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Abstract. For n > 1 let X, be a vector of n independent Bernoulli random
variables. We assume that X,, consists of M “blocks” such that the Bernoulli
random variables in block ¢ have success probability p;. Here M does not depend
on n and the size of each block is essentially linear in n. Let X, be a random
vector having the conditional distribution of X ,,, conditioned on the total number
of successes being at least k,, where k,, is also essentially linear in n. Define f/n
similarly, but with success probabilities ¢; > p;. We prove that the law of X,
converges weakly to a distribution that we can describe precisely. We then prove
that supIP(X,, <Y,) converges to a constant, where the supremum is taken over
all possible couplings of X, and Y ,,. This constant is expressed explicitly in terms
of the parameters of the system.

1. Introduction and main results

Let X and Y be random vectors on IR™ with respective laws p and v. We
say that X is stochastically dominated by Y, and write X <Y, if it is possible
to define random vectors U = (Uy,...,U,) and V = (V4,...,V,,) on a common
probability space such the laws of U and V' are equal to p and v, respectively, and

Received by the editors October 24, 2011; accepted June 17, 2012.

2000 Mathematics Subject Classification. Primary 60E15, Secondary 60F05.

Key words and phrases. Bernoulli random vectors, weak convergence, stochastic domination,
conditional distributions, coupling.

The research of E.I.B. was supported by the Géran Gustafsson Foundation for Research in Nat-
ural Sciences and Medicine. T.vd.B. was supported by Vidi grant 639.032.916 of the Netherlands
Organisation for Scientific Research (NWO).

403


http://alea.impa.br/english/index_v9.htm
http://www2.math.uu.se/~broman/
http://www.few.vu.nl/~tvdbrug/
http://www.few.vu.nl/~wkager/
http://www.few.vu.nl/~rmeester/

404 Broman et al.

U <V (that is, U; <V for all i € {1,...,n}) with probability 1. In this case,
we also write p < v. For instance, when X = (X3,...,X,) and Y = (Y1,...,Y,)
are vectors of n independent Bernoulli random variables with success probabilities
P1y---yPn and @1, ..., qn, respectively, and 0 < p; < ¢; < 1 fori € {1,...,n}, we
have X <Y.

In this paper, we consider the conditional laws of X and Y, conditioned on the
total number of successes being at least k, or sometimes also equal to k, for an
integer k. In this first section, we will state our main results and provide some
intuition. All proofs are deferred to later sections.

Domination issues concerning the conditional law of Bernoulli vectors condi-
tioned on having at least a certain number of successes have come up in the litera-
ture a number of times. In Broman et al. (2006) and Broman and Meester (2008),
a simplest case has been considered in which p; = p and ¢; = ¢ for some p < q.
In Broman and Meester (2008), the conditional domination is used as a tool in the
study of random trees.

Here we study such domination issues in great detail and generality. The Ber-
noulli vectors we consider have the property that the p; and ¢; take only finitely
many values, uniformly in the length n of the vectors. The question about stochas-
tic ordering of the corresponding conditional distributions gives rise to a number
of intriguing questions which, as it turns out, can actually be answered. Our main
result, Theorem 1.8, provides a complete answer to the question with what maximal
probability two such conditioned Bernoulli vectors can be ordered in any coupling,
when the length of the vectors tends to infinity.

In Section 1.1, we will first discuss domination issues for finite vectors X and Y’
as above. In order to deal with domination issues as the length n of the vectors tends
to infinity, it will be necessary to first discuss weak convergence of the conditional
distribution of a single vector. Section 1.2 introduces the framework for dealing
with vectors whose lengths tend to infinity, and Section 1.3 discusses their weak
convergence. Finally, Section 1.4 deals with the asymptotic domination issue when
n — oo.

1.1. Stochastic domination of finite vectors. As above, let X = (X4,...,X,,) and
Y = (Y1,...,Y,) be vectors of independent Bernoulli random variables with success
probabilities p1,...,p, and q1,...,qn, respectively, where 0 < p; < ¢; < 1 for
i€ {l,...,n}. For an event A, we shall denote by £(X|A) the conditional law
of X given A. Our first proposition states that the conditional law of the total
number of successes of X, conditioned on the event {>_" ; X; > k}, is stochastically
dominated by the conditional law of the total number of successes of Y.

Proposition 1.1. For all k € {0,1,...,n},
LT, Xil i, X > k) S LOZL, Yal 200, Y > k).

In general, the conditional law of the full vector X is not necessarily stochasti-
cally dominated by the conditional law of the vector Y. For example, consider the
casen =2,p1 =pa=¢q =pand g0 =1 — p for some p < %,andkzl. We then
have

1
P(X1:1|X1+X221):2Tp,
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and

I

1—(1-pp

Hence, if p is small enough, then the conditional law of X is not stochastically
dominated by the conditional law of Y.

We would first like to study under which conditions we do have stochastic or-
dering of the conditional laws of X and Y. For this, it turns out to be very useful
to look at the conditional laws of X and Y, conditioned on the total number of
successes being exactly equal to k, for an integer k. Note that if we condition on the
total number of successes being exactly equal to k, then the conditional law of X
is stochastically dominated by the conditional law of Y if and only if the two con-
ditional laws are equal. The following proposition characterizes stochastic ordering
of the conditional laws of X and Y in this case. First we define, for i € {1,...,n},

PY,=1|Yi+Y:>1)=

pi 1—aq
G = ————. 1.1

l-pi g 1)
The (; will play a crucial role in the domination issue throughout the paper.

Proposition 1.2. The following statements are equivalent:
(i) All B; (i € {1,...,n}) are equal;
(i) (XY, Xs=k)=L(Y|>X Y, =k) for all k € {0,1,...,n};
(i) L(X|> 0, Xi=k) =LY |Y.",Yi=k) for somek €{1,...,n—1}.

We will use this result to prove the next proposition, which gives a sufficient
condition under which the conditional law of X is stochastically dominated by the
conditional law of Y, in the case when we condition on the total number of successes
being at least k.

Proposition 1.3. Ifall §; (i € {1,...,n}) are equal, then for allk € {0,1,...,n},
LIXIT, X > 1) = LV, Vi = k)

The condition in this proposition is a sufficient condition, not a necessary con-
dition. For example, if n = 2, p; = py = %, q = 1% and ¢z = %7 then 31 # B2, but
we do have stochastic ordering for all k € {0,1,2}.

1.2. Framework for asymptotic domination. Suppose that we now extend our Ber-
noulli random vectors X and Y to infinite sequences X;, Xs,... and Y;7,Y5,...
of independent Bernoulli random variables, which we assume to have only finitely
many distinct success probabilities. It then seems natural to let X,, and Y,, denote
the n-dimensional vectors (X1,...,X,,) and (Y1,...,Y,,), respectively, and consider
the domination issue as n — oo, where we condition on the total number of suc-
cesses being at least k, = |an] for some fixed number a € (0, 1).

More precisely, with k,, as above, let X,, be a random vector having the law
L(X |3 Xi > k), and define Y, similarly. Proposition 1.3 gives a sufficient
condition under which X, is stochastically dominated by Y, for each n > 1. If this
condition is not fulfilled, however, we might still be able to define random vectors
U and V, with the same laws as X ,, and Y ,,, on a common probability space such
that the probability that U < V is high (perhaps even 1). We denote by

supP(X, <Y,) (1.2)
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the supremum over all possible couplings (U, V') of (X n,f/n) of the probability
that U < V. We want to study the asymptotic behaviour of this quantity as
n — oo.

As an example (and an appetizer for what is to come), consider the following
situation. For ¢ > 1 let the random variable X; have success probability p for
some p € (0, %) For i > 1 odd or even let the random variable Y; have success
probability p or 1 — p, respectively. We will prove that SupIP(X n < f/n) converges
to a constant as n — oo (Theorem 1.8 below). It turns out that there are three
possible values of the limit, depending on the value of a:

(i) If @ < p, then supP(X, <Y,) — 1.
(ii) If &« = p, then SupIP():(n < l:/n) -3
(iii) If @ > p, then supP(X,, <Y,) — 0.

In fact, to study the asymptotic domination issue, we will work in an even more
general framework, which we shall describe now. For every n > 1, X,, is a vector of
n independent Bernoulli random variables. We assume that this vector is organized
in M “blocks”, such that all Bernoulli variables in block ¢ have the same success
probability p;, for ¢ € {1,...,M}. Similarly, Y, is a vector of n independent
Bernoulli random variables with the exact same block structure as X,,, but for Y,,,
the success probability corresponding to block i is ¢;, where 0 < p; < ¢; < 1 as
before.

For given n > 1 and ¢ € {1,..., M}, we denote by m,, the size of block 4,
where of course Zi\il m;n = n. In the example above, there were two blocks, each
containing (roughly) one half of the Bernoulli variables, and the size of each block
was increasing with n. In the general framework, we only assume that the fractions
m,/n converge to some number «; € (0,1) as n — oo, where Zi\il o; = 1.
Similarly, in the example above we conditioned on the total number of successes
being at least k,, where k, = |an] for some fixed a € (0,1). In the general
framework, we only assume that we are given a fixed sequence of integers k,, such
that 0 < k, <n for alln >1 and k,/n — a € (0,1) as n — oo.

In this general framework, let X,, be a random vector having the conditional
distribution of X ,,, conditioned on the total number of successes being at least k.
Observe that given the number of successes in a particular block, these successes
are uniformly distributed within the block. Hence, the distribution of X, is com-
pletely determined by the distribution of the M-dimensional vector describing the
numbers of successes per block. Therefore, before we proceed to study the asymp-
totic behaviour of the quantity (1.2), we shall first study the asymptotic behaviour
of this M-dimensional vector.

1.3. Weak convergence. Consider the general framework introduced in the previous
section. We define X, as the number of successes of the vector X ,, in block ¢ and
write X, = Ei\il X,n for the total number of successes in X,,. Then Xj;, has a
binomial distribution with parameters m;, and p; and, for fixed n, the X, are
independent. In this section, we shall study the joint convergence in distribution of
the X, as n — oo, conditioned on {3, > k,}, and also conditioned on {%,, = &, }.

