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UMR CNRS 5219, Université de Toulouse, France
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Abstract. We revisit central limit theorems for additive functionals of ergodic
Markov diffusion processes. Translated in the language of partial differential equa-
tions of evolution, they appear as diffusion limits in the asymptotic analysis of
Fokker-Planck type equations. We focus on the square integrable framework, and
we provide tractable conditions on the infinitesimal generator, including degenerate
or anomalously slow diffusions. We take advantage on recent developments in the
study of the trend to the equilibrium of ergodic diffusions. We discuss examples
and formulate open problems.

1. Introduction

Let (Xt)t≥0 be a continuous time strong Markov process with state space R
d, non

explosive, irreducible, positive recurrent, with unique invariant probability measure
µ. Following Maruyama and Tanaka (1959, th. 5.1 p. 170), for every f ∈ L

1(µ), if
almost surely (a.s.) the function s ∈ R+ 7→ f(Xs) is locally Lebesgue integrable,
then

St

t

a.s.−→
t→∞

∫

f dµ where St :=

∫ t

0

f(Xs) ds. (1.1)
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If X0 ∼ µ then by the Fubini theorem (1.1) holds for all f ∈ L
1(µ) and the

convergence holds additionally in L
1 thanks to the dominated convergence theorem.

The statement (1.1) which relates an average in time with an average in space is an
instance of the ergodic phenomenon. It can be seen as a strong law of large numbers
for the additive functional (St)t≥0 of the Markov process (Xt)t≥0. The asymptotic
fluctuations are described by a central limit theorem which is the subject of this
work. Let us assume that X0 ∼ µ and f ∈ L

2(µ) with
∫

f dµ = 0 and f 6= 0. Then
for all t ≥ 0 we have St ∈ L

2(µ) ⊂ L
1(µ) and E(St) = 0. We say that (St)t≥0

satisfies to a central limit theorem (CLT) when

St

st

law−→
t→∞

N (0, 1) (CLT)

for a deterministic positive function t 7→ st which may depend on f . Here N (0, 1)
stands for the standard Gaussian law on R with mean 0 and variance 1. By analogy
with the CLT for i.i.d. sequences one may expect that s2t = Var(St) and that this
variance is of order t as t → ∞. A standard strategy for proving (CLT) consists
in representing (St)t≥0 as a sum of an L

2-martingale plus a remainder term which
vanishes in the limit, reducing the proof to a central limit theorem for martingales.
This strategy is particularly simple under mild assumptions Jacod and Shiryaev
(2003, VII.3 p. 486). Namely, if L is the infinitesimal generator of (Xt)t≥0 with

domain D(L) ⊂ L
2(µ) and if g ∈ D(L) then (Mt)t≥0 defined by

Mt := g(Xt) − g(X0) −
∫ t

0

(Lg)(Xs) ds

is a local L
2 martingale. Now if g2 ∈ D(L) and Γ(g) := L(g2)−2gLg ∈ L

1(µ), then

〈M〉t =

∫ t

0

Γ(g)(Xs) ds.

The law of large numbers (1.1) yields limt→∞ t−1〈M〉t =
∫

Γ(g) dµ. As a conse-
quence, for a prescribed f , if the Poisson equation Lg = f admits a mild enough
solution g then

Mt

st
=
g(Xt) − g(X0)

st
− St

st
.

This suggests to deduce (CLT) from a CLT for martingales. We will revisit this
strategy. Beyond (CLT), we say that (St)t≥0 satisfies to a Multitimes Central Limit

Theorem (MCLT) when for every finite sequence 0 < t1 ≤ · · · ≤ tn <∞,
(

St1/ε

st1/ε
, . . . ,

Stn/ε

stn/ε

)

law−→
ε→0

L((Bt1 , . . . , Btn
)) (MCLT)

where (Bt)t≥0 is a standard Brownian Motion on R. Taking n = 1 gives (CLT). To

capture multitime correlations, one may upgrade the convergence in law in (MCLT)
to an L

2 convergence. The statement (MCLT) means that as ε → 0, the rescaled
process (St/ε/st/ε)t≥0

converges in law to a Brownian Motion, for the topology of

finite dimensional marginal laws. At the level of Chapman-Kolmogorov-Fokker-
Planck equations, (MCLT) is a diffusion limit for a weak topology.

We emphasize that the statement (MCLT) does not allow to capture certain
pathwise functionals which depend on an infinite number of coordinates, such that
the supremum over a time interval. This can be circumvented by proving tightness,
using for instance Doob maximal inequalities or by using Aldous tightness criteria.
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The statement (MCLT) plus tightness is often referred to as FCLT (Functional
Central Limit Theorem) or Donsker Invariance Principle. Our main purpose being
to clarify the links between speed of convergence to equilibrium and the CLT, we
do not consider these aspects in this paper.

In this work, we focus on the case where (Xt)t≥0 is a Markov diffusion process

on E = R
d, and we seek for conditions on f and on the infinitesimal generator

in order to get (CLT) or even (MCLT). We shall revisit the renowned result of
Kipnis and Varadhan (1986), and provide an alternative approach which is not
based on the resolvent. Our results cover fully degenerate situations such as the
kinetic model studied in Gautrais et al. (2009); Degond and Motsch (2008); Cattiaux
et al. (2010a). More generally, we believe that a whole category of diffusion limits
which appear in the asymptotic analysis of evolution partial differential equations
of Fokker-Planck type enters indeed the framework of the central limit theorems
we shall discuss. We also explain how the behavior out of equilibrium (i.e. X0 6∼
µ) may be recovered from the behavior at equilibrium (i.e. X0 ∼ µ) by using
propagation of chaos (decorrelation), for instance via Lyapunov criteria ensuring a
quick convergence in law of Xt to µ as t → ∞. Note that since we focus on an
L

2 framework, the natural normalization is the square root of the variance and we
can only expect Gaussian fluctuations. We believe however that stable limits that
are not Gaussian, also known as “anomalous diffusion limits”, can be studied using
similar tools (one may take a look at the works Jara et al. (2009); Mellet et al.
(2008) in this direction).

The literature on central limit theorems for discrete or continuous Markov pro-
cesses is immense and possesses many connected components. Some instructive en-
try points for ergodic Markov processes are given by Derriennic and Lin (2001a,b,
2003); Cuny and Lin (2009); Hairer and Pavliotis (2004); Kontoyiannis and Meyn
(2003); Kutoyants (2004); Kontoyiannis and Meyn (2005); Glynn and Meyn (1996);
Pardoux and Veretennikov (2001, 2003, 2005); Landim (2003). We refer to Ko-
morowski et al. (2012) and Höpfner and Löcherbach (2003) for null recurrent
Markov processes. Central limit theorems for additive functionals of Markov chains
can be traced back to the works of Doeblin (1938). The discrete time allows to de-
compose the sample paths into excursions. The link with stationary sequences goes
back to Gordin (1969), see also Ibragimov and Linnik (1965) and Nagaev (1957)
(only stable laws can appear at the limit). The link with martingales goes back
to Gordin and Lif̌sic (1978). For diffusions, the martingale method was developed
by Kipnis and Varadhan (1986), see also Helland (1982) (the Poisson equation is
solved via the resolvent).

Outline. Section 2 provides some notations and preliminaries including a dis-
cussion on the variance of St. Section 3 is devoted to MCLT at equilibrium and
contains a lot of known results. We recall how to use the Poisson equation and
compare with the known results on stationary sequences, which seems more power-
ful. In particular, we give in section 3.1 a direct new proof of the renowned MCLT
of Kipnis and Varadhan (1986, cor. 1.9) in the reversible case. In section 4.3 we
provide a non-reversible version of the Kipnis-Varadhan theorem. Actually some of
the results of section 4 are written in the CLT situation, but under mild assump-
tions, they can be extended to a general MCLT (see Proposition 8.1). All these
general results are illustrated by the examples discussed in Section 5. In sections
6 and 7 we exhibit a particularly interesting behavior, i.e. a possible anomalous
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rate of convergence to a Gaussian limit. This behavior is a consequence of a not
too slow decay to equilibrium in the ergodic theorem. Finally we give in the next
section some results concerning fluctuations out of equilibrium.

2. The framework

Unless otherwise stated (Xt)t≥0 is a continuous time strong Markov process

with state space R
d, non explosive, irreducible, positive recurrent, with unique

invariant probability measure µ. We realize the process on a canonical space and
we denote by Pν the law of the process with initial law ν = L(X0). In particular
Px := Pδx

= L((Xt)t≥0|X0 = x) for all x ∈ E. We denote by Eν and Varν the
expectation and variance under Pν . For all t ≥ 0, all x ∈ E, and every f : E → R

integrable for L(Xt|X0 = x), we define the function Pt(f) : x 7→ E(f(Xt)|X0 = x).
One can check that Pt(f) is well defined for all f : E → R which is measurable and
positive, or in L

p(µ) for 1 ≤ p ≤ ∞. On each L
p(µ) with 1 ≤ p ≤ ∞, the family

(Pt)t≥0 forms a Markov semigroup of linear operators of unit norm, leaving stable
each constant function and preserving globally the set of non negative functions.
We denote by L the infinitesimal generator of this semigroup in L

2(µ), defined
by Lf := limt→0 t

−1(Pt(f) − f). We assume that (Xt)t≥0 is a diffusion process
(this implies that for all x ∈ E the law Px is supported in the set of continuous
functions from R+ to R

d taking the value x at time 0) and that there exists an
algebra D(L) of uniformly continuous and bounded functions, containing constant
functions, which is a core for the extended domain De(L) of the generator, see e.g.
Cattiaux and Léonard (1996); Dellacherie and Meyer (1987). Following Cattiaux
and Léonard (1996), one can then show that there exists a countable orthogonal
family (Cn) of local martingales and a countable family (∇n) of operators such that
for all f ∈ De(L), the stochastic process (Mt)t≥0 defined from f by

Mt := f(Xt) − f(X0) −
∫ t

0

Lf(Xs) ds =
∑

n

∫ t

0

∇nf(Xs) dC
n
s , (2.1)

is a square integrable local martingale for all probability measure on E. Its bracket
is

〈M〉t =

∫ t

0

Γ(f)(Xs) ds.

where Γ(f) is the carré-du-champ functional quadratic form defined for any f ∈
D(L) by

Γ(f) :=
∑

n

∇nf ∇nf. (2.2)

We write for convenience Mt =
∫ t

0
∇f(Xs) dCs. In terms of Dirichlet forms, all this,

in the reversible case, is roughly equivalent to the fact that the local pre-Dirichlet
form

E(f, g) =

∫

Γ(f, g) dµ f, g ∈ D

is closable, and has a regular (or quasi-regular) closure (E ,D(E)), to which the semi
group Pt is associated. With these definitions, for f ∈ D(L),

E(f) :=

∫

Γ(f) dµ = −2

∫

f Lf dµ = −∂t=0‖Ptf‖2
L2(µ). (2.3)
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The diffusion property states that for every smooth Φ : R
n → R and f1, . . . , fn ∈

D(L),

LΦ(f1, . . . , fn) =

n
∑

i=1

∂Φ

∂xi
(f1, . . . , fn)Lfi +

1

2

n
∑

i,j=1

∂2Φ

∂xi ∂xj
(f1, . . . , fn) Γ(fi, fj)

where Γ(f, g) = L (fg) − f Lg − g Lf is the bilinear form associated to the carré-
du-champ. We shall also use the adjoint L∗ of L in L

2(µ) given for all f, g ∈ D(L)
by

∫

fLg dµ =

∫

gL∗f dµ

and the corresponding semigroup (P ∗
t )t≥0. We shall mainly be interested by diffu-

sion processes with generator of the form

L =
1

2

d
∑

i,j=1

Aij(x) ∂
2
i,j +

d
∑

i=1

Bi(x) ∂i (2.4)

where x 7→ A(x) := (Ai,j(x))1≤i,j≤d is a smooth field of symmetric positive semidef-
inite matrices, and x 7→ b(x) := (bi(x))1≤i≤d is a smooth vector field. If we denote
by (Xx

t )t≥0 a process of law Px then it is the solution of the stochastic differential
equation

dXx
t = b(Xx

t ) dt+
√
A(Xx

t )dBt, with Xx
0 = x (2.5)

where (Bt)t≥0 is a d-dimensional standard Brownian Motion, and we have also

Γ(f) = 〈A∇f,∇f〉.
Note that since the process admits a unique invariant probability measure µ, the
process is positive recurrent. We say that the invariant probability measure µ is
reversible when L = L∗ (and thus Pt = P ∗

t for all t ≥ 0).
In practice, the initial data consists in the operator L. We give below a criterion

on L ensuring the existence of a unique probability measure and thus positive
recurrence.

Definition 2.1 (Lyapunov function). Let ϕ : [1,+∞[→ ]0,∞[. We say that V ∈
De(L) (the extended domain of the generator, see Cattiaux and Léonard (1996);
Dellacherie and Meyer (1987)) is a ϕ-Lyapunov function if V ≥ 1 and if there exist
a constant κ and a closed petite set C such that for all x

LV (x) ≤ −ϕ(V (x)) + κ1C(x) .

Recall that C is a petite set if there exists some probability measure p(dt) on R+

such that for all x ∈ C ,
∫∞

0
Pt(x, ·) p(dt) ≥ ν for a non trivial positive measure ν.

In the R
d situation with L given by (2.4) with smooth coefficients, compact

subsets are petite sets and we have the following Has′minskĭı (1980):

Proposition 2.2. If L is given by (2.4) a sufficient condition for positive recurrence
is the existence of a ϕ-Lyapunov function with ϕ(u) = 1 and for C some compact
subset. In addition, for all x ∈ R

d the law of (2.5) denoted by Pt(x, .) converges to
the unique invariant probability measure µ in total variation distance, as t→ +∞.

We say that an invariant probability measure µ is ergodic if the only invariant
functions (i.e. such that Ptf = f for all t) are the constants. In this case the

ergodic theorem says that the Cesàro means 1
t

∫ t

0
f(Xs) ds converge, as t→ ∞, Pµ
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almost surely and in L
1, to

∫

f dµ for any f ∈ L
1(µ). We say that the process

is strongly ergodic if Ptf →
∫

f dµ in L
2(µ) for any f ∈ L

2(µ) (this immediately

extends to L
p(µ), 1 ≤ p < +∞) and recall that t 7→ ‖Ptf‖L2(µ) is always non

increasing. If µ is ergodic and reversible then the process is strongly ergodic. We
say that the Dirichlet form is non degenerate if E(f, f) = 0 if and only if f is
constant. Again the reversible ergodic case is non degenerate, but kinetic models
will be degenerate. We refer to section 5 in Cattiaux (2004) for a detailed discussion
of these notions.

