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Abstract. For n ≥ 1 let Xn be a vector of n independent Bernoulli random
variables. We assume that Xn consists of M “blocks” such that the Bernoulli
random variables in block i have success probability pi. Here M does not depend
on n and the size of each block is essentially linear in n. Let X̃n be a random
vector having the conditional distribution of Xn, conditioned on the total number
of successes being at least kn, where kn is also essentially linear in n. Define Ỹ n

similarly, but with success probabilities qi ≥ pi. We prove that the law of X̃n

converges weakly to a distribution that we can describe precisely. We then prove
that supP(X̃n ≤ Ỹ n) converges to a constant, where the supremum is taken over

all possible couplings of X̃n and Ỹ n. This constant is expressed explicitly in terms
of the parameters of the system.

1. Introduction and main results

Let X and Y be random vectors on Rn with respective laws µ and ν. We
say that X is stochastically dominated by Y , and write X � Y , if it is possible
to define random vectors U = (U1, . . . , Un) and V = (V1, . . . , Vn) on a common
probability space such the laws of U and V are equal to µ and ν, respectively, and

Received by the editors October 24, 2011; accepted June 17, 2012.

2000 Mathematics Subject Classification. Primary 60E15, Secondary 60F05.
Key words and phrases. Bernoulli random vectors, weak convergence, stochastic domination,

conditional distributions, coupling.
The research of E.I.B. was supported by the Göran Gustafsson Foundation for Research in Nat-
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U ≤ V (that is, Ui ≤ Vi for all i ∈ {1, . . . , n}) with probability 1. In this case,
we also write µ � ν. For instance, when X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn)
are vectors of n independent Bernoulli random variables with success probabilities
p1, . . . , pn and q1, . . . , qn, respectively, and 0 < pi ≤ qi < 1 for i ∈ {1, . . . , n}, we
have X � Y .

In this paper, we consider the conditional laws of X and Y , conditioned on the
total number of successes being at least k, or sometimes also equal to k, for an
integer k. In this first section, we will state our main results and provide some
intuition. All proofs are deferred to later sections.

Domination issues concerning the conditional law of Bernoulli vectors condi-
tioned on having at least a certain number of successes have come up in the litera-
ture a number of times. In Broman et al. (2006) and Broman and Meester (2008),
a simplest case has been considered in which pi = p and qi = q for some p < q.
In Broman and Meester (2008), the conditional domination is used as a tool in the
study of random trees.

Here we study such domination issues in great detail and generality. The Ber-
noulli vectors we consider have the property that the pi and qi take only finitely
many values, uniformly in the length n of the vectors. The question about stochas-
tic ordering of the corresponding conditional distributions gives rise to a number
of intriguing questions which, as it turns out, can actually be answered. Our main
result, Theorem 1.8, provides a complete answer to the question with what maximal
probability two such conditioned Bernoulli vectors can be ordered in any coupling,
when the length of the vectors tends to infinity.

In Section 1.1, we will first discuss domination issues for finite vectors X and Y

as above. In order to deal with domination issues as the length n of the vectors tends
to infinity, it will be necessary to first discuss weak convergence of the conditional
distribution of a single vector. Section 1.2 introduces the framework for dealing
with vectors whose lengths tend to infinity, and Section 1.3 discusses their weak
convergence. Finally, Section 1.4 deals with the asymptotic domination issue when
n → ∞.

1.1. Stochastic domination of finite vectors. As above, let X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn) be vectors of independent Bernoulli random variables with success
probabilities p1, . . . , pn and q1, . . . , qn, respectively, where 0 < pi ≤ qi < 1 for
i ∈ {1, . . . , n}. For an event A, we shall denote by L(X |A) the conditional law
of X given A. Our first proposition states that the conditional law of the total
number of successes of X, conditioned on the event {

∑n
i=1 Xi ≥ k}, is stochastically

dominated by the conditional law of the total number of successes of Y .

Proposition 1.1. For all k ∈ {0, 1, . . . , n},

L(
∑n

i=1 Xi|
∑n

i=1 Xi ≥ k) � L(
∑n

i=1 Yi|
∑n

i=1 Yi ≥ k).

In general, the conditional law of the full vector X is not necessarily stochasti-
cally dominated by the conditional law of the vector Y . For example, consider the
case n = 2, p1 = p2 = q1 = p and q2 = 1 − p for some p < 1

2 , and k = 1. We then
have P(X1 = 1 | X1 + X2 ≥ 1) =

1

2 − p
,
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and P(Y1 = 1 | Y1 + Y2 ≥ 1) =
p

1 − (1 − p)p
.

Hence, if p is small enough, then the conditional law of X is not stochastically
dominated by the conditional law of Y .

We would first like to study under which conditions we do have stochastic or-
dering of the conditional laws of X and Y . For this, it turns out to be very useful
to look at the conditional laws of X and Y , conditioned on the total number of
successes being exactly equal to k, for an integer k. Note that if we condition on the
total number of successes being exactly equal to k, then the conditional law of X

is stochastically dominated by the conditional law of Y if and only if the two con-
ditional laws are equal. The following proposition characterizes stochastic ordering
of the conditional laws of X and Y in this case. First we define, for i ∈ {1, . . . , n},

βi :=
pi

1 − pi

1 − qi

qi
. (1.1)

The βi will play a crucial role in the domination issue throughout the paper.

Proposition 1.2. The following statements are equivalent:

(i) All βi (i ∈ {1, . . . , n}) are equal;
(ii) L(X|

∑n
i=1 Xi = k) = L(Y |

∑n
i=1 Yi = k) for all k ∈ {0, 1, . . . , n};

(iii) L(X|
∑n

i=1 Xi = k) = L(Y |
∑n

i=1 Yi = k) for some k ∈ {1, . . . , n − 1}.
We will use this result to prove the next proposition, which gives a sufficient

condition under which the conditional law of X is stochastically dominated by the
conditional law of Y , in the case when we condition on the total number of successes
being at least k.

Proposition 1.3. If all βi (i ∈ {1, . . . , n}) are equal, then for all k ∈ {0, 1, . . . , n},
L(X|∑n

i=1 Xi ≥ k) � L(Y |∑n
i=1 Yi ≥ k).

The condition in this proposition is a sufficient condition, not a necessary con-
dition. For example, if n = 2, p1 = p2 = 1

2 , q1 = 6
10 and q2 = 7

10 , then β1 6= β2, but
we do have stochastic ordering for all k ∈ {0, 1, 2}.

1.2. Framework for asymptotic domination. Suppose that we now extend our Ber-
noulli random vectors X and Y to infinite sequences X1, X2, . . . and Y1, Y2, . . .
of independent Bernoulli random variables, which we assume to have only finitely
many distinct success probabilities. It then seems natural to let Xn and Y n denote
the n-dimensional vectors (X1, . . . , Xn) and (Y1, . . . , Yn), respectively, and consider
the domination issue as n → ∞, where we condition on the total number of suc-
cesses being at least kn = ⌊αn⌋ for some fixed number α ∈ (0, 1).

More precisely, with kn as above, let X̃n be a random vector having the law
L(Xn|

∑n
i=1 Xi ≥ kn), and define Ỹ n similarly. Proposition 1.3 gives a sufficient

condition under which X̃n is stochastically dominated by Ỹ n for each n ≥ 1. If this
condition is not fulfilled, however, we might still be able to define random vectors
U and V , with the same laws as X̃n and Ỹ n, on a common probability space such
that the probability that U ≤ V is high (perhaps even 1). We denote by

supP(X̃n ≤ Ỹ n) (1.2)
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the supremum over all possible couplings (U , V ) of (X̃n, Ỹ n) of the probability
that U ≤ V . We want to study the asymptotic behaviour of this quantity as
n → ∞.

As an example (and an appetizer for what is to come), consider the following
situation. For i ≥ 1 let the random variable Xi have success probability p for
some p ∈ (0, 1

2 ). For i ≥ 1 odd or even let the random variable Yi have success

probability p or 1− p, respectively. We will prove that supP(X̃n ≤ Ỹ n) converges
to a constant as n → ∞ (Theorem 1.8 below). It turns out that there are three
possible values of the limit, depending on the value of α:

(i) If α < p, then supP(X̃n ≤ Ỹ n) → 1.

(ii) If α = p, then supP(X̃n ≤ Ỹ n) → 3
4 .

(iii) If α > p, then supP(X̃n ≤ Ỹ n) → 0.

In fact, to study the asymptotic domination issue, we will work in an even more
general framework, which we shall describe now. For every n ≥ 1, Xn is a vector of
n independent Bernoulli random variables. We assume that this vector is organized
in M “blocks”, such that all Bernoulli variables in block i have the same success
probability pi, for i ∈ {1, . . . , M}. Similarly, Y n is a vector of n independent
Bernoulli random variables with the exact same block structure as Xn, but for Y n,
the success probability corresponding to block i is qi, where 0 < pi ≤ qi < 1 as
before.

For given n ≥ 1 and i ∈ {1, . . . , M}, we denote by min the size of block i,

where of course
∑M

i=1 min = n. In the example above, there were two blocks, each
containing (roughly) one half of the Bernoulli variables, and the size of each block
was increasing with n. In the general framework, we only assume that the fractions

min/n converge to some number αi ∈ (0, 1) as n → ∞, where
∑M

i=1 αi = 1.
Similarly, in the example above we conditioned on the total number of successes
being at least kn, where kn = ⌊αn⌋ for some fixed α ∈ (0, 1). In the general
framework, we only assume that we are given a fixed sequence of integers kn such
that 0 ≤ kn ≤ n for all n ≥ 1 and kn/n → α ∈ (0, 1) as n → ∞.

In this general framework, let X̃n be a random vector having the conditional
distribution of Xn, conditioned on the total number of successes being at least kn.
Observe that given the number of successes in a particular block, these successes
are uniformly distributed within the block. Hence, the distribution of X̃n is com-
pletely determined by the distribution of the M -dimensional vector describing the
numbers of successes per block. Therefore, before we proceed to study the asymp-
totic behaviour of the quantity (1.2), we shall first study the asymptotic behaviour
of this M -dimensional vector.

1.3. Weak convergence. Consider the general framework introduced in the previous
section. We define Xin as the number of successes of the vector Xn in block i and
write Σn :=

∑M
i=1 Xin for the total number of successes in Xn. Then Xin has a

binomial distribution with parameters min and pi and, for fixed n, the Xin are
independent. In this section, we shall study the joint convergence in distribution of
the Xin as n → ∞, conditioned on {Σn ≥ kn}, and also conditioned on {Σn = kn}.

First we consider the case where we condition on {Σn = kn}. We will prove
(Lemma 3.1 below) that the Xin concentrate around the values cinmin, where
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the cin are determined by the system of equations










1 − cin

cin

pi

1 − pi
=

1 − cjn

cjn

pj

1 − pj
∀i, j ∈ {1, . . . , M};

∑M
i=1 cinmin = kn.

(1.3)

We will show in Section 3 that the system (1.3) has a unique solution and that

cin → ci as n → ∞,

for some ci strictly between 0 and 1. As we shall see, each component Xin is roughly
normally distributed around the central value cinmin, with fluctuations around this
centre of the order

√
n. Hence, the proper scaling is obtained by looking at the

M -dimensional vector

X n :=

(

X1n − c1nm1n√
n

,
X2n − c2nm2n√

n
, . . . ,

XMn − cMnmMn√
n

)

. (1.4)

Since we condition on {Σn = kn}, this vector is essentially an (M−1)-dimensional
vector, taking only values in the hyperplane

S0 := {(z1, . . . , zM ) ∈ RM : z1 + · · · + zM = 0}.
However, we want to view it as an M -dimensional vector, mainly because when
we later condition on {Σn ≥ kn}, X n will no longer be restricted to a hyperplane.
One expects that the laws of the X n converge weakly to a distribution which con-
centrates on S0 and is, therefore, singular with respect to M -dimensional Lebesgue
measure. To facilitate this, it is natural to define a measure ν0 on the Borel sets
of RM through

ν0( · ) := λ0( · ∩ S0), (1.5)

where λ0 denotes ((M − 1)-dimensional) Lebesgue measure on S0, and to identify
the weak limit of the X n via a density with respect to ν0. The density of the weak
limit is given by the function f : RM → R defined by

f(z) = 1S0(z)

M
∏

i=1

exp

(

− z2
i

2ci(1 − ci)αi

)

. (1.6)

Theorem 1.4. The laws L(X n|Σn = kn) converge weakly to the measure which
has density f/

∫

f dν0 with respect to ν0.

