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Abstract. In this article we continue the study of the quenched distributions of
transient, one-dimensional random walks in a random environment. In a previous
article we showed that while the quenched distributions of the hitting times do not
converge to any deterministic distribution, they do have a weak weak limit in the
sense that - viewed as random elements of the space of probability measures - they
converge in distribution to a certain random probability measure (we refer to this
as a weak weak limit because it is a weak limit in the weak topology). Here, we
improve this result to the path-valued process of hitting times. As a consequence,
we are able to also prove a weak weak quenched limit theorem for the path of the
random walk itself.
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1. Introduction and Notation

A random walk in a random environment (RWRE) is a very simple model for
random motion in a non-homogeneous random medium. A nearest-neighbor RWRE
on Z may be described as follows. Elements of the set Ω = [0, 1]Z are called
environments since they can be used to define the transition probabilities for a
Markov chain. That is, for any ω = {ωx}x∈Z ∈ Ω and any z ∈ Z, let Xn be a
Markov chain with law P z

ω given by P z
ω(X0 = z) = 1 and

P z
ω(Xn+1 = y |Xn = x) =











ωx if y = x+ 1

1− ωx if y = x− 1

0 otherwise.

Let Ω be endowed with the natural cylindrical σ-field, and let P be a probability
measure on Ω. Then, if ω is a random environment with distribution P , then P z

ω

is a random probability measure and is called the quenched law of the RWRE. By
averaging over all environments we obtain the averaged law of the RWRE

P
z(·) =

∫

Ω

P z
ω(·)P (dω).

For ease of notation, the quenched and averaged laws of the RWRE started at z = 0
will be denoted by Pω and P, respectively. Expectations with respect to P , Pω and
P will be denoted by EP , Eω and E, respectively.

Throughout this paper we will make the following assumptions on the distribu-
tion P on environments.

Assumption 1. The environments are i.i.d. That is, {ωx}x∈Z is an i.i.d. sequence
of random variables under the measure P .

Assumption 2. The expectation EP [log ρ0] is well defined and EP [log ρ0] < 0. Here
ρi = ρi(ω) =

1−ωi

ωi
, for all i ∈ Z.

Assumption 3. The distribution of log ρ0 is non-lattice under P , and there exists a
κ > 0 such that EP [ρ

κ
0 ] = 1 and EP [ρ

κ
0 log ρ0] <∞.

From Solomon’s seminal paper on RWRE Solomon (1975), it is well known
that Assumptions 1 and 2 imply that the RWRE is transient to +∞; that is,
P(limn→∞Xn = ∞) = 1. Moreover, Solomon showed that there exists a law of large
numbers in the sense that there exists a constant vP such that limn→∞Xn/n =
vP , P-a.s. Solomon also showed that the limiting velocity vP is non-zero only if
EP [ρ0] < 1, which is equivalent to κ > 1 when Assumption 3 is in effect as well.
Assumption 3 was used by Kesten, Kozlov, and Spitzer in their analysis of the
averaged limiting distributions for transient one-dimensional RWRE Kesten et al.
(1975). The parameter κ in Assumption 3 determines the magnitude of centering
and scaling as well as the type of distribution obtained in the limit. Define the
hitting times of the RWRE by

Tx = inf{n ≥ 0 : Xn = x}, x ∈ Z,
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and for κ ∈ (0, 2) define the properly centered and scaled versions of the hitting
times and location of the RWRE by

tn =











Tn

n1/κ κ ∈ (0, 1)
Tn−nD(n)

n κ = 1
Tn−n/vP

n1/κ κ ∈ (1, 2)

and zn =















Xn

nκ κ ∈ (0, 1)
Xn−δ(n)

n/(A log n)2 κ = 1
Xn−nvP

v
1+1/κ
P n1/κ

κ ∈ (1, 2),

(1.1)

where in the case κ = 1, A > 0 is a certain constant, and D(n) and δ(n) are certain
functions satisfying D(n) ∼ A logn and δ(n) ∼ n/(A logn), respectively. Also,
let Lκ,b denote the distribution function of a totally skewed to the right stable
random variable with index κ ∈ (0, 2), scaling parameter b > 0, and zero shift; see
Samorodnitsky and Taqqu (1994). The following averaged limiting distribution for
RWRE was first proved in Kesten et al. (1975).

Theorem 1.1. Let Assumptions 1 - 3 hold, and let κ ∈ (0, 2). Then, there exists
a constant b > 0 such that for any x ∈ R,

lim
n→∞

P(tn ≤ x) = Lκ,b(x), x ∈ R ,

and

lim
n→∞

P(zn ≤ x) =

{

1− Lκ,b(x
−1/κ) for x > 0 if κ ∈ (0, 1)

1− Lκ,b(−x) for x ∈ R if κ ∈ [1, 2).

Remark 1.2. The cases κ = 2 and κ > 2 were also considered in Kesten et al.
(1975), but since our main results are for κ ∈ (0, 2) we will limit our focus to these
cases. We note, however, that when κ ≥ 2 the averaged limiting distributions for
the hitting times and the location of the RWRE are Gaussian.

It is important to note that the limiting distributions in Theorem 1.1 are for the
averaged measure P. However, for certain applications the quenched measure Pω

may be more applicable (e.g., for repeated experiments in a fixed non-homogeneous
medium), and one naturally wonders if there is a quenched analog of Theorem 1.1.
Unfortunately, it was shown in Peterson and Zeitouni (2009) and Peterson (2009)
that there is no such strong quenched limiting distribution. That is, for almost
every fixed environment ω, there is no centering and scaling (or even environment-
dependent centering and scaling) for which the hitting times or location of the
RWRE converge in distribution under Pω .

The negative results of Peterson and Zeitouni (2009) and Peterson (2009) were
recently clarified by showing that quenched limiting distributions do exist in a weak
sense (Peterson and Samorodnitsky, 2010; Dolgopyat and Goldsheid, 2012; Enriquez
et al., 2010). Let M1(R) be the space of probability measures on R equipped with
the topology of convergence in distribution. Then, since the environment ω is a
random variable, the quenched distribution µn,ω = Pω(tn ∈ ·) is an M1(R)-valued
function of that random variable. This function can be easily shown to be mea-
surable, hence µn,ω is itself a random variable, namely a M1(R)-valued random
variable. It was shown in Peterson and Samorodnitsky (2010) that there exists a
family of M1(R)-valued random variables (πλ,κ) such that µn,ω =⇒ πλ,κ for some
λ > 0, where =⇒ denotes weak convergence of M1(R)-valued random variables1.

1Throughout the paper, if (Zn), Z are random variables in some space Ψ, then Zn =⇒ Z will
denote weak convergence (i.e., convergence in distribution) of Ψ-valued random variables.
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We will refer to such limits as weak weak quenched limits since the quenched dis-
tribution converges weakly with respect to the weak topology on M1(R). Similar
results were obtained independently in Dolgopyat and Goldsheid (2012) and En-
riquez et al. (2010).

In Peterson and Samorodnitsky (2010), this weak weak quenched limiting dis-
tribution for the hitting times was also used to obtain a result on the quenched
distribution of the location of the RWRE. It was shown that

Pω(zn ≤ x) =⇒
{

πλ,κ[x
−1/κ,∞) for x > 0 if κ ∈ (0, 1)

πλ,κ[−x,∞) for x ∈ R if κ ∈ [1, 2),
(1.2)

and here =⇒ denotes weak convergence of R-valued random variables. Note that
this is a weaker statement than the quenched limit that was obtained for the hit-
ting times. Unfortunately, weak convergence of all one-dimensional projections of a
random probability measure is not enough to specify the weak limit of the random
probability measure. For example, suppose that κ ∈ (0, 1). If σλ,κ is the trans-
formation of the random probability measure πλ,κ defined by letting σλ,κ(−∞, x]
equal the right hand side of (1.2), one is tempted to guess that Pω(zn ∈ ·) =⇒ σλ,κ
in the sense of weak convergence of random probability measures. However, it can
be seen from our results below that this is not true (see Corollary 1.8).

1.1. Main Results. The original goal of the current paper was to obtain a full weak
limit for the random probability measure Pω(zn ∈ ·). However, it turned out to
be necessary to obtain a weak limit for not just the quenched distribution of the
hitting Tn but also for the quenched distribution of the path process of the sequence
of hitting times. This result, in turn leads to not only a weak limit for the quenched
distribution of Xn but also to the weak limit of the quenched distribution of the
entire path of the RWRE, as we will see in the sequel.

To begin, let D∞ be the space of càdlàg functions (continuous from the right
with left limits) on [0,∞). We will equip D∞ with the M1-Skorohod metric dM1

∞

(instead of the more standard and slightly stronger J1-Skorohod metric dJ1
∞ ; the

definitions of the Skorohod metrics are given in Section 3). Let M1(D∞) be the
space of probability measures on D∞ equipped with the topology of weak conver-
gence induced by the M1-metric dM1

∞ on D∞. Since (D∞, d
M1
∞ ) is a Polish space,

this topology is equivalent to topology induced by the Prohorov metric ρM1 (see
Section 3 for a precise definition).

For any realization of the random walk and ε > 0, let Tε ∈ D∞ be defined by

Tε(t) =











ε1/κTt/ε κ ∈ (0, 1)

ε(Tt/ε − t/εD(1/ε)) κ = 1

ε1/κ(Tt/ε − t/(εvP )) κ ∈ (1, 2)

(1.3)

(here and in the sequel we define hitting times of non-integer points by Tx = T⌊x⌋.)
In the case κ = 1 the function D is the function in (1.1) extended to all x > 0; we
will define it explicitly in Section 4. It is easy to see that, for each environment
ω and any ε > 0, Tε is a well-defined D∞-valued random variable; we denote by
mε,ω the quenched law of Tε on D∞. This law is a measurable function of the
environment, hence a M1(D∞)-valued random variable. We wish to show that this
random variable converges weakly as ε→ 0. In order to identify the limit we need
to introduce additional notation.
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Let Mp((0,∞]×[0,∞)) be the space of Radon point processes on (0,∞]×[0,∞).
These are point processes assigning finite mass to [ε,∞]× [0, T ] for any ε > 0 and
T <∞. The topology of vague convergence on this space is metrizable, and converts
Mp((0,∞] × [0,∞)) into a complete separable metric space; see Resnick (2008,
Proposition 3.17). We denote by Mf

p((0,∞] × [0,∞)) the subset of Mp((0,∞] ×
[0,∞)) of point processes that do not put any mass on points with infinite first
coordinate. Let ~τ = {τi}i≥1 be a sequence of i.i.d. standard exponential random
variables. For a point process ζ =

∑

i≥1 δ(xi,ti) ∈ Mf
p((0,∞] × [0,∞)) and δ > 0

we define a stochastic process (random path) Wδ(ζ, ~τ ) with sample paths in D∞

by

Wδ(ζ, ~τ )(t) =
∑

i≥1

xiτi1{xi>δ,ti≤t}.