Lemma 2.3 (Variance in the reversible case). Assume that µ is reversible and
0 6= f ∈ L

2(µ) with
∫

f dµ = 0. Then we have the following properties:

(1) lim inft→∞
1
t Varµ(St) > 0

(2) lim supt→∞
1
t Varµ(St) <∞ iff the Kipnis-Varadhan condition is satisfied:

V :=

∫ ∞

0

(
∫

(Psf)2 dµ

)

ds <∞, (2.6)

and in this case limt→∞
1
t Varµ(St) = 4V

The quantity 4V is the asymptotic variance of the scaled additive functional 1
tSt.

Proof : By using the Markov property, and the invariance of µ, we can write

Varµ(St) = E(S2
t )

= 2

∫

0≤u≤s≤t

E[f(Xs)f(Xu)] duds

= 2

∫

0≤u≤s≤t

(
∫

fPs−uf dµ

)

duds

= 2

∫

0≤u≤s≤t

(
∫

fPuf dµ

)

duds

= 2

∫

0≤u≤s≤t

(
∫

P ∗
u/2fPu/2f dµ

)

duds

= 4

∫ t/2

0

(t− 2s)

(
∫

P ∗
s fPsf dµ

)

ds.

Using now the reversibility of µ and the decay of the L
2 norm, we obtain

2t

∫ t/4

0

(
∫

(Psf)2 dµ

)

ds ≤ Varµ(St) ≤ 4t

∫ t/2

0

(
∫

(Psf)2 dµ

)

ds.

This implies the first property. The second property follows from the Cesàro rule
and

Varµ(St)

t
=

2

t

∫

0≤u≤s≤t

(
∫

P 2
u/2f dµ

)

du ds.

�

Remark 2.4 (Non reversible case). If µ is not reversible, we do not even know
whether

∫

P ∗
s fPsf dµ is non-negative or not. Nevertheless we may define V− and

V+ by

V− := lim inf
t→∞

∫ t

0

(
∫

PsfP
∗
s f dµ

)

ds and V+ := lim sup
t→∞

∫ t

0

(
∫

PsfP
∗
s f dµ

)

ds
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abridged into V if V+ = V−. As in the reversible case, if V+ < +∞ then V+ = V−
and limt→∞ t−1Varµ(St) = 4V . We ignore if V−(f) > 0 as in the reversible case.
We have thus a priori to face two type of situations: either V+ < +∞ and the
asymptotic variance exists and Varµ(St) is of order t as t → ∞, or V+ = +∞ and
Varµ(St) may evolve on a different scale.

Remark 2.5 (Possible limits). For every sequence (νn)n≥1 of probability measure on
R with unit second moment and zero mean, it can be shown by using for instance the
Skorokhod representation theorem that all adherence values of (νn)n≥1 for the weak
topology (with respect to continuous bounded functions) have second moment ≤ 1
and mean 0. In particular, if an adherence value is a stable law then it is necessarily
a centered Gaussian with variance ≤ 1. As a consequence, if (St/

√

Varµ(St))t≥0

converges in law to a probability measure as t→ ∞, then this probability measure
has second moment ≤ 1 and mean 0, and if it is a stable law, then it is a centered
Gaussian with variance ≤ 1.

3. Poisson equation and martingale approximation

We present in this section a strategy to prove (MCLT) which consists in a re-
duction to a more standard result for a family of martingales. We start by solving
the Poisson equation: we fix 0 6= f ∈ L

2(µ),
∫

f dµ = 0, and we seek for g solving

Lg = f. (3.1)

The Poisson equation (3.1) corresponds to a so called coboundary in ergodic theory.
If (3.1) admits a regular enough solution g, then by Itô’s formula, for every t ≥ 0
and ε > 0,

Sε−1t =

∫ ε−1t

0

f(Xs) ds = g(Xε−1t) − g(X0) −M ε
t (3.2)

where (M ε
t )t≥0 is a local martingale with brackets

〈M ε〉t =

∫ ε−1t

0

Γ(g)(Xs) ds. (3.3)

Now the Rebolledo MCLT for L
2 local martingales (see Rebolledo (1980) or Whitt

(2007)) says that if

v2(ε)〈M ε〉t
P−→

ε→0
h2(t) (3.4)

for all t ≥ 0, where v and h are deterministic functions which may depend on f via
g, then

(v(ε)M ε
t )t≥0

Law−→
ε→0

L
(

(
∫ t

0

h(s) dWs

)

t≥0

)

(3.5)

where (Wt)t≥0 is a standard Brownian Motion, the convergence in law being in the

sense of finite dimensional process marginal laws. To obtain (MCLT), it suffices to
show the convergence in probability to 0 of v(ε)g(Xε−1t) as ε → 0, for any fixed
t ≥ 0. Moreover, if this convergence holds in L

2 then the normalization factor v
can be chosen such that

lim
ε→0

v2(ε)E
[

S2
ε−1t

]

= lim
ε→0

v2(ε)E[〈M ε〉t] = lim
ε→0

v2(ε)
t

ε
E(g) = h2(t) (3.6)
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i.e. we recover v(ε) =
√
ε and V = limt→∞ t−1Varµ(St) = 1

4E(g). To summarize,
this martingale approach reduces the proof of (MCLT) to the following three steps:

• solve the Poisson equation Lg = f in the g variable
• control the regularity of g in order to use Itô’s formula (3.2)
• check the convergence to 0 of g(Xε−1t) as ε→ 0 in an appropriate way.

Let us start with a simple result which follows from the discussion above.

Theorem 3.1 (MCLT via Poisson equation in L
2). If 0 6= f ∈ L

2(µ) with
∫

f dµ =
0, and if f ∈ D(L−1) i.e. there exists g ∈ D(L) such that Lg = f where L is seen
as an unbounded operator, then Varµ(St) ∼t→∞ tE(g, g) and (MCLT) holds under
Pµ with s2t (f) = tE(g, g).

Let us examine a natural candidate to solve the Poisson equation. Assume that
Lg = f in L

2(µ) and that
∫

g dµ = 0 (note that since L1 = 0 we may always center
g). Then

Ptg − g =

∫ t

0

∂sPsg ds =

∫ t

0

LPsg ds =

∫ t

0

PsLg ds =

∫ t

0

Psf ds

so that, if the process is strongly ergodic, limt→∞ Ptg =
∫

g dµ = 0, and thus

g = −
∫ ∞

0

Psf ds. (3.7)

For the latter to be well defined in L
2(µ), it is enough to have some quantitative

controls for the convergence of Psf to 0 as s→ ∞. Conversely, for a deterministic
T > 0 we set

gT := −
∫ T

0

Psf ds (3.8)

which is well defined in L
2(µ) and satisfies to

LgT = lim
u→0

PugT − gT

u
= −∂u=0

∫ u+T

u

Psf ds = f − PT f.

If gT converges in L
2 to g then Lg = f . In particular, we obtain the following.

Corollary 3.2 (Solving the Poisson equation in L
2). Let 0 6= f ∈ L

2(µ) with
∫

f dµ = 0.

(1) If we have
∫ ∞

0

s‖Psf‖L2(µ) ds <∞, (3.9)

then f ∈ D(L−1) and g in (3.7) is in L
2(µ) and solves the Poisson equation

(3.1)
(2) If µ is reversible then f ∈ D(L−1) if and only if

∫ ∞

0

s‖Psf‖2
L2(µ) ds <∞, (3.10)

and in this case the Poisson equation (3.1) has a unique solution g given
by (3.7).

Moreover, condition (3.9) implies condition (3.10).
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Proof : The existence of g ∈ L
2(µ) in the case (3.9) is immediate. For (3.10)

consider gT defined in (3.8). For a > 0 we then have, using reversibility

∫

|gT+a − gT |2 dµ = 2

∫

(

∫ T+a

T

Psf

∫ s

T

Puf du ds

)

dµ

= 2

∫

(

∫ T+a

T

∫ s

T

(

P s+u
2
f
)2

du ds

)

dµ

= 4

∫

(

∫ T+a

T

(u− T ) (Puf)2 du

)

dµ,

so that (gT )T is Cauchy, hence convergent, if and only if (3.10) is satisfied. In
addition, taking T = 0 above gives

∫

g2
T dµ = 4

∫ T

0

u

(
∫

(Puf)2 dµ

)

du.

Hence the family (gT )T is bounded in L
2 only if (3.10) is satisfied, i.e. here con-

vergence and boundedness of (gT )T are equivalent.
To deduce (3.10) from (3.9), we note that t 7→ ‖Ptf‖L2(µ) is non-increasing, and

hence,

t ‖Ptf‖L2(µ) ≤
∫ t

0

‖Psf‖L2(µ)ds ≤
∫ ∞

0

‖Psf‖L2(µ)ds

so that ‖Ptf‖L2(µ) = O(1/t) by (3.9), which gives (3.10). We remark by the way

that conversely, (3.10) implies ‖Ptf‖L2(µ) = O(1/t) since by the same reasoning,

1

2
t2 ‖Ptf‖2

L2(µ) ≤
∫ +∞

0

s ‖Psf‖2
L2(µ) ds.

�

Recent results on the asymptotic behavior of such semigroups can be used to
give tractable conditions and general examples. We shall recall them later. In
particular for R

d valued diffusion processes we will compare them with Glynn and
Meyn (1996); Pardoux and Veretennikov (2001, 2003, 2005).

Actually one can (partly) improve on this result. For instance if µ is a reversible
measure, the same MCLT holds under the weaker assumption f ∈ D(L−1/2) as
shown in Kipnis and Varadhan (1986) and revisited in the next subsection too. For
non-reversible Markov chains, a systematic study of fractional Poisson equation is
done in Derriennic and Lin (2001b). The connection with the rate of convergence
of Ptf is also discussed therein, and the result “at equilibrium” is extended to
an initial δx Dirac mass in Derriennic and Lin (2001a, 2003) extending Maxwell
and Woodroofe (2000) for the central limit theorem (i.e. for each marginal of the
process). The previous f ∈ D(L−1/2) is however no more sufficient (see the final
discussion in Derriennic and Lin (2003)). It is thus more natural to look at the rate
of convergence (as in Derriennic and Lin (2003); Maxwell and Woodroofe (2000))
rather than at fractional operators.
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3.1. Reversible case and Kipnis-Varadhan theorem. In this section we assume that
µ is reversible. Corollary 3.2 states that (2.6) (equivalent to the existence of the
asymptotic variance) is not sufficient to solve the Poisson equation, even in a weak
sense. Nevertheless it is enough to get (MCLT), the result below is Corollary 1.9
of Kipnis and Varadhan (1986).

Theorem 3.3 (MCLT from the existence of asymptotic variance). Assume that µ
is reversible, that 0 6= f ∈ L

2(µ) with
∫

f dµ = 0, and that f satisfies the Kipnis-
Varadhan condition (2.6). Then (MCLT) holds under Pµ with s2t = 4tV , and
Varµ(St) ∼t→∞ s2t .

Proof : For T > 0 introduce gT by (3.8), and the corresponding family ((∇ngT ))T>0

(recall (2.1)). We thus have LgT = f − PT f and, for all S ≤ T ,

∫

Γ(gT − gS) dµ = 2

∫

(−L(gT − gS)) (gT − gS) dµ

= 2

∫ T

S

∫

(PSf − PT f)Psf dµ ds

= 2

∫ T

S

∫

(P 2
(s+S)/2f − P 2

(s+T )/2f) dµ ds

≤ 4

∫ ∞

S

∫

P 2
s f dµ ds,

so that according to (2.6), the family ((∇ngT ))T>0 is Cauchy in L
2(µ). It follows

that it strongly converges to h in L
2(µ). On the other hand, using Itô’s formula,

ST
t/ε = gT (Xt/ε) − gT (X0) −MT

t +

∫ t/ε

0

PT f(Xs) ds (3.11)

= gT (Xt/ε) − gT (X0) −MT
t + ST

t/ε

where (MT
t )t≥0 is a martingale with brackets

〈

MT
〉

t
=
∫ t/ε

0
Γ(gT )(Xs) ds (recall

(2.2)).
According to what precedes and the framework (recall (2.1)) we may replace

(MT
t )t≥0 by another martingale (Nh

t )t≥0 with brackets
〈

Nh
〉

t
=
∫ t/ε

0
|h|2(Xs) ds

such that

εEµ

(

sup
0≤s≤t

|MT
s −Nh

s |2
)

≤ t‖∇gT − h‖2
L2(µ) → 0 as T → ∞ uniformly in ε.

In addition the ergodic theorem tells us that

lim
ε→0

ε
〈

Nh
〉

t
= t

∫

h2 dµ.
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Thus we may again apply Rebolledo’s MCLT, taking first the limit in T and then
in ε. It remains to control the others terms. But

Varµ(ST
t/ε) = 2

∫ t/ε

0

∫ s

0

(

P 2
T+(u/2)f dµ

)

du ds

= 4

∫ t/ε

0

∫ T+(s/2)

T

(
∫

P 2
uf dµ

)

du ds

≤ 4

∫ t/ε

0

∫ ∞

T

(
∫

P 2
uf dµ

)

du ds

≤ 4(t/ε)

∫ ∞

T

(
∫

P 2
uf dµ

)

du.

Since limT→∞

∫∞

T

(∫

P 2
uf dµ

)

du = 0 according to (2.6), we have, uniformly in ε,

lim
T→∞

εVarµ(ST
t/ε) = 0.

Next,
∫

g2
T dµ = 4

∫ T

0

u

(
∫

P 2
uf dµ

)

du ≤ 4T

∫ ∞

0

(
∫

P 2
uf dµ

)

du.

Hence limε→0 ε‖gT ‖2
L2(µ) = 0. The desired result follows by taking T large enough.

�

Remark 3.4. Our proof is different from the original one by Kipnis and Varadhan
and is perhaps simpler. Indeed we have chosen to use the natural approximation
of what should be the solution of the Poisson equation (i.e gt), rather than the
approximating Rε resolvent as in Kipnis and Varadhan (1986). Let us mention at
this point the work by Holzmann (2005) giving a necessary and sufficient condition
for the so called “martingale approximation” property (we get some in our proof),
thanks to an approximation procedure using the resolvent.

Remark 3.5. A quenched version (i.e. started from a point) of the Kipnis-Varadhan
result was obtained by Cuny and Peligrad (2009) when the minimal spectral as-
sumption of Kipnis and Varadhan is slightly reinforced.