First we consider the case where we condition on {%, = k,}. We will prove
(Lemma 3.1 below) that the X, concentrate around the values ¢;,m;,, where
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the ¢;;, are determined by the system of equations

G B Z " On By Vi, j € {1,..., M};
Cin 1 —pi Cjn 1 —=pj (1.3)
Sy Cimmin = -

We will show in Section 3 that the system (1.3) has a unique solution and that

Cin — C; as n — oo,

for some ¢; strictly between 0 and 1. As we shall see, each component X, is roughly
normally distributed around the central value c¢;,,m;,, with fluctuations around this
centre of the order /n. Hence, the proper scaling is obtained by looking at the
M-dimensional vector

X = Xln — CinMin X2n — CapMan XMn — CMnTMMn
n \/ﬁ ) \/ﬁ yr \/ﬁ N
Since we condition on {X,, = k,, }, this vector is essentially an (M —1)-dimensional
vector, taking only values in the hyperplane

So Z:{(Zl,...,ZM)ERM121+"'+Z]W:O}'

However, we want to view it as an M-dimensional vector, mainly because when
we later condition on {¥,, > k,}, X, will no longer be restricted to a hyperplane.
One expects that the laws of the X', converge weakly to a distribution which con-
centrates on Sy and is, therefore, singular with respect to M-dimensional Lebesgue
measure. To facilitate this, it is natural to define a measure vy on the Borel sets
of R through

(1.4)

1/0(') = /\0( ﬂSQ), (15)
where Ao denotes ((M — 1)-dimensional) Lebesgue measure on Sy, and to identify
the weak limit of the X,, via a density with respect to 1. The density of the weak
limit is given by the function f: RM — IR defined by

2) =1g,(2 Hexp( ﬁ) (1.6)

Theorem 1.4. The laws L(X |5, = ky) converge weakly to the measure which
has density f/ [ f dvy with respect to vy.

We now turn to the case where we condition on {X,, > k,}. Our strategy will
be to first study the case where we condition on the event {%,, = k,, + ¢}, for £ > 0,
and then sum over £. We will calculate the relevant range of ¢ to sum over. In
particular, we will show that for large enough ¢ the probability P(X,, = k, + ¢) is
so small, that these ¢ do not have a significant effect on the conditional distribution
of X,,. For k, sufficiently larger than E(X,,), only ¢ of order o(y/n) are relevant,
which leads to the following result:

Theorem 1.5. Ifa > Z —1pic or, more generally, (k, —IE(X,))/v/n — oo, then
the laws L(X |2, > ky) also converge weakly to the measure which has density
I/ [ fdvy with respect to vy.

Finally, we consider the case where we condition on {%,, > k,} with &, below
or around E(X,,), that is, when (k, — E(X,))/v/n — K € [—00,00). An essential
difference compared to the situation in Theorem 1.5, is that the probabilities of
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the events {3, > k,} do not converge to 0 in this case, but to a strictly positive
constant. In this situation, the right vector to look at is the M-dimensional vector

X Xin —p1man Xon — paman Xvn —PMMMR
L NG , NG by N )
It follows from standard arguments that the unconditional laws of X? converge
weakly to a multivariate normal distribution with density h/ [ hdA with respect to
M-dimensional Lebesgue measure \, where h: RM — R is given by

h(z) =1 exp (—7i > . (1.7)
};[1 2pi(1 — pi)ai

If k,, stays sufficiently smaller than I£(X,,), that is, when K = —oo0, then the effect of
conditioning vanishes in the limit, and the conditional laws of X? given {X,, > k,}
converge weakly to the same limit as the unconditional laws of X?. In general, if
K € [—00,00), the conditional laws of X? given {¥, > k,} converge weakly to
the measure which has, up to a normalizing constant, density h restricted to the
half-space

HKZZ{(Zl,...,ZM)E]RM22’1+"'+ZMZK}. (18)

Theorem 1.6. If (k, — E(X,))//n — K for some K € [—00,00), then the laws
L(XP|%,, > k) converge weakly to the measure which has density

h g,
J hlm, d
with respect to \.

Remark 1.7. If (k, — E(X,))/y/n does not converge as n — oo and does not
diverge to either oo or —oo, then the laws L(X?|%,, > k,,) do not converge weakly
either. This follows from our results above by considering limits along different
subsequences of the k,.

1.4. Asymptotic stochastic domination. Consider again the general framework for
vectors X,, and Y, introduced in Section 1.2. Recall that we write X n for a
random vector having the conditional distribution of the vector X, given that
the total number of successes is at least k,. Forn > 1 and i € {1,..., M}, we
let X;, denote the number of successes of X,, in block i. We define Y,, and Y,
analogously. We want to study the asymptotic behaviour as n — oo of the quantity

supIP(Xn < f/n),

where the supremum is taken over all possible couplings of X, and Y.

Define 3; for i € {1,...,M} as in (1.1). As a first observation, note that if
all B; are equal, then by Proposition 1.3 we have supP(X, < Y,) = 1 for every
n > 1. Otherwise, under certain conditions on the sequence k,, supIP(X n < f’n)
will converge to a constant as n — oo, as we shall prove.

The intuitive picture behind this is as follows. Without conditioning, X, =
Y, for every n > 1. Now, as long as k, stays significantly smaller than E(X%,,),
the effect of conditioning will vanish in the limit, and hence we can expect that
supP(X, < Y,) — 1 as n — oo. Suppose now that we start making the k,
larger. This will increase the number of successes f(m of the vector X n In each
block 7, but as long as k,, stays below the expected total number of successes of Y,
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increasing k, will not change the numbers of successes per block significantly for
the vector f’n.

At some point, when k,, becomes large enough, there will be a block 4 such that
X becomes roughly equal to Y;n. We shall see that this happens for k,, “around”
the value k, defined by

. Z PiMin
pz + ﬁmax(l - pz)

where Bpax := max{01,...,0m}. Therefore, the sequence k, will play a key role
in our main result. What will happen is that as long as k;, stays significantly
smaller than kn, Xm stays significantly smaller than Ym for each block i, and hence
supIP(X <Y n) — 1 asn — co. For k,, around k,, there is a “critical window” in
which interesting things occur. Namely, when (k;, — ky)//n converges to a finite
constant K, supP(X,, < Y,) converges to a constant Py which is strictly between
0 and 1. Finally, when k,, is sufficiently larger than ki, there will always be a block
such that X;, is significantly larger than Y;,. Hence, sup IP(X <Y n) — 0 in this
case.

Before we state our main theorem which makes this picture precise, let us first

define the non-trivial constant Px which occurs as the limit of sup IP(X n < f’n)
when k,, is in the critical window. To this end, let

I'={ie{l,....M}: B; = Bmax}
and define positive numbers a, b and ¢ by

ﬁmaxpz(l - pl Ozz

"= Z (Pi + Bmax(1 — pi)) Z (1 — gi)ou; (1.9a)

el el
ﬁmaxpi(l - pi)ai
b? = : 1.9b
% (pz + Bmax(l _pz))2 ( )
A =a®+ v (1.9¢)

As we shall see later, these numbers will come up as variances of certain normal
distributions. Let ®: R — (0,1) denote the distribution function of the standard
normal distribution. For K € R, define Pg by

Rt Ra(tge) oK)
—  V2m 1-o(E)

1— dz ifa= ZZ]\il Dic,

Py = (1.10)

bK 1 K b
(0] (— - —RK> + o (—— + —RK) if @ > Eij\ilpiai'
a ac

ac

where R = /K2 + c2log(c2/b?). It will be made clear in Section 4 where these
formulas for Pk come from. We will show that Pk is strictly between 0 and 1. In
fact, it is possible to show that both expressions for Px are strictly decreasing in K
from 1 to 0, but we omit the (somewhat lengthy) derivation of this fact here.

Theorem 1.8. If all §; (i € {1,...,M}) are equal, then we have that sup P(X,, <
f/n) =1 for every n > 1. Otherwise, the following holds:

(i) If (kn — kp)/v/n — —o0, then supP(X,, <Y ,) — 1

(i) If (kn — kn)//n — K for some K € R, then supP(X, <Y,) — Pk.
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(iii) If (kp — kn)//n — 00, then supP(X,, <Y ,) — 0.

Remark 1.9. If 8; # B; for some ¢ # j, and (k, — /%n)/\/ﬁ does not converge as
n — oo and does not diverge to either co or —oo, then sup IP(Xn < f’n) does not
converge either. This follows from the strict monotonicity of Py, by considering
the limits along different subsequences of the k,,.

To demonstrate Theorem 1.8, recall the example from Section 1.2. Here fpax =
1, kn = pn, I = {1} and ¢* = b?> = ip(1 — p). If @ = p, then we have that
(kn —kn)//m — 0 as n — oo. Hence, by Theorem 1.8, supP(X,, < Y,) converges
to
0 6722/2 3

- (P(—2)—1/2) dz:z.

In fact, Theorem 1.8 shows that we can obtain any value between 0 and 1 for the
limit by adding | K\/n] successes to ky, for K € R.

Next we turn to the proofs of our results. Results in Section 1.1 are proved
in Section 2, results in Section 1.3 are proved in Section 3 and finally, results in
Section 1.4 are proved in Section 4.

Py=1-2

2. Stochastic domination of finite vectors

Let X = (X1,...,X,)and Y = (Y1,...,Y,) be vectors of independent Bernoulli
random variables with success probabilities p1,...,p, and q1,...,q, respectively,
where 0 < p; < ¢, <1lforie{l,...,n}.

Suppose that p; = p for all &. Then > | X; has a binomial distribution with
parameters n and p. The quotient

PO, Xi=k+1) n—k p
PO X, =k)  k+11-p
is strictly increasing in p and strictly decreasing in k, and it is also easy to see that

LX|Y, X = k) < LX| S0, X, = k+1).

