̃p0
;

(ii) the law of D̃p0
is stochastically dominated by the conditional law of Dp0

,
conditioned on the event E;

(iii) the law of D̃k(N) is the same as the law of Dk(N).

It follows that the law of Dk(N) is stochastically dominated by the conditional
law of Dp0

, conditioned on the event E. Hence, the probability that the unit cube
is crossed by Dk(N) is at most the conditional probability that Dp0

crosses the unit
cube, conditioned on the event E. By (3.1) the MFP process with parameter p0 is
subcritical, thus the latter probability equals zero. Using the fact that k(N)/Nd →
p as N → ∞, we conclude that

lim inf
N→∞

kc(N, d)

Nd
≥ p.
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Since p < pc(d) was arbitrary, we get

lim inf
N→∞

kc(N, d)

Nd
≥ pc(d).

It remains to construct random sets D̃p0
, D̃k(N) with the properties (i)-(iii). First

we construct two sequences (D̃n
p0

)n≥1, (D̃
n
k(N))n≥1 of decreasing random subsets.

Let L be the conditional law of the number of ∞-good level-1 cubes of the MFP
process, conditioned on the event E. Note that the support of L is {k(N), k(N) +
1, . . . , Nd}. Furthermore, for a fixed level-n cube C(I), L is also equal to the
conditional law of the number of ∞-good level-(n+1) subcubes in C(I), conditioned
on C(I) being ∞-good.

Choose an integer l according to L and choose l level-1 cubes uniformly. Define
D̃1

p0
as the closure of the union of these l level-1 cubes. Choose k(N) out of these

l cubes in a uniform way and define D̃1
k(N) as the closure of the union of these

k(N) cubes. For each level-1 cube C(I) ⊂ D̃1
p0

, pick an integer l(I) according to L,
independently of other cubes, and choose l(I) level-2 subcubes of C(I) in a uniform

way. Define D̃2
p0

as the closure of the union of all selected level-2 cubes. For each

level-1 cube C(I) ⊂ D̃1
k(N), uniformly choose k(N) out of the l(I) selected level-2

subcubes. Define D̃2
k(N) as the closure of the union of the k(N)2 selected level-2

cubes of C(I). Iterating this procedure yields two infinite decreasing sequences of

random subsets (D̃n
p0

)n≥1, (D̃
n
k(N))n≥1.

Now define

D̃p0
:=

∞
⋂

n=1

D̃n
p0

, D̃k(N) :=

∞
⋂

n=1

D̃n
k(N).

By construction, for each n ≥ 1, we have that (1) D̃n
k(N) ⊂ D̃n

p0
, (2) the law of

D̃n
p0

is stochastically dominated by the conditional law of Dn
p0

given E and (3) the

law of D̃n
k(N) is equal to the law of Dn

k(N). It follows that the limit sets D̃p0
, D̃k(N)

satisfy properties (i)-(iii). �

3.2. Proof of Theorem 3.2. Let us start by outlining the proof. The first part
consists mainly of setting up the framework, where we use the notation of Falconer
and Grimmett (1992), which will enable us in the second part to prove that the
subcubes of the fractal process satisfy certain “good” properties with probability
arbitrarily close to 1 as N → ∞. Informally, a subcube is good when there exist
many connections inside the cube between its faces and when it is also connected to
other good subcubes. Therefore, the probability of crossing the unit cube converges
to 1 as N → ∞.

Although we will partly follow Falconer and Grimmett (1992), it does not seem
possible to use Theorem 2.2 of Falconer and Grimmett (1992) directly. First, we
state (a slightly adapted version of) Lemma 2 of Falconer and Grimmett (1992),
which concerns site percolation with parameter π on L

d. We let every vertex of
L

d be colored black with probability π and white otherwise, independently of other
vertices. We write Pπ for the ensuing product measure with density π ∈ [0, 1].
We call a subset C of L

d a black cluster if it is a maximal connected subset (with
respect to the adjacency relation on L

d) of black vertices. Denote the cube with
vertex set {1, 2, . . . , N}d by BN . Let L be the set of edges of the unit cube [0, 1]d,
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that is L contains all sets of the form

Lr(a) = {a1} × {a2} × · · · × {ar−1} × [0, 1]× {ar+1} × · · · × {ad}

as r ranges over {1, . . . , d} and a = (a1, a2, . . . , ad) ranges over {0, 1}d. For each
L = Lr(a) ∈ L we write

LN = {x ∈ BN : xi = max{1, aiN} for 1 ≤ i ≤ d, i 6= r}

for the corresponding edge of BN .