Remark 3.6 (By D. Bakry). The condition (2.6) is satisfied if Assumption (1.14)
in Kipnis and Varadhan (1986) is satisfied i.e. there exists a constant cf such that
for all F in the domain of E ,

(
∫

f F dµ

)2

≤ −c2f
∫

FLF dµ. (3.12)

Indeed, if we define ϕ(t) := −
∫

f gt dµ where as usual gt = −
∫ t

0
Psf ds, and if

we take F = gt, then −LF = −Lgt = Ptf − f , and using (3.12) we get ϕ2(t) ≤
c2f (2ϕ(t) − ϕ(2t)). Using that ϕ(2t) ≥ 0 we obtain 2c2fϕ(t) − ϕ2(t) ≥ 0 which

implies that ϕ is bounded hence ϕ(+∞) < +∞. Taking the limit as t → ∞ and
using 2V (f) = ϕ(+∞), we obtain

V (f) ≤ 1

2
c2f .

All this can be interpreted in terms of the domain of (−L)−1/2 (which is formally
the gradient ∇) i.e. condition (2.6) can be seen to be equivalent to the existence in
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L
2(µ) of

(−L)−1/2f = c

∫ ∞

0

s−
1
2 Psf ds

for an ad-hoc constant c. Indeed, for some constant C > 0,

∥

∥

∥

∥

∫ ∞

0

s−
1
2 Psf ds

∥

∥

∥

∥

2

L2(µ)

≤ C

∫ ∫ ∞

0

P 2
s f

(
∫ 2s

s

(2u− s)−1/2 u−1/2 du

)

ds dµ

and
∫ 2s

s
(2u−s)−1/2 u−1/2 du is bounded. Note that (2.6) implies that ‖Ptf‖L2(µ) ≤

C(f)/
√
t.

We shall come back later to the method we used in the previous proof, for more
general situations including anomalous rate of convergence.

3.2. Poisson equation in L
q with q ≤ 2 for diffusions. What has been done before

is written in a L
2 framework. But the method can be extended to a more general

setting. Indeed, what is really needed is

(1) a solution g ∈ L
q(µ) of the Poisson equation, for some q ≥ 1,

(2) sufficient smoothness of g in order to apply Itô’s formula,
(3) control the brackets i.e. give a sense to the following quantities

∫

Γ(g) dµ = −2

∫

f g dµ.

Definition 3.7 (Ergodic rate of convergence). For any r ≥ p ≥ 1 and t ≥ 0 we
define

t 7→ αp,r(t) := sup
‖g‖

Lr(µ)=1
∫

g dµ=0

‖Ptg‖Lp(µ).

The uniform decay rate is α := α2,∞. We denote by α∗ the uniform decay rate of
L∗. We say that the process is uniformly ergodic if limt→∞ α(t) = 0.

We shall discuss later how to get some estimates on these decay rates.

Proposition 3.8 (Solving the Poisson equation in L
q). Let p ≥ 2 and q := p/(p−1).

If

f ∈ L
p(µ) and

∫

f dµ = 0 and

∫ ∞

0

α∗
2,p(t) ‖Ptf‖L2(µ) dt <∞

then g := −
∫∞

0 Psf ds belongs to L
q(µ) and solves the Poisson equation Lg = f .

The assumption of Proposition 3.8 is satisfied for any µ-centered f ∈ L
p(µ) if

∫ ∞

0

α∗
2,p(t)α2,p(t) dt <∞.

In the reversible case, we recover a Kipnis-Varadhan statement implying a stronger
result (the existence of a solution of the Poisson equation). The results of this
section are mainly interesting in the non-reversible situation.
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Proof : Let h ∈ L
p(µ), h̄ := h−

∫

h dµ, T > 0 and gT := −
∫ T

0
Ptf dt. Then

∣

∣

∣

∣

∫

h (gT+a − gT ) dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

h̄ (gT+a − gT ) dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T+a

T

(
∫

P ∗
t/2h̄ Pt/2f dµ

)

dt

∣

∣

∣

∣

∣

≤
(

∫ T+a

T

α∗
2,p(t/2)

∥

∥Pt/2f
∥

∥

L2(µ)
dt

)

‖h‖
Lp(µ).

As in the proof of Corollary 3.2, gT is Cauchy, hence convergent in L
q(µ) and solves

the Poisson equation. �

The previous proof “by duality” can be improved, just calculating the L
q(µ)

norm of gT , for some 1 ≤ q ≤ 2 which is not necessarily the conjugate of p.

Proposition 3.9 (Solving the Poisson equation in L
q). Let p ≥ 2 and 1 ≤ q ≤ 2.

If

f ∈ L
p(µ) and

∫

f dµ = 0 and

∫ ∞

0

tq−1 α∗
2,p/(q−1)(t) ‖Ptf‖L2(µ) dt <∞

then g = −
∫∞

0 Psf ds belongs to L
q(µ) and solves the Poisson equation Lg = f .

Proof : Keeping the same notations as in the proof of Proposition 3.8, we have
∫

|gT |q dµ = q

∫

(

∫ T

0

Psf (1gs<0 − 1gs>0)

∣

∣

∣

∣

∫ s

0

Puf du

∣

∣

∣

∣

q−1

ds

)

dµ

≤ q

∫ T

0

∥

∥Ps/2f
∥

∥

L2(µ)

∥

∥

∥
P ∗

s/2h̄s

∥

∥

∥

L2(µ)
ds

≤ q

∫ T

0

∥

∥Ps/2f
∥

∥

L2(µ)
α∗

2,m(s/2)
∥

∥h̄s

∥

∥

Lm(µ)
ds

for an arbitrary m ≥ 2, where

hs := (1gs<0 − 1gs>0)

∣

∣

∣

∣

∫ s

0

Puf du

∣

∣

∣

∣

q−1

and h̄s := hs −
∫

hs dµ.

It remains to choose the best m. But of course
∥

∥h̄s

∥

∥

Lm(µ)
≤ 2‖hs‖Lm(µ) and

(
∫

|hs|m dµ

)
1
m

= s(q−1)

(

∫
(
∫ s

0

|Puf |
du

s

)(q−1)m

dµ

)
1
m

≤ s(q−1)

(
∫

|f |(q−1)m dµ

)
1
m

.

The best choice is m = p/(q − 1). We then proceed as in the proof of Proposition
3.8. �

In view of MCLT, the main difficulty is to apply Itô’s formula in the non L
2

context. Though things can be done in some abstract setting, we shall restrict
ourselves here to the diffusion setting (2.5). For simplicity again we shall consider
rather regular settings.

Proposition 3.10 (MCLT via the Poisson equation). Assume that
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• 0 6= f ∈ L
2(µ) with

∫

f dµ = 0
• L is given by (2.4) with smooth coefficients and is hypoelliptic

• µ has positive Lesbegue density dµ
dx = e−U for some locally bounded U

• f is smooth and belongs to L
p(µ) for some 2 ≤ p and, with, q = p/(p− 1),

∫ ∞

0

α∗
2,p(t) ‖Ptf‖L2(µ) dt <∞ or

∫ ∞

0

tq−1 α∗
2,p/(q−1)(t) ‖Ptf‖L2(µ) dt <∞

then g := −
∫∞

0 Psf ds is well defined in L
q(µ), is smooth, and solves the Poisson

equation Lg = f , and hence (MCLT) holds under Pµ with s2t = −t
∫

f g dµ.

Proof : The only thing to do is to show that g (obtained in Proposition 3.8) satisfies
Lg = f in the Schwartz space of distributions D′. To see the latter just write for
h ∈ D,

∫

L∗h gT dµ =

∫

hLgT dµ =

∫

h (f − PT f) dµ

and use that PT f goes to 0 in L
1(µ). It follows that e−UgT converges in D′ to

some Schwartz distribution we may write e−Ug, since e−U is everywhere positive
and smooth. Furthermore since the adjoint operator of e−UL∗ (defined on D) is
e−UL (defined on D′), we get that g solves the Poisson equation Lg = f in D′.
Using hypoellipticity, we deduce that g is smooth and satisfies Lg = f in the usual
sense. Finally (MCLT) follows from the usual strategy, provided

∫

Γ(g) dµ is finite.
That is why we have to restrict ourselves (in the second case) to q the conjugate of
p, ensuring that

∫

|fg| dµ <∞. �

Remark 3.11. If f ∈ L
p(µ) for some p ≥ 1 (f being still smooth), one can im-

mediately adapt the proof of the previous proposition to show that the Poisson

equation Lg = f has a solution g ∈ L
1(µ) as soon as

∫ +∞

0 α∗
q,∞(t) dt < +∞ where

q = p/(p− 1).

In the hypoelliptic context one can go a step further. First of all, as before we
may and will assume that f is of C∞ class, so that gt is also smooth. Next, if
ϕ ∈ D(Rd),

∫

Lgt ϕp dx =

∫

Lgt ϕdµ −→
t→+∞

∫

f ϕ dµ =

∫

f ϕ p dx

so that pLgt → pf in D′(Rd) as t → +∞, hence Lgt → f in D′(Rd) as t → +∞,
since p is smooth and positive.

Assume in addition that there exists a solution ψ ∈ L
2(µ) of the Poisson equation

L∗ψ = ϕ. Thanks to the assumptions, ψ belongs to C∞ and solves the Poisson
equation in the usual sense. Hence

∫

gt ϕdµ =

∫

gt L
∗ψ dµ =

∫

Lgt ψ dµ −→
t→+∞

∫

f ψ dµ.

It follows that for every ϕ ∈ D(Rd),

〈p gt , ϕ〉 −→
t→+∞

a(ϕ) =

∫

f ψ dµ

where the bracket denotes the duality bracket between D′(Rd) and D(Rd). Thanks
to the uniform boundedness principle it follows that there exists an element ν ∈
D′(Rd) such that p gt → ν in D′(Rd), and using again smoothness and positivity
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of p, we have that gt → g = ν/p. We immediately deduce that Lg = f in D′(Rd),
hence thanks to (H3) that g ∈ C∞. Let us summarize all this

Lemma 3.12. Consider the assumptions of Proposition 3.10 and assume that for
all ϕ ∈ D(Rd) there exists a solution ψ ∈ L

2(µ) of the Poisson equation L∗ψ = ϕ.
Then for all smooth f there exists some smooth function g such that Lg = f .

Of course in the cases we are interested in, g does not belong to L
q(µ) if f ∈

L
p(µ), so that we cannot use previous results. We shall give sufficient conditions

ensuring that the dual Poisson equation has a solution for all smooth functions with
compact support (see Theorem 5.10 in section 5).

Remark 3.13 (The Kipnis Varadhan situation). If ϕ ∈ D(R), we thus have
∫

fϕ dµ =

∫

Lgϕdµ =

∫

∇g∇ϕdµ ≤
(
∫

|∇g|2 dµ
)

1
2
∣

∣

∣

∣

∫

|∇ϕ|2 dµ
∣

∣

∣

∣

1
2

so that (3.12) is satisfied as soon as ∇g ∈ L
2(µ), since D(R) is everywhere dense in

L
2(µ).

Remark 3.14 (Time reversal, duality, forward-backward martingale decomposition).
We have just seen that it could be useful to work with L∗ too. Actually if the
process is strongly ergodic, we do not know whether limt→+∞ P ∗

t f = 0 for cen-
tered f ’s or not (the limit taking place in the L

2 strong sense). However if the
process is uniformly ergodic (i.e. limt→+∞ α(t) = 0 recall Definition 3.7) then
limt→+∞ α∗(t) = 0, as will be shown in Proposition 4.2 in section 4. Now remark
that:

∫ t

0

f(Xs) ds =

∫ t

0

f(Xt−s) ds .

Since the infinitesimal generator of the process s 7→ Xt−s (for s ≤ t) is given by
L∗ we can use the previous strategy replacing L by L∗ and the process X. by its
time reversal up to time t. It is then known that, similarly to the standard forward
decomposition (2.1), one can associate a backward one

g(X0) − g(Xt) − (M∗)t =

∫ t

0

L∗g(Xs) ds , (3.13)

where ((M∗)t − (M∗)t−s)0≤s≤t is a backward martingale with the same brackets

as M (in the reversible case this is just the time reversal of M). The solution
to the dual Poisson equation L∗g = f thus furnishes a triangular array of local
martingales to which Rebolledo’s MCLT applies. Thus, all the results we have

shown with the solution of the Poisson equation are still true with the

dual Poisson equation, at least in the uniformly ergodic case. The previ-
ous remark yields another possible improvement, which is a standard tool in the
reversible case, namely the so called Lyons-Zheng decomposition. If g is smooth
enough, summing up the standard forward decomposition (2.1) and the backward
decomposition (3.13), we obtain the forward-backward decomposition

∫ t

0

(L+ L∗)g(Xs) ds = − (Mt + (M∗)t)

so that if one can solve the Poisson equation for the symmetrized operator LS :=
L+L∗ the previous decomposition can be used to study the behavior of our additive
functional. This is done in e.g. Wu (1999), but of course what can be obtained
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is only a tightness result since the addition is not compatible with convergence in
distribution. However, the forward-backward decomposition will be useful in the
sequel.

4. Comparison with general results on stationary sequences

The CLT and MCLT theory for stationary sequences can be used in our context.
Indeed, let us assume as usual that X0 ∼ µ, 0 6= f ∈ L

2(µ),
∫

f dµ = 0. We may
introduce the stationary sequence of random variables (Yn)n≥0:

Yn :=

∫ n+1

n

f(Xs) ds. (4.1)

and the partial sum Sn :=
∑n−1

k=0 Yk. If f ∈ L
1(µ) and β(t) → 0 as t → +∞,

denoting by [t] the integer part of t, we have that β(t)
∫ t

[t]
f(Xs) ds → 0 in Pµ

probability as t → +∞, so that the control of the law of our additive functional
reduces to the one of Sn as n → +∞. We may thus use the known results for
convergence of sums of stationary sequences.

At the process level we may similarly consider the random variables S[nt] where
[·] denotes the integer part again, and for n ≤ (1/ε) < (n+1). The remainder St/ε−
S[nt] multiplied by a quantity going to 0 will converge to 0 in probability, so that
for any k-uple of times t1, . . . , tk we will obtain the convergence (in distribution) of
the corresponding k-uple, provided the usual MCLT holds for S[nt].