We now turn to the case where we condition on {Σn ≥ kn}. Our strategy will
be to first study the case where we condition on the event {Σn = kn + ℓ}, for ℓ ≥ 0,
and then sum over ℓ. We will calculate the relevant range of ℓ to sum over. In
particular, we will show that for large enough ℓ the probability P(Σn = kn + ℓ) is
so small, that these ℓ do not have a significant effect on the conditional distribution
of X n. For kn sufficiently larger than E(Σn), only ℓ of order o(

√
n) are relevant,

which leads to the following result:

Theorem 1.5. If α >
∑M

i=1 piαi or, more generally, (kn −E(Σn))/
√

n → ∞, then
the laws L(X n|Σn ≥ kn) also converge weakly to the measure which has density
f/
∫

f dν0 with respect to ν0.

Finally, we consider the case where we condition on {Σn ≥ kn} with kn below
or around E(Σn), that is, when (kn − E(Σn))/

√
n → K ∈ [−∞,∞). An essential

difference compared to the situation in Theorem 1.5, is that the probabilities of
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the events {Σn ≥ kn} do not converge to 0 in this case, but to a strictly positive
constant. In this situation, the right vector to look at is the M -dimensional vector

X
p
n :=

(

X1n − p1m1n√
n

,
X2n − p2m2n√

n
, . . . ,

XMn − pMmMn√
n

)

.

It follows from standard arguments that the unconditional laws of X
p
n converge

weakly to a multivariate normal distribution with density h/
∫

hdλ with respect to
M -dimensional Lebesgue measure λ, where h : RM → R is given by

h(z) =

M
∏

i=1

exp

(

− z2
i

2pi(1 − pi)αi

)

. (1.7)

If kn stays sufficiently smaller thanE(Σn), that is, when K = −∞, then the effect of
conditioning vanishes in the limit, and the conditional laws of X

p
n given {Σn ≥ kn}

converge weakly to the same limit as the unconditional laws of X
p
n. In general, if

K ∈ [−∞,∞), the conditional laws of X
p
n given {Σn ≥ kn} converge weakly to

the measure which has, up to a normalizing constant, density h restricted to the
half-space

HK := {(z1, . . . , zM ) ∈ RM : z1 + · · · + zM ≥ K}. (1.8)

Theorem 1.6. If (kn −E(Σn))/
√

n → K for some K ∈ [−∞,∞), then the laws
L(X p

n|Σn ≥ kn) converge weakly to the measure which has density

h1HK
∫

h1HK
dλ

with respect to λ.

Remark 1.7. If (kn − E(Σn))/
√

n does not converge as n → ∞ and does not
diverge to either ∞ or −∞, then the laws L(X p

n|Σn ≥ kn) do not converge weakly
either. This follows from our results above by considering limits along different
subsequences of the kn.

1.4. Asymptotic stochastic domination. Consider again the general framework for
vectors Xn and Y n introduced in Section 1.2. Recall that we write X̃n for a
random vector having the conditional distribution of the vector Xn, given that
the total number of successes is at least kn. For n ≥ 1 and i ∈ {1, . . . , M}, we

let X̃in denote the number of successes of X̃n in block i. We define Ỹ n and Ỹin

analogously. We want to study the asymptotic behaviour as n → ∞ of the quantity

supP(X̃n ≤ Ỹ n),

where the supremum is taken over all possible couplings of X̃n and Ỹ n.
Define βi for i ∈ {1, . . . , M} as in (1.1). As a first observation, note that if

all βi are equal, then by Proposition 1.3 we have supP(X̃n ≤ Ỹ n) = 1 for every

n ≥ 1. Otherwise, under certain conditions on the sequence kn, supP(X̃n ≤ Ỹ n)
will converge to a constant as n → ∞, as we shall prove.

The intuitive picture behind this is as follows. Without conditioning, Xn �
Y n for every n ≥ 1. Now, as long as kn stays significantly smaller than E(Σn),
the effect of conditioning will vanish in the limit, and hence we can expect that
supP(X̃n ≤ Ỹ n) → 1 as n → ∞. Suppose now that we start making the kn

larger. This will increase the number of successes X̃in of the vector X̃n in each
block i, but as long as kn stays below the expected total number of successes of Y n,
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increasing kn will not change the numbers of successes per block significantly for
the vector Ỹ n.

At some point, when kn becomes large enough, there will be a block i such that
X̃in becomes roughly equal to Ỹin. We shall see that this happens for kn “around”

the value k̂n defined by

k̂n :=

M
∑

i=1

pimin

pi + βmax(1 − pi)
,

where βmax := max{β1, . . . , βM}. Therefore, the sequence k̂n will play a key role
in our main result. What will happen is that as long as kn stays significantly

smaller than k̂n, X̃in stays significantly smaller than Ỹin for each block i, and hence

supP(X̃n ≤ Ỹ n) → 1 as n → ∞. For kn around k̂n there is a “critical window” in

which interesting things occur. Namely, when (kn − k̂n)/
√

n converges to a finite

constant K, supP(X̃n ≤ Ỹ n) converges to a constant PK which is strictly between

0 and 1. Finally, when kn is sufficiently larger than k̂n, there will always be a block i
such that X̃in is significantly larger than Ỹin. Hence, supP(X̃n ≤ Ỹ n) → 0 in this
case.

Before we state our main theorem which makes this picture precise, let us first
define the non-trivial constant PK which occurs as the limit of supP(X̃n ≤ Ỹ n)
when kn is in the critical window. To this end, let

I := {i ∈ {1, . . . , M} : βi = βmax},
and define positive numbers a, b and c by

a2 =
∑

i∈I

βmaxpi(1 − pi)αi

(pi + βmax(1 − pi))2
=
∑

i∈I

qi(1 − qi)αi; (1.9a)

b2 =
∑

i/∈I

βmaxpi(1 − pi)αi

(pi + βmax(1 − pi))2
; (1.9b)

c2 = a2 + b2. (1.9c)

As we shall see later, these numbers will come up as variances of certain normal
distributions. Let Φ: R → (0, 1) denote the distribution function of the standard
normal distribution. For K ∈ R, define PK by

PK =























1 −
∫

c−b

ac
K

−∞

e−z2/2

√
2π

Φ
(

K−az
b

)

− Φ
(

K
c

)

1 − Φ
(

K
c

) dz if α =
∑M

i=1 piαi,

Φ

(

bK

ac
− 1

a
RK

)

+ Φ

(

−K

a
+

b

ac
RK

)

if α >
∑M

i=1 piαi.

(1.10)

where RK =
√

K2 + c2 log(c2/b2). It will be made clear in Section 4 where these
formulas for PK come from. We will show that PK is strictly between 0 and 1. In
fact, it is possible to show that both expressions for PK are strictly decreasing in K
from 1 to 0, but we omit the (somewhat lengthy) derivation of this fact here.

Theorem 1.8. If all βi (i ∈ {1, . . . , M}) are equal, then we have that supP(X̃n ≤
Ỹ n) = 1 for every n ≥ 1. Otherwise, the following holds:

(i) If (kn − k̂n)/
√

n → −∞, then supP(X̃n ≤ Ỹ n) → 1.

(ii) If (kn − k̂n)/
√

n → K for some K ∈ R, then supP(X̃n ≤ Ỹ n) → PK .
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(iii) If (kn − k̂n)/
√

n → ∞, then supP(X̃n ≤ Ỹ n) → 0.

Remark 1.9. If βi 6= βj for some i 6= j, and (kn − k̂n)/
√

n does not converge as

n → ∞ and does not diverge to either ∞ or −∞, then supP(X̃n ≤ Ỹ n) does not
converge either. This follows from the strict monotonicity of PK , by considering
the limits along different subsequences of the kn.

To demonstrate Theorem 1.8, recall the example from Section 1.2. Here βmax =

1, k̂n = pn, I = {1} and a2 = b2 = 1
2p(1 − p). If α = p, then we have that

(kn − k̂n)/
√

n → 0 as n → ∞. Hence, by Theorem 1.8, supP(X̃n ≤ Ỹ n) converges
to

P0 = 1 − 2

∫ 0

−∞

e−z2/2

√
2π

(Φ(−z) − 1/2) dz =
3

4
.

In fact, Theorem 1.8 shows that we can obtain any value between 0 and 1 for the
limit by adding ⌊K√

n⌋ successes to kn, for K ∈ R.
Next we turn to the proofs of our results. Results in Section 1.1 are proved

in Section 2, results in Section 1.3 are proved in Section 3 and finally, results in
Section 1.4 are proved in Section 4.

2. Stochastic domination of finite vectors

Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be vectors of independent Bernoulli
random variables with success probabilities p1, . . . , pn and q1, . . . , qn respectively,
where 0 < pi ≤ qi < 1 for i ∈ {1, . . . , n}.

Suppose that pi = p for all i. Then
∑n

i=1 Xi has a binomial distribution with
parameters n and p. The quotientP(

∑n
i=1 Xi = k + 1)P(
∑n

i=1 Xi = k)
=

n − k

k + 1

p

1 − p

is strictly increasing in p and strictly decreasing in k, and it is also easy to see that

L(X|∑n
i=1 Xi = k) � L(X|∑n

i=1 Xi = k + 1).

The following two lemmas show that these two properties hold for general success
probabilities p1, . . . , pn.

Lemma 2.1. For k ∈ {0, 1, . . . , n − 1}, consider the quotients

Qn
k :=

P(
∑n

i=1 Xi = k + 1)P(
∑n

i=1 Xi = k)
(2.1)

and P(
∑n

i=1 Xi ≥ k + 1)P(
∑n

i=1 Xi ≥ k)
. (2.2)

Both (2.1) and (2.2) are strictly increasing in p1, . . . , pn for fixed k, and strictly
decreasing in k for fixed p1, . . . , pn.

Proof : We only give the proof for (2.1), since the proof for (2.2) is similar. First
we will prove that Qn

k is strictly increasing in p1, . . . , pn for fixed k. By symmetry,
it suffices to show that Qn

k is strictly increasing in p1. We show this by induction
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on n. The base case n = 1, k = 0 is immediate. Next note that for n ≥ 2 and
k ∈ {0, . . . , n − 1},

Qn
k =

P(
∑n−1

i=1 Xi = k)pn +P(
∑n−1

i=1 Xi = k + 1)(1 − pn)P(
∑n−1

i=1 Xi = k − 1)pn +P(
∑n−1

i=1 Xi = k)(1 − pn)

=
pn + Qn−1

k (1 − pn)

pn/Qn−1
k−1 + (1 − pn)

,

which is strictly increasing in p1 by the induction hypothesis (in the case k = n−1,
use Qn−1

k = 0, and in the case k = 0, use 1/Qn−1
k−1 = 0).

To prove that Qn
k is strictly decreasing in k for fixed p1, . . . , pn, note that since

Qn
k is strictly increasing in pn for fixed k ∈ {1, . . . , n − 2}, we have

0 <
∂

∂pn
Qn

k =
∂

∂pn

pn + Qn−1
k (1 − pn)

pn/Qn−1
k−1 + (1 − pn)

=
1 − Qn−1

k /Qn−1
k−1

(

pn/Qn−1
k−1 + (1 − pn)

)2 .

