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Abstract. This paper studies the asymptotic behavior of eigenvalues of random
abelian G-circulant matrices, that is, matrices whose structure is related to a finite
abelian group G in a way that naturally generalizes the relationship between circu-
lant matrices and cyclic groups. It is shown that, under mild conditions, when the
size of the group G goes to infinity, the spectral measures of such random matrices
approach a deterministic limit. Depending on some aspects of the structure of the
groups, whether the matrices are constrained to be Hermitian, and a few details
of the distributions of the matrix entries, the limit measure is either a (complex or
real) Gaussian distribution or a mixture of two Gaussian distributions.

1. Introduction

Given a finite groupG and a function f : G → C, the matrixM =
[
f(ab−1)

]
a,b∈G

is called aG-circulant matrix by Diaconis (1988, 1990). This generalizes the classical
notion of circulant matrices, which arise as the special case in which G is a finite
cyclic group. The action of such a matrix M on the vector space {g : G → C} is as
a convolution operator: for g : G → C and a ∈ G,

(Mg)(a) =
∑

b∈G

f(ab−1)g(b) =: (f ∗ g)(a). (1.1)

This paper considers the asymptotic behavior of the spectra of random G-
circulant matrices, or equivalently random convolution operators on G, when G
is a large abelian group. (For the rest of this paper, G will always stand for a fi-
nite abelian group.) Such random matrices will be generated by picking the values

f(a) independently, with or without imposing a constraint f(a−1) = f(a) which
is equivalent to insisting that the matrix M is Hermitian. This generalizes the
study of random circulant matrices, whose theory has already been developed in
Bose and Mitra (2002); Bose and Sen (2008); Bryc and Sethuraman (2009); Meckes
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(2009); Bose et al. (2010) among many other papers, with applications discussed
in Jain and Srivastava (2008); Yin et al. (2010). The richer structure of arbitrary
abelian groups relative to cyclic groups leads to the appearance of some interesting
phenomena which do not occur for circulant matrices, or the more familiar setting
of random matrices with independent entries.

The prototypical situation (exemplified in Corollaries 3.2, 3.4, and 3.6, and The-
orems 4.2 and 4.4 below) is that when the size of G grows the empirical spectral
distribution of a (properly normalized) random G-circulant matrix M approaches a
Gaussian distribution. When M is constrained to be Hermitian the limit will be a
real Gaussian distribution; without such a constraint it will be a complex Gaussian
distribution. These situations may be thought of as analogous to the semicircle law
for Hermitian random matrices and circular law for non-Hermitian random matri-
ces with independent entries, respectively. This behavior, which has already been
observed for random circulant matrices in Bose and Mitra (2002); Meckes (2009),
occurs in particular if only a negligible fraction of the elements of G are of order 2,
and also if every nonidentity element of G is of order 2. On the other hand, if nei-
ther of these is the case then more complicated limiting distributions occur which
are mixtures of two Gaussian distributions (as in Theorems 4.1 and 4.3 below).

Another perspective on these results, which is crucial in the proofs, is that they
describe the distribution of values of random Fourier series on G. The supremum
of such a random Fourier series is already a thoroughly studied quantity Kahane
(1985); Marcus and Pisier (1981). In particular, results of Marcus and Pisier (1981)
include as special cases estimates of the spectral norms of random G-circulant
matrices, as pointed out in Proposition 2.4 below.

Section 2 below briefly reviews the facts about Fourier analysis on finite abelian
groups which are used here and points out their immediate consequences for G-
circulant matrices; some notation and conventions used in the remainder of the
paper are established there. Section 3 investigates the spectra of some random
G-circulant matrices whose entries are Gaussian random variables. The invariance
properties of Gaussian random variables allow an easy detailed study to be under-
taken which illuminates the general situation, in particular the role of the number
of elements of order 2. Finally, Section 4 determines the asymptotic behavior of
the spectrum for general entries with finite variances.

The cases of G-circulant matrices with heavy-tailed entries, and of random G-
circulant matrices when G is a nonabelian finite group, will be investigated in future
work.
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2. Some Fourier analysis and notation

For a finite abelian groupG, we denote by Ĝ the family of group homomorphisms
χ : G → T, where T is the multiplicative group {z ∈ C | |z| = 1}. The elements

of Ĝ are called characters of G; Ĝ is a group under the operation of pointwise
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multiplication. The multiplicative inverse of a character χ is its pointwise complex
conjugate χ. From the homomorphism property it follows that for a ∈ G and

χ ∈ Ĝ, χ(a−1) = χ(a).
We denote by ℓ2(G) the space of functions f : G → C equipped with the inner

product

〈f, g〉 =
∑

a∈G

f(a)g(a),

and ℓ2(Ĝ) is defined analogously. The Fourier transform of f ∈ ℓ2(G) is the function

f̂ ∈ ℓ2(Ĝ) given by

f̂(χ) = 〈f, χ〉 =
∑

a∈G

f(a)χ(a).

This includes as special cases both the classical discrete Fourier transform (when G
is cyclic) and the Walsh–Hadamard transform (when G is a product of cyclic groups
of order 2). The following lemma summarizes the most important fundamental facts
about the Fourier transform for our purposes.