We also let

W (ζ, ~τ )(t) =

{

∑

i≥1 xiτi1{ti≤t} if the sum is finite

0 otherwise.
(1.4)

Remark 1.3. The notation Wδ(ζ, ~τ ) and W (ζ, ~τ ) is somewhat misleading since the
actual definitions depend on the (measurable) ordering chosen for the points of ζ.
Since ~τ is an i.i.d. sequence of random variables, the choice of ordering will not
affect the laws of Wδ(ζ, ~τ ) and W (ζ, ~τ ), and we are only concerned with the laws
of these processes.

It is clear that limδ→0Wδ(ζ, ~τ ) =W (ζ, ~τ ) in D∞ for every choice of ~τ for which
W (ζ, ~τ )(t) <∞ for each t <∞. We will impose assumptions on the point processes
ζ such that this holds with probability one.

For any point process ζ such that, with probability 1, W (ζ, ~τ )(t) < ∞ for each
t < ∞, the definitions of Wδ(ζ, ~τ ) and W (ζ, ~τ ) induce in natural way probability
measures on D∞. Define functions Hδ,H : Mp((0,∞]× [0,∞)) → M1(D∞) by

Hδ(ζ)(·) = Pτ (Wδ(ζ, ~τ ) ∈ ·), and H(ζ)(·) = Pτ (W (ζ, ~τ ) ∈ ·), (1.5)

when ζ ∈ Mf
p((0,∞]× [0,∞)) and (in the case of H(ζ)) when W (ζ, ~τ )(t) <∞ for

each t < ∞ with probability 1. Otherwise we define Hδ(ζ) or H(ζ), respectively,
to be the Dirac point mass at the zero process in D∞. Here Pτ is the distribution
of the i.i.d. sequence of the standard exponential random variables ~τ = {τi}i≥1.

Before stating our theorem we need one last bit of notation. The cases κ ∈ [1, 2)
require a centering term in the limit. Thus, for any m ∈ R let ℓ(m) ∈ M1(D∞) be
the Dirac point mass measure that is concentrated on the linear path t 7→ mt. If X
is a D∞-valued random variable with distribution µ ∈ M1(D∞), then µ ∗ ℓ(−m) is
the distribution of the path {t 7→ X(t)−mt}.
Theorem 1.4. Let mε(·) = mε,ω(·) = Pω(Tε ∈ ·) be the quenched distribution of
the path Tε. For 0 < κ < 2 let λ = C0κ/ν̄, where C0 and ν̄ are given, respectively, by
(2.3) and (2.2) below. Let Nλ,κ be a Poisson point process on (0,∞]× [0,∞) whose
intensity measure puts no mass on infinite points, and is given by λx−κ−1 dx dt on
finite points. Then, mε =⇒ µλ,κ as ε→ 0 where

µλ,κ =











H(Nλ,κ) if κ ∈ (0, 1)

limδ→0 Hδ(Nλ,1) ∗ ℓ(−λ log(1/δ)) if κ = 1

limδ→0 Hδ(Nλ,κ) ∗ ℓ
(

−λδ−κ+1/(κ− 1)
)

if κ ∈ (1, 2).

(1.6)
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Remark 1.5. The limits in the definition of µλ,κ in (1.6) when κ ∈ [1, 2) are weak
limits in M1

(

(D∞, d
M1
∞ )

)

. In fact, we will see in the sequel that these limits ex-

ist even as a.s. limits in M1

(

(D∞, d
M1
∞ )

)

. Furthermore, the defintion of µλ,κ as
H(Nλ,κ) in the case κ ∈ (0, 1) is valid by the well-known fact that for each t <∞,
W (Nλ,κ, ~τ)(t) <∞ with Pτ -probability 1 for almost every realization of the Poisson
point process Nλ,κ.

As mentioned above, we will prove the existence of a weak limit for the quenched
distribution of the entire path of the RWRE. To this end, we define a centered and
scaled path of the random walk χε ∈ D∞ by

χε(t) =











εκX⌊t/ε⌋ κ ∈ (0, 1)
1

εδ(1/ε)2

(

X⌊t/ε⌋ − tδ(1/ε)
)

κ = 1

v
−1−1/κ
P ε1/κ

(

X⌊t/ε⌋ − tvP /ε
)

κ ∈ (1, 2),

(1.7)

where in the case κ = 1, δ(x) is a function that satisfies δ(x)D(δ(x)) = x+ o(1) as
x→ ∞. Here D is the same function as in (1.3). Note that, since D(x) ∼ A log x,
this implies that δ(x) ∼ x/(A log x) so that the scaling factor in the definition of χε

when κ = 1 is asymptotic to ε(A log(1/ε))2 as ε→ 0. Let pε,ω = Pω(χε ∈ ·) be the
quenched law of χε on D∞. It is a M1(D∞)-valued random variable defined on Ω.

The weak limits of pε,ω will be obtained by comparing the paths of the location
of the RWRE χε to appropriately transformed paths of the hitting times Tε. To this
end, we define two transformations of paths. Let D+

u,↑ ⊂ D∞ consist of functions

that are (weakly) monotone increasing, with x(0) ≥ 0 and limt→∞ x(t) = ∞. Define
the time-space inversion function I : D+

u,↑ → D+
u,↑ by

Ix(t) = sup{s ≥ 0 : x(s) ≤ t}, t ≥ 0, x ∈ D+
u,↑. (1.8)

Also, define the spatial reflection function R : D∞ → D∞ by Rx(t) = −x(t),
t ≥ 0, x ∈ D∞.

Theorem 1.6. (a) The following coupling results hold.

(1) If κ ∈ (0, 1), then for any s <∞

lim
ε→0

P

(

sup
t≤s

|χε(t)− ITεκ (t)| ≥ η

)

= 0, ∀η > 0.

(2) If κ = 1, then

lim
ε→0

P(dM1
∞ (χε,−T1/δ(1/ε)) ≥ η) = 0, ∀η > 0.

(3) If κ ∈ (1, 2), then

lim
ε→0

P(dM1
∞ (χε,−Tε/vP

) ≥ η) = 0, ∀η > 0.

(b) Let pε(·) = pε,ω(·) = Pω(χε ∈ ·) be the quenched distribution of the path χε,
and let µλ,κ be the random probability distribution on paths defined in (1.6). Then
pε =⇒ µλ,κ ◦I−1 as ε→ 0 if κ ∈ (0, 1) and pε =⇒ µλ,κ ◦R−1 as ε→ 0 if κ ∈ [1, 2),
weakly in M1(D∞).

Remark 1.7. Note that the nature of conversion from time to space in the limiting
random probability measure in M1(D∞) is very different in the absence of centering
term (κ ∈ (0, 1)) from the case when there is a centering term (κ ∈ [1, 2)). When
κ ∈ [1, 2) the conversion is accomplished by multiplying a random path distributed
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according to the limiting (random) measure by -1. This is, of course, very different
from the switching the time and space axes required when κ ∈ (0, 1).

Observe that, for any 0 ≤ t <∞, the map Φt : M1(D∞) → M1(R) defined by

Φt(µ)(A) = µ ({x ∈ D∞ : x(t) ∈ A}) , for any Borel A ⊂ R, (1.9)

is continuous at every µ ∈ M1(D∞) concentrated on paths continuous at t. Since
the limiting probability measures on M1(D∞) obtained in Theorem 1.6 is con-
centrated on µ with this property, the continuous mapping theorem immediately
implies the following weak weak convergence for the distributions of the location of
the random walk at fixed times.

Corollary 1.8. For 0 ≤ t < ∞ let pε;t = pε,ω;t = Pω(χε(t) ∈ ·) ∈ M1(R) be
the quenched distribution of χε(t), and let νλ,κ be the limiting element of M1(D∞)
given in Theorem 1.6. Then pε;t =⇒ Φt(νλ,κ) weakly in M1(R).

Theorems 1.4 and 1.6 imply the following corollaries on the convergence of Tε

and χε under the averaged measure P.

Corollary 1.9. For any κ ∈ (0, 2), the hitting time paths Tε, viewed as random
elements of (D∞, d

M1
∞ ), converge weakly under the averaged measure P. Further-

more,

(1) if κ ∈ (0, 1), the limit is a κ-stable Lévy subordinator;
(2) If κ ∈ [1, 2), the limit is a κ-stable Lévy process that is totally skewed to the

right. Moreover, if κ ∈ (1, 2), the limit is a strictly stable Lévy process.

Since a stable subordinator is a strictly increasing process, its inverse has con-
tinuous sample paths. Correspondingly, we can strengthen the topology on the
space D∞ when considering weak convergence of the paths of the location of the
RWRE under the average probability measure P in the case κ ∈ (0, 1). To this end,
let (D∞, d

U
∞) denote the space D∞ equipped with the topology of uniform conver-

gence on compact sets. This space is not separable, but Theorem 6.6 in Billingsley
(1999) allows us to conclude weak convergence on the ball-σ-field in that space, the
so-called weak◦ convergence. Moving from the M1 topology to the J1 topology, on
the other hand, does not cause any difficulties.

Corollary 1.10.

(1) If κ ∈ (0, 1) then the paths χε, viewed as random elements of (D∞, d
J1
∞),

converge weakly under the averaged measure P to the inverse of a κ-stable
subordinator. Furthermore, χε as random elements of (D∞, d

U
∞) equipped

with the ball-σ-field, we have weak◦ convergence to the same limit.
(2) If κ ∈ [1, 2), then the paths χε, viewed as random elements of (D∞, d

M1
∞ ),

converge weakly to a κ-stable Lévy process that is totally skewed to the left.
Moreover, if κ ∈ (1, 2), then the limit is a strictly stable Lévy process.

Remark 1.11. The statement of Corollary 1.10 in the case κ ∈ (0, 1) appeared in
Remark 2.5 in Enriquez et al. (2009). To the best of our knowledge the other
statements in Corollaries 1.9 and 1.10 are new.

Part (2) of Corollary 1.10 is an immediate consequence of the corresponding
part of Corollary 1.9, the coupling results in parts (2) and (3) of Theorem 1.6
and Theorem 3.1 in Billingsley (1999). Further, Whitt (2002, Corollary 13.6.4)
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says that the operator I from the subset D+
u,↑↑ ⊂ D+

u,↑ of strictly increasing, non-

negative, unbounded paths endowed with the dM1
∞ metric to D+

u,↑ endowed with the

dU∞ metric, is continuous. Since, in the case 0 < κ < 1, a κ-stable subordinator
is in D+

u,↑↑ with probability one, the continuous mapping theorem shows that part

(1) of Corollary 1.10 also follows from the corresponding part of Corollary 1.9.
The proof of Corollary 1.9 is also rather straightforward, but, because it intro-

duces certain key ideas and notation used later in the paper, we present the proof
here.