Hence we may apply the main results in Merlevède et al. (2006) for instance. In
particular a renowned result of Maxwell and Woodroofe (Maxwell and Woodroofe
(2000) and (18) in Merlevède et al. (2006)) adapted to the present situation tells
us that (CLT) holds under Pµ as soon as 0 6= f ∈ L

2(µ) with
∫

f dµ = 0 and

∫ ∞

1

t−
3
2

(

∫
(
∫ t

0

Psf ds

)2

dµ

)
1
2

dt <∞. (4.2)

Note that under this same condition Peligrad and Utev (2005) proved the FCLT
and a quenched version (i.e. starting from a point) by Cuny and Lin (2009) under
a slightly stronger hypothesis. Very recently, Cuny and Merlevede (2012) have
proved the (functional) quenched CLT under Maxwells and Woordoofe’s condition
For (MCLT) we recall the following weaker version Merlevède et al. (2006, cor. 12):

Theorem 4.1 (MCLT). Assume that 0 6= f ∈ L
2(µ) with

∫

f dµ = 0 and that
∫ ∞

1

t−
1
2 ‖Ptf‖L2(µ) dt <∞. (4.3)

Then (MCLT) holds true under Pµ with s2t := Varµ(St) and s2 := limt→∞
1
t s

2
t

exists and is positive.

Condition (4.3) is much better than both (3.9) and (3.10) when ‖Ptf‖L2(µ) goes

slowly to 0. In the reversible case however, (4.3) is stronger that the Kipnis-
Varadhan condition (2.6) (if one prefers Theorem 4.1 is implied by Theorem 3.3),
according to what we said in Remark 3.6. Also note that in full generality it is worse
than the one in Proposition 3.8 as soon as α∗

2,p(t) ≤ c/
√
t and f ∈ L

p. Additionally,
an advantage of the previous section is the simplicity of proofs, compared with the
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intricate block decomposition used in the proof of the CLT for general stationary
sequences.

4.1. Mixing. Following Cattiaux and Guillin (2008, prop. 3.4), let Fs (resp. Gs) be
the σ-field generated by (Xu)u≤s (resp. (Xu)u≥s ). The strong mixing coefficient
αmix(r) is

αmix(r) = sup
s,F,G

{|Cov(F,G)|}

where the sup runs over s and F (resp. G) Fs (resp. Gs+r) measurable, non-
negative and bounded by 1. If limr→∞ αmix(r) = 0 then we say that the process is
strongly mixing.

Proposition 4.2. Let α be as in Definition 3.7. The following correspondence
holds :

α2(t) ∨ (α∗)2(t) ≤ αmix(t) ≤ α(t/2)α∗(t/2).

Hence the process is strongly mixing if and only if it is uniformly ergodic (or equiv-
alently if and only if its dual is uniformly ergodic).

Proof : For the first inequality, it suffices to take F = Prf(X0) and G = f(Xr)
(respectively F = f(X0) and G = P ∗

r f(Xr)) for f µ-centered and bounded by 1.
For the second inequality, let F and G be centered and bounded by 1, respectively
Fs and Gs+r measurable. We may apply the Markov property to get

Eµ[FG] = Eµ[F Eµ[G|Xs+r]] = Eµ[F Prg(Xs)]

where g is µ-centered and bounded by 1. Indeed since the state space E is Polish,
we may find a measurable g such that Eµ[G|Xs+r] = g(Xs+r) (disintegration of
measure). But

Eµ[F Prg(Xs)] = E
∗
µ[F (Xs−.)Prg(X0)] = E

∗
µ[f(X0)Prg(X0)] =

∫

P ∗
r/2f Pr/2g dµ

where f is similarly obtained by desintegration of the measure. Here we have used
the notation E

∗
µ for the expectation with respect to the law of the dual process at

equilibrium, which is equal to the law of the reversed process on each interval [0, s]
(and conversely). We conclude using Cauchy-Schwarz inequality since f and g are
still bounded by 1. �

Remark 4.3. The preceding proposition implies the following comparison:

(α∗)2(2t)

α∗(t)
≤ α(t) .

In particular if we know that α∗ is “slowly” decreasing (i.e. there exists c > 0 such
that α∗(t) ≤ c α∗(2t)), then α(t) ≥ (1/c)α∗(2t) ≥ (1/c2)α∗(t). If both α and α∗

are slowly decreasing, then they are of the same order. More generally, for t ≥ 2
(for instance)

α2(t) ≤ α(t/2)α∗(t/2) ≤ c α(1)α∗(t)

so that α(t) ≤ c1 (α∗(t))1/2. Plugging this new bound in the previous inequality
we obtain

α2(t) ≤ α(t/2)α∗(t/2) ≤ c1 (α∗(t/2))3/2 ≤ c1 c
3/2 (α∗(t))3/2
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i.e. α(t) ≤ c2 (α∗(t))3/4. By induction, for all ε > 0 there exists a constant cε such
that

α(t) ≤ cε (α∗(t))1−ε.

Again we shall mainly use the recent survey Merlevède et al. (2006) in order
to compare and extend the results of the previous section. Notice that f ∈ L

p(µ)
implies that Y ∈ L

p.
The first main result is due to Dedecker and Rio (2000); Merlevède et al. (2006):

if
∫ t

0f Psf ds converges in L
1(µ) then (MCLT) holds true under Pµ with s2t =

Varµ(St) and

s2 := lim
t→∞

1

t
s2t = 2

∫
(
∫ +∞

0

f Ptf dt

)

dµ.

In the reversible case this assumption is similar to f ∈ D(L−1/2) (see Remark
3.6). Using some covariance estimates due to Rio, one gets (Merlevède et al. (2006,
p.16 eq. (37))) the following.

Proposition 4.4 (MCLT via mixing). If 0 6= f ∈ L
p(µ) for some p > 2 with

∫

f dµ = 0 and
∫ +∞

1
t2/(p−2) α(t)α∗(t) dt < ∞, then (MCLT) holds true under Pµ

with
1

t
s2t = 2

∫
(
∫ ∞

0

f Ptf dt

)

dµ,

under the conditions that this last quantity is positive.

We shall compare all these results with the one obtained in the previous section
later, in particular by giving some explicit comparison results between α and αp,q

introduced in Definition 3.7. But we shall below give some others nice consequences
of mixing.

4.2. Self normalization with the variance and uniform integrability. The following
characterization of the CLT goes back at least to Denker (1986). The MCLT seems
to be less understood Merlevède et al. (2006); Merlevède and Peligrad (2006).

Theorem 4.5 (CLT). Assume that α(t) (or α∗(t)) goes to 0 as t→ +∞ (i.e. the
process is “strongly” mixing). Then for all 0 6= f ∈ L

2(µ) such that
∫

fdµ = 0 and
limt→∞ Varµ(St(f)) = ∞, the following two conditions are equivalent:

(1)
(

S2
t (f)

Var(St(f))

)

t≥1
is uniformly integrable

(2)

(

St√
Var(St(f))

)

t≥1

converges in distribution to a standard Gaussian law as

t→ ∞.

Note that if the process is not reversible, the asymptotic behavior of
∫ s

0

(∫

f Puf dµ
)

du in unknown in general, and thus Varµ(St(f)) is possibly bounded.
We turn to the main goal of this section. Our aim is to show how to use the

general martingale approximation strategy (as in section 3.1) in order to get suffi-
cient conditions for S2

t (f)/Varµ(St(f)) to be uniformly integrable. To this end let
us introduce some notation.

β(s) =

∫

Psf P
∗
s f dµ and η(t) =

∫ t

0

β(s) ds (4.4)
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Varµ(St(f)) = 4

∫ t/2

0

(t− 2s)β(s) ds = th(t). (4.5)

If the (possibly infinite) limit exists we denote limt→+∞ h(t) = 2V ≤ +∞.

Assumption 4.6. We shall say that (Hpos) is satisfied if β(s) ≥ 0 for all s large
enough.

Assumption (Hpos) is satisfied is the reversible case, in the non reversible case

we only know that
∫ t

0
η(s) ds > 0. Notice that if (Hpos) is satisfied

2t

∫ t/4

0

β(s) ds ≤ Varµ(St) ≤ 4t

∫ t/2

0

β(s) ds+Ot→∞(1), (4.7)

for t large enough similarly to the reversible case, so that

2 η(t/4) ≤ h(t) ≤ 4 η(t/2) +Ot→∞(1).

Denker’s theorem 4.5 allows us to obtain new results, at least CLTs, using the
natural symmetrization of the generator and the forward-backward martingale de-
composition.

To this end consider the symmetrized generator LS = 1
2 (L + L∗). We shall

assume that the closure of LS (again denoted by LS) is the infinitesimal generator
of a µ-stationary Markov semigroup PS

. , which in addition is ergodic. This will
be the case in many concrete situations (see e.g Wu (1999)). It is then known
that the Dirichlet form associated to LS is again E(f, g) =

∫

Γ(f, g) dµ. We use
systematically the superscript S for all concerned with this symmetrization.

According to Corollary 3.2 (2), we know that for a centered f ∈ L
2(µ) there

exists a L
2(µ) solution of the Poisson equation LSg = f if and only if

∫ +∞

0

t
∥

∥PS
t f
∥

∥

2

L2(µ)
dt < +∞ . (4.8)

According to Remark 3.14 we thus have
∫ t

0

f(Xs) ds = − (Mt + (M∗)t) ,

for a forward (resp. backward) martingale Mt (resp. (M∗)t). In order to use
Denker’s theorem, it is enough to get sufficient conditions for both (Mt)

2/Varµ(St(f))
and ((M∗)t)

2/Varµ(St(f)) to be uniformly integrable.
To this end recall first that uniform integrability of a family Ft is equivalent

(La Vallée-Poussin theorem) to the existence of a non-decreasing convex function
γ such that limu→+∞ γ(u)/u = +∞ and

sup
t

Eµ (γ(Ft)) < +∞ .

Recall now the following strong version of Burkholder-Davis-Gundy inequalities
(see Dellacherie and Meyer (1980, ch. VII th. 92 p. 304))

Proposition 4.6. Let γ be a C1 convex function such that p := supu>0
u γ′(u)
γ(u)

is finite (i.e. γ is moderate). For any continuous L
2 martingale N. define N∗

t =
sups≤t |Ns|. Then the following inequalities hold

1

4p
‖N∗

t ‖γ ≤
∥

∥

∥
〈N〉

1
2
t

∥

∥

∥

γ
≤ 6p ‖N∗

t ‖γ ,

where ‖A‖γ = inf{λ > 0 , E[γ(|A|/λ)] ≤ 1} denotes the Orlicz gauge norm.
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In addition Doob’s inequality tells us that the Orlicz norms of N∗
t and Nt are

equivalent (with constants independent of t).
Since the brackets of the forward and the backward martingales are the same, we

are reduced to show that
∫ t

0 Γ(g)(Xs) ds/Varµ(St(f)) is a Pµ uniformly integrable
family. But according to the ergodic theorem

1

t

∫ t

0

Γ(g)(Xs) ds converges as t→ +∞ to

∫

Γ(g)dµ in L
1(Pµ). (4.9)

It follows first that Varµ(St(f)) = O(t). Otherwise (Mt)
2/Varµ(St(f)) would

converge to 0 in L
1(Pµ) (the same for the backward martingale), implying the same

convergence for S2
t (f)/Varµ(St(f)) whose L

1 norm is equal to 1, hence a contradic-
tion. If (Hpos) is satisfied, according to (4.7) we thus have that η(t) = O(1) (and
accordingly h(t) = O(1)), hence (Mt)

2/Varµ(St(f)) and ((M∗)t)
2/Varµ(St(f)) are

uniformly integrable. But we do not really need (Hpos) here, only a lower bound
lim inf Varµ(St(f))/t ≥ c > 0. Summarizing all this we have shown

Proposition 4.7. Assume that the process is strongly mixing and that (4.8) is satis-

fied. Assume in addition that lim inf Varµ(St(f))/t > 0. Then St(f)/
√

Varµ(St(f))
converges in distribution to a standard normal law, as t→ +∞.

Notice that in this situation one can find some positive constants c and d such
that 0 < c ≤ Varµ(St(f))/t ≤ d for large t’s, and that the latter is ensured if (Hpos)
holds.

4.3. A non-reversible version of Kipnis-Varadhan result. Finally what happens if
one cannot solve the symmetrized Poisson equation, but if f ∈ D((−LS)−1/2), i.e.
if one can apply Kipnis-Vardahan theorem to the symmetrized process XS

. ?
Coming back to the proof of Theorem 3.3 we may introduce gS

T so that ∇gS
T

converges to some h in L
2 as T goes to +∞.

We thus have an approximate forward-backward decomposition

St = − 1

2

(

MT
t + (M∗)T

t

)

+

∫ t

0

PS
T f(Xs) ds . (4.10)

We first look at the corresponding forward martingaleMT
t whose bracket is given

by

〈MT 〉t =

∫ t

0

|∇gS
T |2(Xs) ds .

We then have for a convex function γ,

Eµ

[

γ(〈MT 〉t/t)
]

= Eµ

[

γ

(

1

t

∫ t

0

|∇gS
T |2(Xs) ds

)]

≤ 1

t
Eµ

[
∫ t

0

γ(|∇gS
T |2)(Xs) ds

]

≤
∫

γ(|∇gS
T |2) dµ .

Since |∇gS
T | is strongly convergent in L

2, it is uniformly integrable. So we can find
a function γ as in Proposition 4.6 such that the right hand side of the previous
inequality is bounded by some K < +∞ for all T . Hence applying Proposition
4.6 we see that ((MT

t )2/t))(T,t) is uniformly integrable. The same holds for the
backward martingale.
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It remains to control

A(T, t) = Eµ

[

γ

(

1

t

(
∫ t

0

PS
T f(Xs) ds

)2
)]

.

But we know that PS
T f goes to 0 in L2(µ). So there exists some γ such that

γ((PS
T f)2) is uniformly integrable. Up to a subsequence (we already work with

subsequences) we may assume that the convergence holds true µ almost surely,
applying Vitali’s convergence theorem we thus have (we may choose γ(0) = 0) that

∫

γ
(

(PS
T f)2

)

dµ→ 0 as T → +∞ .

We thus may apply Cesàro’s theorem, which furnishes some non-decreasing function
T (t) such that suptA(T (t), t) < +∞.

We may now conclude as for the proof of Proposition 4.7, obtaining the following
reinforcement which is some non-reversible version of Kipnis-Varadhan theorem (at
the CLT level), since we already proved that

∫ +∞

0

∥

∥PS
t f
∥

∥

2

L2(µ)
dt <∞

is ensured by the condition (3.12):

Theorem 4.8. Assume that the process is strongly mixing and that (3.12) is sat-
isfied. Assume in addition that lim inf Varµ(St)/t ≥ c > 0 (or equivalently that

V− > 0). Then St/
√

Varµ(St) converges in distribution to a standard normal law,
as t→ +∞.

Notice that in this situation one can find some positive constants c and d such
that 0 < c ≤ Varµ(St)/t ≤ d for large t’s, again this is satisfied if (Hpos) holds.