Lemma 2.1. Let G be a finite abelian group with |G| elements.

(1) The functions
{

1√
|G|

χ | χ ∈ Ĝ
}
form an orthonormal basis of ℓ2(G).

(2) The map f 7→ 1√
|G|

f̂ is a linear isometry of ℓ2(G) onto ℓ2(Ĝ).

(3) If f, g ∈ ℓ2(G), then for each χ ∈ Ĝ, f̂ ∗ g(χ) = f̂(χ)ĝ(χ) (where the
convolution f ∗ g is defined in (1.1).

Proof :

(1) See Theorem 6 on Serre (1977, p. 19).
(2) This follows easily from Proposition 7 on Serre (1977, p. 20) (which is a

consequence of part (1)).
(3) This follows directly from the definitions by a straightforward computation.

�

Observe that contained in Lemma 2.1(1) is the fact that |G| =
∣∣Ĝ
∣∣.

We will need two additional facts about characters of finite abelian groups which
are not as easily located in standard references.

Lemma 2.2. The number of elements a ∈ G such that a2 = 1 is equal to the

number of characters χ ∈ Ĝ such that χ = χ.

Proof : For a ∈ G, define δa : G → C by δa(b) = δa,b, where the latter is the
Kronecker delta function, and observe that {δa | a ∈ G} is an orthonormal basis of

ℓ2(G). Then δ̂a(χ) = χ(a) for each χ ∈ Ĝ. By Lemma 2.1(2), the number of a ∈ G
such that a2 = 1 is equal to

∑

a∈G

〈δa, δa−1〉 = 1

|G|
∑

a∈G

〈
δ̂a, δ̂a−1

〉
=

1

|G|
∑

a∈G

∑

χ∈Ĝ

χ(a)χ(a−1)

=
1

|G|
∑

χ∈Ĝ

∑

a∈G

χ(a)2 =
1

|G|
∑

χ∈Ĝ

〈χ, χ〉 ,

which by Lemma 2.1(1) is equal to the number of χ ∈ Ĝ such that χ = χ. �
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Lemma 2.2 says that G and Ĝ have equal numbers of elements of order 2. A

much stronger fact is also true: G and Ĝ are isomorphic groups. However, this
isomorphism is noncanonical, depends on the classification of finite abelian groups,
and in any case is not useful here.

Lemma 2.3. Let H be a subgroup of a finite abelian group H. Then each character
on H extends to a character on G in precisely |G| / |H | distinct ways.

Proof : It is easy to check that restriction to H defines a homomorphism Ĝ → Ĥ.
Since each coset of this homomorphism’s kernel has the same size, it suffices to
prove that that it is surjective, or equivalently that each character on H extends to
a character on G at all. For a proof of this fact see, e.g., Apostol (1976, p. 134). �

From (1.1) and Lemma 2.1(3) it follows that the Fourier transform diagonalizes
G-circulant matrices. In particular, if M = [f(ab−1)]a,b∈G for f ∈ ℓ2(G), then the

eigenvalues of M are precisely the values
{
f̂(χ) | χ ∈ Ĝ

}
of the Fourier transform

of f , and the characters of G are eigenvectors of M . (For generalizations of these
facts for nonabelian G, see Diaconis (1988, 1990).) Observe that every G-circulant

matrix is normal, but that M is Hermitian if and only if f(a−1) = f(a) for each
a ∈ G.

Given a family of random variables {Ya | a ∈ G}, define the random function
f ∈ ℓ2(G) by f(a) = 1√

|G|
Ya. (We are avoiding using X to name random variables

because of its typographical similarity to χ.) The corresponding G-circulant matrix

is the random matrix M =
[
Yab−1

]
a,b∈G

. Its eigenvalues, indexed by χ ∈ Ĝ, are

given by

λχ = f̂(χ) =
1√
|G|

∑

a∈G

Yaχ(a), (2.1)

and the empirical spectral distribution of M is

µ =
1∣∣Ĝ
∣∣
∑

χ∈Ĝ

δλχ
=

1

|G|
∑

χ∈Ĝ

δλχ
,

where δz here denotes the point mass at z ∈ C.

The Fourier transform f̂ is a random trigonometric polynomial on G, of the kind
studied extensively by Marcus and Pisier (1981). From (2.1) it follows in particular

that ‖M‖ =
∥∥f̂
∥∥
∞, where the former norm is the spectral norm ofM . The following

result is thus a special case of Marcus and Pisier (1981, Theorem 1.4), which also
applies to infinite compact abelian groups.

Proposition 2.4. Suppose that {Ya | a ∈ G} are independent (except possibly for
a constraint Ya−1 = Ya for each a ∈ G) and mean 0 with finite second moments.
Then

c

(
min
a∈G

E |Ya|
)

≤ E ‖M‖√
log |G|

≤ C

√
max
a∈G

E |Ya|2,

where c, C > 0 are constants, independent of G and the distributions of the Ya.