Proof of Corollary 1.9: Let Nλ,κ be the Poisson point process on (0,∞] × [0,∞)
defined in Theorem 1.4, and let ~τ = {τi}i≥1 be an i.i.d. sequence of standard expo-
nential random variables; we assume that Nλ,κ and ~τ are defined on two different
probability spaces, with the corresponding probability measures P and Pτ . On the
product probability space we define

Zλ,κ(t) =











W (Nλ,κ, ~τ )(t) κ ∈ (0, 1)

limδ→0Wδ(Nλ,κ, ~τ )(t)− λt log(1/δ) κ = 1

limδ→0Wδ(Nλ,κ, ~τ )(t)− λtδ1−κ/(κ− 1) κ ∈ (1, 2),

(1.10)

t ≥ 0. The definition is understood as a.s. convergence in (D∞, d
M1
∞ ) on the

product probability space. This convergence takes place by the proposition in
Section 2 of Kallenberg (1974), and it is standard to see that Zλ,κ is a κ-stable
Lévy process with the required properties of Corollary 1.9. In order to show that
the averaged distribution of Tε converges to the distribution of Zλ,κ under the
product probability measure P × Pτ , it is enough to show that P(Tε ∈ A) →
P × Pτ (Zλ,κ ∈ A) as ε → 0 for all cylindrical sets A ⊂ D∞ such that P ×
Pτ (Zλ,κ ∈ ∂A) = 0. (Recall that the Borel σ-field under all the Skorohod topologies
coincides with the cylindrical σ-field; see Theorem 11.5.2 in Whitt (2002).) Let A
be such a set. Recall that P × Pτ (Zλ,κ ∈ A) = E[µλ,κ(A)], where µλ,κ is defined
in Theorem 1.4. By Fubini’s theorem, µλ,κ(∂A) = 0 almost surely. Also, the
evaluation mapping mapping µ 7→ µ(A) on M1(D∞) is continuous on the set of
measures {µ ∈ M1(D∞) : µ(∂A) = 0}. Since the random measure µλ,κ is in this
set with probability one, and since Theorem 1.4 implies that mε,ω =⇒ µλ,κ, then
the mapping theorem implies that mε,ω(A) converges in distribution to mλ,κ(A).
Since these random variables are between 0 and 1, this implies that

lim
ε→0

P(Tε ∈ A) = lim
ε→0

EP [mε,ω(A)] = E[µλ,κ(A)] = P×Pτ (Zλ,κ ∈ A).

�

The limiting random probability measure µλ,κ is a κ-stable random element of
M1(D∞) under convolutions. That is, the convolution of two independent copies of
this random probability measure is (after re-scaling and shifting) a random prob-
ability measure with the same law. This can be seen in the same way as the
stability of the limiting random probability measures on R was checked in Peter-
son and Samorodnitsky (2010). Stability of random probability measures on D∞

does not seen to have been investigated before, but a systematic description of
infinitely divisible (in particular, stable) random probability measures on R was
given in Shiga and Tanaka (2006); we recall these notions in Section 7. The latter
paper introduced also a notion of M1(R)-valued Lévy process. If we recall the
maps Φt, 0 ≤ t < ∞, defined in (1.9), then we can define a (measurable) map



Weak quenched limits for paths 539

Φ from M1(D∞) to D∞(M1(R)) by setting Φ(µ) to be the measure-valued path
{Φt(µ), t ≥ 0}.

One would expect that a version of Theorem 1.4 would give us a convergence to a
M1(R)-valued Lévy process as well. The following corollary gives such convergence,
but only in the sense of convergence of finite dimensional distributions.

Corollary 1.12. Let µλ,κ and mε, be the random probability measures on D∞

given in Theorem 1.4, 0 < κ < 2 (so that mε =⇒ µλ,κ). Then Φ(mε) converges
weakly to Φ(µλ,κ) in the sense of finite dimensional distributions. Moreover, for
any κ ∈ (0, 2), Φ(µλ,κ) is a stable Lévy process on M1(R). It is a strictly stable
Lévy process if κ 6= 1.

Remark 1.13. One would like to improve the finite dimensional distribution conver-
gence in Corollary 1.12 to a full convergence in distribution of M1(R)-valued path
processes. Such a statement seems would require setting a topology on the space
D∞(M1(R)) of measure-valued path processes. Choosing an appropriate topology
seems to be a difficult task as neither the Skorohod J1-topology nor a natural def-
inition of the Skorohod M1-topology appear to be sufficient. This is complicated
by the fact that the mapping Φ : M∞(D∞) → D∞(M1(R)) is not continuous in
these topologies (even on the support of the limiting measure µλ,κ). These issues
are discussed further in Section 7.

2. Random Environment

It will be important for us to identify sections of the environment that contribute
the most to the distribution of the hitting times. To this end, we define the ladder
locations νk = νk(ω) of the environment by

ν0 = 0, and νk = inf







j > νk−1 :

j−1
∏

i=νk−1

ρi < 1







for k ≥ 1. (2.1)

(The ladder locations are those locations where the potential of the environment
introduced in Sinăı (1982) reaches a new minimum to the right of the origin.)
Occasionally we will denote ν1 by ν instead for compactness. Since the environment
is i.i.d., the sections of the environment {ωx : νk ≤ x < νk+1} between ladder
locations are also i.i.d. However, the environment immediately to the left of ν0 = 0
is different from the environment immediately to the left of νk for any k ≥ 1 since
∏νk−1

j=i ρj < 1 for any k ≥ 1 and 0 ≤ i < νk but it can happen that
∏−1

j=i ρj ≥ 1 for
some i < 0. Thus, the environment is not stationary under shifts of the environment
by the ladder locations. To resolve this complication we define a new measure Q
on environments by

Q(·) = P (· |R), where R =







ω :

−1
∏

j=i

ρj < 1, ∀i ≤ −1







.

It is important to note that the definition of the measure Q only affects the en-
vironment to the left of the origin. Therefore, the blocks of the environment
{ωx : νk ≤ x < νk+1} between the ladder locations are i.i.d. and have the same
distribution under both P and Q. For instance

ν̄ := EP ν1 = EQν1. (2.2)
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The measure Q is also stationary under shifts of the environment by the ladder
locations in the sense that ω has the same distribution as θνk(ω)ω under Q and
ν1(θ

νk(ω)ω) = νk+1(ω) − νk(ω). Therefore, if we let βi = βi(ω) = Eω[Tνi − Tνi−1 ]
for any i ≥ 1, it follows that {βi}i≥1 is stationary under the measure Q. The
following tail asymptotics of the βi were derived in Peterson and Zeitouni (2009)
and will be crucial throughout this paper. There exists a constant C0 > 0 such
that

Q(β1 > x) = Q(EωTν > x) ∼ C0x
−κ, as x→ ∞. (2.3)

We conclude this section with a simple lemma that will be of use later in the
paper.

Lemma 2.1. Let β̄ = EQ[β1]. If κ > 1, then β̄ = ν̄/vP .

Proof : First, note that the sequence {Eω[Ti − Ti−1]}i≥1 is ergodic under the mea-
sure P (since it represents the shifts of a fixed function of an i.i.d., hence ergodic,
sequence). Therefore, Birkhoff’s Ergodic Theorem implies that

lim
n→∞

EωTn
n

= EP [EωT1] = ET1, P -a.s. (2.4)

Since the measureQ is defined by conditioning P on an event of positive probability,
we see that this holds Q-a.s. as well. Moreover, if κ > 1, then the limiting velocity
vP = 1/ET1 > 0 (see Solomon (1975) or Zeitouni (2004) for a reference).

Secondly, note that, since the {νi − νi−1}i≥1 are i.i.d. under Q , it follows that
limn→∞ νn/n = ν̄, Q-a.s. This implies that

lim
n→∞

1

n

n
∑

i=1

βi = lim
n→∞

EωTνn
n

= lim
n→∞

EωTνn
νn

νn
n

=
ν̄

vP
, Q-a.s.

Finally, since the βi are stationary underQ, it is a consequence of Birkhoff’s Ergodic
Theorem that this nonrandom limit of 1/n

∑n
i=1 βi must coincide with EQ[β1]. �

3. Topological Generalities

3.1. Skorohod Topologies. In this section we recall the definitions of the Skorohod
J1 and M1 metrics on the space D∞, and the corresponding topologies. We also
give certain technical results that will be needed in the sequel. The details that we
omit can be found in Billingsley (1999) and Whitt (2002).

For 0 < t < ∞ the J1 and M1 Skorohod metrics on the space Dt of càdlàg
functions on [0, t] are defined as follows. Let Λt be the set of time-change functions
on [0, t] – functions that are strictly increasing and continuous bijections from [0, t]
to itself. The Skorohod J1-metric (on Dt) is defined by

dJ1
t (x, y) = inf

λ∈Λt

max

{

sup
s≤t

|λ(s) − s|, sup
s≤t

|x(λ(s)) − y(s)|
}

.

Next, recall that the completed graph of a càdlàg function x ∈ Dt is the subset
Γx ⊂ [0, t]× R defined by

Γx = {(u, v) : u ∈ [0, t], v = (1− θ)x(u−) + θx(u), for some θ ∈ [0, 1]}.
The natural order �Γx on the completed graph is given by (u1, v1) �Γx (u2, v2)
if either u1 < u2 or u1 = u2 and |v1 − x(u1−)| ≤ |v2 − x(u1−)|. A parametric
representation of the completed graph Γx is a function from [0, 1] onto Γx that is
continuous with respect to the subspace topology on Γx and non-decreasing with
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respect to the order �Γx . Let Π(x) be the set of parametric representations of Γx,
with each parametric representation given by a pair of functions u and v on [0, 1]
such that Γx = {(u(s), v(s)) : s ∈ [0, 1]}. The SkorohodM1-metric on Dt is defined
by

dM1
t (x, y) = inf

(u,v)∈Π(x), (u′,v′)∈Π(y)
max

{

sup
s∈[0,1]

|u(s)− u′(s)|, sup
s∈[0,1]

|v(s) − v′(s)|
}

.

The Skorohod J1 and M1-metrics on Dt for all finite t produce corresponding met-
rics on the space D∞ by

dJ1
∞(x, y) =

∫ ∞

0

e−t
(

dJ1
t (x(t), y(t)) ∧ 1

)

dt,

and

dM1
∞ (x, y) =

∫ ∞

0

e−t
(

dM1
t (x(t), y(t)) ∧ 1

)

dt.

Here, for x ∈ D∞, the function x(t) ∈ Dt is the restriction of x to the finite time
interval [0, t]. Using instead the uniform metric on each Dt produces the metric dU∞
on the space D∞.

The following is a list of several useful properties of the Skorohod metrics that
we will use throughout the paper; see Whitt (2002).

• dM1
∞ (x, y) ≤ dJ1

∞(x, y).
• dJ1

∞(x, y) ≤ e−s + supt≤s |x(t) − y(t)| for any 0 < s < ∞; thus uniform
convergence on compact subsets of [0,∞) implies convergence in the J1-
Skorohod metric.

• dM1
t (x, y) ≥ |x(t)− y(t)| for each 0 < t <∞.

• dJ1
∞(xn, x) → 0 if and only if dJ1

t (xn, x) → 0 for all continuity points t of x.
An analogous statement is true for the M1-Skorohod topology.

The J1 and M1-metrics generate topologies on the space of càdlàg functions. Even
though the two metrics are not complete, each of them has an equivalent metric that
is complete. Therefore, the J1 and M1 topologies are the topologies of complete
separable metric spaces.