Lemma 3.4. Suppose π > pc(d), ε > 0 and let q be a positive integer. There
exist positive integers u and N1 such that the following holds for all N ≥ N1. Let
U(1), . . . , U(q) be subsets of vertices of BN such that for each r ∈ {1, . . . , q}, (i)
|U(r)| ≥ u and (ii) there exists L ∈ L such that U(r) ⊂ LN . Then,

Pπ

(

there exists a black cluster CN such that |CN ∩ LN | ≥ u
for all L ∈ L, and |CN ∩ U(r)| ≥ 1, for all r ∈ {1, . . . , q}

)

≥ 1−
ε

2
. (3.4)

Our goal is to show that the following holds uniformly in n: With probability
arbitrarily close to 1 as N → ∞, there is a sequence of cubes in Dn

k(N), each with

at least one edge in common with the next, which crosses the unit cube. In order
to prove this we examine the cubes C(I), for I ∈ J (n), in turn according to the
ordering on J (n), and declare some of them to be good according to the rule given
below. Since the probabilistic bounds on the goodness of cubes will hold uniformly
in n, the desired conclusion follows.

Fix integers n, u, k ≥ 1 until Lemma 3.7. For m ≥ 1, identify a level-m
cube with a vertex in BNm ⊂ L

d in the canonical way. A set of level-m cubes
{C(I1), . . . , C(Il)} is called edge-connected if they form a connected set with re-
spect to the adjacency relation of L

d. Whether a cube C(I), for I ∈ J (n), is
called (n, u)-good or not, is determined by the following inductive procedure. Let
I ∈ J (n), and assume that the goodness of C(I′) has been decided for all I′ < I.
We have the following possibilities:

(a) |I| = n. Then C(I) is always declared (n, u)-good.
(b) 0 ≤ |I| = m < n.

In the latter case we act as follows. Note that the subcubes C(I, j) with j ∈ Jd have
already been examined, since (I, j) < I. Define the following set of level-(m + 1)
subcubes of C(I),

D(I) := {C(I, j) : j ∈ Jd with C(I, j) (n, u)-good and Zk(I, j) = 1}. (3.5)

We declare C(I) to be (n, u)-good if there exists an edge-connected set H(I) ⊂ D(I)
such that

(i) Each edge of C(I) intersects at least u cubes of H(I);
(ii) For every (n, u)-good level-m cube C(I′) with I′ < I that has (at least) one

edge in common with C(I), there are a cube of H(I′) and a cube of H(I)
with a common edge.

(If there is more than one candidate for H(I) we use some deterministic rule to
choose one of them.) This procedure determines whether C(I) is (n, u)-good for
each I in turn. Note that it is easier for higher level cubes to be (n, u)-good than
for lower level cubes. In particular, for the unit cube, i.e. C(∅), it is the hardest to
be (n, u)-good.
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The next lemma shows that if the unit cube is (n, u)-good then there is a sequence
of cubes in Dn

k , each with at least one edge in common with the next, which connects
the “left-hand side” of [0, 1]d with its “right-hand side”. If such a sequence of cubes
exists in Dn

k we say that percolation occurs in Dn
k .

Lemma 3.5. Suppose [0, 1]d is (n, u)-good, then percolation occurs in Dn
k .

Proof : Assume that the unit cube, i.e. C(∅), is (n, u)-good. We will show, with a
recursive argument, that for 1 ≤ m ≤ n there exists an edge-connected chain of
retained (n, u)-good level-m cubes which joins {0} × [0, 1]d−1 and {1} × [0, 1]d−1.
In particular, this holds for m = n and hence percolation occurs in Dn

k .
Since the unit cube is assumed to be (n, u)-good, D(∅) contains by definition an

edge-connected subset H(∅) of retained (n, u)-good level-1 subcubes, such that each
edge of C(∅) intersects at least u cubes of H(∅). In particular, there is a sequence of
retained (n, u)-good edge-connected level-1 cubes that connects the left-hand side
of [0, 1]d with its right-hand side.

Let 1 ≤ m < n and assume there exists an edge-connected chain C(I1), . . . , C(Il)
of retained (n, u)-good level-m cubes which connects the left-hand side of [0, 1]d

with its right-hand side. For each i, 1 ≤ i ≤ l, either Ii < Ii+1 or Ii+1 < Ii. By
condition (ii), there exist level-(m + 1) cubes of H(Ii+1) which are edge-connected
to level-(m + 1) cubes of H(Ii). These level-(m + 1) cubes C(J) are all (n, u)-good
and have Zk(J) = 1, by (3.5) and the definition of the H(I). It follows that there
is an edge-connected chain of retained (n, u)-good level-(m + 1) cubes C(J) which
joins {0} × [0, 1]d−1 and {1} × [0, 1]d−1. �

For I ∈ J (n), define the index I− ∈ J (n) by

I− = max{I′ : I′ < I and |I′| ≤ |I|}.

If there is no such index, I− is left undefined. For each I ∈ J (n) we let F(I) denote
the σ-field

F(I) = σ(Zk(I′, j) : |I′| ≤ n − 1, I′ ≤ I, j ∈ Jd).