Hence, Qn−1
k < Qn−1

k−1 . This argument applies for any n ≥ 2. �

Let X
k = (Xk

1 , . . . , Xk
n) have the conditional law of X, conditioned on the

event {∑n
i=1 Xi = k}. Our next lemma gives an explicit coupling of the X

k in
which they are ordered. The existence of such a coupling was already proved
in Jonasson and Nerman (1996, Proposition 6.2), but our explicit construction is

new and of independent value. In our construction, we freely regard X
k as a

random subset of {1, . . . , n} by identifying X
k with {i ∈ {1, . . . , n} : Xk

i = 1}. For
any K ⊂ {1, . . . , n}, let {XK = 1} denote the event {Xi = 1 ∀i ∈ K}, and for any
I ⊂ {1, . . . , n} and j ∈ {1, . . . , n}, define

γj,I :=
∑

L⊂{1,...,n} : |L|=|I|+1

1(j ∈ L)

|L \ I| P(XL = 1 |∑n
i=1Xi = |I| + 1).

Lemma 2.2. For any I ⊂ {1, . . . , n}, the collection {γj,I}j∈{1,...,n}\I is a probabil-

ity vector. Moreover, if I is picked according to X
k and then j is picked according

to {γj,I}j∈{1,...,n}\I , the resulting set J = {I, j} has the same distribution as if it

was picked according to X
k+1. Therefore, we can couple the sequence {Xk}n

k=1

such that P(X1 ≤ X
2 ≤ · · · ≤ X

n−1 ≤ X
n) = 1.

Proof : Throughout the proof, I, J , K and L denote subsets of {1, . . . , n}, and we
simplify notation by writing Σn :=

∑n
i=1 Xi. First observe that

∑

j /∈I

γj,I =
∑

L : |L|=|I|+1

P(XL = 1 | Σn = |I| + 1) = 1,

which proves that the {γj,I}j /∈I form a probability vector, since γj,I ≥ 0.
Next note that for any K containing j,P(XK = 1 | Σn = |K|)P(XK\{j} = 1 | Σn = |K| − 1)

=
P(Xj = 1)P(Xj = 0)

P(Σn = |K| − 1)P(Σn = |K|) . (2.3)
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Now fix J , and for j ∈ J , let I = I(j, J) = J \ {j}. Then for j ∈ J , by (2.3),

γj,I =
P(XJ = 1 | Σn = |J |)P(XI = 1 | Σn = |I|)

∑

L : |L|=|J|

1(j ∈ L)

|L \ I| P(XL\{j} = 1 | Σn = |I|)

=
P(XJ = 1 | Σn = |J |)P(XI = 1 | Σn = |I|)

∑

K : |K|=|I|

1(j /∈ K)

|J \ K| P(XK = 1 | Σn = |I|),

where the second equality follows upon writing K = L \ {j}, and using |L \ I| =
|L \ J |+ 1 = |K \ J |+ 1 = |J \K| in the sum. Hence, by summing first over j and
then over K, we obtain

∑

j∈J

γj,I P(XI = 1 | Σn = |I|) = P(XJ = 1 | Σn = |J |). �

Corollary 2.3. For k ∈ {0, 1, . . . , n − 1} we have

L(X|∑n
i=1 Xi ≥ k) � L(X|∑n

i=1 Xi ≥ k + 1).

Proof : Using Lemma 2.2, we will construct random vectors U and V on a common
probability space such that U and V have the conditional distributions of X given
{∑n

i=1 Xi ≥ k} and X given {∑n
i=1 Xi ≥ k + 1}, respectively, and U ≤ V with

probability 1.
First pick an integer m according to the conditional law of

∑n
i=1 Xi given

{
∑n

i=1 Xi ≥ k}. If m ≥ k + 1, then pick U according to the conditional law
of X given {∑n

i=1 Xi = m}, and set V = U . If m = k, then first pick an inte-
ger m + ℓ according to the conditional law of

∑n
i=1 Xi given {∑n

i=1 Xi ≥ k + 1}.
Next, pick U and V such that U and V have the conditional laws of X given
{
∑n

i=1 Xi = m} and X given {
∑n

i=1 Xi = m + ℓ}, respectively, and U ≤ V . This
is possible by Lemma 2.2. By construction, U ≤ V with probability 1, and a little
computation shows that U and V have the desired marginal distributions. �

Now we are in a position to prove Propositions 1.1, 1.2 and 1.3.

Proof of Proposition 1.1: By Lemma 2.1 we have that for ℓ ∈ {1, . . . , n − k},P(
∑n

i=1 Xi ≥ k + ℓ)P(
∑n

i=1 Xi ≥ k)
=

ℓ−1
∏

j=0

P(
∑n

i=1 Xi ≥ k + j + 1)P(
∑n

i=1 Xi ≥ k + j)

is strictly increasing in p1, . . . , pn. This implies that for ℓ ∈ {1, . . . , n − k},P(
∑n

i=1 Xi ≥ k + ℓ |
∑n

i=1 Xi ≥ k) ≤ P(
∑n

i=1 Yi ≥ k + ℓ |
∑n

i=1 Yi ≥ k). �

Proof of Proposition 1.2: Let x, y ∈ {0, 1}n be such that
∑n

i=1 xi =
∑n

i=1 yi and
let k =

∑n
i=1 xi. Write I = {i ∈ {1, . . . , n} : xi = 1} and, likewise, J = {i ∈

{1, . . . , n} : yi = 1}, and recall the definition (1.1) of βi. We haveP(X = x |∑n
i=1 Xi = k)P(X = y |

∑n
i=1 Xi = k)

=

∏

i∈I pi

∏

i/∈I(1 − pi)
∏

i∈J pi

∏

i/∈J(1 − pi)

=
∏

i∈I\J

pi

1 − pi

∏

i∈J\I

1 − pi

pi
=

∏

i∈I\J βi
∏

i∈J\I βi

P(Y = x |∑n
i=1 Yi = k)P(Y = y |∑n
i=1 Yi = k)

. (2.4)

Since |I| = |J | = k, we have |I \ J | = |J \ I|. Hence, (i) implies (ii), and (ii)
trivially implies (iii). To show that (iii) implies (i), suppose that L(X|∑n

i=1 Xi =
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k) = L(Y |∑n
i=1 Yi = k) for a given k ∈ {1, . . . , n−1}. Let i ∈ {2, . . . , n} and let K

be a subset of {2, . . . , n} \ {i} with exactly k − 1 elements. Choosing I = {1} ∪ K
and J = K ∪ {i} in (2.4) yields βi = β1. �

Proof of Proposition 1.3: By Proposition 1.2 and Lemma 2.2, we have for m ∈
{0, 1, . . . , n} and ℓ ∈ {0, 1, . . . , n − m}

L(X|∑n
i=1 Xi = m) � L(Y |∑n

i=1 Yi = m + ℓ).

Using this result and Proposition 1.1, we will construct random vectors U and V on
a common probability space such that U and V have the conditional distributions
of X given {∑n

i=1 Xi ≥ k} and Y given {∑n
i=1 Yi ≥ k}, respectively, and U ≤ V

with probability 1.
First, pick integers m and m + ℓ such that they have the conditional laws of

∑n
i=1 Xi given {∑n

i=1 Xi ≥ k} and
∑n

i=1 Yi given {∑n
i=1 Yi ≥ k}, respectively, and

m ≤ m + ℓ with probability 1. Secondly, pick U and V such that they have the
conditional laws of X given {∑n

i=1 Xi = m} and Y given {∑n
i=1 Yi = m + ℓ},

respectively, and U ≤ V with probability 1. A little computation shows that the
vectors U and V have the desired marginal distributions. �

We close this section with a minor result, which gives a condition under which
we do not have stochastic ordering.

Proposition 2.4. If pi = qi for some i ∈ {1, . . . , n} but not for all i, then for
k ∈ {1, . . . , n − 1},

L(X|∑n
i=1 Xi ≥ k) 6� L(Y |∑n

i=1 Yi ≥ k).

Proof : Without loss of generality, assume that pn = qn. We haveP(Xn = 1 |∑n
i=1 Xi ≥ k)

=
pnP(

∑n−1
i=1 Xi ≥ k − 1)

pnP(
∑n−1

i=1 Xi ≥ k − 1) + (1 − pn)P(
∑n−1

i=1 Xi ≥ k)

=
pn

pn + (1 − pn)P(
∑n−1

i=1 Xi ≥ k)
/P(

∑n−1
i=1 Xi ≥ k − 1)

>
qn

qn + (1 − qn)P(
∑n−1

i=1 Yi ≥ k)
/P(

∑n−1
i=1 Yi ≥ k − 1)

= P(Yn = 1 |∑n
i=1 Yi ≥ k),

where the strict inequality follows from Lemma 2.1. �

3. Weak convergence

We now turn to the framework for asymptotic domination described in Sec-
tion 1.2 and to the setting of Section 1.3. Recall that Xin is the number of successes
of the vector Xn in block i. We want to study the joint convergence in distribu-
tion of the Xin as n → ∞, conditioned on {Σn ≥ kn}, and also conditioned on
{Σn = kn}. Since we are interested in the limit n → ∞, we may assume from the
outset that the values of n we consider are so large that kn and all min are strictly
between 0 and n, to avoid degenerate situations.
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We will first consider the case where we condition on the event {Σn = kn}.
Lemma 3.1 below states that the Xin will then concentrate around the values
cinmin, where the cin are determined by the system of equations (1.3), which we
repeat here for the convenience of the reader:











1 − cin

cin

pi

1 − pi
=

1 − cjn

cjn

pj

1 − pj
∀i, j ∈ {1, . . . , M};

∑M
i=1 cinmin = kn.

(1.3)

Before we turn to the proof of this concentration result, let us first look at the
system (1.3) in more detail. If we write

An =
1 − cin

cin

pi

1 − pi
(3.1)

for the desired common value for all i, then

cin =
pi

pi + An(1 − pi)
.

Note that this is equal to 1 for An = 0 and to pi for An = 1, and strictly decreasing
to 0 as An → ∞, so that there is a unique An > 0 such that

M
∑

i=1

cinmin =

M
∑

i=1

pimin

pi + An(1 − pi)
= kn. (3.2)

It follows that the system (1.3) does have a unique solution, characterized by this

value of An. Moreover, it follows from (3.2) that if kn > E(Σn) =
∑M

i=1 pimin,
then An < 1. Furthermore, kn/n → α and min/n → αi. Hence, by dividing both
sides in (3.2) by n, and taking the limit n → ∞, we see that the An converge to
the unique positive number A such that

M
∑

i=1

piαi

pi + A(1 − pi)
= α,

where A = 1 if α =
∑M

i=1 piαi. As a consequence, we also have that

cin → ci =
pi

pi + A(1 − pi)
as n → ∞.

Note that the ci are the unique solution to the system of equations










1 − ci

ci

pi

1 − pi
=

1 − cj

cj

pj

1 − pj
∀i, j ∈ {1, . . . , M};

∑M
i=1 ciαi = α.

Observe also that ci = pi in case A = 1, or equivalently
∑M

i=1 piαi = α, which is
the case when the total number of successes kn is within o(n) of the mean E(Σn).
The concentration result:

Lemma 3.1. Let c1n, . . . , cMn satisfy (1.3). Then for each i and all positive inte-
gers r, we have thatP(|Xin − cinmin| ≥ Mr | Σn = kn) ≤ 2Me−(M−1)r2/n.
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Proof : The idea of the proof is as follows. Condition on {Σn = kn}, and consider
the event that for some i 6= j we have that Xin = cinmin +s, and Xjn = cjnmjn−t,
for some positive numbers s and t. We will show that if the cin satisfy (1.3),
the event obtained by increasing Xin by 1 and decreasing Xjn by 1 has smaller
probability. This establishes that the conditional distribution of the Xin is maximal
at the central values cinmin identified by the system (1.3). The precise bound in
Lemma 3.1 also follows from the argument.