The J1 and M1-metrics on D∞ induce in the standard way the correspond-
ing Prohorov’s metrics, ρJ1 and ρM1 on the space of Borel probability measures
M1(D∞). For example, for any µ, π ∈ M1(D∞),

ρM1(µ, π) = inf
{

δ > 0 : µ(A) ≤ π(Aδ,M1) + δ, for every Borel A ⊂ D∞

}

(recall that the J1 and M1-metrics generate the same Borel sets on D∞; these are
also the cylindrical sets). Further,

Aδ,M1 = {y : dM1
∞ (x, y) < δ, for some x ∈ A}.

Since (D∞, d
M1
∞ ) is a separable metric space, convergence in the Prohorov metric

ρM1 is equivalent to convergence in distribution in (D∞, d
M1
∞ ); see Theorem 3.2.1 in

Whitt (2002). Moreover, the space
(

M1(D∞), ρM1
)

is a complete separable metric
space (Theorem 6.8 in Billingsley, 1999).

3.2. Continuity of functionals. We proceed with two results on the continuity of
certain functionals that we will need later. We begin, by recalling the following
result from Whitt (2002) on the continuity of the composition map.
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Lemma 3.1 (Theorems 13.2.2, 13.2.3 in Whitt, 2002). The composition map ψ :
D∞×D+

∞ → D∞ defined by ψ(x, y) = x◦y is continuous on the set D∞×C+
↑↑, where

D+
∞ is the set of all nonnegative functions in D∞, and C+

↑↑ is the set of continuous,

non-negative, strictly increasing functions on [0,∞). The continuity holds whenever
either the J1-topology is used throughout, or the M1-topology is used throughout.

The composition map ψ induces a map Ψ : M1(D∞)×D+
∞ → M1(D∞) by

Ψ(µ, y)({x : x ∈ A}) = µ({x : x ◦ y ∈ A}).
Lemma 3.1 leads to the following continuity result for Ψ.

Corollary 3.2. The map Ψ is continuous on the set M1(D∞)× C+
↑↑, if the same

topology (either J1 or M1) is used throughout.

Proof : Suppose that (µn, yn) → (µ, y) ∈ M1(D∞) × C+
↑↑. By the Skorohod repre-

sentation theorem (e.g. Theorem 3.2.2 in Whitt, 2002), there are D∞-valued ran-
dom elements (Xn), X defined on a common probability space such that Xn ∼ µn

for each n, X ∼ µ, and Xn → X a.s. in the corresponding Skorohod metric. By
Lemma 3.1 we know that Xn◦yn → X◦y in the same metric. Since a.s. convergence
implies weak convergence, the claim follows. �

3.3. Deducing weak convergence of random probability measures. In order to prove
weak convergence of a sequence of random probability measures on D∞ we will
often use the coupling technique which we now describe. Suppose that µ, π ∈
M1(D∞). Then a coupling of µ and π is a probability measure θ on the product
space D∞ ×D∞ with marginals µ and π, respectively. A coupling of two random
probability measures on D∞ defined on a common probability space is a random
element of M1(D∞ × D∞) defined on the same probability space that couples
the two measures for every ω. The following simple lemma, which is a path space
extension of Lemma 3.1 in Peterson and Samorodnitsky (2010), is the key ingredient
in our approach.

Lemma 3.3. Suppose that (µn), (πn) are two sequences of random elements in
M1(D∞) defined on a common probability space with probability measure P and
expectation E. Suppose that one of the following conditions holds.

(1) limn→∞ P(ρM1(µn, πn) ≥ η) = 0, for all η > 0.
(2) For each n there exists a coupling θn of the random probability measures

µn and πn such that

lim
n→∞

E
[

θn({(x, y) : dM1
∞ (x, y) ≥ η})

]

= 0, for all η > 0.

(3) For each n there exists a coupling θn of the random probability measures
µn and πn such that

lim
n→∞

P(Eθn [d
M1
∞ (x, y)] ≥ η) = 0, for all η > 0,

where Eθn denotes expectations under the measure θn.

If µn =⇒ µ weakly in (M1(D∞), ρM1), then πn =⇒ µ weakly in (M1(D∞), ρM1).

Proof : Under condition (1) the statement follows from Theorem 3.1 in Billings-
ley (1999). Next, note that the definition of the Prohorov metric implies that if
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θn({(x, y) : dM1
∞ (x, y) ≥ η}) ≤ η then ρM1(µn, πn) ≤ η. Therefore,

P(ρM1(µn, πn) > η) ≤ P(θn({(x, y) : dM1
∞ (x, y) ≥ η}) > η)

≤ 1

η
E
[

θn({(x, y) : dM1
∞ (x, y) ≥ η})

]

.

Thus, condition (2) implies condition (1). Furthermore, condition (3) implies con-
dition (2) by Chebyshev’s inequality. �

The following lemma will allow us to reduce checking condition (3) in Lemma
3.3 to the finite time situation. We note that a similar reduction holds under the
metrics dJ1 and dU as well.

Lemma 3.4. Suppose that (µn), (πn) are two sequences of random elements in
M1(D∞) defined on a common probability space with probability measure P and
expectation E. If for each n there exists a coupling θn of the random probability
measures µn and πn such that for every 0 < t <∞

lim
n→∞

P(Eθn [d
M1
t (x(t), y(t))] ≥ η) = 0, ∀η > 0, (3.1)

then condition (3) in Lemma 3.3 holds.

Proof : By the bounded convergence theorem, (3.1) implies that

lim
n→∞

E
[

Eθn [d
M1
t (x(t), y(t))] ∧ 1

]

= 0, ∀t <∞.

By the definition of dM1
∞ , Fubini’s Theorem and dominated convergence theorem

we immediately see that

E
[

Eθn [d
M1
∞ (x, y)]

]

= E

[

Eθn

[∫ ∞

0

e−t
(

dM1
t (x(t), y(t)) ∧ 1

)

dt

]]

=

∫ ∞

0

e−tE
[

Eθn

[(

dM1
t (x(t), y(t)) ∧ 1

)]]

dt

vanishes as n→ ∞. This implies condition (3) in Lemma 3.3. �

4. Comparison with sums of exponentials

The main goal of this section is to reduce the study of the hitting time process
Tε to the study of a process Sε that is defined in terms of sums of exponential
random variables. To this end, recall the definition of the ladder locations of the
environment in (2.1) and the notation βi = βi(ω) = Eω[Tνi−Tνi−1 ] for the quenched
expectation of the time to cross from νi−1 to νi. Also, we expand the measure Pω

to include an i.i.d. sequence of standard exponential random variables (τi); it will
be used in the coupling procedure below by comparing Tνi − Tνi−1 with βiτi.

For any realization of the environment we construct random paths Uε, Sε ∈ D∞

as follows. For t ≥ 0,

Uε(t) =











ε1/κTν⌊t/ε⌋ κ ∈ (0, 1)

ε(Tν⌊t/ε⌋ − t/εD′(1/ε)) κ = 1

ε1/κ(Tν⌊t/ε⌋ − β̄t/ε) κ ∈ (1, 2),
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and

Sε(t) =











ε1/κ
∑⌊t/ε⌋

i=1 βiτi κ ∈ (0, 1)

ε(
∑⌊t/ε⌋

i=1 βiτi − t/εD′(1/ε)) κ = 1

ε1/κ(
∑⌊t/ε⌋

i=1 βiτi − β̄t/ε) κ ∈ (1, 2),

(4.1)

where D′(x) = EQ[β11{β1≤x}] ∼ C0 log x when κ = 1 and β̄ = EQ[β1] = EQ[EωTν]
when κ ∈ (1, 2).

Remark 4.1. The proof below will show that in the case κ = 1, the function D in
definition of Tε can be chosen to be D(x) = D′(x)/ν̄ (recall that ν̄ = EQ[ν1].) In
particular, the constant A in Theorem 1.1 satisfies A = C0/ν̄.

Let uε = uε,ω, sε = sε,ω ∈ M1(D∞) be the quenched distributions of Uε and Sε,
respectively. That is,

uε,ω = Pω(Uε ∈ ·), and sε,ω = Pω(Sε ∈ ·).

We view uε and sε as random elements in M1(D∞). The proof of Theorem 1.4 is
accomplished via the following two propositions. The first proposition establishes
weak convergence of sε in M1(D∞). The notation and the terminology are the
same as in Theorem 1.4.

Proposition 4.2. Let λ = C0κ, where C0 is the tail constant in (2.3). The fol-
lowing statements hold under the probability measure Q on the environments.

(1) If κ ∈ (0, 1), then sε =⇒ H(Nλ,κ).
(2) If κ = 1, then

sε =⇒ lim
δ→0

Hδ(Nλ,1) ∗ ℓ(−λ log(1/δ)).

(3) If κ ∈ (1, 2), then

sε =⇒ lim
δ→0

Hδ(Nλ,κ) ∗ ℓ(−λδ−κ+1/(κ− 1)).

The second proposition relates a weak limit of sε in M1(D∞) to the correspond-
ing weak limit of mε.

Proposition 4.3. Define λ0 ∈ C+
↑↑ by λ0(t) = t/ν̄. If sε =⇒ µ weakly in M1(D∞)

under Q, then mε =⇒ Ψ(µ, λ0) under P .

Before giving the proofs of Propositions 4.2 and 4.3, we show how they imply
Theorem 1.4.

Proof of Theorem 1.4: The proof is essentially the same, whether κ ∈ (0, 1), κ = 1,
or κ ∈ (1, 2), therefore we only spell out the details in the case κ ∈ (1, 2).

First, note that by Propositions 4.2 and 4.3 and Corollary 3.2, under the measure
P ,

mε =⇒ lim
δ→0

Ψ

(

Hδ(Nλ,κ) ∗ ℓ
(

−λδ
−κ+1

κ− 1

)

, λ0

)

.

Therefore, it is enough to show that, for any λ > 0, with λ′ = λ/ν̄,

Ψ

(

Hδ(Nλ,κ) ∗ ℓ
(

−λδ
−κ+1

κ− 1

)

, λ0

)

Law
= Hδ(Nλ′,κ) ∗ ℓ

(

−λ
′δ−κ+1

κ− 1

)

. (4.2)
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To see this, note that for any m > 0,

Ψ



Hδ





∑

i≥1

δ(xi,ti)



 ∗ ℓ(−m), λ0



 = Hδ





∑

i≥1

δ(xi,tiν̄)



 ∗ ℓ(−m/ν̄).

If
∑

i≥1 δ(xi,ti) is a Poisson point process with intensity measure λx−κ−1 dx dt, then
∑

i≥1 δ(xi,tiν̄) is a Poisson point process with intensity measure (λ/ν̄)x−κ−1 dx dt.

This implies (4.2). �

It remains to prove Propositions 4.2 and 4.3. Proposition 4.2 will be proved in
Section 5, and in the remainder of this section will focus on the proof of Proposition
4.3 which follows immediately from Lemma 3.3 and the following lemmas.

Lemma 4.4. There exists a coupling of Uε and Sε such that, for any η > 0,

lim
ε→0

Q
(

Eω[d
J1
∞(Uε, Sε)] ≥ η

)

= 0.

Under the assumption of Proposition 4.3, this lemma and part (3) of Lemma 3.3
will imply that uε =⇒ µ in M1(D∞) under Q.

Lemma 4.5. If uε =⇒ µ in M1(D∞) under Q, then mε =⇒ Ψ(µ, λ0) in M1(D∞)
under Q.