If I− is undefined, we take F(I−) to be the trivial σ-field. Note that F(I) is
generated by those Zk that have been examined prior to deciding whether C(I) is
(n, u)-good. In particular, by virtue of the ordering on the cubes as introduced in
Section 2, F(I−) does not contain any information about subcubes of I.

Let p > pc(d) and let (k(N))N≥2 be a sequence such that k(N)/Nd ≥ p, for
all N ≥ 2. We want to prove that, for every ε > 0, the probability that [0, 1]d is
(n, u)-good in the k(N)-model is at least 1− ε, for N ≥ N0, where N0 is an integer
which has to be taken sufficiently large to satisfy certain probabilistic bounds but
is independent of n.

Let us first give a sketch of the proof. Fix N ≥ N0 and consider the k(N)-
model. We use a recursive argument. The smallest level-n cube according to
the ordering on J (n) is by definition (n, u)-good. Let I ∈ J (n) and assume that
Pk(N)(C(I′) is (n, u)-good | F(I′−)) ≥ 1 − ε for all I′ < I. We prove that, given

F(I−), C(I) is (n, u)-good with probability at least 1− ε. The proof of this consists
of a coupling between a product measure with density π ∈ (pc(d), (1 − ε)p) in the
box BN and the law of the set of subcubes C(I, j) of C(I) which are (n, u)-good and
satisfy Zk(N)(I, j) = 1. Applying Lemma 3.4 to the product measure combined with
the coupling yields that the subcubes satisfy properties (i) and (ii) with probability
at least 1− ε. Therefore, given F(I−), C(I) is (n, u)-good with probability at least
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1 − ε. Iterating this argument then yields that the unit cube is (n, u)-good with
probability at least 1 − ε, for N ≥ N0.

The proof in Falconer and Grimmett (1992) of the analogous result that, for
p > pc(d), σ(p, N, d) → 1 as N → ∞ is considerably less involved. In the context
of Falconer and Grimmett (1992), subcubes are retained with probability p inde-
pendently of other cubes, which is not the case in k-fractal percolation. Therefore,
they can directly show that there exists π > pc(d) such that, for I ∈ J (n), the
law of the set of subcubes C(I, j) of C(I) which are good and satisfy Zp(I, j) = 1,
dominates an i.i.d. process on the box BN with density π.

We need the following result for binomially distributed random variables, which
we state as a lemma for future reference. Since the result follows easily from Cheby-
shev’s inequality, we omit the proof.

Lemma 3.6. Let p > pc(d) and let (k(N))N≥2 be a sequence of integers such
that k(N)/Nd ≥ p for all N ≥ 2. Let ε > 0 be such that (1 − ε)p > pc(d), let
π ∈ (pc(d), (1− ε)p) and define M := ((1− ε)p+π)Nd/2. There exists N2 such that

P({X(k(N), 1 − ε) ≥ M} ∩ {X ′(Nd, π) ≤ M}) ≥ 1 − ε/2,

for N ≥ N2, where X and X ′ are independent, binomially distributed random
variables with the indicated parameters.

We now prove that, for any ε > 0, the unit cube is (n, u)-good with probability
at least 1 − ε, for N large enough but independent of n.

Lemma 3.7. Let p > pc(d) and let (k(N))N≥2 be a sequence of integers such that
k(N)/Nd ≥ p, for all N ≥ 2. Let ε > 0 be such that (1 − ε)p > pc(d). Take
π ∈ (pc(d), (1 − ε)p) and set q = 3d. Let u and N1 be given by Lemma 3.4. Let N2

be given by Lemma 3.6. Set N0 = max{N1, N2}. Then, for all n ≥ 1,

Pk(N)([0, 1]d is (n, u)-good) ≥ 1 − ε, (3.6)

for all N ≥ N0.

Proof : Fix N ≥ N0 and n ≥ 1 and consider the k(N)-fractal model. Our aim is to
show that

Pk(N)(C(I) is (n, u)-good | F(I−)) ≥ 1 − ε (3.7)

holds for all I ∈ J (n). Taking I = ∅ then yields (3.6). We prove this with a
recursive argument. Let I0 be the smallest index in J (n), according to the ordering
on J (n). By virtue of the ordering, we have |I0| = n. Hence, by definition, C(I0)
is (n, u)-good. In particular, (3.7) holds for I0.

The recursive step is as follows. Take an index I ∈ J (n) and assume that

Pk(N)(C(I′) is (n, u)-good | F(I′−)) ≥ 1 − ε, (3.8)

has been established for all indices I′ in J (n) less than I. We have to show that
(3.7) holds for I given this assumption. We have two cases:

(a) |I| = n; then Pk(N)(C(I) is (n, u)-good) = 1 and (3.7) is true.
(b) 0 ≤ |I| = m < n.