According to the discussion after Proposition 4.7, the upper bound for the rate
of convergence for L

p functions is the worse in the reversible situation. In a sense
the previous theorem is not so surprising. But here the condition is written for the
sole function f , for which we cannot prove any comparison result.

5. Complements and examples

In this section we shall first discuss in a quite “general” framework how to
compare all the results described in the preceding two sections. This will be done
by studying the asymptotic behavior of Pt. Next we shall describe explicit examples

5.1. Trends to equilibrium. In order to apply corollary 3.2 we thus have to find
tractable conditions on the generator in order to control the decay of the L

2 norm
of Ptf . Such controls are usually obtained for all functions in a given class. The
general smallest possible class is L

∞ so that it is natural to introduce Definition
3.7.

The uniform decay rate furnishes a first p, r-decay rate as follows

Lemma 5.1. If 1 ≤ p ≤ 2 and r > p

αp,r(t) ≤ 21+(p/r) α
r−p

r (t) ,

while if 2 ≤ p,

αp,r(t) ≤ 21+(p/r) α
2
p

r−p
r (t) .
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Proof : The proof is adapted from Cattiaux and Guillin (2009). Pick some K > 1
and define gK = g ∧K ∨ −K. Since

∫

gdµ = 0, defining mK =
∫

gK dµ it holds

|mK | =

∣

∣

∣

∣

∫

gK dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

(gK − g) dµ

∣

∣

∣

∣

≤
∫

(|g| −K)1|g|≥K dµ ≤ ‖g‖r
r/K

(r−1) .

Similarly,

‖g − gK‖p
p ≤

∫

|g|p 1|g|≥K dµ ≤ ‖g‖r
r/K

r−p.

Using the contraction property of Pt in L
p(µ) we have

‖Ptg‖p ≤ ‖Ptg − PtgK‖p + ‖Pt(gK −mK)‖p + |mK |
≤ ‖Pt(gK −mK)‖p + ‖g − gK‖p + |mK |
≤ Var1/2

µ (PtgK) + ‖g‖r/p
r /K(r−p)/p + ‖g‖r

r/K
(r−1)

≤ Var1/2
µ (PtgK) +

(

2/K(r−p)/p
)

,

the latter being a consequence of ‖g‖r = 1 and K > 1. It follows

‖Ptg‖p ≤ α(t)K + 2K−(r−p)/p.

It remains to optimize in K. Actually up to a factor 2 we know that the optimum
is attained for α(t)K = 2K−(r−p)/p i.e. for K = (2/α(t))p/r (which is larger than
one), hence the first result.

The second one is immediate since for p ≥ 2, αp,∞(t) ≤ α
2
p (t), and we may

follow the same proof without introducing the variance. �

Note that up to a factor 2 due to the proof, the result is coherent for r = +∞.
We can complete the result by the following well known consequence of the

semigroup property

Lemma 5.2. For r = p ≥ 1, either αp,p(t) = 1 for all t ≥ 0, or there exist positive
constants cp and Cp such that αp,p(t) ≤ C(p) e−cpt.

When the second statement is in force we shall (abusively in the non-reversible
case) say that L has a spectral gap. We shall discuss in the next section conditions
for the existence of a spectral gap or for the obtention of the optimal uniform decay
rate.

Of course for f ∈ L
p for some p ≥ 2 a sufficient condition for (3.9) to hold is

∫ +∞

0

α2,p(t) dt < +∞ . (5.1)

Remark 5.3. Specialists in interpolation theory certainly will use Riesz-Thorin the-
orem in order to evaluate αp,r. Let us see what happens.

Consider the linear operator Ttf = Ptf −
∫

f dµ. As an operator defined in
L

2(µ) with values in L
2(µ), Tt is bounded with an operator norm equal to 1. As

on operator defined in L
∞(µ) with values in L

2(µ), Tt is bounded with an operator
norm equal to 2α(t). Hence Tt is bounded from L

r(µ) to L
2(µ) (for r ≥ 2) with an

operator norm smaller than or equal to 22(1− 1
r
) α

r−2
r (t), which is (up to a slightly

worse constant) the same result as the one obtained in Lemma 5.1. The same holds
for the pair (1, r), and then for all (p, r). The main advantage of the previous
lemma is that the proof is elementary. See also Cattiaux et al. (2010c) for further
developments on this subject.
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In section 3.2 we used α2,p for p > 2. It seems that in full generality the relation

α2,p(t) = cp α
p−2

p (t) is the best possible. However it is interesting to notice the
following duality result

Lemma 5.4. For all pair 1 ≤ p < r ≤ +∞ there exists c(p, r) such that

αp,r(t) ≤ c(p, r)α∗
r

r−1 , p
p−1

(t) .

Proof : If f ∈ L
r is such that

∫

fdµ = 0, for all g ∈ L
p

p−1 , we have
∫

Ptf g dµ =

∫

Ptf

(

g −
∫

gdµ

)

dµ =

∫

f P ∗
t

(

g −
∫

gdµ

)

dµ

hence the result. �

As a consequence we obtain that

Lemma 5.5. For 1 < p ≤ 2, α1,p(t) ≤ c(p) (α∗(t))
2(p−1)

p .

This result is of course much better (up to a square) than the one obtained in
Lemma 5.1 in this situation, since we know that for slowly decreasing α and α∗

these functions are equivalent (up to some constants). It can also be compared with
similar results obtained in Cattiaux and Guillin (2009).

Remark 5.6. These results allow us to compare conditions obtained in Proposition
3.8, Proposition 3.10 on one hand, and Theorem 4.1 or Proposition 4.4 on the other
hand.

For example, if we use the bound obtained in Lemma 5.1, Proposition 3.10 tells
that convergence to a brownian motion holds provided

∫ +∞

0

(α(t)α∗(t))
p−2

p dt < +∞ .

(Remark that it is exactly the condition in Jones (2004, th. 5)). Notice that as
soon as α(t)α∗(t) < 1/t this bound is worse than the one in Proposition 4.4, so
that the mixing approach seems to be at least as interesting as the usual one.

However, in the diffusion case we shall obtain in Proposition 5.9 below a bet-
ter bound for α∗

2,p. Combined with Remark 4.3, it yields (under the appropriate
hypotheses) the condition

∫ +∞

0

(α∗(t))ε+
2(p−2)

p−1 dt < +∞ ,

for some ε ≥ 0 (0 is allowed in the slowly decreasing case), which is better than the

mixing condition in Proposition 4.2 as long as α∗(t) > (1/t)(
p−1
p−2 )−η for some η ≥ 0.

The question is: how to find α ?

5.2. Rate of convergence for diffusions. In “non degenerate” situations, α is given
by weak Poincaré inequalities:

Definition 5.7. µ satisfies a weak Poincaré inequality (WPI) for Γ with rate β if
for all s > 0 and all f in the domain of Γ (or some core) the following holds,

Varµ(f) ≤ β(s) E(f, f) + sOsc2(f)

where Osc(f) = esssupf − essinff is the oscillation of f .
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Proposition 5.8 (Röckner and Wang (2001, th. 2.1 and 2.3)). If µ satisfies (WPI)

with rate β then both α(t) and α∗(t) are less than 2 ξ
1
2 (t) where ξ(t) = inf{s >

0, β(s) log(1/s) ≤ t}. If L is µ-reversible (or more generally normal) some converse
holds, i.e. decay with uniform decay rate α implies some corresponding (WPI).

It is actually quite hard to check, in the reversible case, whether starting with
some (WPI) one obtains a ξ which in return furnishes the same (WPI) (see the
quite intricate expression of β in Röckner and Wang (2001, th. 2.3). It seems that
in general one can loose some slowly varying term (like a log for instance).

Notice that (WPI) implies the following: E(f, f) = 0 ⇒ f constant i.e. the
Dirichlet form is non degenerate. In the degenerate case of course, the uniform
decay rate cannot be controlled via a functional inequality. The most studied
situation being the diffusion case we now focus on it.

First we recall the following explicit control proved in Bakry et al. (2008b, th. 2.1)
(using the main result of Douc et al. (2009))

Proposition 5.9. Let L be given by (2.4). Assume that there exists a ϕ-Lyapunov
function V (belonging to the domain D(L)) for some smooth increasing concave

function ϕ and for C some compact subset. Define Hϕ(t) =
∫ t

1
(1/ϕ(s))ds and

assume that
∫

V dµ < +∞.
Then, if limu→+∞ ϕ′(u) = 0,

(α∗)2(t) ≤ C

(
∫

V dµ

)

1

ϕ ◦H−1
ϕ (t)

.

If for p > 2 and q its conjugate, V ∈ L
q(µ) then

α∗
2,p(t) ≤ C(p, ‖V ‖q)(α

∗)
p−2
p−1 (t).

If ϕ is linear, α∗(t) and α(t) are decaying like e−λt for some λ > 0 (see Down et al.
(1995); Bakry et al. (2008b,a)).

Note that the latter bound is better than the general one obtained in Lemma
5.1. Of course we may use either Remark 3.14 (telling that we may use α∗ instead
of α) or Remark 4.3 (comparing both rates) to apply this result.

In the same spirit we shall also recall a beautiful result due to Glynn and Meyn
(1996) or more precisely the version obtained in Gao et al. (2010):

We introduce the Lyapunov control condition, as in Glynn and Meyn (1996);
Gao et al. (2010)

Assumption 5.2. there exist a positive function F , a compact set C, a constant b
and a (smooth) function θ, going to infinity at infinity such that

L∗θ ≤ −F + b 1C .

Then we have the following (Glynn and Meyn (1996, th. 3.2) and its refined
version Gao et al. (2010, lem. 6.2))

Theorem 5.10. If Assumption 5.2 is satisfied and θ2 ∈ L
1(µ), the Poisson equa-

tion Lg = f admits a solution in L
2 , provided |f | ≤ F . Hence the usual MCLT

holds

The authors get the MCLT in Glynn and Meyn (1996, th. 4.3), but we know
how to do in this situation.
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Assumption 5.2 is thus enough in order to ensure the existence of a L
2 solution

of the Poisson equation for ϕ ∈ D(Rd), so that if this assumption is satisfied we
may use Lemma 3.12 (i.e. the existence of a smooth solution (but non necessarily
L

2(µ)) to the Poisson equation for any smooth f).

We shall continue this section by providing several families of examples, starting
with the one-dimensional case. These examples are then extended to n-dimensional
reversible Langevin stochastic differential equations using Lyapunov conditions and
results of Bakry et al. (2008b,a); Cattiaux et al. (2010b) to recover Poincaré in-
equalities or weak Poincaré inequalities through the use of Lyapunov conditions,
and so the rate α∗ or α.

We will then consider elliptic (non necessarilly reversible) examples for which
result of Douc et al. (2009), recalled in Proposition 5.9, furnishes the rate α∗ and
then existence of the solution of Poisson equation and CLT where the usual Kipnis-
Varadhan condition cannot be used. Comparisons with the recent results of Par-
doux and Veretennikov (2001) will be made.

We will end with some hypoelliptic cases such as the kinetic Fokker-Planck equa-
tion or oscillator chains for which results of Douc et al. (2009); Bakry et al. (2008b)
still apply, and results of Pardoux and Veretennikov (2005) are harder to consider.
It is of particular interest in PDE theory.

One of the main strategy to get explicit convergence controls are Lyapunov
conditions as explained before.

5.3. Reversible case in dimension one.

5.3.1. General criterion for weak Poincaré inequalities. We recall here results of
Barthe et al. (2005) giving necessary and sufficient conditions for a one dimensional
measure dµ(x) = e−V (x)dx, associated to the one dimensional diffusion

dXt =
√

2dBt − V ′(Xt)dt

to satisfy a weak Poincaré inequality.

Proposition 5.11. Barthe et al. (2005, th. 3) Let m be a median of µ, and β :
(0, 1/2) → R+ be non increasing. Let C be the optimal constant such that for all f
and 0 < s < 1/4

Varµ(f) ≤ C β(s)

∫

f ′2dµ+ sOsc(f)2

then 1/4 max(b−, b+) ≤ C ≤ 12 max(B+, B−) where, with m a median for µ

b+ = sup
x>m

µ([x,∞[)

β(µ([x,∞[)/4)

∫ x

m

eV dx

B+ = sup
x>m

µ([x,∞[)

β(µ([x,∞[))

∫ x

m

eV dx

and the corresponding ones for b−, B− with the left hand side of the median.
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5.3.2. A first particular family : general Cauchy laws. Consider the diffusion pro-
cess on the line

dXt =
√

2 dBt −
(

αx

1 + x2
+

2β x

(e+ x2) log(e+ x2)

)

dt (5.3)

for some parameters α > 1 and β ≥ 0. The model is slightly more general than
the usual Cauchy laws considering β = 0, but the difference allows interesting
behaviors. The corresponding generator is

L = ∂2
x2 −

(

αx

1 + x2
+

2β x

(e+ x2) log(e+ x2)

)

∂x

so that L is µ-reversible for

µ(dx) =
c(α, β)

(1 + x2)α/2 logβ(e+ x2)
dx .

It is immediate that V (x) = x2 satisfies

LV (x) = 2
1 − (α− 1)x2

1 + x2
− 4βx2

(e+ x2) log(e+ x2)
(5.4)

hence verifies the assumption in Proposition 2.2. So the process defined by (5.3)
does not explode (is conservative if one prefers), and is ergodic with unique invariant
measure µ, which satisfies a local Poincaré inequality on any interval.

The rate α2,∞ is known in this situation. Indeed, according to Proposition 5.11,
µ satisfies a weak Poincaré inequality (recall Definition 5.7) with optimal rate

β(s) = d(α, β) s−2/(α−1) log−2β/(α−1)(1/s) .

According to Proposition 5.8 (and its converse in the reversible case), for large t,

α2,∞(t) ' ξ
1
2 (t) with ξ(t) =

1

t
(α−1)

2

log
(α−1)

2 −β(t) .

In the sequel we shall only consider bounded functions f .
If α > 3 or α = 3 and β > 2, α2

2,∞ is integrable, and so we may apply Kipnis-
Varadhan theorem to all bounded functions f .

Interesting cases are α = 3 and β ≤ 2.
If β > 1, θ(x) = |x| for large |x|’s satisfies the assumptions in Theorem 5.10, and

accordingly the usual MCLT holds provided |f(x)| ≤ c/|x| at infinity. If β ≤ 1 a
similar result holds but this time for |f(x)| ≤ c/|x|1+ε at infinity, for any ε > 0.

But it should be interesting to know what happens for bounded f ’s that do not
go to 0 at infinity.