The rest of this paper deals mainly with infinite sequences of finite abelian groups
G(n), always assumed to satisfy

∣∣G(n)
∣∣ → ∞. For each n a family of random
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variables
{
Y

(n)
g | g ∈ G(n)

}
will be used to construct a random G(n)-circulant

matrix

M (n) =


 1√∣∣G(n)

∣∣
Y

(n)
ab−1




a,b∈G(n)

with empirical spectral measure µ(n). As mentioned earlier, an important role will
be played by the quantity

p
(n)
2 =

∣∣{a ∈ G(n) | a2 = 1}
∣∣

∣∣G(n)
∣∣ =

∣∣{χ ∈ Ĝ | χ = χ
}∣∣

∣∣Ĝ(n)
∣∣ .

The standard real Gaussian measure is denoted γR, and the standard complex

Gaussian distribution, normalized such that E |Z|2 = 1 when Z is a standard com-
plex Gaussian random variable, is denoted γC. For α ∈ [0, 1], γα denotes the
Gaussian measure on C ∼= R2 with covariance 1

2

[
1+α 0
0 1−α

]
, so that in particular

γ0 = γC and γ1 = γR.
The integral of a function f with respect to a measure ν will be denoted by ν(f).

3. Gaussian matrix entries

The following is an immediate consequence of Lemma 2.1(2) and the rotation-
invariance of the standard Gaussian distribution. The special case of this result
for classical circulant matrices (that is, when G is a cyclic group) was observed in
Meckes (2009).

Proposition 3.1. Let G be a finite abelian group and let {Ya | a ∈ G} be in-
dependent, standard complex Gaussian random variables. Then the eigenvalues{
λχ | χ ∈ Ĝ

}
of M given by (2.1) are independent, standard complex Gaussian

random variables.

The randommatrix ensemble in Proposition 3.1 is theG-circulant analogue of the
complex Ginibre ensemble X , which consists of a square matrix with independent,
standard complex Gaussian entries.

Corollary 3.2. Suppose that for each n,
{
Y

(n)
a | a ∈ G(n)

}
are independent,

standard complex Gaussian random variables. Then Eµ(n) = γC for each n, and
µ(n) → γC weakly in probability. Furthermore, if

∣∣G(n)
∣∣ = Ω(nε) for some ε > 0,

then µ(n) → γC weakly almost surely.

Proof : For each, say, Lipschitz f : C → R,

(Eµ)(f) := E
(
µ(f)

)
=

1

|G|
∑

χ∈Ĝ

Ef(λχ),

where the (n) superscripts are omitted for simplicity. By Proposition 3.1, each λχ

is distributed according to γC, and so (Eµ)(f) = γC(f). Thus Eµ = γC.
By the concentration properties of Gaussian measure (see Ledoux (2001)), since

the λχ are distributed as independent standard complex Gaussian random variables,
if f is 1-Lipschitz, then

P
[
|µ(f)− γC(f)| ≥ t

]
≤ 2e−|G|t2
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for each t > 0. If
∣∣G(n)

∣∣ = Ω(nε), then the Borel–Cantelli lemma implies that

µ(n)(f) → γC(f) almost surely. Applying this to a countable dense family of f , it
follows that µ(n) → γC weakly almost surely.

In the general case, since
∣∣G(n)

∣∣ → ∞, each subsequence of µ(n) has a sub-

sequence µ(nj) for which, say,
∣∣G(nj)

∣∣ ≥ j, so that by the above argument µ(nj)

converges to γC almost surely as j → ∞. It follows that µ(n) converges to γC in
probability. �

The next proposition deals with the G-circulant analogue of the Gaussian Uni-
tary Ensemble (GUE), which, up to a choice of normalization, is distributed as
2−1/2(X+X∗), whereX is the complex Ginibre ensemble mentioned above. Equiva-
lently, the diagonal entries of the GUE are standard real Gaussian random variables,
the off-diagonal entries are standard complex Gaussian random variables, and the
entries are independent except for the constraint that the matrix is Hermitian. It is
worth noting explicitly that while each entry of the GUE has (complex) variance 1,
the variance of a diagonal entry and the real part of an off-diagonal entry differ by
a factor of 2. (Again, the special case for classical circulant matrices was observed
earlier in Meckes (2009).)

Proposition 3.3. Let G be a finite abelian group and let {Ya | a ∈ G} be random
variables which are independent except for the constraint Ya−1 = Ya, and such that

Ya ∼
{
γR if a2 = 1,

γC if a2 6= 1.

Then the eigenvalues
{
λχ | χ ∈ Ĝ

}
of M given by (2.1) are independent, standard

real Gaussian random variables.

Proof : Let {Za | a ∈ G} be independent, standard complex Gaussian random
variables. Then {Ya | a ∈ G} are distributed as

{
2−1/2

(
Za +Za−1

)
| a ∈ G

}
. Thus

the eigenvalues λχ of M in the present proposition are jointly distributed as
√
2

times the real parts of the eigenvalues of the random matrix defined in Proposition
3.1, and are thus independent real standard normal random variables. �

Observe that in the “G-circulant GUE” of Proposition 3.3, every element a ∈ G
with a = a−1 corresponds to a “diagonal” of M in which the entries are constrained
to be real.

The following corollary follows from Proposition 3.3 in the same way that Corol-
lary 3.2 follows from Proposition 3.1.