For case (b), given F(I−), the goodness of C(I′) is determined (in particular)
for all I′ < I with |I| = m. Let

Q =

{

I′ : I′ < I and C(I′) is an (n, u)-good level-m
cube with an edge in common with C(I)

}

.
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For each I′ ∈ Q, let E(I′) be some common edge of C(I) and C(I′). Since C(I′)
is (n, u)-good, there are at least u level-(m + 1) subcubes in H(I′) which intersect
E(I′); call this set of subcubes U(I′). To see whether C(I) is (n, u)-good, we look
at C(I, j(l)) where j(l), 1 ≤ l ≤ Nd, are the vectors of Jd arranged in order. We
have (I, j(l)) < I, so by the induction hypothesis (3.8) we have

Pk(N)(C(I, j(l)) is (n, u)-good | F((I, j(l))−)) ≥ 1 − ε, (3.9)

for all l. Note that F((I, j(1))−) = F(I−).
We identify each subcube of C(I) in the canonical way with a vertex in BN . We

will construct three random subsets G1, G2, G3 of BN on a common probability
space with the following properties:

(I) the law of G1 equals the law of the set of subcubes C(I, j) of C(I) which
are (n, u)-good and satisfy Zk(N)(I, j) = 1;

(II) G2 is obtained by first selecting k(N) vertices of BN uniformly and then
retaining each selected vertex with probability 1−ε, independently of other
vertices;

(III) the law of G3 is the Bernoulli product measure with density π on BN ;
(IV) G1 ⊃ G2;
(V) P(G2 ⊃ G3) ≥ 1 − ε/2.

From (3.9) and a standard coupling technique, sometimes referred to as sequen-
tial coupling (see e.g. Liggett and Steif (2006)), the construction of G1 and G2 with
properties (I), (II) and (IV) is straightforward. The construction of G3 such that
properties (III) and (V) hold is given below. Let |G2| denote the cardinality of
the set G2. Define M = ((1 − ε)p + π)Nd/2 and let R be a number drawn from
a binomial distribution with parameters Nd and π, independently of G1 and G2.
If |G2| ≥ M and M ≥ R we select R vertices uniformly out of the |G2| retained
vertices of G2 and call this set G3. Otherwise, we select, independently of G1 and
G2, R vertices of BN in a uniform way and call this set G3. From the construction
(note that also G2 was obtained in a uniform way) it is clear that G3 satisfies prop-
erty (III). Observe that |G2| has a binomial distribution with parameters k(N) and
1 − ε. From Lemma 3.6 it follows that

P({|G2| ≥ M} ∩ {R ≤ M}) ≥ 1 − ε/2.

Hence, property (V) also holds.
Let us now return to the goodness of C(I). As before, we identify the random

subsets G1, G2, G3 of BN with the corresponding sets of subcubes of C(I) in the
canonical way. It then follows from property (III) and Lemma 3.4 (note that Q has
cardinality at most 3d = q) that G3 has an edge-connected subset which satisfies
the following properties with probability at least 1 − ε/2:

(i) intersects every edge of C(I) with at least u cubes;
(ii) contains a cube that is edge-connected to a cube of U(I′), for all I′ ∈ Q.

Combining properties (IV), (V) and the previous paragraph we obtain

Pk(N)(C(I) is (n, u)-good | F(I−))

≥ P({G1 ⊃ G3} ∩ {G3 satisfies properties (i) and (ii)})

≥ 1 − ε.

Therefore, (3.7) holds for the index I given that (3.8) holds for all indices I′ < I. A
recursive use of this argument – recall that (3.7) is valid for I0 (the smallest index
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according to the ordering) – yields that (3.7) holds for all I. Taking I = ∅ in (3.7)
proves the lemma. �

We are now able to conclude the proof of Theorem 3.2.

Proof of Theorem 3.2: Let p > pc(d) and consider a sequence (k(N))N≥2 such that
k(N)/Nd ≥ p, for all N ≥ 2. We get, using both Lemma 3.7 and Lemma 3.5, that
for any ε > 0 such that (1− ε)p > pc(d), there exists N0, depending on ε, such that

Pk(N)(percolation in Dn
k(N)) ≥ Pk(N)([0, 1]d is (n, u)-good) ≥ 1 − ε, (3.10)

for N ≥ N0. It is well known (see e.g. Falconer and Grimmett (1992)) that

{[0, 1]d is crossed by Dk(N)} =

∞
⋂

n=1

{percolation in Dn
k(N)}.