The following two lemmas show that these two properties hold for general success
probabilities p1, ..., Dy

Lemma 2.1. For k €{0,1,...,n— 1}, consider the quotients

b ]P(Z?:l X; =k)

(2.1)

and
PR, Xi 2 k+1)
IP(Z?:I Xi > k)
Both (2.1) and (2.2) are strictly increasing in p1,...,pn for fixred k, and strictly
decreasing in k for fived p1,...,pn-

(2.2)

Proof: We only give the proof for (2.1), since the proof for (2.2) is similar. First
we will prove that @} is strictly increasing in py, ..., p, for fixed k. By symmetry,
it suffices to show that @} is strictly increasing in p;. We show this by induction
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on n. The base case n = 1, k = 0 is immediate. Next note that for n > 2 and
ke{0,...,n—1},

(Zn lX _k)pn"’]P(Zn lX _k+1)(1_pn)
P(>7 1X =k —1)pn + P15 Xi = k)(1 - pn)

_ Pn + Qk (1 - pn)
Pn/Qp 1+ (1= pn)’

Qr =

which is strictly increasing in p; by the induction hypothesis (in the case k = n—1,
use Q7' =0, and in the case k = 0, use 1/Q}~| = 0).

To prove that QF is strictly decreasing in k for fixed pi,...,pn, note that since
1 is strictly increasing in p,, for fixed k € {1,...,n — 2}, we have
0 D gpo O Pt Qi 0opy) 1o QO
— Q= — d - — )
8pn 8})" pﬂ/ kfll + (1 - pn) (pn/Qkfll + (1 _pn))2

Hence, Qz_l < Q- 1 This argument applies for any n > 2. O

Let X% = (X¥ ..., XF¥) have the conditional law of X, conditioned on the
event {d_1" | X; = k}. Our next lemma gives an explicit coupling of the X ¥ in
which they are ordered. The existence of such a coupling was already proved
in Jonasson and Nerman (1996, Proposition 6.2), but our explicit construction is
new and of independent value. In our construction, we freely regard X Fas a
random subset of {1,...,n} by identifying X" with {i € {1,...,n}: X} =1}. For
any K C {1,...,n}, let { X = 1} denote the event {X; =1 Vi € K}, and for any
Ic{l,....,n}and j € {l,...,n}, define

1(j L) n
i i= g ———P(Xr =1 X =Il+1).
,7]71 |L\I| ( L |Zz:1 | |+ )
Lc{l,...,n}: |L|=|I|+1

Lemma 2.2. For any I C {1,...,n}, the collection {7 1};e1,...n}\1 95 @ probabil-
ity vector. Moreover, if I is picked according to X* and then 7 1s picked according
to {vj1}jeq1,...ny\15 the resulting set J = {I,j} has the same distribution as if it
was picked according to Xkt Therefore, we can couple the sequence {Xk}Z:1
such that P(X' < X? <... < X" 1< X™) =1.

Proof: Throughout the proof, I, J, K and L denote subsets of {1,...,n}, and we
simplify notation by writing ,, := Y_" , X;. First observe that
Yovir= Y. PXp=1|S,=|I+1)=1,

jeI L:|L|=|I]+1

which proves that the {v; r};¢; form a probability vector, since v, > 0.
Next note that for any K containing j,

P(Xk=1[S.=|K) P,

PXg\y =118, =|K[-1) P(X;

)P, = K|~ 1)
0) P(E, = &) 23)
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Now fix J, and for j € J, let I = I(j,J) = J\ {j}. Then for j € J, by (2.3),
P(X,=1]%,=[J) T 1(jel)

Vi1 = P(Xp\yy =112 =)

P(X;=1[8, =) , 4=  "IL\T]
P(X,=1|%,=1J]) 1(j ¢ K)

_ P(Xx=1|%, =),
P(X;=1|%, =1 K:;m AV | D)

where the second equality follows upon writing K = L\ {j}, and using |L \ I| =
[IL\J|+1=|K\J|+1=]|J\ K| in the sum. Hence, by summing first over j and
then over K, we obtain

> v P(X =18, = 1) =P(X,; =1|%, = |J|) O
jeJ

Corollary 2.3. For k € {0,1,...,n— 1} we have
L(X] Z?:l Xi 2 k) 2 L(X] Z?:l Xizk+1).

Proof: Using Lemma 2.2, we will construct random vectors U and V' on a common
probability space such that U and V' have the conditional distributions of X given
{377, X; > k} and X given {} ;" | X; > k + 1}, respectively, and U < V with
probability 1.

First pick an integer m according to the conditional law of Y. | X; given
{3°F X, > k}. If m > k+ 1, then pick U according to the conditional law
of X given {}.; ; X; = m}, and set V. = U. If m = k, then first pick an inte-
ger m + £ according to the conditional law of Y | X; given {}_ ;' X; > k + 1}.
Next, pick U and V such that U and V have the conditional laws of X given
{>°, Xi = m} and X given {1 | X; = m + {}, respectively, and U < V. This
is possible by Lemma 2.2. By construction, U < V with probability 1, and a little
computation shows that U and V' have the desired marginal distributions. 0

Now we are in a position to prove Propositions 1.1, 1.2 and 1.3.

Proof of Proposition 1.1: By Lemma 2.1 we have that for £ € {1,...,n — k},

P, Xi > k+1) _ﬁIP(Z?:lXiZk—i-j—i-l)

P, Xi > k) PO, Xi > k+j)

=0

is strictly increasing in p1,...,p,. This implies that for £ € {1,...,n — k},
PO Xi>k+ 0| Xi 2 k) <P, Yizk+0] 3 Yi>k). O

Proof of Proposition 1.2: Let z,y € {0,1}" be such that > ;" x; = Y., y; and

let k = Y0 z;. Write I = {i € {1,...,n}: z; = 1} and, likewise, J = {i €
{1,...,n}: y; = 1}, and recall the definition (1.1) of 3;. We have

P(X=z|XY" Xi=k) _ [Licrpillig, (1 —pi)
P(X =y]| Z?:l X; =k) HiGin Hi¢J(1 —pi)
_ H 1pi H 1_pi:Hie[\]ﬁiP(YiI|ZZ:1}/iik)' (2.4)
ieng - Piiing P [Lient 6 PY =y |2, Yi=k)

Since |I| = |J| = k, we have |I \ J| = |J \ I|. Hence, (i) implies (ii), an
trivially implies (iii). To show that (iii) implies (i), suppose that £(X|
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ky=L(Y|>! ,Yi=k)foragivenk € {1,...,n—1}. Leti € {2,...,n} and let K
be a subset of {2,...,n}\ {i} with exactly & — 1 elements. Choosing I = {1} U K
and J = K U{i} in (2.4) yields f; = 1. O

Proof of Proposition 1.5: By Proposition 1.2 and Lemma 2.2, we have for m €
{0,1,...,n} and £ € {0,1,...,n —m}

LIX[ 300 Xi=m) LY, Yi=m+0).

Using this result and Proposition 1.1, we will construct random vectors U and V on
a common probability space such that U and V have the conditional distributions
of X given {>°1" | X; >k} and Y given {d>_I" | Y; > k}, respectively, and U < V'
with probability 1.

First, pick integers m and m + ¢ such that they have the conditional laws of
S Xigiven {>°1 | X; > k}and Y., Y; given {} -, Y; > k}, respectively, and
m < m + £ with probability 1. Secondly, pick U and V such that they have the
conditional laws of X given {} ;" | X; = m} and Y given {} . | Y; = m + (},
respectively, and U < V with probability 1. A little computation shows that the
vectors U and V have the desired marginal distributions. (]

We close this section with a minor result, which gives a condition under which
we do not have stochastic ordering.

Proposition 2.4. If p; = ¢; for some i € {1,...,n} but not for all i, then for
ke{l,...,n—1},

LX|Y  Xi > k) 2 L(Y|S0, Y > k).
Proof: Without loss of generality, assume that p,, = ¢,. We have
P(Xn =1]3250, Xi > k)
PO X 2 k- 1)
P 1X >k—1) (1—p) P X > k)

Pn
+(1=p)P(Xr X > k) /P X > k—1)

an
G+ (1= q) P Y > k) /P Y >k — 1)

>

=P(Yo=1]3L,Yi>k),

where the strict inequality follows from Lemma 2.1. O

3. Weak convergence

We now turn to the framework for asymptotic domination described in Sec-
tion 1.2 and to the setting of Section 1.3. Recall that X;,, is the number of successes
of the vector X,, in block 7. We want to study the joint convergence in distribu-
tion of the Xj;, as n — oo, conditioned on {X, > k,}, and also conditioned on
{¥,, = kn}. Since we are interested in the limit n — oo, we may assume from the
outset that the values of n we consider are so large that k,, and all m;, are strictly
between 0 and n, to avoid degenerate situations.
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We will first consider the case where we condition on the event {%, = k,}.
Lemma 3.1 below states that the X;, will then concentrate around the values
CinMin, where the ¢;, are determined by the system of equations (1.3), which we
repeat here for the convenience of the reader:

Gin _Di _ 2" C%n B Vi,je{l,..., M}
Cin  1—pi Cin 1 —pj (1.3)
M
Zi:l CinMin = knp.
Before we turn to the proof of this concentration result, let us first look at the
system (1.3) in more detail. If we write
1—cin pi

A, =
Cin  1—p;

(3.1)

for the desired common value for all i, then

_ Pi

S opi+ A1 —pi)

Note that this is equal to 1 for A,, = 0 and to p; for A,, = 1, and strictly decreasing
to 0 as A,, — 00, so that there is a unique A,, > 0 such that

Cin

M M i
CinMin = —_ —k,. 3.2
2 2 oA (3:2)

It follows that the system (1.3) does have a unique solution, characterized by this
value of A,,. Moreover, it follows from (3.2) that if k, > E(X3,) = Ziﬂilpimm,
then A, < 1. Furthermore, k,/n — « and m;,/n — «;. Hence, by dividing both
sides in (3.2) by n, and taking the limit n — oo, we see that the A,, converge to
the unique positive number A such that

M
Z pity; —a
— pi+A(l—pi) ’

where A =11if a = Zﬁl piay;. As a consequence, we also have that
cm—>cl-:$ as n — oo.
pi+A(l —p;)
Note that the ¢; are the unique solution to the system of equations
1-— C; Pi _ 1-— Cj pj
C; 1-— Pi Cj 1-— Pj

Ziﬂil iy = Q.