Corollary 3.4. Suppose that for each n,
{
Y

(n)
a | a ∈ G(n)

}
are real and complex

Gaussian random variables as described in Proposition 3.3. Then Eµ(n) = γR for
each n, and µ(n) → γR weakly in probability. Furthermore, if

∣∣G(n)
∣∣ = Ω(nε) for

some ε > 0, then µ(n) → γR weakly almost surely.

The real Ginibre ensemble X consists of a square matrix with independent, real
standard Gaussian random variables. The Gaussian Orthogonal Ensemble (GOE)
is distributed as 2−1/2(X + Xt). Equivalently, the diagonal entries of the GOE
are distributed as N(0, 2) and the off-diagonal entries are distributed as N(0, 1).
In general the analogues of Propositions 3.1 and 3.3 for matrices with real entries
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are less elegant. In the nonsymmetric case the eigenvalues have a Gaussian joint
distribution in a |G|-dimensional real subspace of C|G|, and in the symmetric case
the |G| eigenvalues are not independent in general. We will not state such results
in general, but will note for future reference that in the “G-circulant GOE”, every
element a ∈ G with a = a−1 corresponds to a diagonal of M in which the variance
of the entries is 2 instead of 1. (See Theorem 4.3 below and the discussion following
it.)

On the other hand, the analogous results are simple in the case in which the

characters χ ∈ Ĝ are all real-valued, so that the Fourier transform defines an

isometry (up to scaling) between the real ℓ2 spaces on G and Ĝ. By Lemma 2.2,
this is the case precisely when every a ∈ G satisfies a2 = 1, or in other words, when
G ∼= (Z2)

n for some n. In this case aG-circulant matrix is automatically symmetric,
so that there is no difference (except for scaling) between the “G-circulant real
Ginibre ensemble” and the “G-circulant GOE”. The following results are proved in
the same way as Proposition 3.1 and Corollary 3.2.

Proposition 3.5. Let G ∼= (Z2)
n and let {Ya | a ∈ G} be independent, standard

real Gaussian random variables. Then the eigenvalues
{
λχ | χ ∈ Ĝ

}
of M given by

(2.1) are independent, standard real Gaussian random variables.

Corollary 3.6. Suppose that for each n, G(n) ∼= (Z2)
n and {Y (n)

a | a ∈ G(n)} are
independent, standard real Gaussian random variables. Then Eµ(n) = γR for each
n, and µ(n) → γR weakly almost surely.

4. General matrix entries

Our main results are stated under a Lindeberg-type condition on the random

variables Y
(n)
a used to generate the random matrices:

∀ε > 0 : lim
n→∞

1∣∣G(n)
∣∣
∑

a∈G(n)

E

(∣∣Y (n)
a

∣∣21|Y (n)
a |≥ε

√
|G(n)|

)
= 0. (4.1)

The usual remarks apply about the sufficiency of identical distribution or a
Lyapunov-type condition: (4.1) holds in the settings of Theorems 4.1 and 4.2 if

all the Y
(n)
a are identically distributed, or have uniformly bounded (2 + δ) mo-

ments; it holds in the settings of Theorems 4.3 and 4.4 if all the random variables
with a given variance assumption satisfy such assumptions.

We now state our main results, deferring the proofs until the end of the section.

Theorem 4.1. Let α ∈ [0, 1]. Suppose that for each n, {Y (n)
a | a ∈ G(n)} are

independent; that

EY (n)
a = 0, E

∣∣Y (n)
a

∣∣2 = 1, and E
(
Y (n)
a

)2
= α

for every a ∈ G(n); and that (4.1) holds. Suppose further that limn→∞ p
(n)
2 = p

exists. Then µ(n) converges, in mean and in probability, to (1 − p)γC + pγα.

One of the main special cases of interest in Theorem 4.1 is when α = 1, that is,
when the matrix entries are all real. In that case, the limiting spectral distribution
of M (n) is complex Gaussian if the number of a with a2 = 1 is negligible for large
n. On the other hand, if the fraction of such a is asymptotically constant then, due
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to the presence of many real-valued characters χ, the limiting spectral distribution
will be a mixture of γC and γR.

The other main special case of interest is when α = 0, so that the matrix entries
have uncorrelated real and imaginary parts. In that case, which generalizes the

setting of Corollary 3.2, one can remove the assumption that p
(n)
2 approaches a

limit.

Theorem 4.2. Suppose that for each n, {Y (n)
a | a ∈ G(n)} are independent; that

EY (n)
a = 0, E

∣∣Y (n)
a

∣∣2 = 1, and E
(
Y (n)
a

)2
= 0

for every a ∈ G(n); and that (4.1) holds. Then µ(n) converges, in mean and in
probability, to γC.

The special case of Theorem 4.2 for classical circulant matrices (that is, when
the G(n) are cyclic groups) was proved by the author in Meckes (2009).

Theorem 4.3. Let α ∈ [0, 1], β > 0. Suppose that for each n,
{
Y

(n)
a | a ∈ G(n)

}

are mean 0 and independent except for the constraint Y
(n)
a−1 = Y

(n)
a ; that

EY (n)
a Y

(n)
b =





1 if a = b−1 6= a−1,

α if a = b 6= a−1,

β if a = b = a−1,

0 otherwise,

for a, b ∈ G(n); and that (4.1) holds. Assume further that limn→∞ p
(n)
2 = p exists.