Now for the details. Let s and t be nonnegative real numbers such that cinmin+s
and cjnmjn−t are integers. By the binomial distributions of Xin and Xjn and their
independence, if it is the case that 0 ≤ cinmin+s < min and 0 < cjnmjn−t ≤ mjn,
thenP(Xin = cinmin + s + 1, Xjn = cjnmjn − t − 1)P(Xin = cinmin + s, Xjn = cjnmjn − t)

=

(

min − cinmin − s

cinmin + s + 1

pi

1 − pi

)(

cjnmjn − t

mjn − cjnmjn + t + 1

1 − pj

pj

)

≤
(

min − cinmin − s

cinmin

pi

1 − pi

)(

cjnmjn − t

mjn − cjnmjn

1 − pj

pj

)

.

Hence, if the cin satisfy (1.3), then using 1 − z ≤ exp(−z) we obtainP(Xin = cinmin + s + 1, Xjn = cjnmjn − t − 1)P(Xin = cinmin + s, Xjn = cjnmjn − t)

≤
(

1 − s

min − cinmin

)(

1 − t

cjnmjn

)

≤ exp

(

−s + t

n

)

.

It follows by iteration of this inequality, that for all real s, t ≥ 0 and all integers u ≥
0, P(Xin = cinmin + s + u, Xjn = cjnmjn − t − u)

≤ exp

(

− (s + t)u

n

)P(Xin = cinmin + s, Xjn = cjnmjn − t). (3.3)

Now fix i, and observe that for all integers r > 0,P(Xin ≥ cinmin + Mr, Σn = kn)

=
∑

ℓ1,...,ℓM∈N0 :
ℓ1+···+ℓM=kn

1(ℓi ≥ cinmin + Mr)P(Xkn = ℓk ∀k).

But if ℓ1 + · · · + ℓM = kn and ℓi ≥ cinmin + Mr, then there must be some j 6= i
such that ℓj ≤ cjnmjn − r. Therefore,P(Xin ≥ cinmin + Mr, Σn = kn)

≤
M
∑

j=1

∑

ℓ1,...,ℓM∈N0 :
ℓ1+···+ℓM=kn

1(ℓi ≥ cinmin + Mr
ℓj ≤ cjnmjn − r

)P(Xkn = ℓk ∀k).
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By independence of the Xin and using (3.3) with s = (M − 1)r, t = 0 and u = r,
we now obtainP(Xin ≥ cinmin + Mr, Σn = kn)

≤ e−(M−1)r2/n
M
∑

j=1

∑

ℓ1,...,ℓM∈N0 :
ℓ1+···+ℓM=kn

1(ℓi ≥ cinmin + Mr − r
ℓj ≤ cjnmjn

)P(Xkn = ℓk ∀k)

≤ Me−(M−1)r2/nP(Σn = kn).

This proves thatP(Xin ≥ cinmin + Mr | Σn = kn) ≤ Me−(M−1)r2/n.

Similarly, one can prove thatP(Xin ≤ cinmin − Mr | Σn = kn) ≤ Me−(M−1)r2/n. �

As we have already mentioned, we expect that the Xin have fluctuations around
their centres of the order

√
n. It is therefore natural to look at the M -dimensional

vector

X n :=

(

X1n − x1n√
n

,
X2n − x2n√

n
, . . . ,

XMn − xMn√
n

)

, (3.4)

where the vector xn = (x1n, . . . , xMn) represents the centre around which the Xin

concentrate. To prove weak convergence of X n, we will not set xin equal to cinmin,
because the latter numbers are not necessarily integer, and it will be more conve-
nient if the xin are integers. So instead, for each fixed n, we choose the xin to be

nonnegative integers such that |xin − cinmin| < 1 for all i, and
∑M

i=1 xin = kn. Of
course, the vector X n as it is defined in (3.4), and the vector defined in (1.4) have
the same weak limit. In our proofs of Theorems 1.4 and 1.5, X n will refer to the
vector defined in (3.4).

If we condition on {Σn = kn}, then the vector X n will only take values in the
hyperplane

S0 := {(z1, . . . , zM ) ∈ RM : z1 + · · · + zM = 0}.
However, as we have already explained in the introduction, we still regard X n

as an M -dimensional vector, because we will also condition on {Σn ≥ kn}, in
which case X n is not restricted to a hyperplane. To deal with this, it turns
out that for technical reasons which will become clear later, it is useful to intro-
duce the projection π : (z1, . . . , zM ) 7→ (z1, . . . , zM−1) and the shear transformation
σ : (z1, . . . , zM ) 7→ (z1, . . . , zM−1, z1 + · · · + zM ). We can then define a metric ρ
on RM by setting ρ(x, y) := |σx − σy|, where |·| denotes Euclidean distance. See
Figure 3.1 for an illustration.

Using the projection π, we now define a new measure µ0 on the Borel subsets
of RM , which is concentrated on S0, by

µ0( · ) := λM−1(π( · ∩ S0)),

where λM−1 is the ordinary Lebesgue measure on RM−1. Note that up to a multi-
plicative constant, µ0 is equal to the measure ν0 defined in Section 1.3, so we could
have stated Theorems 1.4 and 1.5 equally well with µ0 instead of ν0. In the proofs
it turns out to be more convenient to work with µ0, however, so that is what we
shall do.
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Figure 3.1. The shear transformation σ (illustrated here for M =
2) maps sheared cubes to cubes. The dots are the sites of the
integer lattice Z2. The gray band on the left encompasses those
sheared cubes that intersect S0.

Our proofs of Theorems 1.4 and 1.5 resemble classical arguments to prove weak
convergence of random vectors living on a lattice via a local limit theorem and
Scheffé’s theorem, see for instance Billingsley (1999, Theorem 3.3). However, we
cannot use these classic results here, for two reasons. First of all, in Theorem 1.5
our random vectors live on an M -dimensional lattice, but in the limit all the mass
collapses onto a lower-dimensional hyperplane, leading to a weak limit which is
singular with respect to M -dimensional Lebesgue measure. The classic arguments
do not cover this case of a singular limit.

Secondly, we are considering conditioned random vectors, for which it is not so
obvious how to obtain a local limit theorem directly. Our solution is to get rid
of the conditioning by considering ratios of conditioned probabilities, and prove
a local limit theorem for these ratios. An extra argument will then be needed to
prove weak convergence. Since we cannot resort to classic arguments here, we have
to go through the proofs in considerable detail.

3.1. Proof of Theorem 1.4. As we have explained above, the key idea in the proof of
Theorem 1.4 is that we can get rid of the awkward conditioning by considering ratios
of conditional probabilities, rather than the conditional probabilities themselves.
Thus, we will be dealing with ratios of binomial probabilities, and the following
lemma addresses the key properties of these ratios needed in the proof. The lemma
resembles standard bounds on binomial probabilities, but we point out that here we
are considering ratios of binomial probabilities which centre around cinmin rather
than around the mean pimin. We also note that actually, the lemma is stronger
than required to prove Theorem 1.4, but we will need this stronger result to prove
Theorem 1.5 later.

Lemma 3.2. Recall the definition (3.1) of An. Fix i ∈ {1, 2, . . . , M} and let
b1, b2, . . . be a sequence of positive integers such that bn/

√
n → 0 as n → ∞. Then,

for every z ∈ R,

sup
x : |x−xin|<bn

r : |r−z
√

n|<bn

∣

∣

∣

∣

1

Ar
n

P(Xin = x + r)P(Xin = x)
− exp

(

− z2

2ci(1 − ci)αi

)
∣

∣

∣

∣

→ 0.
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Furthermore, there exist constants B1
i , B2

i < ∞ such that for all n and r,

sup
x : |x−xin|<bn

1

Ar
n

P(Xin = x + r)P(Xin = x)
≤ B1

i

(

1 +
r4

n2

)

exp

(

B2
i

|r|√
n
− 1

2

r2

n

)

.

Proof : Robbins’ note on Stirling’s formula (Robbins, 1955) states that for all m =
1, 2, . . . ,

√
2π mm+1/2 e−m+1/(12m+1) < m! <

√
2π mm+1/2 e−m+1/(12m),

from which it is straightforward to show that for all m = 0, 1, 2, . . . (so including
m = 0), there exists an ηm satisfying 1/7 < ηm < 1/5 such that

m! =
√

2π(m + ηm)mm e−m =
√

2π[[m]] mm e−m, (3.5)

where we have introduced the notation [[m]] := m + ηm.
Since Xin has the binomial distribution with parameters min and pi,

1

Ar
n

P(Xin = x + r)P(Xin = x)
=

x!

(x + r)!

(min − x)!

(min − x − r)!

(

cin

1 − cin

)r

.

Using (3.5), we can write this as the product of the three factors

P 1
in(x, r) =

(

[[x]]

[[x + r]]

[[min − x]]

[[min − x − r]]

)1/2

P 2
in(x, r) =

(

cinmin

x

min − x

min − cinmin

)r

P 3
in(x, r) =

(

x

x + r

)x+r(
min − x

min − x − r

)min−x−r

for all x and r such that 0 < x < min and 0 ≤ x + r ≤ min.
To study the convergence of P 3

in(x, r), first write

P 3
in(x, r) =

(

1 − r

x + r

)x+r(

1 +
r

min − x − r

)min−x−r

.

Using the fact that for all u > −1, (1 + u) lies between exp
(

u − 1
2u2
)

and exp
(

u −
1
2u2/(1 + u)

)

, a little computation now shows that P 3
in(x, r) is wedged in between

exp

(

−1

2

(min − r)r2

x(min − x − r)

)

and exp

(

−1

2

(min + r)r2

(x + r)(min − x)

)

.

From this fact, it follows that for fixed z ∈ R,

sup
x : |x−xin|<bn

r : |r−z
√

n|<bn

∣

∣

∣

∣

P 3
in(x, r) − exp

(

− z2

2ci(1 − ci)αi

)∣

∣

∣

∣

→ 0,

because xin/min → ci, hence x = cimin + o(n) and r = z
√

n + o(
√

n) under the
supremum, and min/n → αi. Since |xin − cinmin| < 1, we also have that

sup
x : |x−xin|<bn

r : |r−z
√

n|<bn

∣

∣P 1
in(x, r) − 1

∣

∣→ 0 and sup
x : |x−xin|<bn

r : |r−z
√

n|<bn

∣

∣P 2
in(x, r) − 1

∣

∣→ 0.

Together with the uniform convergence of P 3
in(x, r), this establishes the first part

of Lemma 3.2.
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We now turn to the second part of the lemma. If x and r are such that 0 < x <
min and 0 ≤ x + r ≤ min, then min − r ≥ x > 0 and min + r ≥ min − x > 0, hence
from the bounds on P 3

in(x, r) given in the previous paragraph we can conclude that

P 3
in(x, r) ≤ exp

(

−1

2

r2

min

)

≤ exp

(

−1

2

r2

n

)

.

Next observe that if x is such that |x − xin| < bn, then |x − cinmin| < 1 + bn,
from which it follows that uniformly in n, for all x and r such that 0 < x < min,
0 ≤ x + r ≤ min and |x − xin| < bn,

P 2
in(x, r) ≤

(

1 + const. × bn

n

)|r|
≤ exp

(

const. × |r|√
n

)

.