Vi, je{l,..., M}

Observe also that ¢; = p; in case A = 1, or equivalently Zi\il pi; = a, which is
the case when the total number of successes k,, is within o(n) of the mean E(X%,,).
The concentration result:

Lemma 3.1. Let c1p, ..., cun satisfy (1.3). Then for each i and all positive inte-
gers r, we have that

P(|Xin — Cintin| > Mr | Sp = k) < 2Me~M=Dr*/n
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Proof: The idea of the proof is as follows. Condition on {¥,, = k,}, and consider
the event that for some ¢ # j we have that X;, = cjnmin+s, and X, = cjnmjn —1,
for some positive numbers s and t. We will show that if the ¢, satisfy (1.3),
the event obtained by increasing X, by 1 and decreasing X;, by 1 has smaller
probability. This establishes that the conditional distribution of the X, is maximal
at the central values ¢;,m;, identified by the system (1.3). The precise bound in
Lemma 3.1 also follows from the argument.

Now for the details. Let s and ¢ be nonnegative real numbers such that c;,m;, +s
and cj,mj, —t are integers. By the binomial distributions of X;,, and X}, and their
independence, if it is the case that 0 < ¢, min+5 < myyp and 0 < ¢cjpMyjn —t < My,
then

IP(in = CinMin + S+ 1; Xjn = CjinMjn — t— 1)
]P(in = CinMin + S, Xjn = CjnMjn — t)

_ (mm — CinMin — S Dj ) ( CjnMjn — 1- pj>
CinMin +s+1 1—p; Mjp — CjnMjn +t+1 p;

<(mm—0mmm—5 Pi )( CinMyjn —t 1—pj>

CinMin 1—p; Mjn — CinMjn  Dj

Hence, if the ¢;;, satisfy (1.3), then using 1 — z < exp(—z) we obtain

IP(XZH = CinMin + S+ 1, Xjn = CjinMjn — t— 1)
]P(in = CinMin + S, Xjn = CjnMjn — t)

t t
() )22
Min — CinMin CinMjn n

It follows by iteration of this inequality, that for all real s,¢ > 0 and all integers u >
0,

P(Xin = CinMin + 5+ u, Xjn = CjnMmjn —t — w)

t
< exp (—w> P(Xin = cinmin + 8, Xjn = cjnmjn —t).  (3.3)
n
Now fix 4, and observe that for all integers r > 0,

= > 1l = cinMin + Mr) P(Xgp = £y, VE).

But if ¢4+ -+ -+ €y = ky, and €; > ¢imyy + Mr, then there must be some j # i
such that ¢; < ¢j,mj, — r. Therefore,
]P(in > CinMin + MT, En = kn)

fj S CinMjn — T
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By independence of the X;;,, and using (3.3) with s = (M — 1)r, t =0 and u = r,
we now obtain

M
< e~ (M=1)r?/n Z Z 1 (&' > CinMin + M1 — r) P(Xpn = £ VF)

Ui < cipm,;
j > CinMMjn
Jj=141,...,LpE€Ng:
O A=k,

< Me~(M=1)r*/n P(Z, = ky).
This proves that
P(Xin > Cinmin + Mr | X, =k,) < Me—(M=1)r/n
Similarly, one can prove that
P(Xin < CinMin — Mr | Sy = ky) < Me~M=Dr*/n, 0

As we have already mentioned, we expect that the X, have fluctuations around
their centres of the order /n. It is therefore natural to look at the M-dimensional
vector

Xn_ an_ n Xﬂ_ n
Xn :_< 1 T 2 xTo M T M ), (34)

where the vector a,, = (#1p,...,2nmmn) represents the centre around which the X,
concentrate. To prove weak convergence of X,,, we will not set x;,, equal to ¢;,,mn,
because the latter numbers are not necessarily integer, and it will be more conve-
nient if the x;, are integers. So instead, for each fixed n, we choose the z;, to be
nonnegative integers such that |, — ¢;nmi,| < 1 for all 4, and Zﬁl Tin = ky. Of
course, the vector X, as it is defined in (3.4), and the vector defined in (1.4) have
the same weak limit. In our proofs of Theorems 1.4 and 1.5, X, will refer to the
vector defined in (3.4).

If we condition on {X,, = k,}, then the vector X, will only take values in the
hyperplane

So:={(21,...,20) € RM: 2y + -+ 4 zpr = 0}.

However, as we have already explained in the introduction, we still regard X,
as an M-dimensional vector, because we will also condition on {¥, > k,}, in
which case X, is not restricted to a hyperplane. To deal with this, it turns
out that for technical reasons which will become clear later, it is useful to intro-

duce the projection 7: (21,...,2nm) — (21,...,2m—1) and the shear transformation
o: (z1,...,2m) — (21,...,2m-1,21 + -+ + zp). We can then define a metric p
on RM by setting p(z,y) := |oz — oy|, where |-| denotes Euclidean distance. See

Figure 3.1 for an illustration.
Using the projection 7, we now define a new measure po on the Borel subsets
of RM, which is concentrated on Sy, by

po(+) = A7 H(w(- N Sp)),

where AM~1 is the ordinary Lebesgue measure on RM~!. Note that up to a multi-
plicative constant, p is equal to the measure 1y defined in Section 1.3, so we could
have stated Theorems 1.4 and 1.5 equally well with ug instead of 1. In the proofs

it turns out to be more convenient to work with pg, however, so that is what we
shall do.
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FIGURE 3.1. The shear transformation o (illustrated here for M =
2) maps sheared cubes to cubes. The dots are the sites of the
integer lattice Z2. The gray band on the left encompasses those
sheared cubes that intersect Sj.

Our proofs of Theorems 1.4 and 1.5 resemble classical arguments to prove weak
convergence of random vectors living on a lattice via a local limit theorem and
Scheffé’s theorem, see for instance Billingsley (1999, Theorem 3.3). However, we
cannot use these classic results here, for two reasons. First of all, in Theorem 1.5
our random vectors live on an M-dimensional lattice, but in the limit all the mass
collapses onto a lower-dimensional hyperplane, leading to a weak limit which is
singular with respect to M-dimensional Lebesgue measure. The classic arguments
do not cover this case of a singular limit.

Secondly, we are considering conditioned random vectors, for which it is not so
obvious how to obtain a local limit theorem directly. Our solution is to get rid
of the conditioning by considering ratios of conditioned probabilities, and prove
a local limit theorem for these ratios. An extra argument will then be needed to
prove weak convergence. Since we cannot resort to classic arguments here, we have
to go through the proofs in considerable detail.

3.1. Proof of Theorem 1./. As we have explained above, the key idea in the proof of
Theorem 1.4 is that we can get rid of the awkward conditioning by considering ratios
of conditional probabilities, rather than the conditional probabilities themselves.
Thus, we will be dealing with ratios of binomial probabilities, and the following
lemma addresses the key properties of these ratios needed in the proof. The lemma
resembles standard bounds on binomial probabilities, but we point out that here we
are considering ratios of binomial probabilities which centre around c;,,m;, rather
than around the mean p;m;,. We also note that actually, the lemma is stronger
than required to prove Theorem 1.4, but we will need this stronger result to prove
Theorem 1.5 later.

Lemma 3.2. Recall the definition (3.1) of A,. Fiz i € {1,2,...,M} and let

b1,ba, ... be a sequence of positive integers such that by, //n — 0 as n — oo. Then,
for every z € R,
1 P(Xipp=2+47) 22 0
su — = —exp| ——+—— || — 0.
T: |x7xi1:i|<bn A:L IP(XZH = x) P 201(1 - Ci)ai

r:|r—zyn|<b,
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Furthermore, there exist constants Bil, Bf < oo such that for all n and r,

1 P(Xyp=a+7) 1 rt |T| 172
S TP gl D MU
x: \zilzli\<bn AZ ]P(in = :E) - * n? P

Proof: Robbins’ note on Stirling’s formula (Robbins, 1955) states that for all m =
1,2,...,
\/%mm+1/2 efm+1/(12m+1) <ml < \/%mm+1/2 efm+1/(12m),

from which it is straightforward to show that for all m = 0,1,2,... (so including
= 0), there exists an n,, satisfying 1/7 < n,, < 1/5 such that

ml = /27(m+ nym)m™ e =/ 2x[m] m™ e™™, (3.5)

where we have introduced the notation [m] := m + ny,.
Since X, has the binomial distribution with parameters m;, and p;,

i P(Xiyy=2+7) (mip — x)! Cin "
At P(Xpm=2) (47! (mipn—2z—7)!' \1—cin )

Using (3.5), we can write this as the product of the three factors

in (T,7) = <[[ []  [min — 2] )1/2

P!
x4+ 7] [mim —x—r]

s
CinM; Mip — X
2 o an!llin mn
Pin(xa’r) - < )

x Min — CinMin

T z+r M — 1 Min—T—T
F)i%z(xa’r) = “
x4+ Mip — T — 7T

for all z and r such that 0 <z < my, and 0 < x4+ r < my,.
To study the convergence of P2 (z,7), first write

x+r Min —T—T
P3 (1) = (1— : ) (1+;) .
T+ My — T — T

Using the fact that for all w > —1, (1 4 u) lies between exp(u — %uz) and exp (u —

2u?/(1 4 u)), a little computation now shows that P3,(z,7) is wedged in between

oo (LY g (Lm0 Y

2z(miy, —x —7 2 (x+7)(mi, —

From this fact, it follows that for fixed z € R,

P2 (z,7) — exp <—272)a>' — 0,

Sub 2Ci(1 — C;

€ Ii_min|<bn

i |r—zyn|<bn,
because %, /mi, — ¢;, hence x = ¢;m;, + o(n) and r = zy/n + o(y/n) under the
supremum, and m;,/n — a;. Since |z, — ¢inmi,| < 1, we also have that

sup ’Pl (z,r —1’—>0 and sup ’PQ (z,r —1’—>O.
T |T—xin|<bn T |z—2in|<bn
r:|r—zy/n|<by, r:|r—zy/n|<by,

Together with the uniform convergence of P2 (z,7), this establishes the first part
of Lemma 3.2.
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We now turn to the second part of the lemma. If x and r are such that 0 < x <
mi, and 0 < x4+ 1 < my,, then my, —r > x > 0 and my, + 7 > m;, —x > 0, hence
from the bounds on P2 (x,r) given in the previous paragraph we can conclude that

1 r? 172
P2 (z,7) < exp (—5 4 ) < exp (_57“_) .
Min n

Next observe that if 2 is such that |z — x4, < by, then |z — ¢inmin| < 1+ by,
from which it follows that uniformly in n, for all x and r such that 0 < x < my,,
0<a+r<my and |2 — 2| < by,

||
P2 (z,7) < (1 + const. X %) < exp (const. X %) .