Under the assumption of Proposition 4.3, this lemma will imply that mε =⇒
Ψ(µ, λ0) in M1(D∞) under Q.

Lemma 4.6. There exists a measure P on pairs of environments (ω, ω′) such that
the marginal distributions of ω and ω′ are P and Q, respectively, and, for each
ε > 0, there exists a coupling Pε = Pε;ω,ω′ of the random measures mε,ω and mε,ω′

such that

lim
ε→0

P
(

Eε[d
U
∞(x, y)] ≥ η

)

= 0, for all η > 0.

Under the assumption of Proposition 4.3, this lemma and another appeal to part
(3) of Lemma 3.3 will imply the claim of the proposition. We proceed now to prove
the three lemmas.

Proof of Lemma 4.6: We use the same construction as in the proof of Lemma 4.2
in Peterson and Samorodnitsky (2010). First let ω and ω̃ be independent with
distributions P and Q respectively. Then, construct ω′ by letting

ω′
x =

{

ω̃x x ≤ −1

ωx x ≥ 0.

Then ω′ has distribution Q and is identical to ω on the non-negative integers. Let
P be the joint law of (ω, ω′).

Given a pair of environments (ω, ω′), we construct coupled random walks {Xn}
and {X ′

n} so that the marginal laws of {Xn} and {X ′
n} are Pω and Pω′ respectively.

We do that by coordinating all steps of the random walks to the right of 0. That
is, since ωx = ω′

x for any x ≥ 0, we require that on the respective ith visits of the
walks Xn and X ′

n to site x they both either move to the right or both move to
the left. The details of this coupling can be found in Peterson and Samorodnitsky
(2010). Let Pε = Pε;ω,ω′ denote the joint quenched law of the two random walks
coupled in this manner; the corresponding expectation is denoted by Eε = Eε;ω,ω′ .
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Let Tk, T
′
k and Tε, T

′
ε be the hitting times and the path processes of hitting times

corresponding to the random walks {Xn} and {X ′
n}, respectively. Note that

dU∞(Tε,T
′
ε) ≤ sup

t<∞
|Tε(t)− T

′
ε(t)| = ε1/κ sup

n≥1
|Tn − T ′

n|.

However, it is easy to see that the coupling of Xn and X ′
n is such that supn≥1 |Tn−

T ′
n| = |L − L′|, where L and L′ are the number of steps that the walks {Xn} and

{X ′
n}, respectively, spend to the left of 0. It is easy to see (and was shown in the

proof of Lemma 4.2 in Peterson and Samorodnitsky, 2010) that Eε;ω,ω′ |L − L′| ≤
EωL+ Eω′L′ <∞, P-a.s. Therefore, for any η > 0

lim
ε→0

P
(

Eε

[

dU∞(Tε,T
′
ε)
]

≥ η
)

≤ lim
ε→0

P
(

ε1/κEω,ω′ |L− L′| ≥ η
)

= 0.

�

Proof of Lemma 4.5: We start with a time change in the process Uε to align its
jumps with the hitting times of corresponding ladder locations in the process Tε.
To this end, define λε ∈ D+

↑ , the space of nonnegative non-decreasing functions in
D∞, by

λε(t) = εmax{k : ενk ≤ t}, t ≥ 0.

Then, the renewal theorem implies that limε→0 λε(t) = λ0(t), Q-a.s, for any fixed
t ≥ 0. Since λε is non-decreasing and λ0 is continuous and non-decreasing, the con-
vergence is uniform on compact subsets of [0,∞). Therefore, limε→0 d

J1
∞(λε, λ0) =

0, Q-a.s. Furthermore, it follows from the functional central limit theorem for
renewal sequences with a finite variance that ε−1/2(λε − λ0) converges weakly in
(D∞, J1) to a Brownian motion, as ε→ 0. See Theorem 7.4.1 in Whitt (2002).

The assumption uε =⇒ µ and Corollary 3.2 show that Ψ(uε, λε) =⇒ Ψ(µ, λ0)
under Q, so by Lemmas 3.3 and 3.4, the claim of the present lemma will follow
once we show that for every 0 < t <∞ and η > 0,

lim
ε→0

Q
(

Eω

[

dM1
t (Uε ◦ λε, Tε)

]

≥ η
)

= 0. (4.3)

To simplify the notation, we omit the superscripts in functions of the type T
(t)
ε .

Because of the centering present when κ ∈ [1, 2) but not when κ ∈ (0, 1), we treat
the two cases separately.

Case I: κ ∈ (0, 1). Note that the definition of λε implies that Uε(λε(t)) =
ε1/κTνj = Tε(t) when t = ενj . We arrange the respective parametric represen-
tations of the completed graphs of the two random functions, Uε ◦ λε and Tε, so
that at each sj = j/(k + 1) ∈ [0, 1) both parametric representations are equal, to
(

ενj, ε
1/κTνj

)

. Here k is the largest j so that νj ≤ t/ε. For sj < s < sj+1 with
j = 0, 1, . . . , k−1 we arrange the two parametric representations so that the vertical
(v) coordinates always stay the same (see Figure 4.1). Then the distance between
the corresponding points on the completed graphs on the interval in that range of
s is taken horizontally, and it is, at most, ε(νj+1 − νj). This horizontal matching
cannot, generally, be performed on the interval (sk, 1] since the two functions may
not be equal at time t. On this interval we keep horizontal (u) coordinates the
same. The distance between the corresponding points is now taken vertically, and
it is, at most, ε1/κ(Tνk+1

− Tνk). Therefore,

dM1
t (Uε ◦ λε, Tε) ≤ max

{

max
j<k

ε(νj+1 − νj), ε
1/κ(Tνk+1

− Tνk)

}

.
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ενj ενj+1

Uε(λε(t))

Tε(t)

ενj ενj+1

Vε(t)

Tε(t)

κ < 1 κ ≥ 1

Figure 4.1. A demonstration of the matching of the parameter-
izations of the completed graphs of Tε with the completed graphs
of Uε ◦ λε and Vε when κ ∈ (0, 1) and κ ∈ [1, 2), respectively.

Since k ≤ t/ε, we conclude, using stationarity of the sequence (νj+1 − νj) under Q
that for 0 < ε < 1 so small that ε(log 1/ε)2 ≤ η,

Q
(

Eω[d
M1
t (Uε ◦ λε, Tε)] ≥ η

)

≤ t

ε
Q
(

ν1 > log2(1/ε)
)

+Q
(

ε1/κβk+1 > η for t ∈ [ενk, ενk+1)
)

.

Since ν1 has some finite exponential moments (see Peterson and Zeitouni, 2009),
the first term on the right above vanishes as ε→ 0. For the second term note that
t ∈ [ενk, ενk+1) is equivalent to λε(t) = εk, hence

Q
(

ε1/κβk+1 > η for t ∈ [ενk, ενk+1)
)

≤ Q
(

|λε(t)− t/ν̄| > ε1/4
)

+Q
(

∃k : |k − t/(ν̄ε)| ≤ ε−3/4, βk+1 > ηε−1/κ
)

≤ Q
(

|λε(t)− t/ν̄| > ε1/4
)

+ 2ε−3/4Q(β1 > ηε−1/κ),

using the stationarity of the (βk) under Q in the last inequality. The functional
central limit theorem for renewal sequences implies that the first probability on the
right vanishes as ε → 0. The second term also vanishes as ε → 0 by the tail decay
(2.3) of β1. This finishes the proof of (4.3) in the case κ ∈ (0, 1).

Case II: κ ∈ [1, 2). To overcome the difficulty of matching the centering terms
of Uε ◦ λε and Tε we define Vε ∈ D∞ by

Vε(t) = ε1/κTν⌊λε(t)/ε⌋
−
{

tD(1/ε) κ = 1

(t/vP )ε
−1+1/κ κ ∈ (1, 2).

Vε is defined so that the hitting times portion is the same as in Uε ◦ λε while the
linear centering is the same as in Tε.

Since the only difference between Uε ◦ λε and Vε is in the centering term, we
have for any t <∞

dM1
t (Uε ◦ λε, Vε) ≤ sup

t′≤t
|λε(t′)− t′/ν̄|

{

D′(1/ε) κ = 1

ε−1+1/κβ̄ κ ∈ (1, 2),
(4.4)

using D′(1/ε) = ν̄D(1/ε) when κ = 1 and β̄ = ν̄/vP when κ ∈ (1, 2). Recall that
the random element of Dt, t

′ 7→ ε−1/2(λε(t
′)−t′/ν̄), converges weakly in (Dt, J1) to
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Brownian motion, which is a continuous process. Every continuous function in Dt

is a continuity point of the mapping x 7→ supt′≤t |x(t′)| from Dt to R. Therefore,
we can use the continuous mapping theorem to show that the term in the right
hand side of (4.4) converges to 0 in Q-probability as ε → 0, by noticing that both
D′(1/ε) (when κ = 1) and ε−1+1/κ (when κ ∈ (1, 2)) are o(ε−1/2). Therefore, in
order to prove (4.3) it is enough to show that for every 0 < t <∞ and η > 0,

lim
ε→0

Q
(

Eω

[

dM1
t (Vε,Tε)

]

> η
)

= 0. (4.5)

The proof of (4.5) is very similar to the proof of (4.3) when κ ∈ (0, 1). Indeed,
note that Vε(t) = Tε(t) whenever t = ενj for some j. Again, we arrange the respec-
tive parametric representations of the completed graphs of the two random functions
so that, for k being the largest j so that νj ≤ t/ε, both parametric representations

are equal, to
(

ενj , ε
1/κTνj

)

at sj = j/(k + 1), j = 0, 1, . . . , k. For sj < s < sj+1

with j = 0, 1, . . . , k − 1 the two parametric representation can be chosen in such a
way that the line connecting the two corresponding points is always parallel to the
segment, connecting the points (ενj ,Vε(ενj)) and (ενj+1,Vε(ενj+1−)). See Figure
4.1 for a visual representation of this matching. In this case the distance between
the two corresponding points does not exceed the length of the above segment,
which is shorter than ε1/2(νj+1 − νj) for ε small enough. As in the case κ ∈ (0, 1),
on the interval (sk, 1] we keep horizontal (u) coordinates of the two parametric
representations the same. Overall, we obtain the bound

dM1
t (Vε, Tε) ≤ max

{

ε1/2 max
j≤k

(νj+1 − νj), ε
1/κ(Tνk+1

− Tνk)

}

.

From here we proceed as in the case κ ∈ (0, 1) above. �

Proof of Lemma 4.4: By Lemma 3.4 it is enough to show that for each 0 < s <∞
and η > 0,

lim
ε→∞

Q

(

Eω

[

sup
t≤s

|Uε(t)− Sε(t)|
]

≥ η

)

= 0.

Since both Uε and Sε are piecewise linear with the same slope between times t ∈ εZ,

sup
t≤s

|Uε(t)− Sε(t)| = ε1/κ max
k≤⌈s/ε⌉

∣

∣

∣

∣

∣

Tνk −
k
∑

i=1

βiτi

∣

∣

∣

∣

∣

.