To finish the proof, it remains to bound P 1
in(x, r). To this end, observe first that

uniformly in n, for all x and r such that |x − xin| < bn and |r| < n3/4, P 1
in(x, r)

is bounded by a constant. On the other hand, uniformly for all x and r such that
0 < x < min and 0 ≤ x + r ≤ min, P 1

in(x, r) is bounded by a constant times n, and
n ≤ r4/n2 if |r| ≥ n3/4. Combining these observations, we see that uniformly in n,
for all x and r satisfying |x − xin| < bn and 0 ≤ x + r ≤ min,

P 1
in(x, r) ≤ const. ×

(

1 +
r4

n2

)

. �

Proof of Theorem 1.4: For a point z in RM , let ⌈z⌋ be the point in ZM ρ-closest
to z (take the lexicographically smallest one if there is a choice). Graphically,
this means that the collection of those points z for which ⌈z⌋ = a comprises the
sheared cube a + σ−1(−1/2, 1/2]M , see Figure 3.1. Now, for each fixed z ∈ RM ,
set rz

n = (rz
1n, . . . , rz

Mn) := ⌈z√n⌋. Observe that because (for fixed n) the xin sum
to kn, if rz

n ∈ S0 we have thatP(
√

n X n = rz
n | Σn = kn)P(

√
n X n = 0 | Σn = kn)

=
P(

√
n X n = rz

n)P(
√

n X n = 0)
=

M
∏

i=1

P(Xin = xin + rz
in)P(Xin = xin)

, (3.6)

where we have used the independence of the components Xin. If rz
n /∈ S0, on the

other hand, this ratio obviously vanishes.
We now apply Lemma 3.2 to (3.6), taking bn = M for every n ≥ 1. Since

∑M
i=1 rz

in = 0 if rz
n ∈ S0 and hence

∏M
i=1 A

rz

in

n = 1, the first part of Lemma 3.2
immediately implies that for all z ∈ RM ,P(

√
n X n = rz

n | Σn = kn)P(
√

n X n = 0 | Σn = kn)
→ 1S0(z)

M
∏

i=1

exp

(

− z2
i

2ci(1 − ci)αi

)

= f(z)

as n → ∞. To see how this will lead to Theorem 1.4, define fn : RM → R by

fn(z) := (
√

n)M P(√n X n = rz
n

∣

∣ Σn = kn

)

.

Then fn is a probability density function with respect to M -dimensional Lebesgue
measure λ. Moreover, if Zn is a random vector with this density, then the vector
Z

′
n = ⌈Zn

√
n⌋/√n has the same distribution as the vector X n, conditioned on

{Σn = kn}. Since clearly Zn and Z
′
n must have the same weak limit, it is therefore

sufficient to show that the weak limit of Zn has density f/
∫

f dµ0 with respect
to µ0.
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Now, by what we have established above, we already know that

fn(z)

fn(0)
=
P(

√
n X n = rz

n | Σn = kn)P(
√

n X n = 0 | Σn = kn)
→ f(z) for every z ∈ RM .

Moreover, the second part of Lemma 3.2 applied to (3.6) shows that the ratios
fn(z)/fn(0) are uniformly bounded by some µ0-integrable function g(z). Thus it
follows by dominated convergence that for every Borel set A ⊂ RM ,

∫

A

fn(z)

fn(0)
dµ0(z) →

∫

A

f(z) dµ0(z).

Next observe that 1 =
∫

fn dλ =
∫

n−1/2fn dµ0, because by the conditioning, fn

is nonzero only on the sheared cubes which intersect S0. Therefore, taking A = RM

in the previous equation yields n−1/2fn(0) → (
∫

f dµ0)
−1, which in turn implies

that for every Borel set A,
∫

A

n−1/2fn(z) dµ0(z) →
∫

A
f(z) dµ0(z)
∫

f dµ0
.

In general,
∫

F
fn dλ 6=

∫

F
n−1/2fn dµ0 for an arbitrary Borel set F , but we have

equality here for sufficiently large n if F is a finite union of sheared cubes. Hence,
if A is open, we can approximate A from the inside by unions of sheared cubes
contained in A to conclude that

lim inf
n→∞

∫

A

fn(z) dλ(z) ≥
∫

A f(z) dµ0(z)
∫

f dµ0
. �

3.2. Proof of Theorem 1.5. We now turn to the case where we condition on {Σn ≥
kn}, for the same fixed sequence kn → ∞ as before. To treat this case, we are
going to consider what happens when we condition on the event that Σn = kn + ℓ
for some ℓ ≥ 0, and later sum over ℓ. It will be important for us to know the
relevant range of ℓ to sum over. In particular, for large enough ℓ we expect that
the probability P(Σn = kn + ℓ) will be so small, that these ℓ will not influence the
conditional distribution of the vector X n in an essential way. The relevant range
of ℓ can be determined from the following lemma:

Lemma 3.3. For all positive integers s,P(Σn ≥ kn + 2Ms) ≤ M exp

(

− (kn −E(Σn) + Ms)s

Mn

)P(Σn ≥ kn).

Proof : Let u be such that 0 < u < (1−pi)min. Observe that then, for all integers m
such that pimin + u ≤ m ≤ min,P(Xin = m + 1)P(Xin = m)

=
min − m

m + 1

pi

1 − pi
≤

pimin − u pi

1−pi

pimin + u
,

hence P(Xin = m + 1)P(Xin = m)
≤ 1 − u

pimin + u

(

1 +
pi

1 − pi

)

≤ 1 − u

min
≤ 1 − u

n
.

Since 1− z ≤ exp(−z), by repeated application of this inequality it follows that for
all u > 0 and all positive integers t, if m is an integer such that m ≥ pimin + u,
then P(Xin = m + t) ≤ exp

(

−ut

n

)P(Xin = m). (3.7)
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Now observe that if Σn ≥ E(Σn) + Mr + 2Ms, where s is a positive integer,
and r a real number such that r + s > 0, then for some k it must be the case that
Xkn ≥ pkmkn + r + 2s. Therefore,P(Σn ≥ E(Σn) + Mr + 2Ms)

≤
∑

ℓ1,...,ℓM∈N0 :
ℓ1+···+ℓM≥E(Σn)+Mr+2Ms

M
∑

k=1

1(ℓk ≥ pkmkn + r + 2s)P(Xin = ℓi ∀i).

But by (3.7), taking u = r + s and t = s,1(ℓk ≥ pkmkn + r + 2s)P(Xin = ℓi ∀i)

≤ exp

(

− (r + s)s

n

)P(Xkn = ℓk − s, Xin = ℓi ∀i 6= k),

and thereforeP(Σn ≥ E(Σn) + Mr + 2Ms)

≤ M exp

(

− (r + s)s

n

)P(Σn ≥ E(Σn) + Mr + 2Ms− s)

≤ M exp

(

− (r + s)s

n

)P(Σn ≥ E(Σn) + Mr
)

.

Choosing r such that kn ≡ E(Σn)+Mr yields Lemma 3.3 (observe that the bound
holds trivially if r + s ≤ 0). �

Lemma 3.3 shows that if α >
∑M

i=1 piαi, then for sufficiently large n, P(Σn ≥
kn + ℓ) will already be much smaller than P(Σn ≥ kn) when ℓ is of order log n.

However, when α =
∑M

i=1 piαi, we need to consider ℓ of bigger order than
√

n
for P(Σn ≥ kn + ℓ) to become much smaller than P(Σn ≥ kn). In either case,
Lemma 3.3 shows that ℓ of larger order than

√
n become irrelevant.

Keeping this in mind, we will now look at the conditional distribution of the
vector X n, conditioned on {Σn = kn + ℓ}. The first thing to observe is that for
ℓ > 0, the locations of the centres around which the components Xin concentrate
will be shifted to larger values. Indeed, these centres are located at cℓ

inmin, where
the cℓ

in are of course determined by the system of equations










1 − cℓ
in

cℓ
in

pi

1 − pi
=

1 − cℓ
jn

cℓ
jn

pj

1 − pj
∀i, j ∈ {1, . . . , M};

∑M
i=1 cℓ

inmin = kn + ℓ.

(3.8)

To find an explicit expression for the size of the shift cℓ
in − cin, we can substitute

cℓ
in = cin + δin into (3.8), and then perform an expansion in powers of the correc-

tion δin to guess this correction to first order. This procedure leads us to believe
that cℓ

in must be of the form

cℓ
in = cin + cin(1 − cin)dℓ

n + eℓ
in, (3.9)

where

dℓ
n :=

ℓ
∑M

j=1 cjn(1 − cjn)mjn

,
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and eℓ
in should be a higher-order correction. The following lemma shows that the

error terms eℓ
in are indeed of second order in dℓ

n, so that the effective shift in cin by
adding ℓ extra successes to our Bernoulli variables is given by cin(1 − cin)dℓ

n. For
convenience, we assume in the lemma that |dℓ

n| ≤ 1/2, which means that |ℓ| cannot
be too large, but by Lemma 3.3, this does not put too severe a restriction on the
range of ℓ we can consider later.

Lemma 3.4. For all ℓ (positive or negative) such that |dℓ
n| ≤ 1/2, we have that

|eℓ
in| ≤ (dℓ

n)2 for all i = 1, . . . , M .

Proof : For ease of notation, write σin := cin(1 − cin). As before, we write

Aℓ
n =

1 − cℓ
in

cℓ
in

pi

1 − pi
=

1 − cin − σindℓ
n − eℓ

in

cin + σindℓ
n + eℓ

in

pi

1 − pi

for the desired common value for all i, so

eℓ
in =

pi(1 − cin − σindℓ
n) − Aℓ

n(1 − pi)(cin + σindℓ
n)

Aℓ
n(1 − pi) + pi

. (3.10)

As before, the value of Aℓ
n is uniquely determined by the requirement that

∑M
i=1 cℓ

inmin = kn + ℓ. Since
∑M

i=1 cinmin = kn and
∑M

i=1 σindℓ
nmin = ℓ, this

requirement says that
M
∑

i=1

eℓ
inmin = 0.

In particular, the eℓ
in cannot be all positive or all negative, from which we derive,

using (3.10), that Aℓ
n must satisfy the double inequalities

min
i=1,...,M

{

pi(1 − cin − σindℓ
n)

(1 − pi)(cin + σindℓ
n)

}

≤ Aℓ
n ≤ max

i=1,...,M

{

pi(1 − cin − σindℓ
n)

(1 − pi)(cin + σindℓ
n)

}

.

A simple calculation establishes that

pi(1 − cin − σindℓ
n)

(1 − pi)(cin + σindℓ
n)

=
1 − cin

cin

pi

1 − pi

(

1 +

∞
∑

k=1

(−(1 − cin)dℓ
n)k

1 − cin

)

,

from which (using |dℓ
n| ≤ 1/2) we can conclude that

1 − cin

cin

pi

1 − pi

(

1 − dℓ
n

)

≤ Aℓ
n ≤ 1 − cin

cin

pi

1 − pi
(1 − dℓ

n + 2
(

dℓ
n)2
)

,

since by (1.3), neither the lower bound nor the upper bound here depends on i.
Inserting the lower bound on Aℓ

n into (3.10) gives

eℓ
in ≤ σin(1 − cin)(dℓ

n)2

1 − (1 − cin)dℓ
n

≤ 1

2
(dℓ

n)2,

where in the last step we used that |dℓ
n| ≤ 1/2 and σin ≤ 1/4. Likewise, substituting

the upper bound on Aℓ
n into (3.10) yields

eℓ
in ≥ −σin(1 + cin)(dℓ

n)2 + 2σin(1 − cin)(dℓ
n)3

1 − (1 − cin)dℓ
n + 2(1 − cin)(dℓ

n)2
≥ −2σin(dℓ

n)2

1 − 1/2
≥ −(dℓ

n)2. �

For future use, we state the following corollary:
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Corollary 3.5. If (kn −∑M
i=1 cimin)/

√
n → K for some K ∈ [−∞,∞], then for

i ∈ {1, . . . , M},
(cin − ci)min√

n
→ ci(1 − ci)αi
∑M

j=1 cj(1 − cj)αj

K.