To finish the proof, it remains to bound P (z,r). To this end, observe first that
uniformly in n, for all  and r such that |z — z,| < by, and |r| < n®/*, P} (z,7)
is bounded by a constant. On the other hand, uniformly for all  and r such that
0<x<m,and 0 <x+71 < my,, PL(x,r)is bounded by a constant times n, and
n < r*/n? if |r| > n3/%. Combining these observations, we see that uniformly in n,
for all x and r satisfying |z — z;n| < b, and 0 < 2 4+ 17 < My,

4
P; (x,r) < const. X (1 + T_2> ) .
n

Proof of Theorem 1./: For a point z in RM, let [z] be the point in ZM p-closest
to z (take the lexicographically smallest one if there is a choice). Graphically,
this means that the collection of those points z for which [z] = a comprises the
sheared cube a + o~ 1(—1/2,1/2]M, see Figure 3.1. Now, for each fixed z € RM,
set 12 = (r{,,....75m) = [2v/n]. Observe that because (for fixed n) the z;, sum
to ky, if 72 € Sp we have that

PV Xn =72 | Sy =kn) P(/nXn=17) ﬁIP Xin = Tin +77,)
P(ViX, =03, =kn) PH/nX,=0) 17PH, =)

where we have used the independence of the components X;,. If rZ ¢ Sy, on the
other hand, this ratio obviously vanishes.
We now apply Lemma 3.2 to (3.6), taking b, = M for every n > 1. Since

SM oz = 0if rZ € Sy and hence Hﬁl Ajin = 1, the first part of Lemma 3.2

i=1"in

immediately 1mp11es that for all z € RM,

P(VnX, =1 | %, =kn) 2 B
(\/_Xn—0|2n—k ]lSO Hexp( 2611—61)041>_f(2)

as n — 00. To see how this will lead to Theorem 1.4, define f,,: RM — R by
fa(z) = (V)M P(Vn Xy =17 | S = ky).

Then f,, is a probability density function with respect to M-dimensional Lebesgue
measure A. Moreover, if Z,, is a random vector with this density, then the vector
Z! = [Z,y/n]/y/n has the same distribution as the vector X, conditioned on
{¥,, = ky}. Since clearly Z,, and Z! must have the same weak limit, it is therefore
sufficient to show that the weak limit of Z,, has density f/ [ fduo with respect
to Ho-

, (3.6)
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Now, by what we have established above, we already know that

fu(2) _ P(vnX, =1} | %S, =kn)
fa(0)  P(VnX,=0|%, =k,)
Moreover, the second part of Lemma 3.2 applied to (3.6) shows that the ratios

fn(2)/f2(0) are uniformly bounded by some pug-integrable function g(z). Thus it
follows by dominated convergence that for every Borel set A ¢ RM,

7@ ot [

Next observe that 1 = [ f,, d\ = [ n~Y/2f, dug, because by the conditioning, f,
is nonzero only on the sheared cubes which intersect So. Therefore, taking A = RM
in the previous equation yields n=%/2f,(0) — ([ fduo)~*, which in turn implies
that for every Borel set A,

z) dpo(z
71/2f ( )d fA

n po(z N
/A J fduo
In general, [, fnd\ # [,n"Y2f,duo for an arbitrary Borel set F, but we have
equality here for sufficiently large n if F' is a finite union of sheared cubes. Hence,
if A is open, we can approximate A from the inside by unions of sheared cubes
contained in A to conclude that

.. f d,UO
lim inf / W (2) dN(z) > A O
it ] Jne ffduo

3.2. Proof of Theorem 1.5. We now turn to the case where we condition on {%,, >
kn}, for the same fixed sequence k, — oo as before. To treat this case, we are
going to consider what happens when we condition on the event that X, = k, + ¢
for some ¢ > 0, and later sum over ¢. It will be important for us to know the
relevant range of ¢ to sum over. In particular, for large enough ¢ we expect that
the probability P(X,, = k,, + ¢£) will be so small, that these ¢ will not influence the
conditional distribution of the vector X, in an essential way. The relevant range
of ¢ can be determined from the following lemmas:

— f(z) for every z € RM.

Lemma 3.3. For all positive integers s,
(kn, —E(XZ,) + Ms)s
Mn

P(3, >k, +2Ms) < Mexp (— > P(X, > k).
Proof: Let u be such that 0 < u < (1—p;)m;,. Observe that then, for all integers m
such that p;m;, +u <m < myy,,

P(X;y =m+1) T - PiMiin — Ulf;i

hence
IP(Xm:m—l—l)Sl_ U 1+ Di <1 U Sl—g.
P(Xin =m) DiMin + U 1—p; Mip, n

Since 1 — z < exp(—=z), by repeated application of this inequality it follows that for
all u > 0 and all positive integers ¢, if m is an integer such that m > p;my, + u,
then

P(Xs = m+1) < exp (—%t) P(X;0 = m). (3.7)
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Now observe that if 3, > E(X,) + Mr + 2Ms, where s is a positive integer,
and r a real number such that r + s > 0, then for some k it must be the case that
Xin = pemgn + 7+ 2. Therefore,

P(X, > E(X,)+ Mr+2Ms)

M
< > D 1l > premgn + 1+ 28) P(Xin = £; Vi).
l1,... M ENg: k=1
Lyt Al >E(S,)+Mr+2Ms

But by (3.7), taking u = r 4+ s and t = s,
14y > prmipn +r + 28) P(Xyp, = €, Vi)

<exp <_(r—|—7ns)s> P(Xpn =l — 8, Xin = £ Vi £ k),

and therefore
P(X, > E(X,)+ Mr+2Ms)

< M exp (—w> P2, >EX,) + Mr+2Ms—s)
n

< M exp (—@) P(Z, > E(Z,) + Mr).

Choosing r such that k, = E(X, )+ Mr yields Lemma 3.3 (observe that the bound
holds trivially if r + s < 0). O

Lemma 3.3 shows that if o > E?il picy;, then for sufficiently large n, P(%, >
kn + ¢) will already be much smaller than P(X,, > k,,) when ¢ is of order logn.
However, when o = Zﬁl pic;, we need to consider ¢ of bigger order than \/n
for P(X,, > k, + ¢) to become much smaller than P(X, > k). In either case,
Lemma 3.3 shows that ¢ of larger order than y/n become irrelevant.

Keeping this in mind, we will now look at the conditional distribution of the
vector X, conditioned on {X, = k, + ¢}. The first thing to observe is that for
£ > 0, the locations of the centres around which the components X;,, concentrate
will be shifted to larger values. Indeed, these centres are located at cf, m;,, where
the cf, are of course determined by the system of equations

¢ —_ct .
L i D s I Vi,je{l,...,M};
Cin 1= Di Cin 1—Dj (3.8)
S chamin = kn + L.

To find an explicit expression for the size of the shift ¢! — c;,, we can substitute
cfn = Cin + din, into (3.8), and then perform an expansion in powers of the correc-
tion d;, to guess this correction to first order. This procedure leads us to believe
that ¢!, must be of the form

cfn = Cin +cin(1 — cm)dfl + efn, (3.9)

where

1

M b
> =1 Cin(l = ¢jn)myn

d' =

n
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and ef, should be a higher-order correction. The following lemma shows that the
error terms ef, are indeed of second order in d’, so that the effective shift in ¢;,, by
adding £ extra successes to our Bernoulli variables is given by ¢;, (1 — ¢;,)dY,. For
convenience, we assume in the lemma that |d’| < 1/2, which means that |¢| cannot
be too large, but by Lemma 3.3, this does not put too severe a restriction on the

range of £ we can consider later.

Lemma 3.4. For all { (positive or negative) such that |d| < 1/2, we have that
lef | < (d5)? foralli=1,...,M.

Proof: For ease of notation, write 0y, := ¢;jn(1 — ¢in). As before, we write

Ae:l_cf" bi :1—Cm—amdfl—efn Di
! cf 1 —pi Cin + O'mdfl + efn 1—p;

m

for the desired common value for all 7, so

eé _ pz(l — Cin — O'zndg) Aé (1 _pz)(czn + Uznd )
"o AL (1 —pi) +pi

As before, the value of A’ is uniquely determined by the requirement that
Zf\/jlcfnmm =k, +£. Since Ef\il CinMin = ky and Zi\il Oind:mi, = ¢, this
requirement says that

(3.10)

M

‘
g €inMin = 0.

i=1
In particular, the ef, cannot be all positive or all negative, from which we derive,
using (3.10), that AY must satisfy the double inequalities

. pi(1 = cin — 0ipd’) , pi(1 = cin — 0indh)
n <A n )
it { (=) (cin +omd?) § = = 225 (= p) (cin + 0indlh)

A simple calculation establishes that

pi(l = cin—oipdl)  1—ciy pi i (1 —cin)dh)k
(1 - pz)(cln + Ulndfl) B Cin 1— Di 1- Cin ’

from which (using |d%| < 1/2) we can conclude that

1_Cin

- 1_p(1—df)§Afl§ﬂ (1—d +2(d")?),

Cin 1- Di
since by (1.3), neither the lower bound nor the upper bound here depends on i.