Now, it is easy to see that Mk = Tνk −
∑k

i=1 βiτi is a martingale under Pω. There-
fore, by the Cauchy-Schwartz and Lp-maximum inequalities for martingales,

Eω

[

sup
t≤s

|Uε(t)− Sε(t)|
]

≤
(

Eω

[

sup
t≤s

|Uε(t)− Sε(t)|2
])1/2

≤ ε1/κ
(

4Eω

[

M2
⌈s/ε⌉

])1/2

= 2ε1/κ



Varω



Tν⌈s/ε⌉ −
⌈s/ε⌉
∑

i=1

βiτi









1/2

.
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Therefore,

Q

(

Eω

[

sup
t≤s

|Uε(t)− Sε(t)|
]

≥ η

)

≤ Q



4ε2/κVarω



Tν⌈s/ε⌉ −
⌈s/ε⌉
∑

i=1

βiτi



 ≥ η2



 .

(4.6)
In the proof of Lemma 4.4 in Peterson and Samorodnitsky (2010), a natural coupling
of τi and Tνi − Tνi−1 was constructed so that for any η > 0,

lim
n→∞

Q

(

n−2/κ Varω

(

Tνn −
n
∑

i=1

βiτi

)

≥ η

)

= 0.

Applying this to (4.6) completes the proof of the lemma. �

5. Weak weak quenched limits for Sε

In this section we prove Proposition 4.2. For any environment ω and ε > 0,
define a point process by

Nε =
∑

i≥1

δ(ε1/κβi, εi).

We view Nε as a random element of Mp((0,∞]× [0,∞)). Recalling the definitions
of H in (1.5) and Sε in (4.1), we see that the quenched law of Sε satisfies

sε =











H(Nε) κ ∈ (0, 1)

H(Nε) ∗ ℓ(−D′(1/ε)) κ = 1

H(Nε) ∗ ℓ(−β̄ε−1+1/κ) κ ∈ (1, 2).

(5.1)

The key to the proof of Proposition 4.2 is the following lemma which shows weak
convergence of the point process Nε.

Lemma 5.1. Under the measure Q, as ε→ 0, the point process Nε converges weakly
in the space Mp((0,∞]× [0,∞)) to a non-homogeneous Poisson point process Nλ,κ

with intensity measure λx−κ−1dx dt. Moreover, λ = C0κ, where C0 is the tail
constant in (2.3).

Proof : The idea of the proof is similar to that of the proof of Proposition 5.1 in
Peterson and Samorodnitsky (2010). It was shown in the above proof that for 0 <

ε < 1 there is a stationary under Q sequence of random variables
(

β
(ε)
i , i = 1, 2, . . .

)

on Ω such that β
(ε)
i and β

(ε)
j are independent if |i − j| > ε−1/2, and such that, for

some C,C′ > 0,

Q
(∣

∣

∣β1 − β
(ε)
1

∣

∣

∣ > e−ε−1/4
)

≤ Ce−C′ε−1/2

, 0 < ε < 1 . (5.2)

We define an approximating point process by

N (1)
ε =

∑

i≥1

δ
(ε1/κβ

(ε)
i , εi)

, 0 < ε < 1 ,

and proceed by proving the convergence

N (1)
ε =⇒ Nλ,κ weakly in Mp((0,∞]× [0,∞)) (5.3)

as ε→ 0, under the measure Q.
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We start by considering measurable functions f : (0,∞] × [0,∞) → R+ of the
form

f(x, t) =

k
∑

i=1

fi(x)1[ai−1,ai)(t), (x, t) ∈ (0,∞]× [0,∞) , (5.4)

where k = 1, 2, . . ., fi : (0,∞] → R+, i = 1, . . . , k are continuous functions that
vanish for all 0 < x < δ for some δ > 0, and are Lipschitz on the interval (δ,∞),
and 0 = a0 < a1 < . . . < ak <∞. We will prove that for such a function,

lim
ε→0

EQ

[

e−N(1)
ε (f)

]

= exp

{

−
k
∑

i=1

(ai − ai−1)

∫ ∞

0

(1 − e−fi(x))λx−κ−1 dx

}

. (5.5)

To this end we define, as in Peterson and Samorodnitsky (2010), for 0 < τ < 1,

Kε(τ) = card
{

i = 1, . . . , ⌊ak/ε⌋ : both β
(ε)
i > δε−1/κ and β

(ε)
j > δε−1/κ

for some i+ 1 ≤ j ≤ i+ τ/ε, j ≤ ak/ε.
}

;

as in the above reference we have

lim
τ→0

lim sup
ε→0

Q(Kε(τ) > 0) = 0. (5.6)

Define random sets

D(j)
ε = {aj−1/ε < i < aj/ε : β

(ε)
i > δε−1/κ}, j = 1, . . . , k,

so that

EQ

[

e−N(1)
ε (f)

]

= EQ exp







−
k
∑

j=1

∑

i∈D
(j)
ε

fj
(

ε1/κβ
(ε)
i

)







= EQ



exp







−
k
∑

j=1

∑

i∈D
(j)
ε

fj
(

ε1/κβ
(ε)
i

)







1
(

Kε(τ) = 0
)





+ EQ



exp







−
k
∑

j=1

∑

i∈D
(j)
ε

fj
(

ε1/κβ
(ε)
i

)







1
(

Kε(τ) > 0
)





:= H(1)
ε +H(2)

ε .

It follows from (5.6) that the term H
(2)
ε is negligible as ε → 0 and then τ → 0.

Furthermore, given the event {Kε(τ) = 0}, for a fixed 0 < τ < 1 and ε small enough,

the points in the random set Dε := ∪jD
(j)
ε are separated by more than ε−1/2, so

that, given also the set Dε, the random variables β
(ε)
i , i ∈ Dε are independent, each

one with the conditional distribution of β
(ε)
1 given β

(ε)
1 > δε−1/κ. Since for every

j = 1, . . . , k,

EQ

(

exp
{

−fj
(

ε1/κβ
(ε)
1

)}∣

∣β
(ε)
1 > δε−1/κ

)

→
∫ ∞

1

e−fj(δt)κt−(κ+1) dt,
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the claim (5.5) will follow once we check that

exp
{

−C0δ
−κ

k
∑

j=1

(aj − aj−1)(1 − αj)
}

≤ lim
τ→0

lim inf
ε→0

EQ





k
∏

j=1

α
cardD(j)

ε

j

∣

∣

∣Kε(τ) = 0





= lim
τ→0

lim sup
ε→0

EQ





k
∏

j=1

α
cardD(j)

ε

j

∣

∣

∣Kε(τ) = 0





≤ exp
{

−C0δ
−κ

k
∑

j=1

(aj − aj−1)(1− αj)
}

for any 0 < αj < 1, j = 1, . . . , k. This, however, can be proved in the same way as
(48) was proved in Peterson and Samorodnitsky (2010).

In order to prove weak convergence in (5.3), it is enough to prove that for any
Lipschitz continuous function f : (0,∞]×[0,∞) → R+ with support in [δ,∞]×[0, a]
for some 0 < δ, a <∞,

lim
ε→0

EQ

[

e−N(1)
ε (f)

]

= exp

{

−
∫ ∞

0

∫ ∞

0

(1− e−f(x,t))λx−κ−1 dx dt

}

; (5.7)

see Resnick (2008) and Remark 5.2 in Peterson and Samorodnitsky (2010). To this
end, for m = 1, 2, . . . we define

fj(x) = f(x, ja/m), x ∈ (0,∞], j = 1, . . . ,m,

and

f̃(x, t) =

k
∑

j=1

fj(x)1[(j−1)a/m,ja/m)(t), (x, t) ∈ (0,∞]× [0,∞) .

Note that |f(x, t) − f̃(x, t)| ≤ La/m for all finite (x, t), where L is the Lipschitz
constant of f . Therefore,

∣

∣

∣EQ

[

e−N(1)
ε (f)

]

− EQ

[

e−N(1)
ε (f̃)

]∣

∣

∣ ≤ La

m
EQ

[

N (1)
ε

(

[δ,∞]× [0, a]
)

]

.

Notice that, by stationarity,

EQ

[

N (1)
ε

(

[δ,∞]× [0, a]
)

]

≤ aε−1Q
(

β
(ε)
1 > δε−1/κ

)

,

which, by (2.3) and (5.2), remains bounded as ε→ 0. Since the function f̃ is of the
type (5.4), it follows from (5.5) that

lim
ε→0

EQ

[

e−N(1)
ε (f̃)

]

= exp

{

−
∫ ∞

0

∫ ∞

0

(1 − e−f̃(x,t))λx−κ−1 dx dt

}

.

This proves (5.7) (and, hence, also (5.3)). It follows by (5.2) and the Lipschitz
property that for any function f as in (5.7) we also have

lim
ε→0

EQ

[

e−Nε(f)
]

= exp

{

−
∫ ∞

0

∫ ∞

0

(1− e−f(x,t))λx−κ−1 dx dt

}

.

As before, this establishes the weak convergence stated in the lemma. �

We would like to use the representation (5.1) of sε, and the fact that Nε =⇒ Nλ,κ

to obtain a weak limit for sε as a random element of M1(D∞). Unfortunately, the
function H is not continuous and so we need the following lemma which shows that
the truncated function Hδ is “almost continuous”.
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Lemma 5.2. Define subsets Cδ, E ⊂ Mp((0,∞]× [0,∞)) by

Cδ = {ζ : ζ({δ,∞}× [0,∞)) = 0}
and

E = {ζ : ζ((0,∞]× {t}) ≤ 1, ∀t ∈ (0,∞)} ∩ {ζ : ζ((0,∞]× {0}) = 0}.
Then Hδ is continuous on Cδ ∩ E.

Proof : Suppose that ζn → ζ ∈ Cδ ∩ E. We will couple the paths Wδ(ζn, ~τ ) and
Wδ(ζ, ~τ ) by using the same sequence ~τ of i.i.d. standard exponential random vari-
ables. Using this coupling we will show that limn→∞Wδ(ζn, ~τ ) =Wδ(ζ, ~τ ), Pτ -a.s.
Since almost sure convergence implies weak convergence, Hδ(ζn) → Hδ(ζ).

To prove thatWδ(ζn, ~τ ) converges a.s. toWδ(ζ, ~τ ) it will be enough to show that
for every 0 < s <∞ such that Wδ(ζ, ~τ ) is continuous at s, and for every realization
~τ with finite values,

lim
n→∞

dJ1
s (Wδ(ζn, ~τ ),Wδ(ζ, ~τ )) = 0. (5.8)

To this end, take s as above. Then ζ([δ,∞] × {s}) = 0. The assumption that
ζ ∈ E implies that we may order the atoms of ζ in [δ,∞] × [0, s] so that for
M = ζ([δ,∞]× [0, s]) we have

ζ
(

· ∩ ([δ,∞]× [0, s])
)

=

M
∑

i=1

δ(xi,ti)(·), with 0 < t1 < t2 < . . . < tM < s.

Similarly, we can order the atoms of ζn in [δ,∞]× [0, s] so that forMn = ζn([δ,∞]×
[0, s]) we have

ζn
(

(· ∩ ([δ,∞]× [0, s])
)

=

Mn
∑

i=1

δ
(x

(n)
i ,t

(n)
i )

, with 0 ≤ t
(n)
1 ≤ t

(n)
2 ≤ . . . ≤ t

(n)
Mn

≤ s.