Remark 3.6. If (kn − E(Σn))/
√

n → K ∈ R, then α =
∑M

i=1 piαi and we have
ci = pi for all i ∈ {1, . . . , M}. In this situation, Corollary 3.5 states that the
vectors X

p
n − X n, and hence also the same vectors conditioned on {Σn ≥ kn},

converge pointwise to the vector whose i-th component is

pi(1 − pi)αi
∑M

j=1 pj(1 − pj)αj

K.

Proof of Corollary 3.5: First, suppose that K ∈ R. If ℓ =
∑M

i=1 cimin − kn and
the cℓ

in satisfy (3.8), then cℓ
in = ci. Hence, by Lemma 3.4,

ci − cin = cin(1 − cin)dℓ
n + O

(

(dℓ
n)2
)

,

where

dℓ
n =

∑M
i=1 cimin − kn

∑M
j=1 cjn(1 − cjn)mjn

= O
(

n−1/2
)

.

This implies

(ci − cin)min√
n

=
cin(1 − cin)min

∑M
j=1 cjn(1 − cjn)mjn

∑M
i=1 cimin − kn√

n
+ O

(

n−1/2
)

,

from which the result follows.
Next, suppose that K = ∞. Since cin is increasing as a function of kn, we have

by the first part of the proof

lim inf
n→∞

(cin − ci)min√
n

≥ ci(1 − ci)αi
∑M

j=1 cj(1 − cj)αj

L

for all L ∈ R. Hence, the left-hand side is equal to ∞. The proof for the case
K = −∞ is similar. �

When we condition on {Σn = kn + ℓ}, then in analogy with what we have done
before, the natural scaled vector to consider would be the vector

X
ℓ
n :=

(

X1n − xℓ
1n√

n
,
X2n − xℓ

2n√
n

, . . . ,
XMn − xℓ

Mn√
n

)

,

where the components of the vector xℓ
n = (xℓ

1n, . . . , xℓ
Mn) identify the centres around

which the Xin concentrate. Here, the xℓ
in are nonnegative integers chosen such that

|xℓ
in − cℓ

inmin| < 1 for all i, and
∑M

i=1 xℓ
in = kn + ℓ. Note that the vector X

ℓ
n is

simply a translation of X n by (xℓ
n − xn)/

√
n. Since Lemma 3.3 shows that if kn is

sufficiently larger than E(Σn), only values of ℓ up to small order in n are relevant,
the statement of Theorem 1.5 should not come as a surprise. To prove it, we need
to refine the arguments we used to prove Theorem 1.4.

Proof of Theorem 1.5: Assume that (kn −E(Σn))/
√

n → ∞, and let

an := 2M

⌊

√
n

( √
n

kn −E(Σn)

)1/2
⌋

.
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Note that then an → ∞ but an/
√

n → 0. Furthermore, Lemma 3.3 and a short
computation show that P(Σn > kn + an)P(Σn ≥ kn)

→ 0.

It is easy to see that from this last fact it follows that

sup
A

∣

∣

∣
P(X n ∈ A | Σn ≥ kn) −P(X n ∈ A | kn ≤ Σn ≤ kn + an)

∣

∣

∣
→ 0,

where the supremum is over all Borel subsets A of RM . It is therefore sufficient
to consider the limiting distribution of the vector X n conditioned on the event
{kn ≤ Σn ≤ kn + an}, rather than on the event {Σn ≥ kn}.

As in the proof of Theorem 1.4, for z ∈ RM we let rz
n = ⌈z√n⌋, and we define

the functions fn : RM → R by setting

fn(z) := (
√

n)M P(√n X n = rz
n

∣

∣ kn ≤ Σn ≤ kn + an

)

.

As before, this is a probability density function with respect to Lebesgue measure λ
on RM , and if Zn is a random vector with this density, then the vector Z

′
n =

⌈Zn
√

n⌋/√n has the same distribution as the vector X n conditioned on the event
{kn ≤ Σn ≤ kn + an}. Hence, it is enough to show that the weak limit of Zn has
density f/

∫

f dµ0 with respect to µ0.
An essential difference compared to the situation in Theorem 1.4, however, is

that the densities fn are no longer supported by the collection of points z for which
rz
n is in the hyperplane S0 (i.e. the union of those sheared cubes that intersect S0).

Rather, the support now encompasses all the points z for which rz
n is in any of the

hyperplanes

Sℓ := {(z1, . . . , zM ) ∈ RM : z1 + · · · + zM = ℓ}, ℓ = 0, 1, . . . , an,

because if rz
n ∈ Sℓ, then the event {√nX n = rz

n} is contained in the event {Σn =
kn + ℓ}. For this reason, the densities fn are not so convenient to work with here.
Instead, it is more convenient to “coarse-grain” our densities by spreading the mass
over sheared cubes of volume ((2an + 1)/

√
n)M rather than volume (1/

√
n)M , to

the effect that all the mass is again contained in the collection of sheared (coarse-
grained) cubes intersecting S0.

To this end, for given n we partition RM into the collection of sets

{ 1√
n

(

a + σ−1(−an − 1/2, an + 1/2]M
)

: a ∈
(

(2an + 1)Z)M}. (3.11)

See Figure 3.2. For a given point z ∈ RM , we denote by Qz
n the sheared cube in

this partition containing z. Now we can define the coarse-grained densities

gn(z) :=

( √
n

2an + 1

)M P(X n ∈ Qz
n | kn ≤ Σn ≤ kn + an)

=

( √
n

2an + 1

)M ∫

Qz
n

fn(y) dλ(y).

By construction, these are again probability density functions with respect to M -
dimensional Lebesgue measure λ. Moreover, each of these densities is supported on
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1=
p
n

(�a� + 1�=
p
n

Figure 3.2. We coarse-grain our densities by combining (2an +
1)M sheared cubes into larger sheared cubes. Here, we show this
coarse-graining for M = 2 and an = 2. The dots are the points
in ((2an + 1)Z)M/

√
n. The combined sheared cubes have been

coloured in a chessboard fashion as a visual aid.

the collection of sheared cubes in (3.11) that intersect S0, and is constant on each
sheared cube Qz

n. In particular, for any given point z ∈ RM we have

∫

Qz
n

gn(y) dλ(y) =
2an + 1√

n

∫

Qz
n

gn(y) dµ0(y).

Finally, because an/
√

n → 0 it is clear that if Z
′′
n has density gn, then its weak

limit will coincide with that of Zn, and hence also with that of the vector X n

conditioned on the event {kn ≤ Σn ≤ kn + an}.
Suppose now that we could prove that

2an + 1√
n

gn(z) → f(z)
∫

f dµ0
for every z ∈ RM . (3.12)

Then it would follow from Fatou’s lemma that for every open set A ⊂ RM ,

lim inf
n→∞

∫

A

2an + 1√
n

gn(z) dµ0(z) ≥
∫

A
f(z) dµ0(z)
∫

f dµ0
.

By approximating the open set A by unions of sheared cubes contained in A, as in
the proof of Theorem 1.4, it is then clear that this would imply that

lim inf
n→∞

∫

A

gn(z) dλ(z) ≥
∫

A f(z) dµ0(z)
∫

f dµ0
.

It therefore only remains to establish (3.12).
Since (3.12) holds by construction for z /∈ S0, we only need to consider the case

z ∈ S0. So let us fix z ∈ S0, and look at gn(z). By definition, this is just the
rescaled conditional probability that the vector X n lies in the sheared cube Qz

n,
given that kn ≤ Σn ≤ kn + an. In other words, if we define Cz

n :=
√

nQz
n ∩ZM and
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Cz
ℓn := Cz

n ∩ Sℓ, then we have

gn(z) =

( √
n

2an + 1

)M
∑

r∈Cz
n

P(
√

n X n = r | kn ≤ Σn ≤ kn + an)

=

( √
n

2an + 1

)M an
∑

ℓ=0

∑

r∈Cz

ℓn

P(
√

nX n = r | Σn = kn + ℓ)P(Σn = kn + ℓ)P(kn ≤ Σn ≤ kn + an)
.

Since Cz
ℓn contains exactly (2an + 1)M−1 points, from this equality we conclude

that to prove (3.12), it is sufficient to show that

sup
0≤ℓ≤an

sup
r∈Cz

ℓn

∣

∣

∣

∣

(
√

n)M−1P(
√

n X n = r | Σn = kn + ℓ) − f(z)
∫

f dµ0

∣

∣

∣

∣

→ 0. (3.13)

The proof of (3.13) proceeds along the same line as the proof of pointwise con-
vergence in Theorem 1.4, based on Lemma 3.2. However, there is a catch: because
we are now conditioning on Σn = kn + ℓ, the Xin are no longer centred around xin,
but around xℓ

in. We therefore first write the conditional probabilities in a form
analogous to what we had before, by using thatP(√nX n = r

∣

∣ Σn = kn + ℓ
)

= P(√n X
ℓ
n = r + xn − xℓ

n

∣

∣ Σn = kn + ℓ
)

.

Writing rℓ := r + xn − xℓ
n for convenience, we now want to study the ratiosP(

√
n X

ℓ
n = rℓ | Σn = kn + ℓ)P(

√
n X

ℓ
n = 0 | Σn = kn + ℓ)

=
P(

√
n X

ℓ
n = rℓ)P(

√
n X

ℓ
n = 0)

=

M
∏

i=1

P(Xin = xℓ
in + rℓ

i )P(Xin = xℓ
in)

for ℓ and r satisfying 0 ≤ ℓ ≤ an and r ∈ Cz
ℓn.

By equation (3.9) and Lemma 3.4 we have that supℓ|xℓ
in − xin| = o(

√
n), from

which it follows that also supℓ,r|rℓ − z
√

n| = o(
√

n), where the suprema are over all
ℓ ∈ {0, . . . , an} and r ∈ Cz

ℓn. Thus, by the first part of Lemma 3.2,

sup
0≤ℓ≤an

sup
r∈Cz

ℓn

∣

∣

∣

∣

∣

P(
√

nX
ℓ
n = rℓ | Σn = kn + ℓ)P(

√
nX

ℓ
n = 0 | Σn = kn + ℓ)

− f(z)

∣

∣

∣

∣

∣

→ 0,

where we have used that for all terms concerned,
∏M

i=1 A
rℓ

i

n = 1 because rℓ ∈ S0.
Furthermore, from the second part of Lemma 3.2 it follows that the functions

z 7→ P(
√

nX
ℓ
n = ⌈z√n⌋ | Σn = kn + ℓ)P(

√
nX

ℓ
n = 0 | Σn = kn + ℓ)

are bounded uniformly in n and in all ℓ ∈ {0, . . . , an} by a µ0-integrable function.
In the same way as in the proof of Theorem 1.4, it follows from these facts (with
the addition that we have uniform bounds) that

sup
0≤ℓ≤an

∣

∣

∣

∣

(
√

n)M−1P(
√

n X
ℓ
n = 0 | Σn = kn + ℓ) − 1

∫

f dµ0

∣

∣

∣

∣

→ 0.

From this we conclude that (3.13) does hold, which completes the proof of Theo-
rem 1.5. �
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3.3. Proof of Theorem 1.6.

Proof of Theorem 1.6: Suppose that (kn−E(Σn))/
√

n→K for some K ∈ [−∞,∞).
Let X be a random vector having a multivariate normal distribution with density
h/
∫

h dλ with respect to λ. By standard arguments, X
p
n converges weakly to X .