Hence, taking the limit n → ∞ in (3.10) yields that for ε > 0 small enough

Pk(N)([0, 1]d is crossed by Dk(N)) ≥ 1 − ε, (3.11)

for N ≥ N0. Therefore,

θ(k(N), N, d) → 1,

as N → ∞. �

3.3. Proof of Theorem 1.4.

Proof of Theorem 1.4: We use the idea of the proof of Theorem 3.1 and the result
of Theorem 3.2. Fix some p0 such that pc(d) < p0 < p and set k(N) := bp0N

dc.
Consider the event F that in the GFP model with generator Y = Y (N, d) there
exists an infinite tree of retained subcubes such that each subcube in the tree
contains at least k(N) retained subcubes in the tree. Similar to the proof of Lemma
3.3, we prove that P(F ) → 1 as N → ∞. We then show that the law of Dk(N) is
stochastically dominated by the conditional law of DY , conditioned on the event
F . By Theorem 3.2 we can then conclude that φ(Y (N, d), N, d) → 1 as N → ∞.

Consider the construction of DY . We will use the same definition of m-good as in
Section 3.1, that is, if a level-n cube is retained and contains at least k(N) retained
subcubes, we call this level-n cube 0-good. Recursively, we say that a level-n cube
is (m + 1)-good if it is retained and contains at least k(N) m-good level-(n + 1)
subcubes. We call the unit cube ∞-good if it is m-good for every m ≥ 0. Define
the following events

Fm := {[0, 1]d is m-good},

F := {[0, 1]d is ∞-good}.

We will show that for every ε > 0 such that (1−ε)p > p0 there exists N0 = N0(ε)
such that, for all m ≥ 0,

P(Fm) > 1 − ε, for all N ≥ N0. (3.12)

The proof of (3.12) is similar to the proof of Lemma 3.3. Let ε > 0 be such that
(1 − ε)p > p0. Take δ > 0 such that (1 − ε)p > p0 + δ. Then, take N0 so large that

1 −
1

4δ2N
> 1 − ε/2 and (3.13)

P(Y ≥ pNd) > 1 − ε/2, (3.14)
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for all N ≥ N0. We prove that (3.12) holds for this N0 and all m ≥ 0, by induction
on m. Since k(N) = bp0N

dc ≤ pNd it follows from (3.14) that P(F0) > 1 − ε, for
all N ≥ N0.

Next, assume that (3.12) holds for some m ≥ 0. The probability that a level-1
cube is m-good, given that it is retained, is equal to P(Fm). It follows that, given
that the number of retained level-1 cubes equals y, the number of m-good level-1
cubes has a binomial distribution with parameters y and P(Fm). By our choices
for N0 and δ we get

P(Fm+1) =
∑

y≥k(N)

P(X(y, P(Fm)) ≥ k(N)) P(Y = y)

≥ P(X(bpNdc, P(Fm)) ≥ p0N
d) P(Y ≥ bpNdc)

≥ P(X(bpNdc, 1 − ε) ≥ p0N
d)(1 − ε/2)

≥

(

1 −
VarX(bpNdc, 1 − ε)

(p0 − (1 − ε)p)2N2d

)

(1 − ε/2)

≥

(

1 −
(1 − ε)εpNd

δ2N2d

)

(1 − ε/2)

≥

(

1 −
1

4δ2Nd

)

(1 − ε/2)

≥ (1 − ε/2)(1 − ε/2) > 1 − ε,

for all N ≥ N0. Hence, the induction step is valid.
Analogously to the proof of Theorem 3.1 we use the event F =

⋂∞
m=1 Fm to

construct two random subsets D̃k(N) and D̃Y on a common probability space, with
the following properties:

(i) D̃k(N) ⊂ D̃Y ;

(ii) the law of D̃Y is stochastically dominated by the conditional law of DY ,
conditioned on the event F ;

(iii) the law of D̃k(N) is equal to the law of Dk(N).

This construction is the same (modulo replacing the binomial distribution with Y )
as in the proof of Theorem 3.1 and is therefore omitted.

From properties (i)-(iii) and Theorem 3.2 we get

P([0, 1]d is crossed by DY (N,d)|F )

≥ P([0, 1]d is crossed by D̃Y (N,d))

≥ P([0, 1]d is crossed by D̃k(N))

= P([0, 1]d is crossed by Dk(N)) → 1,

as N → ∞. Since (3.12) implies that P(F ) → 1 as N → ∞, we obtain

P([0, 1]d is crossed by DY (N,d)) → 1,

as N → ∞. �

4. Proofs of the fat fractal results

In this section we prove our results concerning fat fractal percolation. First,
we state an elementary property of the fat fractal percolation model; it follows
immediately from Fubini’s theorem and we omit the proof.
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Proposition 4.1. The expected Lebesgue measure of the limit set of fat fractal
percolation is given by

Eλ(Dfat) =
∞
∏

n=1

pn.

4.1. Proof of Theorem 1.7. Since
∏∞

n=1 pn > 0 it follows from Proposition 4.1 that
with positive probability the limit set has positive Lebesgue measure given Dfat 6= ∅.
Theorem 1.7 states that the latter holds with probability 1.