5.3.3. A second general family: subexponential laws. Let us consider the process on
the line

dXt =
√

2dBt − αx |x|α−2dt

for α < 1 with the generator

L = ∂2
x2 − αx |x|α−2 ∂x

which is να reversible where

να(dx) = C(α) e−|x|αdx.

It is well known the process does not explode and is ergodic with unique invariant
measure µ. By Proposition 5.11, one easily gets that να satisfies a weak Poincaré
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inequality with β(s) = kα log(2/s)
2
α
−2. According to Proposition 5.8 (and its con-

verse in the reversible case), for large t,

α2,∞(t) ' ξ
1
2 (t) with ξ(t) = e−ctα

.

It is then of course immediate by Kipnis-Varadhan theorem, and Proposition 3.8
for tractable conditions, to get that as soon as f ∈ L

p for p > 2 then it satisfies
the FLCT. Of course, the interesting examples are in unbounded test functions like
f(x) = e

1
2 |x|

α

g(x) − c for g in L
2(dx) but not in any L

p(dx) for any p > 2. We
believe that in this context, one may exhibit anomalous speed in the MCLT, as in
the Cauchy case explored in the following sections. It does not seem that interesting
new examples may be sorted out using Glynn-Meyn’s result.

5.4. Reversible case in general. We quickly give here multidimensional Langevin-
Kolmogorov reversible diffusions example (say in R

n), that may be treated as in the
one-dimensional case using the appropriate Lyapunov conditions and weak Poincaré
inequalities.

5.4.1. Cauchy type measures. Let us consider with α > n

µα(dx) := Z (1 + |x|2)α/2 dx

associated to the generator

L = ∆ − αx

1 + |x|2 .∇

reversible with respect to µ. In fact one may use as in the one dimensional case
Lyapunov functions W (x) = |x|k for large |x| so that for large |x|

LW = (nk + k(k − 2)) |x|k−2 − kα
|x|k

1 + |x|2

so that to get a Lyapunov condition we have to impose the compatibility condition
α > n+ k − 2.
Use now Theorems 2.8 and 5.1 in Cattiaux et al. (2010b) to get a weak Poincaré

inequality with β(s) = c(n, α)s−
2

α−n leading to

α2,∞(t) = c′(α, n)
log

α−n
2 (t)

t
α−n

2

.

We then get that if α > n + 2 then α2
2,∞ is integrable and thus Kipnis-Varadhan

theorem may be used for all bounded functions. Note that in this case, one does
not recover the optimal speed of decay via the results of Douc et al. (2009).
We may also use Theorem 5.10 to consider unbounded function: for k ≥ 2, if
α > n+ 2k and α > n+ k− 2 then the usual MCLT holds for all centered function
f such that |f | ≤ c(1 + |x|k−2).
One may also, in the setting where K ≥ 2, f is centered with |f | ≤ c(1 + |x|k−2)
and α > n+2(k−2) (so that f ∈ L

β for β < α−n
k−2 ), use Prop. 3.8: if α > n+2k−3

then the MCLT holds. Note that it gives better results than Theorem 5.10.
One may of course generalize the model (β 6= 0) as in the one-dimensional case,
which would lead to the same discussion as in the one-dimensional case.
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5.4.2. Subexponential measures. Let us consider for 0 < α < 1,

να(dx) = C(α) e−|x|αdx

associated to the να-reversible generator

L = ∆ − αx |x|α−2 .∇.
With W (x) = ea|x|α for large |x|, one easily gets that for large |x|

LW (x) ≤ −cα2a(a− 1) |x|2α−2ea|x|α

so that by Theorems 2.8 and 5.1 in Cattiaux et al. (2010b), we get that να verifies

a weak Poincaré inequality with β(s) = kn,α log(2/s)
2
α
−2. We may then mimic the

results given in the one dimensional case.

5.5. Beyond reversible diffusions. We will focus here on general diffusion models
on R

n, with the notations of Pardoux and Veretennikov (2001, 2005) for easier
comparisons,

dXt = σ(Xt)dBt + b(Xt)dt

with generator

L =

n
∑

i,j=1

aij(x)∂
2
xi,xj

+

n
∑

i=1

bi(x)∂xi
,

and a = σσ∗/2. We will suppose that σ is bounded and b, σ locally (bounded)
Lipschitz functions. We assume moreover a condition on the diffusion matrix

(Hσ) :

〈

a(x)
x

|x| ,
x

|x|

〉

≤ λ+ , T r(σσ∗)/n ≤ Λ.

Note that Pardoux and Veretennikov also impose an ellipticity condition in Pardoux
and Veretennikov (2001), or a local Doeblin condition in Pardoux and Veretennikov
(2005) preventing however too degenerate models like kinetic Fokker-Planck ones.
We also introduce the following family of recurrence conditions

(Hb(r, α)) : ∀|x| ≥M,

〈

b(x),
x

|x|

〉

≤ −r|x|α.

We suppose M > 0, α ≥ −1, and when α = −1, that the process does not explode
(it will be a consequence of the Lyapunov conditions given later). We also define
when α = −1, r0 = (r − Λn)/2)/λ+. We may then use the results of Down et al.
(1995); Douc et al. (2009) and Pardoux and Veretennikov (2001) to get that

α∗(t)
2 ≤











C e−ct if α ≥ 0,

C e−ct
1+α
1−α

if − 1 ≤ α < 0,

C (1 + t)−k if α = −1 and 0 < k < r0,

for some (usually non explicit) constants C, c > 0. Note that these results are

obtained using Lyapunov functions W1(x) = ea|x|, W2(x) = ea|x|1+α

and W3(x) =
1 + |x|2k+2 respectively, for some a < 2r

λ+(1+α) whenever α > −1). Namely outside

a large ball, for some positive λ

α ≥ 0, LW1 ≤ −λW1,

−1 < α < 0, LW2 ≤ −λW2 [lnW2]
2 α

1+α ,

α = −1, LW3 ≤ −λW
m−2

m

3 .
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All this shows that the process is positive recurrent. We denote by µ its invariant
probability measure. Remark that the convergence rate in the last case is slightly
better than the one in Pardoux-Veretennikov. Note that a direct consequence
of these Lyapunov conditions is that W1 is L

1(µ), W2 [lnW2]
2 α

1+α ∈ L
1(µ) and

W
k

k+1

3 ∈ L
1(µ). These last two integrability results are presumably not optimal,

indeed results of Pardoux and Veretennikov (2001, prop. 1) give us in the case
α = −1 that for every m < 2r0 − 1, W4(x) = 1 + |x|m is in L

1.
We may then use results of Proposition 3.8, or more precisely Proposition 3.10

to get results on the solution of the Poisson equation and the MCLT that we may
compare with Pardoux and Veretennikov (2001, th. 1). Comparison is not so easy
as Pardoux-Veretennikov’s results consider function f with polynomial growth and
obtain polynomial control of the solution of the Poisson equation, when our results
deal with L

p control. Glynn-Meyn’s result will help us in this direction. We will
only consider here examples for α = −1 and −1 < α < 0, i.e. sub-exponential
cases.

Case α = −1. Pardoux-Veretennikov’s result, assuming some ellipticity condi-
tion (namely the existence of a λ− > 0 for the corresponding lower bound in (Hσ))
establishes that if |f(x)| ≤ c(1 + |x|β) for β < 2r0 − 3 then the solution of the
Poisson equation g exists with a polynomial control in |x|β+2+ε (ε > 0 arbitrary)
just ensuring that g ∈ L

1. They also obtain a polynomial upper control of |∇g|.
We have not pushed too much further in this last direction but elements of the next
sections may give integrability results for |∇g|.
To use Proposition 3.10 in our context, one has to verify, for smooth f in L

p for
simplicity, that α(t)α∗(t) is sufficiently decreasing. Using Remark 4.3, one gets here
that for all k < r0

α(t)α∗(t) ≤ ckt
−k

and we have thus to impose the condition that k(p− 2) > p. Our results are then
weaker than Pardoux-Veretennikov as it enables us only to consider f to be in L

p

for p > 2 whereas they consider f in L
m for m < (2r0 − 1)/(2r0 − 3).

Note however that we have no ellipticity assumption, and we refer to examples
in the next paragraph, which cannot be obtained using the results of Pardoux-
Veretennikov.
Remark finally that our results do not only apply to the existence of the solution
of the Poisson equation but also to the MCLT, with a finite variance, which is not
at all ensured by Pardoux-Veretennikov’s results. In this perspective, if we want
to use Pardoux-Veretennikov result to get a finite variance, we will have to impose
that there exists p ≥ 1 such that max(pβ, p

p−1 (β + 2)) < 2r0 − 1, which will imply

that for p ≥ 2 one has to impose (r0 − 1/2)(p− 2) > p which is slightly stronger
than our conditions.

Case −1 < α < 0. In fact, by the results of Pardoux-Veretennikov, one has that
for f bounded by a polynomial, then g is also bounded by a polynomial and thus
at least in L

1.
We get much more general results here as we allow, for example, smooth f such
that there exists C > 0 with

|f(x)| ≤ C e

(

r
λ+(1+α)

−ε
)

|x|1+α

for ε > 0.
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Note also that no additional ellipticity condition is supposed, and even in the
subsequent work Pardoux and Veretennikov (2005), the local Doeblin condition and
condition (AT ) (see Pardoux and Veretennikov (2005, p. 1113)) seems to be verified
in only slightly degenerate case. We will then give here particular examples that
may be reached through our work.

5.6. Kinetic models. Consider a kinetic system, where v is the velocity (in R
d) and

x is the position. The motion of v is perturbed by a Brownian noise, i.e. we consider
the diffusion process (Xt, Vt)t≥0 with state space R

d × R
d solution of the kinetic

stochastic differential equation
{

dxt = vt dt,

dvt = H(vt, xt)dt+
√

2dBt.

If the initial law of (x0, v0) is ν we denote by P (t, ν, dx, dv) the law at time t of the
process. A standard scaling (see e.g. Degond and Motsch (2008)) is to consider

P ε(t, ν, dx, dv) = ε−d P

(

t

ε2
, νε,

dx

ε
, dv

)

i.e. the law of the scaled process (ε xt/ε2 , vt/ε2) (also rescale the initial law), solution
of

ε∂tP + v · ∇xP − 1

ε
(∆vP + divv(H P )) = 0 . (5.5)

The MCLT with v(ε) =
√
ε, if it holds, combined with a standard argument of

propagation of chaos (see Cattiaux et al. (2010a) for more details) implies that as
ε goes to 0, P ε(t, dx, dv) converges to the product N(t, dx)M(dv) where M(dv) is
the projection of the invariant measure of the diffusion on the velocities space and
N(t, dx) is the solution of the appropriate (depending on the asymptotic variance)
heat equation on the positions space.

Let us present more concrete examples where we can use the results of the paper
just using f(v) = v or f(x, v) = v, as well as the possible necessity of using another
scaling in space (anomalous rate of convergence), via explicit speed of convergence
obtained as previously via Lyapunov conditions.

Kinetic Fokker-Planck equation.
Let us consider the following stochastic differential system

dxt = vt dt,

dvt =
√

2 dBt − vt dt−∇F (Xt) dt,

where (Bt) is a R
d-Brownian motion. The invariant (but non-reversible) probability

measure is then µ(dx, dv) = Z−1 e− ( 1
2 |v|

2+F (x)) dv dx.
If F (x) behaves like |x|p for large |x| with 0 < p < 1 then one can build a

Lyapunov function W (x, v) behaving at infinity as ea(|v|2+|x|p) (for s sufficiently
small) and such that outside a large ball (see Douc et al. (2009); Bakry et al.
(2008b))

LW ≤ −λW [lnW ]2
p−1

p .

We may thus apply the results explained in the previous case −1 < α < 0.

Oscillator chains.
We present here the model studied by Hairer and Mattingly (2009): 3-oscillator
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chains

dq0 = p0 dt

dp0 = −γ0p0 dt− q0|q0|2k−2 dt− (q0 − q1) dt+
√

2γ0T0dB
0
t

dq1 = p1 dt

dp1 = −q1|q1|2k−2 − (2q1 − q0 − q2)dt

dq2 = p2 dt

dp2 = −γ2p2 dt− q2|q2|2k−2 dt− (q2 − q1) dt+
√

2γ2T2dB
2
t

where B0 and B2 are two independent brownian motions. Then by Theorem 5.6 in
Hairer and Mattingly (2009), if k > 3/2, one can give a Lyapunov function W for
which LW ≤ −λW r + C for some r < 1 so that we may use the results presented
before in the polynomial rate case.

6. An example of anomalous rate of convergence

In all the examples developed before, the asymptotic variance was existing. We
shall try now to investigate the possible anomalous rates of convergence, i.e. cases
where the variance of St is super-linear. Instead of studying the full generality, we
shall first focus on a simple example, namely the one discussed in section 5.3.2.

We consider the generator L defined in (5.4) in the critical situation α = 3 and
β ≤ 2 or the supercritical one i.e α < 3 (but α > 1). For simplicity we shall here
directly introduce the function g and choose g(x) = x2, so that f = Lg is bounded
but does not go to 0 at infinity (hence we cannot use Theorem 5.10).

Since ∇g(x) = 2x, ∇g ∈ L
2(µ) if and only if α = 3 and β > 1.

According to Remark 3.13 we may thus apply Kipnis-Varadhan result, so that
from now on these cases are excluded. Remark that for this particular case, Kipnis-
Varadhan result applies for β > 1, while for the general bounded case (i.e. f
bounded) we have to assume that β > 2. This is presumably due to the non
exact correspondence between (WPI) and the decay rate ξ as noticed just after
Proposition 5.8.

Our goal in this section will be to evaluate Varµ(St) and to see that one can
apply Denker’s Theorem 4.5, i.e. obtain a CLT with an anomalous explicit rate.

In the sequel, c will denote a universal constant that may change from place to
place.

For K > 0 we introduce a truncation function ψK such that, 1[−K,K] ≤ ψ′
K ≤

1[−K−1,K+1] and all ψ′′
K are bounded by c (ψK is thus an approximation of x∧K ∨

−K).
We then define gK = ψK(g), fK = LgK which is still bounded by c and such

that

|fK − f | ≤ c1|x|≥K .
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In what follows, we shall use repeatedly the fact that, for large K

∫ K

e

xa logβ(x) dx ' c(a, β)
(

1 +Ka+1 logβ(K)
)

if a 6= −1

∫ K

e

x−1 logβ(x) dx ' c(β)
(

1 + logβ+1(K)
)

if β 6= −1

∫ K

e

x−1 log−1(x) dx ' c (1 + log log(K)) .

These estimates follow easily by integrating by parts (integrate xa and differentiate
the log).