Then µ(n) converges, in mean and in probability, to

(1 − p)N
(
0, 1 + p(β − α− 1)

)
+ pN

(
0, 1 + α+ p(β − α− 1)

)
.

if p < 1 and to N
(
0, β
)
if p = 1.

Observe that by Lagrange’s theorem on orders of subgroups, 1/p
(n)
2 is an integer,

which implies that if p < 1 then in fact p ≤ 1/2, and therefore the stated variances
of the normal distributions named above are indeed positive.

The most obvious (though not necessarily, as we shall see, the most natural)

special case of interest in Theorem 4.3 is when the Y
(n)
a are real and i.i.d. (except

for the symmetry constraint), so that α = β = 1. In that case the limiting spectral
distribution is the mixture distribution

(1− p)N(0, 1− p) + pN(0, 2− p). (4.2)

Two other special cases are suggested by considering the analogy with the GOE
and GUE. The G-circulant analogue of the GOE, as discussed in the previous
section, would have real entries such that α = 1 and β = 2, and thus the limiting
spectral distribution

(1 − p)N(0, 1) + pN(0, 2). (4.3)

The slightly simpler nature of this limiting distribution (note that the parameter p
plays only one role in (4.3), as opposed to two roles in (4.2)) reflects that a “GOE-
like” normalization of entries is more natural than equal variances. However, this
phenomenon is only evident when 0 < p < 1. In the classical case of Wigner
matrices it is well known that in order for the semicircle law to hold, no variance
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assumption need be made on the diagonal entries of the matrix. The situation
described above emphasizes that this is the case precisely because the number of
diagonal entries in a Wigner matrix is negligible.

Finally, when the second moments are the same as for the “G-circulant GUE” of
Proposition 3.3, then α = 0 and β = 1 and, as in Corollary 3.4, the limiting spectral
distribution is simply the standard real Gaussian distribution, even regardless of
the value of p. Thus for G-circulant matrices, a constraint to be complex Hermitian
appears to be somehow more natural than a constraint to be real symmetric. As
in Theorem 4.2, the assumption that p2 approaches a limit can even be removed in
this situation.

Theorem 4.4. Suppose that for each n,
{
Y

(n)
a | a ∈ G(n)

}
are mean 0 and indepen-

dent except for the constraint Y
(n)
a−1 = Y

(n)
a ; that E

∣∣Y (n)
a

∣∣2 = 1 for every a ∈ G(n);

that E
(
Y

(n)
a

)2
= 0 if a 6= a−1; and that (4.1) holds. Then µ(n) converges, in mean

and in probability, to γR.

The special case of Theorem 4.4 for classical circulant matrices (with more re-
strictive assumptions on the distributions of the matrix entries) was proved by Bose
and Mitra (2002).

We will not attempt to deal thoroughly with the question of when the con-
vergence in probability in the results above can be strengthened to almost sure
convergence. However, the following result gives some sufficient conditions. Each
of the conditions stated automatically implies the Lindeberg-type condition (4.1);
for the first part this follows from exponential tail decay which is implied by a
Poincaré inequality (see Ledoux (2001, Corollary 3.2)), and for the other parts it
is elementary.

Theorem 4.5. In the setting of Theorem 4.1, 4.2, 4.3, or 4.4, suppose in addition
that

∣∣G(n)
∣∣ = Ω(nε) for some ε > 0 and that one of the following conditions holds:

(1) There is a constant K > 0 such that for every n and every a ∈ G(n), Y
(n)
a

satisfies a Poincaré inequality with constant K. That is,

Var f
(
Y (n)
a

)
≤ KE

∣∣∇f
(
Y (n)
a

)∣∣2

for every smooth f : R2 → R.

(2) There is a constant K > 0 such that
∣∣Y (n)

a

∣∣ ≤ K a.s. for every n and every

a ∈ G(n).
(3) For some δ ∈ (0, 1], supn∈N maxa∈G(n) E

∣∣Y (n)
a

∣∣2+δ
< ∞, and

∑∞
n=1

∣∣G(n)
∣∣−δ/2

< ∞.

(4) For some δ ∈ (0, 1], supn∈N maxa∈G(n) E
∣∣Y (n)

a

∣∣2+δ
< ∞, and p

(n)
2 → p > 0.

Then µ(n) converges to the stated limit almost surely.

We now turn to the proofs of our main results. Unsurprisingly, generalizing the
results of the last section to non-Gaussian matrix entries is achieved by using an
appropriate version of the central limit theorem to show that the eigenvalues λχ are
approximately distributed like uncorrelated Gaussian random variables. Even to
prove asymptotic results, it is necessary here to apply some quantitative version of
the central limit theorem, in order to achieve suitably uniform control over the λχ.
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The approach taken here (and earlier in Meckes (2009)) generalizes and extends
the method used by Bose and Mitra (2002), which applied a multivariate version of
the Berry–Esseen theorem and thus required the matrix entries to have uniformly
bounded third moments. Here a quantitative, multivariate version of Lindeberg’s
theorem is applied.