Proof of Theorem 1.7: Let Zn denote the number of retained level-n cubes after
iteration step n and set Z0 := 1. Since the retention probabilities pn vary with n,
the process (Zn)n≥1 is a so-called branching process in a time-varying environment.
Following the notation of Lyons (1992) let Ln be a random variable, having the
distribution of Zn given that Zn−1 = 1. Note that Ln has a binomial distribution
with parameters Nd and pn.

Define the process (Wn)n≥1 by

Wn :=
Zn

∏n

i=1 piNd
.

It is straightforward to show that (Wn)n≥1 is a martingale:

E[Wn|Wn−1] =
E[Zn|Zn−1]
∏n

i=1 piNd
=

Zn−1
∏n

i=1 piNd
E[Zn|Zn−1 = 1]

=
Zn−1pnNd

∏n
i=1 piNd

= Wn−1.

The Martingale Convergence Theorem tells us that Wn converges almost surely to
a random variable W . Theorem 4.14 of Lyons (1992) states that if

A := sup
n

||Ln||∞ < ∞,

then W > 0 a.s. given non-extinction. It is clearly the case that A < ∞, because
Ln can take at most the value Nd. Therefore, Wn converges to a random variable
W which is stricly positive a.s. given non-extinction.

The Lebesgue measure of the retained cubes at each iteration step n is equal to
Zn/Ndn. We have

λ(Dn
fat) =

Zn

Ndn
=

(
∏n

i=1 piN
d
)

Wn

Ndn
=

(

n
∏

i=1

pi

)

Wn. (4.1)

Letting n → ∞ in (4.1) yields λ(Dfat) = (
∏∞

i=1 pi)W . Since
∏∞

i=1 pi > 0 and
W > 0 a.s. given non-extinction, we get the desired result. �

4.2. Proof of Theorem 1.8. We start with a heuristic strategy for the proof. For
a fixed configuration ω ∈ Ω, let us call a point x in the unit cube conditionally
connected if the following property holds: If we change ω by retaining all cubes
that contain x, then x is contained in a connected component larger than one
point. We show that for almost all points x it is the case that x is conditionally
connected with probability 0 or 1. We define an ergodic transformation T on the
unit cube. The transformation T enables us to prove that the probability for a
point x to be conditionally connected has the same value for λ-almost all x. From
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this we can then conclude that either the set of dust points or the set of connected
components contains all Lebesgue measure.

Proof of Theorem 1.8: First, we have to introduce some notation. Let U be the
collection of points in [0, 1]d not on the boundary of a subcube. For each x ∈ U
there exists a unique sequence (C(x1, . . . ,xn))n≥1 of cubes of the fractal process,
where xj ∈ Jd for all j, such that

⋂

n≥1 C(x1, . . . ,xn) = {x}. Therefore, we can

define an invertible transformation φ : U → (Jd)N by φ(x) = (x1,x2, . . .). For each
n ∈ N let µn be the uniform measure on (Xn,Fn), where Xn = Jd and Fn is the
power set of Xn. Let (X,F , µ) =

⊗∞
n=1(Xn,Fn, µn) be the product space. Since

φ : (U,B(U), λ) → (X,F , µ) is an invertible measure-preserving transformation, we
have that (X,F , µ) is by definition isomorphic to (U,B(U), λ). Here B(U) denotes
the Borel σ-algebra.

Next, we define the transformation T : U → U , which will play a crucial role
in the rest of the proof. Define the auxiliary shift transformation T ∗ : X → X by
T ∗((x1,x2,x3, . . .)) = (x2,x3, . . .), for (x1,x2, . . .) ∈ X . The transformation T ∗ is
measure preserving with respect to the measure µ and also ergodic, see for instance
Walters (1982). Let T := φ−1 ◦ T ∗ ◦ φ be the induced transformation on U and
note that T is isomorphic to T ∗ and hence also ergodic. Informally, T sends a point
x ∈ U to the point Tx, in such a way that the relative position of Tx in the unit
cube is the same as the relative position of x in its level-1 cube C(x1); see Figure
4.2.

x

Tx

Figure 4.2. Illustration of the transformation T . Note that the
relative position of x in the level-1 cube is the same as the relative
position of Tx in the unit cube.

Recall that ω ∈ Ω denotes a particular realization of the fat fractal percolation
process. For x ∈ U , we define the following event.

Ax := {ω : if we set ω(C(x1, . . . ,xn)) = 1 for all n ≥ 1, then Cx
fat 6= {x}} .

In other words, Ax consists of those configurations ω such that when we change the
configuration by retaining all C(x1, . . . ,xn), then in this new configuration, x is in



Fat fractal percolation and k-fractal percolation 297

the same connected component as some y 6= x. Observe that

Ax ∩ {x ∈ Dfat} = {x ∈ Dc
fat}. (4.2)

It is easy to see that Ax is a tail event. Hence, by Kolmogorov’s 0-1 law we get
P(Ax) ∈ {0, 1} for all x ∈ U .