The vague convergence of ζn to ζ and the fact that ζ has no atoms on the boundary
of [δ,∞]× [0, s], imply that for n large enough Mn =M and

lim
n→∞

max
i≤M

(

|x(n)i − xi| ∨ |t(n)i − ti|
)

= 0. (5.9)

Therefore, for n sufficiently large, 0 < t
(n)
1 < t

(n)
2 < . . . < t

(n)
M < s. For such n

we define a time-change function λsn of the interval [0, s] by λsn(0) = 0, λsn(s) = s,

λsn(ti) = t
(n)
i for all i ≤ M , and extend it everywhere else by linear interpolation.

Then,

sup
t≤s

|λsn(t)− t| = max
i≤M

|t(n)i − ti|,

and, since Wδ(ζn, ~τ ) and Wδ(ζ, ~τ ) are constant between jumps,

sup
t≤s

|Wδ(ζn, ~τ)(λ
s
n(t))−Wδ(ζ, ~τ )(t)| = max

j≤M

∣

∣

∣

∣

∣

j
∑

i=1

(

x
(n)
i − xi

)

τi

∣

∣

∣

∣

∣

≤
M
∑

i=1

∣

∣

∣x
(n)
i − xi

∣

∣

∣ τi.

Therefore, for n sufficiently large,

dJ1
s (Wδ(ζn, ~τ),Wδ(ζ, ~τ )) ≤ max

{

max
i≤M

|t(n)i − ti|,
M
∑

i=1

∣

∣

∣x
(n)
i − xi

∣

∣

∣ τi

}

,

which vanishes as n → ∞ by (5.9). This completes the proof of (5.8) and thus of
the lemma. �
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The relationship between sε and Nε in (5.1) and Lemma 5.2 will allow us now
to complete the proof of Proposition 4.2.

Proof of Proposition 4.2: For δ > 0 we define a truncated version of Sε by

Sε,δ(t) = ε1/κ
⌊t/ε⌋
∑

i=1

βiτi1{ε1/κβi>δ} − tγκ,ε,δ, t ≥ 0 ,

with

γκ,ε,δ =











0 κ ∈ (0, 1)

EQ

[

β11{εβ1∈(δ,1]}

]

κ = 1

ε1/κ−1EQ

[

β11{ε1/κβ1>δ}

]

κ ∈ (1, 2).

(5.10)

Then the quenched law of Sε,δ is sε,δ = Hδ(Nε) ∗ ℓ(−γκ,ε,δ).
If Nλ,κ is the Poisson point process as in the statement of Lemma 5.1, then

P(Nλ,κ ∈ Cδ ∩ E) = 1 for any δ > 0. Thus, Lemma 5.1, Lemma 5.2, and the con-
tinuous mapping theorem imply that, under the measure Q, Hδ(Nε) =⇒ Hδ(Nλ,κ),
where λ = C0κ. Also, by (2.3) and Karamata’s theorem,

lim
ε→0

γκ,ε,δ =

{

C0 ln(1/δ) κ = 1
C0κ
κ−1δ

−κ+1 κ ∈ (1, 2).

Since the mapping from M1(D∞)× R to M1(D∞) defined by (µ, γ) 7→ µ ∗ ℓ(γ) is
continuous, we conclude that, under the measure Q,

sε,δ =⇒











Hδ(Nλ,κ) κ ∈ (0, 1)

Hδ(Nλ,κ) ∗ ℓ(−λ ln(1/δ)) κ = 1

Hδ(Nλ,κ) ∗ ℓ(−λδ−κ+1/(κ− 1)) κ ∈ (1, 2).

(5.11)

To relate (5.11) to a limit statement about sε, we use Billingsley (1999, Theorem
3.2). To this end, it is enough to show that the limit in M1

(

(D∞, d
M1
∞ )

)

lim
δ→∞











Hδ(Nλ,κ) κ ∈ (0, 1)

Hδ(Nλ,κ) ∗ ℓ(−λ ln(1/δ)) κ = 1

Hδ(Nλ,κ) ∗ ℓ(−λδ−κ+1/(κ− 1)) κ ∈ (1, 2),

exists Pτ -a.s. (5.12)

and

lim
δ→0

lim sup
ε→0

Q
(

ρM1(sε,δ, sε) ≥ η
)

= 0, ∀η > 0. (5.13)

As in the case of Lemma 3.3, (5.13) will follow from following, stronger, statement:
for every 0 < s <∞,

lim
δ→0

lim sup
ε→0

Q

(

Eω

[

sup
t≤s

|Sε,δ(t)− Sε(t)|
]

≥ η

)

= 0, ∀η > 0. (5.14)

Therefore, to complete the proof of Proposition 4.2, it remains only to prove
(5.12) and (5.14). We divide the proof of these statements into two cases: κ ∈ (0, 1)
and κ ∈ [1, 2).
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5.1. Case I: κ ∈ (0, 1). To prove (5.12) we let F1 ⊂ Mp((0,∞]× [0,∞)) be defined
by

F1 =







ζ =
∑

i≥1

δ(xi,ti) :
∑

i≥1

xi1{ti≤t} <∞, ∀t <∞







.

(Note that on the set F1, the sum in the definition ofW (ζ, ~τ ) is Pτ -a.s. finite.) Since
P(Nλ,κ ∈ F1) = 1 when κ ∈ (0, 1), it will be enough to show that Hδ(ζ) → H(ζ)
as δ → 0 for any ζ ∈ F1. Fix ζ =

∑

i≥1 δ(xi,ti) ∈ F1. For 0 < s < ∞ the obvious

coupling of W (ζ, ~τ ) and Wδ(ζ, ~τ ) gives that

sup
t≤s

|W (ζ, ~τ )(t) −Wδ(ζ, ~τ )(t)| = sup
t≤s

∣

∣

∣

∣

∣

∣

∑

i≥1

xiτi1{xi≤δ, ti≤t}

∣

∣

∣

∣

∣

∣

=
∑

i≥1

xiτi1{xi≤δ, ti≤s}.

(5.15)
Since ζ ∈ F1, finiteness of the mean of an exponential random variable shows that
the sum on the right is finite with probability one for any δ > 0. Letting δ → 0
the dominated convergence theorem shows thatWδ(ζ, ~τ ) converges almost surely to
W (ζ, ~τ ) in the space Ds in the uniform metric, hence also in theM1-metric, for any
0 < s <∞. Therefore,Wδ(ζ, ~τ ) converges almost surely toW (ζ, ~τ ) in D∞ as δ → 0
and, since a.s. convergence implies convergence in distribution, Hδ(ζ) converges to
H(ζ) in the space M1

(

(D∞, d
M1
∞ )

)

as δ → 0. This proves (5.12). Further, since
Wδ(Nε, ~τ ) = Sε,δ and W (Nε, ~τ) = Sε, we have by (5.15) with ζ = Nε,

Eω

[

sup
t≤s

|Sε,δ(t)− Sε(t)|
]

= Eω





⌊s/ε⌋
∑

i=1

ε1/κβiτi1{ε1/κβi≤δ}





= ε1/κ
⌊s/ε⌋
∑

i=1

βi1{ε1/κβi≤δ}.

By Chebyshev’s inequality and stationarity of βi under Q,

Q

(

Eω

[

sup
t≤s

|Sε,δ(t)− Sε(t)|
]

≥ η

)

= Q



ε1/κ
⌊s/ε⌋
∑

i=1

βi1{ε1/κβi≤δ} ≥ η





≤ sε1/κ−1

η
EQ

[

β11{ε1/κβ1≤δ}

]

.

Karamata’s theorem and (2.3) imply that EQ

[

βi1{ε1/κβi≤δ}

]

∼ C0κ
1−κδ

1−κε1−1/κ as
ε→ 0. Therefore,

lim
δ→0

lim sup
ε→0

Q

(

Eω

[

sup
t≤s

|Sε,δ(t)− Sε(t)|
]

≥ η

)

≤ lim
δ→0

sC0κ

η(1 − κ)
δ1−κ = 0.

This proves (5.14).

5.2. Case II: κ ∈ [1, 2). To prove (5.12), note that the right hand side of (5.12) is
the law (with respect to Pτ ) of the random element of D∞

t 7→Wδ(Nλ,κ, ~τ )(t)−
{

λt log(1/δ) κ = 1
λδ1−κt
κ−1 κ ∈ (1, 2).
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It was shown in the proof of Corollary 1.9 that this random element converges
almost surely, in the uniform metric, under the joint law P × Pτ of (Nλ,κ, ~τ ).
Therefore, convergence takes place in the M1-metric as well. Fubini’s theorem im-
plies that the convergence also holds Pτ -a.s. for almost every realization of the point
process Nλ,κ. Once again, a.s. convergence implies convergence in distribution, so
(5.12) holds.

To prove (5.14), note that the definition of γκ,ε,δ in (5.10) implies that

sup
t≤s

|Sε,δ(t)− Sε(t)|

= sup
t≤s

∣

∣

∣

∣

∣

∣

ε1/κ
⌊t/ε⌋
∑

i=1

βiτi1{ε1/κβi≤δ} − EQ[β11{ε1/κβ1≤δ}]ε
−1+1/κt

∣

∣

∣

∣

∣

∣

≤ sup
t≤s

∣

∣

∣

∣

∣

∣

ε1/κ
⌊t/ε⌋
∑

i=1

βi(τi − 1)1{ε1/κβi≤δ}

∣

∣

∣

∣

∣

∣

+ sup
t≤s

∣

∣

∣

∣

∣

∣

ε1/κ
⌊t/ε⌋
∑

i=1

{

βi1{ε1/κβi≤δ} − EQ[β11{ε1/κβ1≤δ}]
}

∣

∣

∣

∣

∣

∣

+ ε1/κEQ[β11{ε1/κβ1≤δ}],

(5.16)

where the last term comes from rounding in the number of terms in the sum. This
terms is, clearly, bounded by δ.