Now we can write (we are using the notation in section 4.2, in particular (4.5)
and (4.4)):

(St)
2 ≤ 2 (St − SfK

t )2 + 2 (SfK

t )2

≤ 2 (St − SfK

t )2 + (MgK

t )2 + ((M∗)gK

t )2 , (6.1)

or

(St)
2 ≤ 2 (St − SfK

t )2 + 8 (g2
K(Xt) + g2

K(X0)) + 4 (MgK

t )2 , (6.2)

and

(St)
2 ≥ 4 (MgK

t )2 − 2 (St − SfK

t )2 − 8 (g2
K(Xt) + g2

K(X0)) . (6.3)

Recall that

2t η(t/4) ≤ Varµ(St) ≤ 4t η(t/2)

with η given in (4.4) which is non-decreasing since L is reversible. Hence we know
that Varµ(St)/t is bounded below. This will allow us to improve on the results in
section 5.3.2.

Indeed for K > K0 where K0 is large enough,

Eµ

[

(St − SfK

t )2
]

≤ cEµ

[
∫ t

0

∫ s

0

1|Xs|≥K 1|Xu|≥K du ds

]

≤ cEµ

[
∫ t

0

s1|Xs|≥K ds

]

≤ c t2 µ(|x| ≥ K) ≤ c′′(α, β) t2K1−α log−β(K) . (6.4)

Eµ

[

(MgK

t )2
]

≤ cEµ

[
∫ t

0

X2
s 1|Xs|≤K+1 ds

]

≤ c t

∫ K+1

−K−1

x2 µ(dx)

≤ c(α, β) t (1 + ϕ(K)) , (6.5)
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with ϕ(K) = K3−α log−β(K) if α 6= 3, ϕ(K) = log1−β(K) if α = 3 and β 6= 1, and
finally ϕ(K) = log log(K) if α = 3 and β = 1 . Note that similarly

Eµ

[

(MgK

t )2
]

≥ Eµ

[
∫ t

0

X2
s 1|Xs|≤K ds

]

≥ c t

∫ K

−K

x2 µ(dx)

≥ c′(α, β) t (1 + ϕ(K)) . (6.6)

In addition
∫

g2
K dµ ≤ c

∫ K+1

−K−1

x4

(1 + |x|α) logβ(e+ |x|2)
dx+ 2K4 µ(|x| > K)

≤ c (1 +K5−α log−β(K)) . (6.7)

According to Lemma 2.3 we already know that Varµ(St)/t is bounded if and
only if we are in the Kipnis-Varadhan situation (in particular as we already saw if
α = 3 and β > 1). In order to get the good order for Varµ(St)/t by using (6.2) and
(6.3) we have to choose K(t) in such a way that

Eµ

[

(MgK

t )2
]

�
∫

g2
K dµ

and

Eµ

[

(MgK

t )2
]

� Eµ

[

(St − SfK

t )2
]

.

Hence, according to (6.5) and (6.6) as well as (6.4) and (6.7) we need for (α, β) 6=
(3, 1)

t
(

K3−α 1α>3 + log(K)1α=3

)

log−β(K) �
max(K5−α log−β(K) ; t2K1−α log−β(K)) , (6.8)

We immediately see that the unique favorable situation is obtained for

α = 3 and β 6= 1 and K2 log(K) � t� K2/ log(K) . (6.9)

In this situation the leading term Eµ

[

(MgK

t )2
]

is of order t log1−β(K) i.e. of order

t log1−β(t).
If α = 3 and β = 1 we get

K2 log(K) log log(K) � t� K2/ log(K) log log(K) (6.10)

yielding this time Eµ

[

(MgK

t )2
]

' t log log(t).
So we now consider the cases α = 3 and β ≤ 1.
Notice that it corresponds to the rate of convergence described in the next section

7.

We thus have

Varµ(St)/t ' log1−β(t) (or log log t if β = 1) . (6.11)

Any choice of K(t) satisfying (6.9) (or (6.10)) yields that (St − SfK

t )2/t log1−β(t)
(or t log log t) goes to 0 in L

1(µ). Hence, thanks to (6.1), it remains to show that

(MgK

t )2/t log1−β(t) (or t log log t) is uniformly integrable i.e. that the bracket
∫ t

0

|∇gK |2(Xs) ds/t log1−β(t) or t log log(t)
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is uniformly integrable, according to Proposition 4.6. Due to the form of gK it is
thus enough to show that

H(t,X,K(t)) :=

∫ t

0

X2
s 1|Xs|≤1+K(t) ds/t log1−β(t) ( or t log log(t) if β = 1)

(6.12)
is uniformly integrable.

Remark 6.1. One can remark that in the situation described above, β(t) � α2(t),
that is the decay of the L

2 norm of Ptf is faster than the worse possible one.
Indeed, as we know, η(t) ∼ Varµ(St)/t ∼ log1−β(t) (or log log t for β = 1) while

α2(t) ∼ log1−β(t) t−1 so that its primitive behaves like log2−β(t).

To this end, denote by u(x,M) = |x|2 1|x|≤1+M for M ≥ 1, and ū(x,M) =

u(x,M) −
∫

u(.,M) dµ, and U(t,X,M) =
∫ t

0
u(Xs,M) ds.

We know that if β ≤ 1, and t > 1 for instance,

Varµ(U(t,X,M)) = 4

∫ t/2

0

(t− 2s)

(
∫

P 2
s (ū(.,M)) dµ

)

ds .

Recall that α2(s) = α2
2,∞(s) is the mixing coefficient whose expression is recalled

in section 5.3.2, i.e. α2(s) ' log1−β(s) s−1.
A direct calculation thus yields (for t ≥ 1)

Varµ(U(t,X,M)) ≤ 4

∫ t/2

0

(t− 2s)α2(s) (1 +M)4 ds

≤ 4c (1 +M)4
∫ t/2

0

(t− 2s)
log1−β(1 + s)

1 + s
ds

≤ 4c (1 +M)4 t log2−β(1 + t) .

Hence if we choose M(t) = ta with a < 1/4,

Varµ(U(t,X, ta))/t2 log2(1−β)t
(

or (log log t)2 if β = 1
)

→ 0 as t→ +∞ .

We can also calculate the mean

Eµ(U(t,X, ta)) ' c(β) t log1−β(t) ( or log log t if β = 1)

i.e. is asymptotically equivalent to the mean of U(t,X,K(t)), so that

Eµ(U(t,X, ta))/t log1−β(t) ( or log log t if β = 1)

is bounded.
It follows that U(t,X, ta)/t log1−β(t) or U(t,X, ta)/t log log(t) when β = 1, is

uniformly integrable.
We claim that

(U(t,X,K(t)) − U(t,X, ta)) /t log1−β(t) ( or log log t if β = 1) → 0 in L
1(Pµ) ,

so that it is uniformly integrable. According to what precedes, it immediately fol-
lows that H(t,X,K(t)) = U(t,X,K(t))/t log1−β(t) (with the ad hoc normalization
if β = 1) is also uniformly integrable.

It remains to prove our claim. For simplicity we choose K(t) = t1/2 (any al-
lowed K(t) furnishes the result but calculations are easier). Since U(t,X,K(t)) −
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U(t,X, ta) ≥ 0 it is enough to calculate for large t

Eµ (U(t,X,K(t)) − U(t,X, ta)) = t

∫ K(t)

ta

x2 µ(dx) .

If β 6= 1, the right hand side is equal to

1

1 − β

(

log1−β(K(t)) − log1−β(ta)
)

' (log(1/2)− log(a)) log−β(t) .

If β = 1 it is equal to

log log(K(t)) − log log ta ' log(1/2) − log(a) .

Our claim immediately follows in both cases.
Let us collect the results we have obtained:

Theorem 6.2. Let

µβ(dx) = pβ(x) dx = c(β) (1 + x2)−3/2 log−β(e+ x2) dx

be a probability measure on the line and Lβ = ∂2
x2 + ∇(log pβ) ∂x the associated

diffusion generator for which µβ is reversible and ergodic. Xβ
. denotes the associated

diffusion process.
For g(x) = x2, fβ = Lβg is a bounded function with µ-mean equal to 0. We

consider the associated additive functional S
fβ

t =
∫ t

0 fβ(Xβ
s ) ds.

If β > 1 we may apply Kipnis-Varadhan result (Theorem 3.3).

If β = 1, limt→+∞ Varµβ
(S

fβ

t )/t log log t = c for some constant c > 0 and we
may apply Denker’s theorem 4.5.

If β < 1, limt→+∞ Varµβ
(S

fβ

t )/t log1−β(t) = c for some constant c > 0 and we
may again apply Denker’s theorem 4.5.

The previous theorem is really satisfactory and in a sense generic. We shall try
in the next sections to exhibit general properties yielding to an anomalous rate of
convergence.

7. Anomalous rate of convergence. Some hints

The standard strategy we used for the CLT is to reduce the problem to the use
of the ergodic theorem for the brackets of a well chosen martingale. This requires
to approximate the solution of the Poisson equation, i.e. to obtain a decomposition
of St into some martingale terms, whose brackets may be controlled, and remaining
but negligible “boundary” terms. In this section we shall address the problem of
using this strategy for super-linear variance. Hence we have to choose a correct
approximation of the solution of the Poisson equation, and to replace the ergodic
theorem for the martingale brackets, by some uniform integrability property. Again
we are using the notation (4.4) and (4.5).

As before, for T > 0 depending on t to be chosen later, introduce again gT =

−
∫ T

0
Psf ds. We thus have LgT = f − PT f and using Itô’s formula

St =

∫ t

0

f(Xs) ds = gT (Xt) − gT (X0) −MT
t +

∫ t

0

PT f(Xs) ds (7.1)

= gT (Xt) − gT (X0) −MT
t + ST

t

= −1

2
(MT

t + (M∗)T
t ) + ST

t ,
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where
〈

MT
〉

t
=
∫ t

0
Γ(gT )(Xs) ds. In order to prove that S2

t (f)/Var(St(f)) is uni-
formly integrable when X0 ∼ µ, we shall find conditions for the following three
propositions:

lim
t→∞

1

Var(St)

∫

(gT )2 dµ = 0 (7.2)

lim
t→∞

1

Var(St)
Varµ(ST

t ) = 0 (7.3)

lim
t→∞

1

Var(St)
(MT

t )2 is uniformly integrable. (7.4)

We can replace (7.2) by

1

Var(St)
((M∗)T

t )2 is uniformly integrable. (7.5)

7.1. Study of
∫

(gT )2 dµ/Var(St). We already saw that in the reversible case

Varµ(gT ) = 4

∫ T

0

s β(s) ds ≤ 4T η(T ),

We immediately see using (4.7) that if T
t → 0, then

∫

(gT )2 dµ/Var(St) → 0 as
t→ +∞.

If t � T then β has to decay quickly enough for
∫

(gT )2 dµ/Var(St) to be
bounded. The limiting case T = ct will be the more interesting in view of the
second “boundary” term. Note that actually we only need to study the uniform
integrability of (gT )2/Var(St), but the material we have developed do not furnish
any better result in this direction.

7.2. Study of Varµ(ST
t )/Var(St). If µ is reversible, we have

Varµ(ST
t ) = 2

∫ t

0

∫ s

0

(
∫

PT f Pu+T f dµ

)

du ds

= 4

∫ t
2

0

(t− s)β(s+ T ) ds

≤ 4t (η(T + (t/2)) − η(T )) ,

so that, for Varµ(ST
t )/Var(St) to go to 0, it is enough to have

η(T + t
2 ) − η(T )

η( t
4 )

→ 0.

A similar estimate holds in the non-reversible case provided (Hpos) holds. This
time we see that the good situation is the one where t� T .

7.3. The martingale brackets. It remains to calculate the expectation of the mar-
tingale brackets 〈MT 〉t.

Eµ

(

〈MT 〉t
)

= t

∫

Γ(gT ) dµ

= 2t

∫
(
∫ t

0

Psf (f − PT f) ds

)

dµ

= 4t (2 η(T/2) − η(T )) .
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Hence we certainly need (2 η(T/2) − η(T )) /η(t/4) to be bounded. As for the first
term this requires at least that t is of the same order as T .

7.4. The good rates. According to what precedes, we have to consider the case
when T and t are comparable. For simplicity we shall choose T = t/2, so that the
final condition in section 7.3 will be automatically satisfied. The final condition in
section 7.2 becomes

lim
t→+∞

η(t) − η(t/2)

η(t/4)
= 0 , (7.6)

while the discussion in section 7.1 yields to

lim
t→+∞

∫ t

0 s β(s) ds

t
∫ t/2

0 β(s) ds
= 0 , (7.7)

It is thus interesting to get a family of β′s satisfying (7.7) and (7.6). Actually since
β is non increasing,

∫ t

t/2

β(s)ds ≤
∫ t/2

0

β(s)ds

so that
∫ t/2

0

β(s)ds ≤
∫ t

0

β(s)ds ≤ 2

∫ t/2

0

β(s)ds .

Hence, (7.7) is equivalent to

lim
t→+∞

∫ t

0 s β(s) ds

t
∫ t

0
β(s) ds

= 0 . (7.8)

Functions satisfying this property are known, according to Karamata’s theory (see
Bingham et al. (1987, ch. 1)). Recall the definition

Definition 7.1. A non-negative function l is slowly varying if for all u > 0,

lim
t→+∞

l(ut)

l(t)
= 1.

Using the direct half of Karamata’s theorem (see Bingham et al. (1987, prop. 1.5.8
eq. (1.5.8)) for (7.8) to hold it is enough that

β(s) =
l(s)

s
for some slowly varying l. (7.9)

Indeed if (7.9) holds,
∫ t

0
s β(s) ds ∼ t l(t) so that (7.8) is equivalent to

lim
t→+∞

l(t)
∫ t

0
β(s) ds

= 0 ,

which is exactly Bingham et al. (1987, prop. 1.5.9a).
The converse half of Karamata’s theorem (Bingham et al. (1987, th. 1.6.1))

indicates that this condition is not far to be necessary too.
Furthermore, according to Bingham et al. (1987, prop. 1.5.9a). if (7.9) is sat-

isfied, then η is slowly varying too, so that (7.6) is also satisfied. These remarks
combined with the explicit value of Varµ(St) show that the latter is then equivalent
to 4t η(t) at infinity.

We have obtained
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Proposition 7.2. (7.7) and (7.6) are both satisfied as soon as (7.9) is. In this
situation Varµ(St)/t is equivalent to 4 η(t) at infinity.

Of course if we replace (7.7) by (7.5) we do not need the full strength of (7.9)
since (7.6) is satisfied as soon as η is slowly varying.