However, a priori it is not clear that for almost all x in the unit cube P(Ax) has
the same value. To this end, define the set V := {x ∈ U : P(Ax) = 0}. We will
show that λ(V ) ∈ {0, 1}. Recall that the relative position of Tx in the unit cube
is the same as the relative position of x in the level-1 cube C(x1). It is possible to
construct a coupling between the fractal process in the unit cube and the fractal
process in C(x1), given that C(x1) is retained, with the following property: For
every cube C(I) in C(x1), it is the case that if TC(I) is retained in the fractal
process in the unit cube, then C(I) is also retained in the fractal process in C(x1),
given that C(x1) is retained. It is straightforward that such a coupling exists since
the retention probabilities pn are non-decreasing in n. Hence,

P(ATx) ≤ P(Ax|C(x1) is retained). (4.3)

Furthermore, since Ax is a tail event, we have

P(Ax) = P(Ax|C(x1) is retained). (4.4)

It follows from (4.3) and (4.4) that P(ATx) ≤ P(Ax) for all x. This implies that
V ⊂ T−1V . Because T is measure preserving it follows that

λ(V ∆T−1V ) = λ(V \ T−1V ) + λ(T−1V \ V ) = 0 + λ(T−1V ) − λ(V ) = 0.

Ergodicity of T now yields that λ(V ) ∈ {0, 1}.
Suppose λ(V ) = 0. Then P(x ∈ Dd

fat) = P({x ∈ Dfat} \ Ax) = 0 for almost all
x ∈ [0, 1]d, by (4.2). Applying Fubini’s theorem gives

Eλ(Dd
fat) =

∫

Ω

∫

[0,1]d
1Dd

fat

(x, ω)dλdP

=

∫

[0,1]d

∫

Ω

1Dd
fat

(x, ω)dPdλ

=

∫

[0,1]d
P(x ∈ Dd

fat)dλ = 0.

Therefore λ(Dd
fat) = 0 a.s. By Theorem 1.7 we have λ(Dc

fat) > 0 a.s. given non-
extinction.

Next suppose that λ(V ) = 1. Then with a similar argument we can show that
λ(Dc

fat) = 0 and λ(Dd
fat) > 0 a.s. given non-extinction. �

4.3. Proof of Theorem 1.9.

Proof of Theorem 1.9: (i) Suppose that Dfat has a non-empty interior with positive
probability. Then we have

0 < P(Dfat has non-empty interior)

= P(∃n, ∃i1, . . . , in : C(i1, . . . , in) ⊂ Dfat)

≤
∑

n,i1,...,in

P(C(i1, . . . , in) ⊂ Dfat).
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Since we sum over countably many cubes, there must exist n and i1, . . . , in such that
P(C(i1, . . . , in) ⊂ Dfat) > 0. Hence, by translation invariance, P(C(i1, . . . , in) ⊂
Dfat) > 0 for this specific n and all i1, . . . , in. We can apply the FKG inequality to
obtain P(Dfat = [0, 1]d) = P(C(i1, . . . , in) ⊂ Dfat ∀i1, . . . , in) > 0. Since P(Dfat =

[0, 1]d) =
∏∞

n=1 pNdn

n , this proves the first part of the theorem.

(ii) Suppose
∏∞

n=1 pNn

n > 0. Then for each x ∈ [0, 1]d−1 we have P({x}× [0, 1] ⊂
Dfat) ≥

∏∞
n=1 pNn

n > 0. Let λd−1 denote (d − 1)-dimensional Lebesgue measure.
Applying Fubini’s theorem gives

Eλd−1({x ∈ [0, 1]d−1 : {x} × [0, 1] ⊂ Dfat})

=

∫

Ω

∫

[0,1]d−1

1{x}×[0,1]⊂Dfat
dλd−1dP

=

∫

[0,1]d−1

∫

Ω

1{x}×[0,1]⊂Dfat
dPdλd−1

=

∫

[0,1]d−1

P({x} × [0, 1] ⊂ Dfat)dλd−1 > 0.

Hence,

λd−1({x ∈ [0, 1]d−1 : {x} × [0, 1] ⊂ Dfat}) > 0 (4.5)

with positive probability. Observe that

Dc
fat ⊃

⋃

x∈[0,1]d−1:{x}×[0,1]⊂Dfat

{x} × [0, 1].

In particular,

λ(Dc
fat) ≥ λd−1({x ∈ [0, 1]d−1 : {x} × [0, 1] ⊂ Dfat}).

From (4.5) we conclude that λ(Dc
fat) > 0 with positive probability. It now follows

from Theorem 1.8 that the Lebesgue measure of the dust set is 0 a.s.