Therefore, for a rectangle A ⊂ RM we haveP(X p
n ∈ A, Σn ≥ kn) = P(X p

n ∈ A ∩ H kn−E(Σn)√
n

) → P(X ∈ A ∩ HK),

since A ∩ HK+ε is a λ-continuity set for all ε ∈ R. Taking A = RM givesP(Σn ≥ kn) → P(X ∈ HK).

Hence, for all rectangles A ⊂ RMP(X p
n ∈ A | Σn ≥ kn) → P(X ∈ A ∩ HK)P(X ∈ HK)

. �

3.4. Law of large numbers. Finally, we prove a law of large numbers, which we
will need in Section 4. Let X̃in denote a random variable with the conditional
law of Xin, conditioned on the event {Σn ≥ kn}. If (kn − E(Σn))/

√
n → K for

some K ∈ [−∞,∞], then an immediate consequence of Theorems 1.5 and 1.6 is

that X̃in/n converges in probability to either piαi or ciαi. The following theorem
shows that such a law of large numbers holds for a general sequence kn such that
kn/n → α.

Theorem 3.7. For i ∈ {1, . . . , M}, the random variable X̃in/n converges in prob-

ability to piαi if α ≤∑M
i=1 piαi, or to ciαi if α ≥∑M

i=1 piαi.

Proof : If α 6= ∑M
i=1 piαi, then (kn −E(Σn))/

√
n goes to −∞ or ∞ as n → ∞, and

the result immediately follows from Theorem 1.5 and Theorem 1.6.

Now suppose that α =
∑M

i=1 piαi. Then ci = pi for all i ∈ {1, . . . , M}. Recall
that in general the ci and A are determined by the equations

ci =
pi

pi + A(1 − pi)
and

M
∑

i=1

piαi

pi + A(1 − pi)
= α.

The constant A is continuous as a function of α, hence ci = ci[α] is also continuous

as a function of α. Therefore, if α =
∑M

i=1 piαi, then for each ε > 0 we can choose

δ > 0 such that ci[α + δ]αi ≤ piαi + 1
2ε. By Corollary 2.3 we have, for large

enough n,P(Xin ≥ (piαi + ε)n | Σn ≥ kn)

≤ P(Xin ≥ (piαi + ε)n | Σn ≥ (α + δ)n)

≤ P(Xin ≥ (ci[α + δ]αi + 1
2ε)n | Σn ≥ (α + δ)n),

which tends to 0 as n → ∞ by Theorem 1.5. Similarly, using Corollary 2.3 and
Theorem 1.6 instead of Theorem 1.5, we obtainP(Xin ≤ (piαi − ε)n | Σn ≥ kn) → 0.

We conclude that X̃in/n converges in probability to piαi = ciαi. �



428 Broman et al.

4. Asymptotic stochastic domination

4.1. Proof of Theorem 1.8. Consider the general framework for vectors Xn and Y n

of Section 1.2 in the setting of Section 1.4. We will split the proof of Theorem 1.8
into four lemmas. In the statements of these lemmas, we will need the constant α̂,

which is defined as the limit as n → ∞ of k̂n/n:

k̂n =

M
∑

i=1

pimin

pi + βmax(1 − pi)
, hence α̂ =

M
∑

i=1

piαi

pi + βmax(1 − pi)
.

Let us first look at the definition of α̂ in more detail. In Section 1.4, we informally

introduced the sequence k̂n as a critical sequence such that if kn is around k̂n, then
there exists a block i such that the number of successes X̃in of the vector X̃n in
block i is roughly the same as Ỹin. We will now make this precise. Recall that
the ci and the constant A are determined by

ci =
pi

pi + A(1 − pi)
and

M
∑

i=1

piαi

pi + A(1 − pi)
= α.

Furthermore, note that
pi

pi + βi(1 − pi)
= qi,

and recall that we defined I = {i ∈ {1, . . . , M} : βi = βmax}. The ordering of α
and α̂ gives information about the ordering of the ci and qi. This is stated in the
following remark, which follows from the equations above.

Remark 4.1. We have the following:

(i) If α < α̂, then A > βmax and ci < qi for all i ∈ {1, . . . , M}.
(ii) If α = α̂, then A = βmax and ci = qi for i ∈ I, while ci < qi for i /∈ I.
(iii) If α > α̂, then A < βmax and ci > qi for some i ∈ {1, . . . , M}.
(iv)

∑M
i=1 piαi ≤ α̂ ≤

∑M
i=1 qiαi, with α̂ =

∑M
i=1 piαi if and only if βmax = 1,

and α̂ =
∑M

i=1 qiαi if and only if all βi (i ∈ {1, . . . , M}) are equal.

Our law of large numbers, Theorem 3.7, states that X̃in/n converges in proba-

bility to piαi if α ≤ ∑M
i=1 piαi, and to ciαi if α ≥ ∑M

i=1 piαi. This law of large

numbers applies analogously to the vector Ỹ n. If we define d1, . . . , dM as the unique
solution of the system











1 − di

di

qi

1 − qi
=

1 − dj

dj

qj

1 − qj
∀i, j ∈ {1, . . . , M},

∑M
i=1 diαi = α,

then Ỹin/n converges in probability to qiαi if α ≤
∑M

i=1 qiαi, and to diαi if α ≥
∑M

i=1 qiαi. These laws of large numbers and the observations in Remark 4.1 will
play a crucial role in the proofs in this section.

Now we define some one-dimensional (possibly degenerate) distribution func-
tions FK : R → [0, 1] for K ∈ [−∞,∞], which will come up in the proofs as the

distribution functions of the limit of a certain function of the vectors X̃n. Recall
from Section 1.3 the definitions (1.5), (1.6), (1.7) and (1.8) of the measure ν0, the
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functions f and h and the half-space HK . Write u = (u1, . . . , uM ). Then

FK(z) =







































∫

HK∩{P

i∈I
ui≤z} h(u) dλ(u)

∫

HK

h dλ
if K < ∞, α =

∑M
i=1 piαi,

∫

{
P

i∈I
ui≤z−zK} f(u) dν0(u)
∫

f dν0
if K < ∞, α >

∑M
i=1 piαi,

0 if K = ∞,

(4.1)

where

zK =

∑

i∈I ci(1 − ci)αi
∑M

i=1 ci(1 − ci)αi

K. (4.2)

The following lemmas, together with Proposition 1.3, imply Theorem 1.8.

Lemma 4.2. If α < α̂, then supP(X̃n ≤ Ỹ n) → 1.

Lemma 4.3. Suppose that α > α̂ and βi 6= βj for some i, j ∈ {1, . . . , M}. Then

supP(X̃n ≤ Ỹ n) → 0.

Lemma 4.4. Suppose that α = α̂ and βi 6= βj for some i, j ∈ {1, . . . , M}. Suppose

furthermore that (kn − k̂n)/
√

n → K for some K ∈ [−∞,∞]. Then supP(X̃n ≤
Ỹ n) → infz∈R FK(z) − Φ(z/a) + 1.

Lemma 4.5. If α = α̂ and βi 6= βj for some i, j ∈ {1, . . . , M}, then

inf
z∈RFK(z) − Φ(z/a) + 1 =











1 if K = −∞,

PK if K ∈ R, where 0 < PK < 1,

0 if K = ∞.

The constant a in Lemma 4.4 is the constant defined in (1.9a). The infimum in
Lemma 4.4 can actually be computed, as Lemma 4.5 states, and attains the values
stated in Theorem 1.8, with PK as defined in (1.10).

We will prove Theorem 1.8 by proving each of the Lemmas 4.2–4.5 in turn.
The idea behind the proof of Lemma 4.2 is as follows. If we do not condition

at all, then Xn � Y n for every n ≥ 1. If α <
∑M

i=1 piαi, then the effect of

conditioning vanishes in the limit and supP(X̃n ≤ Ỹ n) → 1 as n → ∞. If
∑M

i=1 piαi ≤ α < α̂, then ci < qi for all i ∈ {1, . . . , M}. Hence, for large n we have

that X̃in is significantly smaller than Ỹin for all i ∈ {1, . . . , M}, from which it will

again follow that supP(X̃n ≤ Ỹ n) → 1.

Proof of Lemma 4.2: First, suppose that α <
∑M

i=1 piαi. Let Xn and Y n be
defined on a common probability space (Ω,F , P ) such that Xn ≤ Y n on all of Ω.

Pick ω1 ∈ Ω according to the measure P ( · |
∑M

i=1 Xin ≥ kn) and pick ω2 ∈ Ω

independently according to the measure P ( · |∑M
i=1 Yin ≥ kn). If ω2 is in the event

{
∑M

i=1 Xin ≥ kn

}

∈ F , set Ỹ n(ω1, ω2) := Y n(ω1), otherwise set Ỹ n(ω1, ω2) :=

Y n(ω2). Set X̃n(ω1, ω2) := Xn(ω1) regardless of the value of ω2. It is easy to see

that this defines a coupling of X̃n and Ỹ n on the space (Ω × Ω,F × F) with the

correct marginals for X̃n and Ỹ n. Moreover, in this coupling we have X̃n ≤ Ỹ n
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at least if ω2 ∈
{
∑M

i=1 Xin ≥ kn

}

. Hence

supP(X̃n ≤ Ỹ n) ≥ P(
∑M

i=1 Xin ≥ kn)P(
∑M

i=1 Yin ≥ kn)
,

which tends to 1 as n → ∞ (e.g. by Chebyshev’s inequality).

Secondly, suppose that
∑M

i=1 piαi ≤ α < α̂. By Remark 4.1(i), ci < qi for all

i ∈ {1, . . . , M}. For each coupling of X̃n and Ỹ n we haveP(X̃n ≤ Ỹ n) ≥ P(X̃in ≤ (ci + qi)αin/2 ≤ Ỹin ∀i ∈ {1, . . . , M}),
which tends to 1 as n → ∞ by Theorem 3.7 and Remark 4.1(iv). �

The next lemma, Lemma 4.3, treats the case α > α̂. In this case, we have that
for large n, X̃in is significantly larger than Ỹin for some i ∈ {1, . . . , M}, from which

it follows that supP(X̃n ≤ Ỹ n) → 0.

Proof of Lemma 4.3: First, suppose that α̂ < α <
∑M

i=1 qiαi. Then ci > qi

for some i ∈ {1, . . . , M} by Remark 4.1(iii). Hence, by Theorem 3.7 and Re-
mark 4.1(iv), P(X̃in ≥ (ci + qi)αin/2) → 1,P(Ỹin ≥ (ci + qi)αin/2) → 0.

It follows that P(X̃n ≤ Ỹ n) tends to 0 uniformly over all couplings.

Next, suppose that α ≥∑M
i=1 qiαi and βi 6= βj for some i, j ∈ {1, . . . , M}. Then

there exists i ∈ {1, . . . , M} such that ci 6= di, since

1 − di

di

dj

1 − dj
βj =

1 − qi

qi

pj

1 − pj
= βi

1 − ci

ci

cj

1 − cj
.

In fact, we must have ci > di for some i ∈ {1, . . . , M}, because
∑M

i=1 ciαi =
∑M

i=1 diαi. By Theorem 3.7, it follows thatP(X̃in ≥ (ci + di)αin/2) → 1,P(Ỹin ≥ (ci + di)αin/2) → 0.

Again, P(X̃n ≤ Ỹ n) tends to 0 uniformly over all couplings. �

We now turn to the proof of Lemma 4.4. Under the assumptions of this lemma,
ci = qi for i ∈ I and ci < qi for i /∈ I. The proof proceeds in four steps. In
step 1, we show that the blocks i /∈ I do not influence the asymptotic behaviour
of supP(X̃n ≤ Ỹ n), because for these blocks, X̃in is significantly smaller than Ỹin

for large n. In step 2, we show that the parts of the vectors X̃n and Ỹ n that
correspond to the blocks i ∈ I are stochastically ordered, if and only if the total
numbers of successes in these parts of the vectors are stochastically ordered. At
this stage, the original problem of stochastic ordering of random vectors has been
reduced to a problem of stochastic ordering of random variables. In step 3, we use
our central limit theorems to deduce the asymptotic behaviour of the total numbers
of successes in the blocks i ∈ I. In step 4, we apply the following lemma, which
follows from Rüschendorf (1982, Proposition 1), to these total numbers of successes:
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Lemma 4.6. Let X and Y be random variables with distribution functions F and G
respectively. Then we have

supP(X ≤ Y ) = inf
z∈RF (z) − G(z) + 1,

where the supremum is taken over all possible couplings of X and Y .