Inserting the lower bound on AY into (3.10) gives

¢ oin(l — C’in)(dfz)2 L 0v2
C < < Z(d
Cin = 1—(1—cip)ds — 2( n)

where in the last step we used that |d%| < 1/2 and 0y, < 1/4. Likewise, substituting
the upper bound on A% into (3.10) yields

¢ o _Tin(L+cin)(dy)? + 20in(1 = cin)(dn)* _ 20in(dy,)”
T = (L—e)d +2(1—cin)(dh)? T 1-1/2 T

~(d,)*. O

(&

For future use, we state the following corollary:
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Corollary 3.5. If (k, — Zi\il cimin)//n — K for some K € [—o00, 0], then for
ied{l,...,.M},

(Cin — ci)Min ci(1—ci)a;
— =M
Vi Zj:l cj(1 —¢j)a;
Remark 3.6. If (k, — E(X,))/v/n — K € R, then o = Eiﬂilpiai and we have
¢i = p; for all i € {1,...,M}. In this situation, Corollary 3.5 states that the

vectors X2 — X, and hence also the same vectors conditioned on {%, > k,},
converge pointwise to the vector whose ¢-th component is

pi(1 — pi)o
M
Zj:l pj(l —pj)ay
Proof of Corollary 5.5: First, suppose that K € R. If / = sz\il CiMin — kyn and
the cf, satisfy (3.8), then cf, = ¢;. Hence, by Lemma 3.4,
C; — Cjp = Cin(l — Cm)dfl + O((dfl)2),

where

n = M
> j=1Cin(1 = ¢jn)myn

M
d > izt CiMin — kn _ O(nil/Q).

This implies
(ci —cin)Min  cin(l = Cin)Min S cimin — Ky 12
= —=¢ + O(n ),
\/ﬁ Ej:l Cjn(l — cjn)mjn \/ﬁ
from which the result follows.
Next, suppose that K = co. Since ¢;, is increasing as a function of k,,, we have
by the first part of the proof

lim inf (Cin — ¢i)min > 1\51(1 — ¢

e vn 2= 6 (1 =¢j)ay
for all L € R. Hence, the left-hand side is equal to co. The proof for the case
K = —o0 is similar. O

When we condition on {¥,, = k,, + £}, then in analogy with what we have done
before, the natural scaled vector to consider would be the vector

¢ ¢ ¢
xt— Xin — 23, Xon — 25, Xmn = Ty,
n \/ﬁ 9 \/ﬁ ’ 9 \/ﬁ ’

where the components of the vector xf, = (z{,,,...,24,,) identify the centres around

which the X, concentrate. Here, the z¢, are nonnegative integers chosen such that
2t — ¢t mi,| < 1 for all i, and 3™ 2! = k, + £. Note that the vector X, is
simply a translation of X, by (z/, — z,,)/\/n. Since Lemma 3.3 shows that if k,, is
sufficiently larger than E(X,,), only values of ¢ up to small order in n are relevant,
the statement of Theorem 1.5 should not come as a surprise. To prove it, we need
to refine the arguments we used to prove Theorem 1.4.

Proof of Theorem 1.5: Assume that (k, — E(X,))/v/n — oo, and let

= 2M W (#E(z)” '
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Note that then a,, — oo but a,/y/n — 0. Furthermore, Lemma 3.3 and a short
computation show that

P, > ky +an)
P(X, > k)

It is easy to see that from this last fact it follows that

— 0.

sup|P(X, € A| X, >k, —P(X,€A|k, <X, <k,+a,)| —0,
A

where the supremum is over all Borel subsets A of R™. It is therefore sufficient
to consider the limiting distribution of the vector X,, conditioned on the event
{kn <3, <k, + a,}, rather than on the event {%,, > k,}.

As in the proof of Theorem 1.4, for z € RM we let 72 = [2y/n], and we define
the functions f,,: R™ — R by setting

fo(2) = (WM P(Vn Xy =77 | kn < S < kp 4 an).

As before, this is a probability density function with respect to Lebesgue measure A
on RM, and if Z,, is a random vector with this density, then the vector Z! =
[Z,+/n]/+/n has the same distribution as the vector X', conditioned on the event
{kn, <X, <k, + a,}. Hence, it is enough to show that the weak limit of Z,, has
density f/ [ f dpo with respect to pp.

An essential difference compared to the situation in Theorem 1.4, however, is
that the densities f, are no longer supported by the collection of points z for which
rZ is in the hyperplane Sy (i.e. the union of those sheared cubes that intersect Sy).
Rather, the support now encompasses all the points z for which 77 is in any of the
hyperplanes

Se={(21,--,2m) €ERM: 2+ 20y = £}, t=0,1,... an,

because if 2 € Sy, then the event {\/n X, = r2} is contained in the event {¥,, =
kn, + €}. For this reason, the densities f,, are not so convenient to work with here.
Instead, it is more convenient to “coarse-grain” our densities by spreading the mass
over sheared cubes of volume ((2a, + 1)/y/n)™ rather than volume (1//n)™, to
the effect that all the mass is again contained in the collection of sheared (coarse-
grained) cubes intersecting Sp.

To this end, for given n we partition RM into the collection of sets

1 1 ) M
{ﬁ(a—l—a (=t — 1/2,a, +1/21M): a € (20, + 1)2) } (3.11)

See Figure 3.2. For a given point z € R, we denote by Q7 the sheared cube in
this partition containing z. Now we can define the coarse-grained densities

(2) = (V7 MIP(X €Q |k < T < bn +an)
gn(Z) ‘= 2an+1 n n n > 4n > kbp (7%

_<\/ﬁ

2a, +1

M
) Fuly) dA).
Qz

By construction, these are again probability density functions with respect to M-
dimensional Lebesgue measure A\. Moreover, each of these densities is supported on
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1/vn] (2a, +1)/vn

FIGURE 3.2. We coarse-grain our densities by combining (2a,, +
1)M sheared cubes into larger sheared cubes. Here, we show this
coarse-graining for M = 2 and a, = 2. The dots are the points
n ((2a, + 1)Z)M /\/n. The combined sheared cubes have been
coloured in a chessboard fashion as a visual aid.

the collection of sheared cubes in (3.11) that intersect Sy, and is constant on each
sheared cube 7. In particular, for any given point z € R we have

/Z n(y) d\(y) = 2a%1/ign(y) dpo(y).

Finally, because a,/y/n — 0 it is clear that if Z” has density g,, then its weak
limit will coincide with that of Z,, and hence also with that of the vector X,
conditioned on the event {k, <%, <k, + a,}.

Suppose now that we could prove that

2a, + 1 f(z)

gn(z) — for every z € RM, (3.12)
vn [ fdpo
Then it would follow from Fatou’s lemma that for every open set A C RM,
2a, + 1 f z) duo(z
lim inf gn(2) dpo(z A—
n—oo 4 \/_ ffd,u()

By approximating the open set A by unions of sheared cubes contained in A, as in
the proof of Theorem 1.4, it is then clear that this would imply that

.. fA d,UO
lim inf d)\ —_—
it f, 90 T

It therefore only remains to establish (3.12).

Since (3.12) holds by construction for z ¢ Sy, we only need to consider the case
z € Sp. So let us fix z € Sy, and look at g,(z). By definition, this is just the
rescaled conditional probability that the vector X, lies in the sheared cube @7,
given that k, < ¥, < k,, +a,,. In other words, if we define C? := \/nQ? NZM and
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C}, == CEz NSy, then we have

M
gn<z>=( Vi ) S P Xn =1 | kn < D0 < b+ an)

2an +1 reCz
Miz (WX =1|%0 =k + ) P(5 = kn + £)
20 +1 pariir-g Pk, <Xy <kp+ap) '

Since C}, contains exactly (2a, + 1) ~! points, from this equality we conclude

that to prove (3.12), it is sufficient to show that

f(z)
J fduo

The proof of (3.13) proceeds along the same line as the proof of pointwise con-
vergence in Theorem 1.4, based on Lemma 3.2. However, there is a catch: because
we are now conditioning on ¥,, = k,, + ¢, the Xj;,, are no longer centred around x;,,
but around xf,. We therefore first write the conditional probabilities in a form
analogous to what we had before, by using that

P(VnX,=r1|S, =k, +{) =P(VnX,\=r+z, -2} | Sy =k, +£).

sup sup |(VR)M T IP(VnX, =1 |%, =k, +0) - —0. (3.13)

0<t<a, reCj,

Writing ¢ := 7 + x,, — 2%, for convenience, we now want to study the ratios

P(VaXy, =7 | Sy =kn+0) _ (\Fxf— H m—wm+r)
4 4 4
P(VRX. =02, =k, +0) PH/nxi= Pl Xin = 77,

for £ and r satisfying 0 < ¢ < a, and r € C},.

By equation (3.9) and Lemma 3.4 we have that sup,|zf, — zi,| = o(y/n), from
which it follows that also sup, ,.|[r* —zy/n| = o(y/n), where the suprema are over all
€{0,...,a,} and r € C},. Thus, by the first part of Lemma 3.2,

P(vrX: =rt | S, =kn+ 0
wp s |EWAXL =] +0)
0<t<anrecz | P(vnX, =0|%, =k, +{)

4
where we have used that for all terms concerned, Hlj\il Aryi =1 because rf € Sp.
Furthermore, from the second part of Lemma 3.2 it follows that the functions

P(VX;, = [2v/n] | S0 = kn +0)
P(y/nX:=0]%, =k, +0)

are bounded uniformly in n and in all £ € {0,...,a,} by a pg-integrable function.
In the same way as in the proof of Theorem 1.4, it follows from these facts (with
the addition that we have uniform bounds) that

1
sup |(VR)M TP(VR XL =08, = ky +0) — ———| — 0.
0<t<ay J f duo

From this we conclude that (3.13) does hold, which completes the proof of Theo-
rem 1.5. g
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3.3. Proof of Theorem 1.0.