(iii) Next assume that
∏∞

n=1 pNdn

n > 0. For each level n, we have P(Dn
fat =

Dn−1
fat ) ≥ pNdn

n . Since
∏∞

n=1 pNdn

n > 0 is equivalent to
∑∞

n=1(1 − pNdn

n ) < ∞, we
have

∞
∑

n=1

P(Dn
fat 6= Dn−1

fat ) ≤
∞
∑

n=1

(1 − pNdn

n ) < ∞.

Applying the Borel-Cantelli lemma gives that, with probability 1, {Dn
fat 6= Dn−1

fat }
occurs for only finitely many n. Hence, with probability 1 there exists an n such
that Dfat can be written as the union of level-n cubes. �

4.4. Proof of Theorem 1.11.

Proof of Theorem 1.11: (iii) ⇒ (ii). Trivial.
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(ii) ⇒ (i). Suppose P(x connected to y) > 0 for all x, y ∈ U , for some set
U ⊂ [0, 1]2 with λ(U) > 0. Fix y ∈ U . By Fubini’s theorem

Eλ(Dc
fat) =

∫

Ω

∫

[0,1]2
1Dc

fat
(x, ω)dλ(x)dP(ω)

=

∫

[0,1]2

∫

Ω

1Dc
fat

(x, ω)dP(ω)dλ(x)

=

∫

[0,1]2
P(x ∈ Dc

fat)dλ(x)

≥

∫

U\{y}

P(x connected to y)dλ(x) > 0.

Hence λ(Dc
fat) > 0 with positive probability. By Theorem 1.8 it follows that

λ(Dc
fat) > 0 a.s. given non-extinction of the fat fractal process.

(i) ⇒ (iii). Next suppose that λ(Dc
fat) > 0 a.s. given non-extinction of the fat

fractal process. For points x ∈ [0, 1]2 not on the boundary of a subcube, define the
event Ax as in the proof of Theorem 1.8. It follows from the proof of Theorem 1.8
that P(Ax) = 1 for all x ∈ V , for some set V ⊂ [0, 1]2 with λ(V ) = 1. By (4.2) we
have for all x ∈ V

P(x ∈ Dc
fat) = P(x ∈ Dfat) > 0.

Let x ∈ V . Then

0 < P(x ∈ Dc
fat) ≤

∞
∑

n=1

P(diam(Cx
fat) > 1

n
),

where diam(Cx
fat) denotes the diameter of the set Cx

fat. So there exists a natural
number nx such that P(diam(Cx

fat) > 1
nx

) > 0. Hence

P(x connected to S(x, 1
2nx

)) > 0,

where S(x, 1
2nx

) is a circle centered at x with radius 1
2nx

. Write x = (x1, x2) and

define the following subsets of R
2

H1 = [0, 1]× [x2 −
1

4nx
, x2],

H2 = [0, 1]× [x2, x2 + 1
4nx

],

V1 = [x1 −
1

4nx
, x1] × [0, 1],

V2 = [x1, x1 + 1
4nx

] × [0, 1].

Note that for every x ∈ [0, 1]2 it is the case that at least one horizontal strip Hi

and at least one vertical strip Vj is entirely contained in [0, 1]2. Define the event
Γx by

Γx =
⋂

i∈{1,2}:Hi⊂[0,1]2

{horizontal crossing in Hi}

∩
⋂

j∈{1,2}:Vj⊂[0,1]2

{vertical crossing in Vj}.

See Figure 4.3 for an illustration of the event Γx. From Theorem 2 in Chayes et al.
(1988) it follows that in the MFP model with parameter p ≥ pc(N, 2), the limit
set Dp connects the left-hand side of [0, 1]2 with its right-hand side with positive
probability. It then follows from the RSW lemma (e.g. Lemma 5.1 in Dekking
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and Meester (1990)) and the FKG inequality that Pp(Γx) > 0. Let An denote

the event of complete retention until level n, i.e. ω(C(I)) = 1 for all I ∈ J (n−1).
Since

∏∞
n=1 pn > 0 there exists an integer n0 such that pn ≥ pc(N, 2) for all

n ≥ n0. Hence, the probability measure Pfat(·|An0
) dominates Ppc(N,2)(·). Since

Pfat(An0
) > 0 it follows that Pfat(Γx) > 0.

[����
2

V

H

H

1 V�

�

1

S������	


Figure 4.3. Realization of the event Γx.

Observe that for x, y ∈ V

{x connected to y}

⊃ {x connected to S(x, 1
2nx

)} ∩ Γx ∩ {y connected to S(y, 1
2ny

)} ∩ Γy.

Since all four events on the right-hand side are increasing and have positive prob-
ability, we can apply the FKG inequality to conclude that for all x, y ∈ V we have
P(x connected to y) > 0. �
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