Proof of Lemma 4.4: Write mIn :=
∑

i∈I min. Let XIn and X̃In denote the mIn-

dimensional subvectors of Xn and X̃n, respectively, consisting of the components
that belong to the blocks i ∈ I. Define Y In and Ỹ In analogously.

Step 1. Note that for each coupling of X̃n and Ỹ n,P(X̃n ≤ Ỹ n) ≥ P(X̃In ≤ Ỹ In, X̃in ≤ (ci + qi)αin/2 ≤ Ỹin ∀i /∈ I)

≥ P(X̃In ≤ Ỹ In) −
∑

i/∈I

{P(X̃in >
ci + qi

2
αin
)

+P(Ỹin <
ci + qi

2
αin
)}

. (4.3)

By Remark 4.1(ii), ci < qi for i /∈ I. Hence, it follows from Remark 4.1(iv) and
Theorem 3.7 that the sum in (4.3) tends to 0 as n → ∞, uniformly over all couplings.

Since clearly supP(X̃n ≤ Ỹ n) ≤ supP(X̃In ≤ Ỹ In),
∣

∣

∣
supP(X̃n ≤ Ỹ n) − supP(X̃In ≤ Ỹ In)

∣

∣

∣
→ 0,

where the suprema are taken over all possible couplings of (X̃n,Ỹ n) and (X̃In,Ỹ In),
respectively.

Step 2. The βi for i ∈ I are all equal. Hence, by Proposition 1.2 and Lemma 2.2
we have for m ∈ {0, 1, . . . , mIn} and ℓ ∈ {0, 1, . . . , mIn − m}

L(XIn|
∑

i∈I Xin = m) � L(Y In|
∑

i∈I Yin = m + ℓ). (4.4)

Now let B be any collection of vectors of length mIn with exactly m components
equal to 1 and mIn − m components equal to 0. ThenP(X̃In ∈ B) = P(XIn ∈ B |∑M

i=1 Xin ≥ kn)

=
P(XIn ∈ B)P(

∑

i/∈I Xin ≥ kn − m)P(
∑M

i=1 Xin ≥ kn)
.

Taking C to be the collection of all vectors in {0, 1}mIn with exactly m components
equal to 1, we obtainP(X̃In ∈ B |

∑

i∈IX̃in = m) =
P(X̃In ∈ B)P(X̃In ∈ C)

= P(XIn ∈ B |
∑

i∈IXin = m),

and likewise for Y In and Ỹ In. Hence, (4.4) is equivalent to

L(X̃In|
∑

i∈I X̃in = m) � L(Ỹ In|
∑

i∈I Ỹin = m + ℓ).

With a similar argument as in the proof of Proposition 1.3, it follows that

supP(X̃In ≤ Ỹ In) = supP(
∑

i∈I X̃in ≤
∑

i∈I Ỹin).

Step 3. First observe that by Remark 4.1(iv), α <
∑M

i=1 qiαi. Hence, by The-

orem 1.6 (note that (kn −E(
∑M

i=1 Yin))/
√

n → −∞) and the continuous mapping
theorem, P(

∑

i∈I(Ỹin − qimin)/
√

n ≤ z) → Φ(z/a) for every z ∈ R. (4.5)
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Next observe that by Remark 4.1(ii), ci = qi for i ∈ I and A = βmax, from which

it follows that k̂n =
∑M

i=1 cimin. Hence, Corollary 3.5 gives
∑

i∈I(cin − qi)min/
√

n → zK , (4.6)

with zK as defined in (4.2). In the case α >
∑M

i=1 piαi, Theorem 1.5, (4.6) and the
continuous mapping theorem now immediately implyP(

∑

i∈I(X̃in − qimin)/
√

n ≤ z) → FK(z) for every z ∈ R. (4.7)

Note that if K = ±∞, FK is degenerate in this case: we have FK(z) = 1 for all
z ∈ R if K = −∞ and FK(z) = 0 for all z ∈ R if K = ∞.

Now consider the case α =
∑M

i=1 piαi. By Remark 4.1(iv), in this case we have

βmax = 1, which implies that k̂n =
∑M

i=1 pimin = E(Σn) and pi = qi for all
i ∈ {1, . . . , M}. Hence, if K = ∞, then (4.6) and Theorem 1.5 again imply (4.7)
with FK(z) = 0 everywhere. If K ∈ [−∞,∞), then we obtain (4.7) directly from
Theorem 1.6; FK is non-degenerate in this case (also for K = −∞).

Step 4. The distribution functions on the left-hand sides of (4.5) and (4.7) are
non-decreasing and bounded between 0 and 1, hence they converge uniformly on
compact sets. It follows by Lemma 4.6 that

supP(
∑

i∈I X̃in ≤∑i∈I Ỹin) → infz∈R FK(z) − Φ(z/a) + 1. �

Finally, we turn to the proof of Lemma 4.5. The key to computing the infimum of
FK(z)−Φ(z/a)+1 is to first express the distribution function FK , defined in (4.1),
in a simpler form.

Proof of Lemma 4.5: In the case α >
∑M

i=1 piαi and K = −∞, FK is 1 everywhere,
hence infz∈R FK(z) − Φ(z/a) + 1 = 1. In the case K = ∞, FK is 0 everywhere,
hence infz∈R FK(z) − Φ(z/a) + 1 = 0. We will now study the remaining cases.

Consider the case α = α̂ =
∑M

i=1 piαi and K ∈ [−∞,∞). Let Z = (Z1, . . . , ZM )
be a random vector which has the multivariate normal distribution with density
h/
∫

h dλ. By Remark 4.1(iv) we have βmax = 1. Note that therefore, 1
a

∑

i∈I Zi,
1
b

∑

i/∈I Zi and 1
c

∑M
i=1 Zi, with a, b and c as defined in (1.9), all have the standard

normal distribution. Moreover,
∑

i∈I Zi and
∑

i/∈I Zi are independent.
For K = −∞, it follows that FK(z) = Φ(z/a), hence infz∈R FK(z)−Φ(z/a)+1 =

1. For K ∈ R, observe that Z ∈ HK is equivalent with 1
c

∑M
i=1 Zi ≥ K/c. Likewise,

Z ∈ HK ∩ {u ∈ RM :
∑

i∈I ui ≤ z} is equivalent with 1
a

∑

i∈I Zi ≤ z/a and
1
b

∑

i/∈I Zi ≥ (K −
∑

i∈I Zi)/b. It follows that

FK(z) =

∫

h dλ
∫

HK
h dλ

∫

HK∩{
P

i∈I
ui≤z} h(u) dλ(u)
∫

h dλ

=
1

1 − Φ(K/c)

∫ z/a

−∞

∫ ∞

K−au

b

e−u2/2

√
2π

e−v2/2

√
2π

dv du

=

∫ z/a

−∞

e−u2/2

√
2π

1 − Φ
(

K−au
b

)

1 − Φ
(

K
c

) du,

hence

FK(z) − Φ(z/a) =

∫ z/a

−∞

e−u2/2

√
2π

Φ
(

K
c

)

− Φ
(

K−au
b

)

1 − Φ
(

K
c

) du. (4.8)
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Clearly, the derivative of this expression with respect to z is 0 if and only if (K −
z)/b = K/c, that is, z = zmin = K−bK/c. Plugging this value for z into (4.8) shows
that infz∈R FK(z) − Φ(z/a) + 1 = PK , with PK as defined in (1.10). Moreover,
PK > 0 because FK(zmin) > 0, and PK < 1 because the integrand in (4.8) is
negative for u < zmin/a.

Finally, consider the case α >
∑M

i=1 piαi and K ∈ R. This time, let Z =
(Z1, . . . , ZM ) be a random vector which has the singular multivariate normal dis-
tribution with density f/

∫

f dν0 with respect to ν0. Then a little computation
shows that (Z1, . . . , ZM−1) has a multivariate normal distribution with mean 0 and
a covariance matrix Σ given by































Σii =
σ2

i

∑M
k=1,k 6=i σ2

k
∑M

k=1 σ2
k

for i ∈ {1, . . . , M − 1},

Σij =
−σ2

i σ2
j

∑M
k=1 σ2

k

for i, j ∈ {1, . . . , M − 1} with i 6= j,

where σ2
i = ci(1 − ci)αi for i ∈ {1, . . . , M}. Similarly, every subvector of Z of

dimension less than M has a multivariate normal distribution.
By the definition (4.1) of FK , zK +

∑

i∈I Zi has distribution function FK . Since
βi 6= βj for some i, j ∈ {1, . . . , M}, we have |I| ≤ M − 1. It follows that

∑

i∈I Zi

has a normal distribution with mean 0 and variance

∑

i∈I

σ2
i

∑M
k=1,k 6=i σ2

k
∑M

k=1 σ2
k

+
∑

i∈I

∑

j∈I\{i}

−σ2
i σ2

j
∑M

k=1 σ2
k

=
(
∑

i∈I σ2
i )(
∑

i/∈I σ2
i )

∑M
i=1 σ2

i

. (4.9)

By Remark 4.1(ii), A = βmax and hence for i ∈ {1, . . . , M},

σ2
i = ci(1 − ci)αi =

βmaxpi(1 − pi)αi

(pi + βmax(1 − pi))2
.

It follows that the variance (4.9) is equal to a2b2/c2, with a, b, and c as defined
in (1.9). Furthermore, zK = a2K/c2. We conclude that FK is the distribution
function of a normally distributed random variable with mean a2K/c2 and variance
a2b2/c2, so that FK(z) = Φ

(

c
ab (z − a2K/c2)

)

. Since a2b2/c2 < a2, we see that
FK(z) < Φ(z/a) for small enough z. Hence FK(z) − Φ(z/a) attains a minimum
value which is strictly smaller than 0. This minimum is strictly larger than −1
because FK(z) > 0 for all z ∈ R.

To find the minimum, we compute the derivative of FK(z)−Φ(z/a) with respect
to z. It is not difficult to verify that the minimum is attained for

z = zmin = K − b

c

√

K2 + c2 log(c2/b2),

from which it follows that infz∈R FK(z) − Φ(z/a) + 1 = PK , with PK as defined
in (1.10). From the remarks above we know that 0 < PK < 1. �

4.2. Conditioning on exactly kn successes. For the sake of completeness, we finally
treat the case of conditioning on the total number of successes being equal to kn.
The situation is not very interesting here.
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Theorem 4.7. Let X̂n be a random vector having the conditional distribution
of Xn, conditioned on the event {Σn = kn}. Define Ŷ n similarly. If all βi (i ∈
{1, . . . , M}) are equal, then X̂n and Ŷ n have the same distribution for every n ≥ 1.

Otherwise, supP(X̂n = Ŷ n) → 0 as n → ∞.

Proof : If all βi (i ∈ {1, . . . , M}) are equal, then by Proposition 1.2 we have that

X̂n and Ŷ n have the same distribution for every n ≥ 1. If βi 6= βj for some

i, j ∈ {1, . . . , M}, then it can be shown that supP(X̂n ≤ Ŷ n) → 0 as n → ∞,
by a similar argument as in the proof of Lemma 4.3; instead of Theorem 3.7 use
Lemma 3.1. �
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