Proof of Theorem 1.6: Suppose that (k,—E(X,))/v/n— K for some K € [—00, ).
Let X be a random vector having a multivariate normal distribution with density
h/ [ hdX with respect to A. By standard arguments, X7 converges weakly to X.
Therefore, for a rectangle A C RM we have

P(XP € A, S, > ky) = P(X? € AN Hyp-wn,)) — P(X € AN Hg),
v

since AN Hg . is a A-continuity set for all £ € R. Taking A = RM gives
P2, > k,) — P(X € Hg).
Hence, for all rectangles A ¢ RM

P(X € AN Hyg)

p >
P(X? € A|S, > k) — P € Hid)

O

3.4. Law of large numbers. Finally, we prove a law of large numbers, which we
will need in Section 4. Let Xm denote a random variable with the conditional
law of X;,, conditioned on the event {¥, > k,}. If (k, — E(X,))/v/n — K for
some K € [—00,00], then an immediate consequence of Theorems 1.5 and 1.6 is
that Xm /m converges in probability to either p;a; or ¢;;. The following theorem
shows that such a law of large numbers holds for a general sequence k,, such that
kn/n — a.

Theorem 3.7. Fori e {1,..., M}, the random variable X;, /n converges in prob-
ability to p;ay if a < Zi\il pici, or to c;ay if a > Zi\il DiC; .

Proof: 1f o # Ziﬂilpiai, then (k, —E(X,))/+v/n goes to —oo or co as n — 0o, and
the result immediately follows from Theorem 1.5 and Theorem 1.6.

Now suppose that « = Zi\il pic;. Then ¢; = p; for all i € {1,..., M}. Recall
that in general the ¢; and A are determined by the equations

Pi Dil;
¢ = ————— and =a.
pi + Al —p;) meLAl—pJ

The constant A is continuous as a function of «, hence ¢; = ¢;[a] is also continuous
as a function of a. Therefore, if a = Zf\il picy;, then for each e > 0 we can choose
§ > 0 such that ¢;[a + dla; < pia; + 3. By Corollary 2.3 we have, for large
enough n,

<P(Xin > (pici +e)n | 2, > (e +6)n)

< P(Xin > (cila+ 8o + 3e)n | Sy = (o + 6)n),

which tends to 0 as n — oo by Theorem 1.5. Similarly, using Corollary 2.3 and
Theorem 1.6 instead of Theorem 1.5, we obtain

P(X;n < (pic; —e)n | Xy, > k) — 0

We conclude that Xm /m converges in probability to p;a; = ¢;ay. O
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4. Asymptotic stochastic domination

4.1. Proof of Theorem 1.5. Consider the general framework for vectors X,, and Y,
of Section 1.2 in the setting of Section 1.4. We will split the proof of Theorem 1.8
into four lemmas. In the statements of these lemmas, we will need the constant &,
which is defined as the limit as n — oo of ky, /n:

M

PiMin A Pic;
= E , hence a= E
p’L + 6max 1 - pl) i—1 Di + ﬂmax(

1 —pi) '

Let us first look at the definition of & in more detail. In Section 1.4, we informally
introduced the sequence k, as a critical sequence such that if k,, is around kn, then
there exists a block 7 such that the number of successes Xm of the vector X n in
block i is roughly the same as Y;,. We will now make this precise. Recall that
the ¢; and the constant A are determined by

M
Di DiC;
¢i=——— and — =
pi+ Al —pi) ;pH-A(l = i)
Furthermore, note that
Pi

pi+ Bi(1—ps)
and recall that we defined I = {i € {1,...,M}: 8; = Bmax}. The ordering of «

and & gives information about the ordering of the ¢; and ¢;. This is stated in the
following remark, which follows from the equations above.

= i

Remark 4.1. We have the following:
(i) If @« < @, then A > Bax and ¢; < ¢; for all i € {1,..., M}.
(ii) If @« = @&, then A = Bax and ¢; = ¢; for @ € I, while ¢; < ¢; for ¢ ¢ 1.
(iii) If @ > &, then A < Bmax and ¢; > ¢; for some ¢ € {1,..., M}.
(iv) ZZ]\il pic; < & < Zf\il gicy;, with & = Ziﬂilpiai if and only if Bpax = 1,
and & = M g, if and only if all §; (i € {1,..., M}) are equal.

Our law of large numbers, Theorem 3.7, states that Xin /n converges in proba-
bility to p;a; if a < Z?ilpiai, and to c;oy if o > Z?ilpiai. This law of large
numbers applies analogously to the vector Y ,,. If we define dy, . .., dys as the unique
solution of the system

1—di g 1—dj gqj -
= Vi,jge{l,...,M},
di 1-— q; dj 1— qJ' { }
S dia = a,

then ffm/n converges in probability to g¢;o; if a < Zi\il qic;, and to d;o if a0 >

Zi]\il qio;. These laws of large numbers and the observations in Remark 4.1 will
play a crucial role in the proofs in this section.

Now we define some one-dimensional (possibly degenerate) distribution func-
tions Fx: R — [0,1] for K € [—00, 0], which will come up in the proofs as the
distribution functions of the limit of a certain function of the vectors X,. Recall
from Section 1.3 the definitions (1.5), (1.6), (1.7) and (1.8) of the measure vy, the
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functions f and h and the half-space Hx. Write u = (uq,...,upr). Then

/. <y D) dA(u)
B if K <00, a = M pia,
Hg
Fr(2) =< Jiss wicomapy [(u) dvo(u) 4.1
K (2) X ier lgffil}uo if K < o0, a> Zi]\ilpiaia 1)
0 if K = o0,
where
Dier il —ci)ay

K = 1511 (4.2)

iz Gl —ci)ay

The following lemmas, together with Proposition 1.3, imply Theorem 1.8.
Lemma 4.2. If a < &, then supIP(Xn < f’n) — 1.

Lemma 4.3. Suppose that o > & and ; # 3 for some i,j € {1,...,M}. Then
supP(X, <Y,)—0.

Lemma 4.4. Suppose that « = & and 8; # B; for some i,5 € {1,...,M}. Suppose
furthermore that (k, — kn)/v/n — K for some K € [—o00,00]. Then supP(X, <
Y,) —inf.er Fr(2) — ®(z/a) + 1.

Lemma 4.5. If o = & and 3; # 3 for somei,j € {1,..., M}, then

1 if K= —o0,
ig}%FK(z) —®(z/a)+1=< Pk if KeR, where 0 < Pg < 1,
0 if K=o00.

The constant @ in Lemma 4.4 is the constant defined in (1.9a). The infimum in
Lemma 4.4 can actually be computed, as Lemma 4.5 states, and attains the values
stated in Theorem 1.8, with Pk as defined in (1.10).

We will prove Theorem 1.8 by proving each of the Lemmas 4.2-4.5 in turn.
The idea behind the proof of Lemma 4.2 is as follows. If we do not condition
at all, then X,, <Y, for every n > 1. If a < Ziﬂilpiai, then the effect of
conditioning vanishes in the limit and sup IP(Xn < Yn) — lasn — oo. If
Zi]\ilpiai < a < @, then ¢; < g; for alli € {1,..., M}. Hence, for large n we have
that X, is significantly smaller than Y;, for all i € {1,..., M}, from which it will
again follow that supIP(Xn < f’n) — 1.

Proof of Lemma /.2: First, suppose that a < Zi\il picy;. Let X, and Y, be
defined on a common probability space (2, F, P) such that X, <Y, on all of Q.
Pick wy € Q according to the measure P(- | ZZ]\il Xin > ky) and pick ws € Q
independently according to the measure P(- | Zﬁl Yin > kp). If wy is in the event
{le\il Xin > kn} e F, set ?n(wl,wg) := Y, (w1), otherwise set f/n(wl,wg) =
Y . (w2). Set Xn(wl, we) := X, (wy) regardless of the value of wy. It is easy to see
that this defines a coupling of X, and Y,, on the space (Q x Q,F x F) with the
correct marginals for X n and f’n. Moreover, in this coupling we have X n < f’n
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at least if wo € {le\il Xin > kn} Hence

< g P M Xln > kn
supP(X,, <Y,)> (21;11 —
P izi Yin = kn

)
)
which tends to 1 as n — oo (e.g. by Chebyshev’s inequality).
Secondly, suppose that Zi\il pia; < a < & By Remark 4.1(i), ¢; < ¢; for all
ie€{l,...,M}. For each coupling of X,, and Y,, we have
which tends to 1 as n — oo by Theorem 3.7 and Remark 4.1(iv). O
The next lemma, Lemma 4.3, treats the case a > &. In this case, we have that

for large n, X;, is significantly larger than Y;,, for some i € {1,..., M}, from which
it follows that supP(X,, <Y,) — 0.

Proof of Lemma /.5: First, suppose that ¢ < a < sz\il qio;. Then ¢; > ¢
for some ¢ € {1,...,M} by Remark 4.1(iii). Hence, by Theorem 3.7 and Re-
mark 4.1(iv),

P(Xin > (ci + qi)oin/2) — 1,

P(Yin > (ci + gi)ain/2) — 0.

It follows that IP(X n < f’n) tends to 0 uniformly over all couplings.
Next, suppose that a > Ef\il gioy; and f3; # fB; for some i, j € {1,...,M}. Then
there exists ¢ € {1,..., M} such that ¢; # d;, since
1—d; d;
di 1-—

—qi pj :ﬁ‘l_Ci Cj
G l-pj 7 a 1-g¢

1
djﬂj_

In fact, we must have ¢; > d; for some i € {1,..., M}, because Zi\il cioy =
Ziﬂil d;a;. By Theorem 3.7, it follows that

IP(XW > (Ci + dl)am/2) — 1,
]P(f/m > (Ci + di)am/2) — 0.