If f : Rd → R is bounded and Lipschitz with Lipschitz constant |f |L, its bounded
Lipschitz norm may be defined by

‖f‖BL = max{‖f‖∞ , |f |L}.
The bounded Lipschitz distance between random vectors X and Y in Rd is defined
by

dBL(X,Y ) = sup
‖f‖BL≤1

|Ef(X)− Ef(Y )| .

It is well known (see e.g. Dudley (2002, section 11.3)) that the class of bounded
Lipschitz functions is a convergence-determining class. The subclass of compactly
supported such functions is furthermore separable with respect to the sup norm
Dudley (2002, Corollary 11.2.5). Thus to show that a sequence ν(n) of probability
measures on Rd converges weakly to ν in mean, in probability, or almost surely, it
suffices to show that for each bounded Lipschitz function f , ν(n)(f) → ν(f) in the
same sense.

The following is a special case of Bhattacharya and Ranga Rao (1986, Theorem
18.1) (cf. the proof of Bhattacharya and Ranga Rao (1986, Corollary 18.2)).

Proposition 4.6. Suppose that X1, . . . , Xk are independent mean 0 random vectors

in Rd such that 1
k

∑k
j=1 Cov(Xj) = Id. For ε > 0 let

θ(ε) =
1

k

k∑

j=1

E

(
‖Xj‖2 1‖Xj‖>ε

√
k

)
.

Then

dBL


 1√

k

k∑

j=1

Xj , Z


 ≤ Cd inf

0≤ε≤1
(ε+ θ(ε)),

where Z is a standard Gaussian random vector in Rd, and Cd > 0 depends only on
d.

Proof of Theorem 4.1: Let f : C → R with ‖f‖BL ≤ 1. Observe that

Eµ(f) =
1

|G|
∑

χ∈Ĝ

Ef(λχ) =
1

|G|
∑

χ∈Ĝ

Ef

(
1√
|G|

∑

a∈G

χ(a)Ya

)
, (4.4)

where (n) superscripts have been omitted for simplicity. We consider λχ as a sum
of independent random vectors in R2 ∼= C. The relevant covariances are

Cov(χ(a)Ya) =

[
E(Reχ(a)Ya)

2 E(Reχ(a)Ya)(Imχ(a)Ya)
E(Reχ(a)Ya)(Imχ(a)Ya) E(Imχ(a)Ya)

2

]
.

The identities

(Rew)(Re z) = 1
2 Re

[
(w + w)z

]
,

(Imw)(Im z) = 1
2 Re

[
(w − w)z

]
,

(Rew)(Im z) = 1
2 Im

[
(w − w)z

]
,

(4.5)
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will be useful.
Setting w = z = χ(a)Ya for a fixed χ ∈ Ĝ,

∑

a∈G

E(Reχ(a)Ya)
2 =

∑

a∈G

[
1

2
ReE

(
χ(a)2Y 2

a + |χ(a)|2 |Ya|2
)]

=
1

2

(
|G|+ α

∑

a∈G

χ2(a)

)
=

|G|
2

(
1 + α1χ=χ

)
.

In the last step we have used that unless χ is real-valued, χ and χ are distinct
characters, and hence orthogonal in ℓ2(G). In similar fashion, we find that

Cov
(
λχ

)
=

1

|G|
∑

a∈G

Cov
(
χ(a)Ya

)
=

1

2

(
I2 + 1χ=χ

[
α 0
0 −α

])
.

Observe in particular that if α = 1 and χ is real-valued, then λχ is almost surely real,
with variance 1; in that case we treat λχ as a random variable in R, as opposed to
a random vector in R2. Proposition 4.6 and (4.1) (recalling that |χ(a)| = 1 always)

now imply that there is a sequence δn decreasing to 0 such that for each χ ∈ Ĝ,
∣∣∣∣∣Ef

(
1√
|G|

∑

a∈G

χ(a)Ya

)
− γα(f)

∣∣∣∣∣ ≤ δn

if χ is real-valued, and
∣∣∣∣∣Ef

(
1√
|G|

∑

a∈G

χ(a)Ya

)
− γC(f)

∣∣∣∣∣ ≤ δn

otherwise. Writing ν(n) = (1 − p
(n)
2 )γC + p

(n)
2 γα, by (4.4) it follows that

|Eµ(f)− ν(f)| =
∣∣∣∣∣
1

|G|
∑

χ=χ

Ef

(
1√
|G|

∑

a∈G

χ(a)Ya

)
− p2γα(f)

+
1

|G|
∑

χ6=χ

Ef

(
1√
|G|

∑

a∈G

χ(a)Ya

)
− (1 − p2)γC(f)

∣∣∣∣∣

≤ p2δn + (1 − p2)δn = δn,

(4.6)

where as above the subscripts (n) are omitted. Since p
(n)
2 → p, it follows that

ν(n) ⇒ (1− p)γC + pγα, and so Eµ(n) ⇒ (1− p)γC + pγα.