7.5. Study of (MT
t )2/Var(St). Now on we shall thus take T = t/2 and simply

denote MT
t by Mt. In order to show that (Mt)

2/Var(St) is uniformly integrable,
we can use Proposition 4.6 yielding the following :

Proposition 7.3. If the process is reversible and strongly mixing and if η given in
(4.4) is slowly varying (in particular if (7.9) is satisfied), then there is an equiva-
lence between

(1)
St

2
√

tη(t)
converges in distribution to a standard Gaussian law as t→ +∞,

(2)

(

1

tη(t)

∫ t

0

Γ(gt/2)(Xs) ds

)

t≥1

is uniformly integrable, where gt/2 := −
∫ t/2

0 Psf ds.

We shall say (as Denker himself said when writing his theorem) that the previous
proposition is not really tractable. Indeed in general we do not know any explicit
expression for the semigroup (hence for gt). The main interest of the previous
discussion is perhaps contained in the feeling that anomalous rate shall only occur
when (7.9) is satisfied.

In the next section we shall even go further in explaining:

7.6. Why is it delicate? The previous theorem reduces the problem to show that

sup
t

Eµ

[

γ

(

1

Var(St)

∫ t

0

Γ(gt/2)(Xs) ds

)]

<∞.

The first idea is to use the convexity of γ, yielding

Eµ

[

γ

(

1

Var(St)

∫ t

0

Γ(gt/2)(Xs) ds

)]

≤ 1

t
Eµ

[
∫ t

0

γ

(

1

h(t)
Γ(gt/2)(Xs)

)

ds

]

≤
∫

γ

(

1

h(t)
Γ(gt/2)

)

dµ

so that our problem reduces to show that Γ(gt)/h(2t) is µ uniformly integrable, or,
since we assume that η is slowly varying, that Γ(gt)/η(t) is µ uniformly integrable.

The simplest case, namely if ∇gt/
√

h(t) is strongly convergent in L
2(µ), holds if

and only if η(t) has a limit at infinity, i.e. in the Kipnis- Varadhan situation. The
situation when η(t) goes to infinity is thus more delicate.

It is so delicate that we shall see a natural generic obstruction. In what follows
we assume that η(t) → +∞ as t→ +∞.

For simplicity we consider the one dimensional situation with

L = ∂2
x2 + ∂x(log p) ∂x

p being a density of probability on R which is assumed to be smooth (C∞) and
everywhere positive with p(x) → 0 as x → ∞. µ(dx) = p(x)dx is thus a reversible
measure, and we assume that the underlying diffusion process is strongly mixing.
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We already know that
∫

|∂xgt|2 dµ ∼ 4 η(t). If |∂xgt|2/η(t) is uniformly inte-
grable, we may find a function h ∈ L

1(µ) such that a sequence |∂xgtn
|2/η(tn)

weakly converges to h in L
1(µ). This implies that p |∂xgtn

|2/η(tn) converges to
p h = ν in D′(R), the set of Schwartz distributions. Notice that ν ∈ L

1(R) and
satisfies

∫

ν(x)dx = 4.
Of course we may replace f by Pεf for any ε ≥ 0 up to an error term going to

0. Thanks to (hypo-)ellipticity we know that Pεf is C∞, hence we may and will
assume that f is C∞, so that gt is C∞ too.

Accordingly the derivatives

∂x(p |∂xgtn
|2/η(tn)) =

p ∂xgtn

η(tn)

(

2 ∂2
x2gtn

+ ∂x(log p) ∂xgtn

)

→ ∂xν

in D′(R). But

∂2
x2gtn

= Lgtn
− ∂x(log p) ∂xgtn

= f − Ptn
f − ∂x(log p) ∂xgtn

,

so that

∂xν = lim
1

η(tn)

(

2 p ∂xgtn
(f − Ptn

f) − ∂xp (∂xgtn
)2
)

= − ∂x(log p) ν .

Indeed the first term in the limit goes to 0 in D′(R) since for a smooth ϕ with
compact support

∫

ϕ
1

η(tn)
2 p ∂xgtn

(f − Ptn
f) dx ≤ ‖ϕ‖∞

2

η(tn)
‖∂xgtn

‖
L2(µ)‖f − Ptn

f‖
L2(µ)

≤ ‖ϕ‖∞
4

√

η(tn)

∥

∥

∥

∥

∥

∂xgtn
√

η(tn)

∥

∥

∥

∥

∥

L2(µ)

‖f‖
L2(µ),

and we assumed that η goes to infinity, while for the second term we know that
p |∂xgtn

|2/η(tn) converges to ν and that ∂xp is smooth.
Hence ν solves ∂xν = −∂x(log p) ν in D′(R), i.e. ν = c/p which is not in L

1(R)
unless c = 0 in which case

∫

ν dx 6= 4. Accordingly |∂xgt|2/η(t) cannot be uniformly
integrable.

Hence, contrary to all the cases we have discussed before, anomalous rate of
convergence cannot be uniquely described by the behavior of the semigroup. We
need to use pathwise properties of the process. (This sentence may look strange
since the semigroup uniquely determines the process, but the important word here
is “path”.)

In the situation of Lemma 3.12 the good strategy is to use some cut-off of g as
we did in the previous section, which in a sense is generic for this situation.

8. Fluctuations out of equilibrium

In this section we shall mainly discuss the CLT and MCLT out of equilibrium.
But before, we shall show that in the strong mixing case (i.e. uniformly ergodic
situation), the (CLT) ensures the (MCLT).

Proposition 8.1 (From CLT to MCLT). Assume that the process is strongly mixing
(i.e. uniformly ergodic) and that Varµ(St) = th(t) for some slowly varying function
h. If (CLT) holds under Pµ with s2t = Varµ(St) = th(t) then (MCLT) holds with
s2t = Varµ(St) = th(t).
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Proof : Since h is slowly varying, Var(St/ε) ∼ th(1/ε)/ε as ε → 0. For 0 ≤ s < t,
define

S(s, t, ε) =

√

ε

h(1/ε)

∫ t/ε

s/ε

f(Xu) du.

To prove our statement it is thus enough to show that, for indices 0 ≤ s1 <
t1 ≤ s2 < t2 · · · < tN the joint law of (S(si, ti, ε))1≤i≤N converges to the law of
a Gaussian vector with appropriate diagonal covariance matrix. Up to an easy
induction procedure, we shall only give the details for N = 2 and 0 = s1 < t1 =
s = s2 < t2 = t. For 0 < s < t and λ ∈ R define

V (ε, s, t, λ) = exp (i λ S(s, t, ε)) , H(x, s, t, ε, λ) = Ex [V (ε, s, t, λ)] .

As usual we denote by H̄ the centered H − µ(H).
We only have to show that

lim
ε→0

Eµ[V (ε, 0, s, λ)V (ε, s, t, θ)] = es λ2/2 e(t−s) θ2/2.

The main difficulty here is that t1 = s2 = s. We introduce an auxiliary time

sε = (s/ε) − (s/ε
1
4 ).

We then have

Eµ [V (ε, 0, s, λ)V (ε, s, t, θ)] =

= Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)V (ε, s(1 − ε

3
4 ), s, λ)V (ε, s, t, θ)

]

= Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)V (ε, s, t, θ)

]

+

+ Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)

(

V (ε, s(1 − ε
3
4 ), s, λ) − 1

)

V (ε, s, t, θ)
]

= Aε +Bε .

Now

Aε = Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)P

s/ε
3
4
H(Xsε

, s, t, ε, θ)
]

= µ(H(., s, t, ε, θ)) Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)

]

+

+ Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)P

s/ε
3
4
H̄(Xsε

, s, t, ε, θ)
]

= µ(H(., s, t, ε))Eµ [V (ε, 0, s, λ)] +

+µ(H(., s, t, ε)) Eµ

[(

V (ε, 0, s(1 − ε
3
4 ), λ) − V (ε, 0, s, λ)

)]

+

+ Eµ

[

V (ε, 0, s(1 − ε
3
4 ), λ)P

s/ε
3
4
H̄(Xsε

, s, t, ε, θ)
]

= A1,ε +A2,ε +A3,ε .

Note that

lim
ε→0

A1,ε = es λ2/2 e(t−s) θ2/2 ,

according to the CLT. For the two remaining terms we have

(1/
√

2) |A2,ε| ≤ Eµ

[

√

ε

h(1/ε)

∫ s/ε

s(1−ε
3
4 )/ε

|f |(Xu) du

]

≤
√

ε

h(1/ε)

s

ε
1
4

µ(|f |) ,
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hence goes to 0 as ε→ 0. Similarly

|A3,ε| ≤ Eµ

[∣

∣

∣
P

s/ε
3
4
H̄(Xsε

, s, t, ε, θ)
∣

∣

∣

]

=

∫

∣

∣

∣
P

s/ε
3
4
H̄(., s, t, ε, θ)

∣

∣

∣
dµ ≤ α(s/ε

3
4 ) ,

also goes to 0 as ε→ 0.
In the same way

(1/
√

2) |Bε| ≤ Eµ

[

√

ε

h(1/ε)

∫ s/ε

s(1−ε
3
4 )/ε

|f |(Xu) du

]

,

hence goes to 0 as ε→ 0 exactly as A2,ε. The proof is completed. �

Corollary 8.2. If Varµ(St) = t h(t) for some slowly varying function h, we may
replace the CLT by the MCLT in all results of section 4.2 (in particular Theorem
4.8), in Theorem 6.2 and in Proposition 7.3.

8.1. About the law at time t.

Theorem 8.3. Down et al. (1995, th. 5.2.c), and Douc et al. (2009, th. 3.10 3.12).
Under the assumptions of Proposition 5.9, there exists a positive constant c such

that for all x,

‖Pt(x, ·) − µ‖TV ≤ cV (x)ψ(t),

where ‖·‖TV is the total variation distance and ψ (which goes to 0 at infinity) is de-

fined as follows: ψ(t) = 1/(ϕ ◦ H−1
ϕ )(t) for Hϕ(t) =

∫ t

1
(1/ϕ(s))ds, if

limu→+∞ ϕ′(u) = 0 and ψ(t) = e−λt for a well chosen λ > 0 if ϕ is linear.
In particular for any probability measure ν such that V ∈ L

1(ν), if we denote by
P ∗

t ν the law of the process at time t starting with initial law ν,

lim
t→+∞

‖P ∗
t ν − µ‖TV = 0.

The second result is mentioned (in the case of a brownian motion with a drift)
in Cattiaux et al. (2007) and proved for a stopped diffusion in dimension one in
Cattiaux et al. (2009, th. 2.3). The proof given there extends immediately to the
uniformly elliptic case below thanks to the standard Gaussian estimates for the
density at time t of such a diffusion, details are left to the reader

Theorem 8.4. In the diffusion situation (2.4), assume that the diffusion matrix a
is uniformly elliptic and bounded. Assume in addition that the invariant measure
µ(dx) = e−W (x) dx is reversible, and that 2Γ(W,W )(x) − LW (x) ≥ −c > −∞.

Then for all t > 0 and all x, Pt(x, dy) = r(t, x, y)µ(dy) with r(t, x, .) ∈ L
2(µ).

Furthermore if eW ∈ L
1(ν), P ∗

t ν(dy) = r(t, ν, y)µ(dy) with r(t, ν, .) ∈ L
2(µ).

Consequently, if the diffusion is uniformly ergodic (or strongly mixing) and if
eW ∈ L

1(ν), we have again

lim
t→+∞

‖P ∗
t ν − µ‖TV = 0.

8.2. Fluctuations out of equilibrium. Let ν be a given initial distribution. A direct
application of the Markov property shows that

Lemma 8.5. Assume that

lim
t→+∞

‖P ∗
t ν − µ‖TV = 0.



378 P. Cattiaux, D. Chafäı and A. Guillin

Let u(ε) > ε going to 0 as ε goes to 0. For any bounded H1, ..., Hk, denote H(Z.) =
⊗Hi(Zti

). Then

lim
ε→0

∣

∣

∣

∣

∣

Eν

[

H

(

v(ε)

∫ ./ε

./u(ε)

f(Xs) ds

)]

− Eµ

[

H

(

v(ε)

∫ ./ε

./u(ε)

f(Xs) ds

)]∣

∣

∣

∣

∣

= 0 .

As a consequence we immediately obtain

Theorem 8.6. Let ν satisfying the assumptions of Theorem 8.4 or Theorem 8.3.
If the MCLT holds under Pµ (i.e. at equilibrium) with v(ε) → 0 as ε → 0 but
v(ε) � ε, then it also holds under Pν (i.e out of equilibrium) provided one of the
following additional assumptions is satisfied

• ν is absolutely continuous w.r.t. µ
• ν = δx for µ almost all x,
• f is bounded.

Proof : Choose u(ε) such that u(ε) → 0 as ε → 0, but with u(ε) � v(ε). We may
apply the previous lemma and to conclude it is enough to show that

lim
ε→0

v(ε)

∫ t/u(ε)

0

f(Xs) ds

in Pν probability, which is immediate when f is bounded and follows from the
almost sure ergodic theorem in the two others cases. �

Several authors have tried to obtain the MCLT started from a point i.e. under
Px for all x, not only for µ almost all x, see Derriennic and Lin (2001a, 2003). Here
is a result in this direction:

Theorem 8.7. Assume that P ∗
t ν is absolutely continuous with respect to µ for

some t > 0, that the state space E is locally compact and that f is continuous.
Then if the assumptions of Theorem 8.4 or Theorem 8.3 are fulfilled, then (MCLT)
holds under Pν as soon as it holds under Pµ.

Proof : Note that, if P ∗
t ν is absolutely continuous w.r.t. µ, we may apply the

previous theorem to the additive functional
∫ ./ε

t
f(Xs) ds, i.e. we may replace 0

by some fixed t. It thus remains to control v(ε)
∫ t

0
f(Xs) ds for the same fixed t.

But since f is continuous, since X. is Pν almost surely continuous and E is locally

compact,
∫ t

0
f(Xs) ds is Pν almost surely bounded, hence goes to 0 when ε → 0

once multiplied by v(ε). �

Corollary 8.8. If L given by (2.4) is elliptic or more generally hypoelliptic, the
previous theorem applies to all initial ν satisfying the assumptions of Theorem 8.4
or Theorem 8.3. In particular it applies to ν = δx for all x.
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P. Degond and S. Motsch. Large scale dynamics of the persistent turning walker
model of fish behavior. J. Stat. Phys. 131 (6), 989–1021 (2008). MR2407377.

C. Dellacherie and P.-A. Meyer. Probabilités et potentiel. Chapitres V à VIII, volume
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des martingales. [Martingale theory]. MR566768.

C. Dellacherie and P. A. Meyer. Probabilités et Potentiel. Chap. XII-XVI. Théorie
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