Again, P(X,, <Y ,) tends to 0 uniformly over all couplings. O

We now turn to the proof of Lemma 4.4. Under the assumptions of this lemma,
¢i = ¢ for i € T and ¢; < ¢; for i ¢ I. The proof proceeds in four steps. In
step 1, we show that the blocks i ¢ I do not influence the asymptotic behaviour
of sup IP(X n < f/n), because for these blocks, X is significantly smaller than Yin
for large n. In step 2, we show that the parts of the vectors X, and Y, that
correspond to the blocks ¢ € I are stochastically ordered, if and only if the total
numbers of successes in these parts of the vectors are stochastically ordered. At
this stage, the original problem of stochastic ordering of random vectors has been
reduced to a problem of stochastic ordering of random variables. In step 3, we use
our central limit theorems to deduce the asymptotic behaviour of the total numbers
of successes in the blocks ¢ € I. In step 4, we apply the following lemma, which
follows from Riischendorf (1982, Proposition 1), to these total numbers of successes:



Conditioned Bernoulli random vectors 431

Lemma 4.6. Let X andY be random variables with distribution functions F and G
respectively. Then we have

supP(X <Y) = zHEl]%F(Z) —G(z)+ 1,

where the supremum is taken over all possible couplings of X and Y .

Proof of Lemma /./: Write mp, := Ziel Min. Let X1, and X, denote the m,-
dimensional subvectors of X, and X, respectively, consisting of the components
that belong to the blocks ¢ € I. Define Y j,, and Y I analogously.

Step 1. Note that for each coupling of X, and Y,,

2 ]P(Xln S ?In) -
S P (f > ) ¢ P(F < S0} 09
igl
By Remark 4.1(ii), ¢; < ¢; for i ¢ I. Hence, it follows from Remark 4.1(iv) and

Theorem 3.7 that the sum in (4.3) tends to 0 as n — oo, uniformly over all couplings.
Since clearly supP(X,, <Y,) <supP(X, <Y,),

— 0,

’supIP(Xn < Yn) - SupIP(XIn < Yln)

where the suprema are taken over all possible couplings of (X ,,,Y,,) and (X 1,,,Y 1),
respectively.

Step 2. The g, for i € I are all equal. Hence, by Proposition 1.2 and Lemma, 2.2
we have for m € {0,1,...,mr,} and £ € {0,1,...,mp, —m}

L(X 1] ier Xin =m) 2 LY 1n| Yier Yin = m +£). (4.4)

Now let B be any collection of vectors of length mj, with exactly m components
equal to 1 and my, — m components equal to 0. Then

P(X, € B)=P(X1, € B| Y, X > k)
P(X1n € B)P(Y 41 Xin > bn —m)
P(30 Xin > kn)

Taking C' to be the collection of all vectors in {0, 1}™/ with exactly m components
equal to 1, we obtain

_ P(X,€B)

P(XmeB|S. Xip=m)=——=
( 1 | EzEI ) ]P(X]n c O)

= ]P(X]n B | ZieIXm = m),

and likewise for Y7, and Y - Hence, (4.4) is equivalent to
LOX 1| Xier Xin =m) 2 LY 10| X ie; Yin =m +0).
With a similar argument as in the proof of Proposition 1.3, it follows that
supIP(Xln < f’]n) =suplP(} ;e Xin < Yicr ffm)
Step 3. First observe that by Remark 4.1(iv), a < Zf\il q;«;. Hence, by The-

orem 1.6 (note that (k, — E(E?il Yin))//n — —o0) and the continuous mapping
theorem,

P(Eiez(Yin — qimin)/v/n < z) — ®(z/a) for every z € R. (4.5)
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Next observe that by Remark 4.1(ii), ¢; = ¢; for i € I and A = Biax, from which
it follows that l%n = Ziwl c;min. Hence, Corollary 3.5 gives

> ier(Cin = qi)min//n — 2k, (4.6)

with zx as defined in (4.2). In the case o > Zi\il pic;, Theorem 1.5, (4.6) and the
continuous mapping theorem now immediately imply

P(Y e (Xin — @imin)//n < 2) — Fi(z) for every z € R. (4.7)
Note that if K = +o0, Fi is degenerate in this case: we have Fi(z) = 1 for all
zeRIif K =—ocoand Fg(z) =0forall z e Rif K = 0.

Now consider the case o = Zﬁl pic;. By Remark 4.1(iv), in this case we have
Bmax = 1, which implies that En Zleplmm = E(X,) and p; = ¢; for all
i€ {l,...,M}. Hence, if K = oo, then (4.6) and Theorem 1.5 again imply (4.7)
with F K( ) = 0 everywhere. If K € [—00,00), then we obtain (4.7) directly from
Theorem 1.6; F is non-degenerate in this case (also for K = —00).

Step 4. The distribution functions on the left-hand sides of (4.5) and (4.7) are

non-decreasing and bounded between 0 and 1, hence they converge uniformly on
compact sets. It follows by Lemma 4.6 that

supP(>,c; Xin < Yier lem) — inf,er Fr(2) — ®(z/a) + 1. O

Finally, we turn to the proof of Lemma 4.5. The key to computing the infimum of
Fr(2)—®(z/a)+1is to first express the distribution function Fi, defined in (4.1),
in a simpler form.

Proof of Lemma 4.5: In the case a > Zi\il pic; and K = —oo, F is 1 everywhere,
hence inf,eg Fix(2) — ®(z/a) + 1 = 1. In the case K = oo, Fk is 0 everywhere,
hence inf,ecr Fx(2) — ®(z/a) + 1 = 0. We will now study the remaining cases.
Consider the case a = & = Eiﬂilpiai and K € [—00,00). Let Z = (Z1,...,Z\m)
be a random vector which has the multivariate normal distribution with density
h/ [ hd\. By Remark 1.1(iv) we have fyax = 1. Note that therefore, 1 3., Z;,

7 ng Z; and L Zl 1 Zi, with a, b and ¢ as defined in (1.9), all have the standard
normal distribution. Moreover, Z Zi and ) _;4; Z; are independent.

For K = —o0, it follows that FK( ) D(z/a), hence 1anGIR Fr(2)—®(z/a)+1 =
1. For K € IR, observe that Z € H is equivalent with 1 Zi:1 Z; > K/c. Likewise,
Z € Hen{u € RM: ¥, ;u; < 2} is equivalent with 13, Z; < z/a and

icl
32 igr Zi > (K = Y iep Zi)/b. Tt follows that

F (Z) = fhd)\ fHKﬂ{ZieI“iSZ} h(u) d/\(u)
e fH hdA J hadx
7u2/2 —v?/2
- ———dvd
1 — K/C / /K wu \/ﬁ 27‘( UV adu
z/a —u2/2 1— K au
= ) du,

e V27 1-@(5)

c

hence

z/a —u2/2
Fr(z) — ®(z/a) = A 2 (% ) (I:I)(( Y )du. (4.8)
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Clearly, the derivative of this expression with respect to z is 0 if and only if (K —
z)/b= K/e¢, that is, z = zpmin = K —bK /c. Plugging this value for z into (4.8) shows
that inf,er Fx(2) — ®(z/a) + 1 = Pg, with Px as defined in (1.10). Moreover,
Pr > 0 because Fi(zmin) > 0, and Px < 1 because the integrand in (4.8) is
negative for u < zmin/a.

Finally, consider the case a > Ef\il pic; and K € R. This time, let Z =
(Z1,...,Zn) be a random vector which has the singular multivariate normal dis-
tribution with density f/ [ f dvy with respect to vp. Then a little computation
shows that (Z1,..., Zy—1) has a multivariate normal distribution with mean 0 and
a covariance matrix X given by

2 M 2
g Zk:l,k;ﬁi Ok

M ) ) 3
> k=104
o252
sy =l for i,j € {1,...,M — 1} with i # j,
Zk 1 O
where 02 = ¢;(1 — ¢;)ay for i € {1,...,M}. Similarly, every subvector of Z of

dimension less than M has a multivariate normal distribution.
By the definition (4.1) of Fx, zx + ) _,.; Z; has distribution function F. Since
B; # B; for some i,j € {1,...,M}, we have |I| < M — 1. It follows that >

has a normal distribution w1th mean 0 and variance

Z 7; Zk 1 k;éz % + Z Z - (Zief ) (Eigr 012), (4.9)

M 2
iel k 19 i€l jeI\{i} Zk 19 2105

ZEI

By Remark 4.1(ii), A = Bmax and hence for i € {1,..., M},

ﬂmaxpi(l - pi)ai
(pz + ﬁmax(l - pl))2 '

It follows that the variance (4.9) is equal to a?b?/c?, with a, b, and ¢ as defined
n (1.9). Furthermore, zx = a?K/c®>. We conclude that Fi is the distribution
function of a normally distributed random variable with mean a? K /c? and variance
a?b?/c?, so that Fi(z) = ®(5(z — a®K/c?)). Since a?b?/c* < a?, we see that
Fk(z) < ®(z/a) for small enough z. Hence Fk(z) — ®(z/a) attains a minimum
value which is strictly smaller than 0. This minimum is strictly larger than —1
because F(z) > 0 for all z € R.

To find the minimum, we compute the derivative of F (z) — ®(z/a) with respect
to z. It is not difficult to verify that the minimum is attained for

2
7;

= Cz(l — Ci)Oéi =

b
Z = Zmin = K — _\/K2 + c? 1Og(02/b2),
C

from which it follows that inf,cg Fx(z) — ®(z/a) + 1 = Pk, with Pk as defined
n (1.10). From the remarks above we know that 0 < Px < 1. O

4.2. Conditioning on exactly k, successes. For the sake of completeness, we finally
treat the case of conditioning on the total number of successes being equal to k,.
The situation is not very interesting here.
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Theorem 4.7. Let X, be a random vector having the conditional distribution
of Xy, conditioned on the event {3, = k,}. Define Y. similarly. If all 8; (i €
{1,...,M}) are equal, then X, andY ,, have the same distribution for everyn > 1.
Otherwise, sup IP(Xn = Yn) — 0 asn — 0.

Proof: If all p; (i € {1,...,M}) are equal, then by Proposition 1.2 we have that
X n and Yn have the same distribution for every n > 1. If §; # f; for some
1,7 € {1,..., M}, then it can be shown that SupIP(Xn < Yn) — 0 as n — oo,
by a similar argument as in the proof of Lemma 4.3; instead of Theorem 3.7 use
Lemma 3.1. O
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