Next observe that

E
(
µ(f)

)2
=

1

|G|2
∑

χ1,χ2∈Ĝ

Ef(λχ1 )f(λχ2) =
1

|G|2
∑

χ1,χ2∈Ĝ

EF
(
(λχ1 , λχ2 )

)
, (4.7)

where F : C2 → R is defined by F (w, z) = f(w)f(z), so that ‖F‖BL ≤ 2. We now
consider (λχ1 , λχ2 ) as a sum of independent random vectors in R4. The upper-left
and lower-right 2 × 2 blocks of Cov

(
(λχ1 , λχ2)

)
are of course just Cov(λχ1 ) and

Cov(λχ2), computed above. For the off-diagonal blocks, we use w = χ1(a)Ya and
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z = χ2(a)Ya in (4.5) to obtain for example

∑

a∈G

E(Reχ1(a)Ya)(Reχ2(a)Ya) =
∑

a∈G

[
1

2
ReE

(
χ1(a)χ2(a)Y

2
a + χ1(a)χ2(a) |Ya|2

)]

=
1

2

(
α
∑

a∈G

χ1(a)χ2(a) +
∑

a∈G

χ1(a)χ2(a)

)

=
|G|
2

(
α1χ1=χ2

+ 1χ1=χ2

)
.

Similarly, it follows that the off-diagonal blocks of Cov
(
(λχ1 , λχ2 )

)
are 0 unless

χ1 = χ2 or χ1 = χ2.
Assume for now that χ1 6= χ2 and χ1 6= χ2. Applying Proposition 4.6, we now

obtain that there is a sequence δ′n decreasing to 0 such that whenever ‖f‖BL ≤ 1,
∣∣Ef(λχ1)f(λχ2 )− γα(f)

2
∣∣ ≤ δ′n

if χ1 and χ2 are both real-valued,

|Ef(λχ1)f(λχ2 )− γC(f)γα(f)| ≤ δ′n

if exactly one of χ1 and χ2 is real-valued, and
∣∣Ef(λχ1 )f(λχ2 )− γC(f)

2
∣∣ ≤ δ′n

if neither χ1 nor χ2 is real-valued. (Note that Proposition 4.6 may be applied in
the case of nonidentity covariance via a linear change of coordinates. For α < 1,
the determinant of the covariance is bounded away from zero, whereas for α = 1
the variables are real.) Given χ1, note that there are at most 2 characters χ2 which
are unaccounted for. By (4.7), it now follows that

∣∣∣Eµ(n)(f)2 − ν(n)(f)2
∣∣∣ ≤ δ′n +

2∣∣G(n)
∣∣ . (4.8)

Finally,

E

∣∣∣µ(n)(f)− ν(n)(f)
∣∣∣
2

=
[
Eµ(n)(f)2 − ν(n)(f)2

]
− 2ν(n)(f)

[
Eµ(n)(f)− ν(n)(f)

]

≤
∣∣∣Eµ(n)(f)2 − ν(n)(f)2

∣∣∣+ 2
∣∣∣Eµ(n)(f)− ν(n)(f)

∣∣∣ ,

so by (4.6) and (4.8),

µ(n)(f) →
[
(1− p)γC + pγα

]
(f)

in L2, and hence in probability. �

Proof of Theorem 4.2: The proof is analogous to that of Theorem 4.1, setting α =
0. In that case Cov(λχ) no longer depends on whether χ is real-valued, which makes

it unnecessary to assume that p
(n)
2 approaches a limit. �

Proof of Theorem 4.3: We omit (n) superscripts as before. We will assume that
p < 1; the case p = 1 (which implies that in fact p2 = 1 for sufficiently large n) is
similar and slightly simpler. Let A = {a ∈ G | a = a−1}. Since G is abelian, A is a
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subgroup of G. The restriction of a character of G to A is a character on A, which

is necessarily real-valued on A. It follows that for χ1, χ2 ∈ Ĝ,

|G|Eλχ1λχ2 =
∑

a,b∈G

χ1(a)χ2(b)EYaYb

=
∑

a∈G

χ1(a)
[(
χ2(a) + αχ2(a)

)1a 6=a−1 + βχ2(a)1a=a−1

]

=
∑

a∈G\A
χ1(a)χ2(a) + α

∑

a∈G\A
χ1(a)χ2(a) + β

∑

a∈A

χ1(a)χ2(a)

=
∑

a∈G

χ1(a)χ2(a) + α
∑

a∈G

χ1(a)χ2(a) + (β − α− 1)
∑

a∈A

χ1(a)χ2(a)

= |G|
(1χ1=χ2 + α1χ1=χ2

)
+ |A| (β − α− 1)1χ1|A=χ2|A

= |G|
(1χ1=χ2 + α1χ1=χ2 + p2(β − α− 1)1χ1|A=χ2|A

)
.

(4.9)

In particular, for χ ∈ Ĝ,

Var(λχ) = 1 + α1χ=χ + p2(β − α− 1).

Denoting

ν(n) = (1− p
(n)
2 )N

(
0, 1 + p

(n)
2 (β − α− 1)

)
+ p

(n)
2 N

(
0, 1 + α+ p

(n)
2 (β − α− 1)

)
,

it follows as in the proof of Theorem 4.1 that dBL(Eµ
(n), ν(n)) → 0, and thus that

Eµ(n) ⇒ (1− p)N
(
0, 1 + p(β − α− 1)

)
+ pN

(
0, 1 + α+ p(β − α− 1)

)
.

In this situation just the 1-dimensional case of Proposition 4.6 is necessary. Observe
also that the variances Var(λχ) are uniformly bounded away from 0 (cf. the com-
ments following the statement of the theorem.) This is necessary so that Proposition
4.6 may be applied for nonidentity covariance, via a linear change of coordinates,
and still yield error bounds δn which are uniform in f with ‖f‖BL ≤ 1.

By (4.9), if χ1 6= χ2 and χ1 6= χ2, then

Cov
(
(λχ1 , λχ2)

)
=
(
1 + p2(β − α− 1)

)
I2 + α

[1χ1=χ1 0
0 1χ2=χ2

]

+ p2(β − α− 1)1χ1|A=χ2|A

[
0 1
1 0

]
.

We consider separately the cases p = 0 and p > 0. If p = 0, then when χ1 6= χ2

and χ1 6= χ2, we have

Cov
(
(λχ1 , λχ2 )

)
=

[
1 + α1χ1=χ1

0
0 1 + α1χ2=χ2

]
+ o(1).

From here the argument is completed as in the proof of Theorem 4.1.

Suppose now that p > 0. Given χ1 ∈ Ĝ, by Lemma 2.3 there are exactly 1
p2

values of χ2 ∈ Ĝ with χ1|A = χ2|A. Therefore,

Cov
(
(λχ1 , λχ2)

)
=
(
1 + p2(β − α− 1)

)
I2 + α

[1χ1=χ1
0

0 1χ2=χ2

]

for all but a negligible fraction of pairs χ1, χ2 ∈ Ĝ. The argument is again completed
as in the proof of Theorem 4.1. �
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Proof of Theorem 4.4: The proof is analogous to that of Theorem 4.3, setting α = 0
and β = 1. In that case Cov(λχ1 , λχ2) = 1χ1=χ2 , so it is unnecessary to assume

that p
(n)
2 approaches a limit. �

Proof of Theorem 4.5: (1) The Poincaré inequality assumption and indepen-
dence imply an exponential concentration property for the family of eigen-

values
{
λχ | χ ∈ Ĝ(n)

}
. In particular, combining Corollaries 5.7 and 3.2 of

Ledoux (2001), it follows that for each L-Lipschitz F : ℓ2(G(n)) → R,

P

[∣∣∣F
(
Y (n)

)
− EF

(
Y (n)

)∣∣∣ ≥ t
]
≤ 2e−ct/

√
KL

for each t > 0, where c > 0 is some absolute constant and Y (n) is shorthand

for
(
Y

(n)
a

)
a∈G(n) . Now for a 1-Lipschitz f : C → R and k ∈ N,

∣∣∣∣∣∣
1

k

k∑

j=1

f(wj)−
1

k

k∑

j=1

f(zj)

∣∣∣∣∣∣
≤ 1

k

k∑

j=1

|wj − zj| ≤

√√√√1

k

k∑

j=1

|wj − zj |2

by the Cauchy–Schwarz inequality. Combining this with Lemma 2.1(2) it

follows that µ(n)(f) is
∣∣G(n)

∣∣−1/2
-Lipschitz as a function of Y (n), and so

P

[∣∣∣µ(n)(f)− Eµ(n)(f)
)∣∣∣ ≥ t

]
≤ 2e

−ct
√
|G(n)|/K .

Combined with the already known convergence in mean and the Borel–
Cantelli lemma, this implies almost sure convergence of µ(f).

(2) The proof is similar to the previous part, using instead Talagrand’s convex-
distance concentration inequality for independent bounded random vari-
ables Talagrand (1995, Theorem 4.1.1) (see e.g. Meckes (2004, Corollary
4) for an explicit statement of a version that applies directly to complex
random variables), cf. the proof of Meckes (2009, Theorem 2).

(3) The stated Lyapunov-type assumption yields upper bounds on all the δn

quantities in the proofs above of order
∣∣G(n)

∣∣−δ/2
for 0 < δ ≤ 1 (cf. Bhat-

tacharya and Ranga Rao (1986, Corollary 18.3)). Thus the assumption

that
∑∞

n=1

∣∣G(n)
∣∣−δ/2

allows the Borel–Cantelli lemma to be applied again.

(4) The assumption that p > 0 implies that
∣∣G(n)

∣∣ actually grows exponentially:

since p
(n)
2 is always the reciprocal of an integer (by Lagrange’s theorem

about the orders of subgroups of finite groups), p
(n)
2 → p > 0 implies that

p
(n)
2 is eventually constant. By the classification of finite abelian groups,

G ∼=




m∏

j=1

Z2kj


×H,

where m ≥ 0, kj ≥ 1 for each j, and each nonidentity element of H has odd
order. (For simplicity of notation, we are again suppressing the dependence
of all these on n.) In this notation, the number of a ∈ G such that a = a−1 is
2m, so that |G| = 2m/p2. The hypothesis that

∣∣G(n)
∣∣ is strictly increasing

thus implies that m is eventually strictly increasing, and hence
∣∣G(n)

∣∣ is
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eventually exponentially increasing. Therefore the previous part of the
theorem applies. �
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