For βi fixed, the sum inside the supremum in the first term in (5.16) is a sum
of independent, zero-mean random variables. Thus, by the Cauchy-Schwartz and
Lp-maximum inequalities for martingales,

Eω



sup
t≤s

∣

∣

∣

∣

∣

∣

ε1/κ
⌊t/ε⌋
∑

i=1

βi(τi − 1)1{ε1/κβi≤δ}

∣

∣

∣

∣

∣

∣





≤






4Eω

∣

∣

∣

∣

∣

∣

ε1/κ
⌊s/ε⌋
∑

i=1

βi(τi − 1)1{ε1/κβi≤δ}

∣

∣

∣

∣

∣

∣

2






1/2

= 2ε1/κ





⌊s/ε⌋
∑

i=1

β2
i 1{ε1/κβi≤δ}





1/2

Therefore, for η > 0 fixed and δ sufficiently small we have

Q

(

Eω

[

sup
t≤s

|Sε,δ(t)− Sε(t)|
]

≥ η

)

≤ Q



ε2/κ
⌊s/ε⌋
∑

i=1

β2
i 1{ε1/κβi≤δ} ≥ η2/36





+Q



sup
t≤s

∣

∣

∣

∣

∣

∣

ε1/κ
⌊t/ε⌋
∑

i=1

{

βi1{ε1/κβi≤δ} − EQ[β11{ε1/κβ1≤δ}]
}

∣

∣

∣

∣

∣

∣

≥ η/3



 . (5.17)
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Notice that

lim sup
ε→0

Q



ε2/κ
⌊s/ε⌋
∑

i=1

β2
i 1{ε1/κβi≤δ} ≥ η2/36





≤ lim sup
ε→0

36sε2/κ−1

η2
EQ

[

β2
i 1{ε1/κβi≤δ}

]

=
36s

η2
C0κ

2− κ
δ2−κ,

where the last equality follows from (2.3) and Karamata’s Theorem. This vanishes
as δ → 0 since κ < 2. It remains only to show that the term in (5.17) vanishes as
first ε→ 0 and then δ → 0. A similar statement (without the supremum inside the
probability) was shown in Peterson and Samorodnitsky (2010, Lemma 5.5). One
can modify the techniques of Peterson and Samorodnitsky (2010) to give a bound
on (5.17) that vanishes as first ε → 0 and then δ → 0. Since the argument is
somewhat technical, we postpone it until Appendix A. �

6. Weak weak quenched limits for the position of the random walk

In this section we prove Theorem 1.6. We start by defining the running maximum
version of the scaled path process of the random walk χε in (1.7). For t ≥ 0,
let X∗

t = max{Xk : k ≤ t} denote the running maximum of the RWRE. The
corresponding random element in D∞ is

χ∗
ε(t) =















εκX∗
t/ε κ ∈ (0, 1)

1
εδ(1/ε)2

(

X∗
t/ε − tδ(1/ε)

)

κ = 1

v
−1−1/κ
P ε1/κ

(

X∗
t/ε − tvP /ε

)

κ ∈ (1, 2),

with the same function δ in the case κ = 1 as in (1.7). The path χ∗
ε is easier to

compare to transforms of the hitting times path Tε than the path χε is. The follow-
ing lemma shows that the quenched distributions of χε and χ∗

ε are asymptotically
equivalent, since the distance between χε and χ∗

ε is typically very small.

Lemma 6.1. For any s <∞ and η > 0,

lim
ε→0

P

(

sup
t≤s

|χε(t)− χ∗
ε(t)| ≥ η

)

= 0.

Proof : The definitions of χε and χ∗
ε imply that for all ε > 0 small enough,

sup
t≤s

|χε(t)− χ∗
ε(t)| = max

k≤s/ε
(X∗

k −Xk)











εκ κ ∈ (0, 1)
1

εδ(1/ε)2 κ = 1

ε1/κ κ ∈ (1, 2)

≤ εκ/4 max
k≤s/ε

(X∗
k −Xk).

If, for some 0 ≤ k ≤ s/ε, X∗
k −Xk ≥ ηε−κ/4, then, for some location 0 ≤ j ≤ s/ε

the random walk returns to Xj − ⌈ηε−κ/4⌉ after visiting location j. Thus, by the
stationarity of the environment under the measure P,

P

(

sup
t≤s

|χε(t)− χ∗
ε(t)| ≥ η

)

≤ P

(

max
k≤s/ε

(X∗
k −Xk) ≥ ηε−κ/4

)

≤ (1 + s/ε)P(T−⌈ηε−κ/4⌉ <∞).

Since P(T−x <∞) decays exponentially fast as x→ ∞ (see Gantert and Shi (2002,
Lemma 3.3)), the term on the right vanishes as ε→ 0. �
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We now prove Theorem 1.6. According to Lemma 6.1, we may and will replace
χε by χ∗

ε when proving the coupling part. We consider the cases κ ∈ (0, 1), κ = 1,
and κ ∈ (1, 2) separately.

6.1. Case I: κ ∈ (0, 1). We wish to compare χ∗
ε with ITεκ where I is the inversion

operator defined in (1.8). To this end, note that

X∗
t/ε = max{k ∈ Z : Tk ≤ t/ε} = sup{x ≥ 0 : T⌊x/εκ⌋ ≤ t/ε}ε−κ − 1.

Therefore, for every t ≥ 0,

χ∗
ε(t) = sup{x ≥ 0 : Tεκ(x) ≤ t} − εκ = ITεκ(t)− εκ,

which implies that supt<∞ |χ∗
ε(t) − ITεκ(t)| = εκ. Hence, we obtain the stated

coupling in Theorem 1.6. By Lemma 3.3, it remains only to show that, under the
measure P ,

mεκ ◦ I−1 =⇒ H(Nλ,κ) ◦ I−1. (6.1)

To this end, first note that I is continuous on the subset D+
↑↑ ⊂ D+

∞ of strictly
increasing functions, when the M1 topology is used both on the domain and the
range (see Whitt (2002, Corollary 13.6.4) for even topologically stronger statement).
Therefore, the mapping theorem implies that the function µ 7→ µ◦I−1 on M1(D∞)
is continuous on the subset of measures {µ ∈ M1(D∞) : µ(D+

↑↑) = 1}. In the

notation introduced in (1.10), H(Nλ,κ) = Pτ (Zλ,κ ∈ ·). Since Zλ,κ is a κ-stable

subordinator under P×Pτ , then H(Nλ,κ)(D
+
↑↑) = Pτ (Zλ,κ ∈ D+

↑↑) = 1 for almost

every realization of Nλ,κ, and so (6.1) follows from Theorem 1.4 and the continuous
mapping theorem.

6.2. Case II: κ ∈ (1, 2). We start by replacing the piecewise constant path of the
hitting times in (1.3) by a piecewise linear and continuous version via linear inter-
polation. Specifically, for x ∈ Z and θ ∈ [0, 1) we let

T̃x+θ = (1− θ)Tx + θTx+1.

Correspondingly, we will define T̃ε(t) = ε1/κ(T̃t/ε − t/(εvP )), t ≥ 0. The following

lemma shows that the M1-distance between Tε and T̃ε is typically small.

Lemma 6.2. For any η > 0, limε→0 P(d
M1
∞ (Tε, T̃ε) ≥ η) = 0.

Proof : As in Lemma 3.4, it is enough to prove that P(dM1
t (Tε, T̃ε) ≥ η) → 0 for

every 0 < t < ∞ and η > 0. We use a matching of the kind similar to that
constructed in the proof of Lemma 4.5. We will describe this matching in the
case κ ∈ (1, 2), but a similar argument works when κ = 1 or κ ∈ (0, 1). For ev-
ery k = 0, 1, 2, . . . such that εk ≤ t we arrange both parametric representations
to contain the point

(

εk, ε1/κ(Tk − k/vP )
)

. If ε(k + 1) ≤ t, then between the

points
(

εk, ε1/κ(Tk − k/vP )
)

and
(

ε(k + 1), ε1/κ(Tk+1 − (k + 1)/vP )
)

we keep the

parametrization of T̃ε at the former point until the parametrization of Tε reaches
the point

(

ε(k + 1), ε1/κ(Tk − (k + 1)/vP )
)

, at which time we complete the two
parametrizations in the interval by keeping the slope between the matched points
equal to −ε1/κ−1/vP . Clearly, within this interval the horizontal distance between
the two parametrizations is at most ε and the vertical distance is at most ε1/κ/vP .
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If εk < t < ε(k + 1), then we use the obvious vertical matching of the param-
eterizations, with equal horizontal components, and vertical components at most
ε1/κ(T⌊t/ε⌋+1 − T⌊t/ε⌋) apart. Therefore, for ε small enough

dM1
t (Tε, T̃ε) ≤ max

{

ε1/κ/vP , ε
1/κ(T⌊t/ε⌋+1 − T⌊t/ε⌋)

}

.

Since T⌊t/ε⌋+1 − T⌊t/ε⌋ has, under the measure P, the same distribution as T1 we
conclude that

lim sup
ε→0

P

(

dM1
t (Tε, T̃ε) ≥ η

)

≤ lim
ε→0

P

(

T⌊t/ε⌋+1 − T⌊t/ε⌋ ≥ ε−1/κη
)

= 0, (6.2)

as required. �

Note that x 7→ T̃x is a strictly increasing and continuous function on [0,∞).

Let φ(t) be its inverse. Then T̃φ(t) = t for all t ≥ 0. If Tn ≤ t < Tn+1 then
X∗

t = n ≤ φ(t) < n + 1, so that supt≥0 |X∗
t − φ(t)| ≤ 1. One consequence of this

comparison is that

lim
t→∞

φ(t)

t
= lim

n→∞

X∗
n

n
= vP , P-a.s. (6.3)

Next define φε(t) = εφ(t/ε) for ε > 0 and φ0(t) = vP t. Then, (6.3) implies that φε
converges pointwise to φ0 as ε → 0. Moreover, since φε and φ0 are monotone in-
creasing and φ0 is continuous, we conclude that φε converges uniformly on compact
subsets to φ0. In particular, limε→0 d

U
∞(φε, φ0) = 0, P-a.s.

Now, recalling the definition of T̃ε we obtain that

T̃ε(φε(t)) = ε1/κ(T̃φε(t)/ε − φε(t)/(εvP ))

= ε1/κ(T̃φ(t/ε) − φ(t/ε)/vP )

= −v−1
P ε1/κ(φ(t/ε)− tvP /ε)

= −v−1
P ε1/κ(X∗

t/ε − tvP /ε) + v−1
P ε1/κ(X∗

t/ε − φ(t/ε))

= −v
1/κ
P χ∗

ε(t) + v−1
P ε1/κ(X∗

t/ε − φ(t/ε)).

Since |X∗
t/ε − φ(t/ε)| ≤ 1 for all t, this implies that

dU∞(χ∗
ε, −v

−1/κ
P T̃ε ◦ φε) ≤ v

−1−1/κ
P ε1/κ. (6.4)

Next, we compare T̃ε ◦ φε with Tε ◦ φ0. To this end, let η, η′ > 0 be fixed. By
Corollary 1.9, the laws of (Tε) under P are tight in (D∞, d

M1
∞ ). Therefore, we

can choose a compact subset K ⊂ D∞ so that P(Tε ∈ K) ≥ 1 − η′ for all ε small
enough. Further, the composition function ψ(x, y) = x◦y is continuous at any point
(x, φ0) ∈ D∞ × C+

↑↑ ⊂ D∞ ×D∞. Therefore, it is uniformly continuous (with the

dM1
∞ metric on each coordinate) at the points of the compact set K×{φ0}. Choose

now δ > 0 such that dM1
∞ (x′ ◦ φ′, x ◦ φ0) < η whenever x ∈ K, dM1

∞ (x, x′) < δ, and
dM1
∞ (φ0, φ

′) < δ. Then

lim sup
ε→0

P(dM1
∞ (T̃ε ◦ φε, Tε ◦ φ0) ≥ η)

≤ lim sup
ε→0

P(Tε /∈ K) + P(dM1
∞ (Tε, T̃ε) ≥ δ) + P(dM1

∞ (φε, φ0) ≥ δ)

≤ η′,
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where the last inequality follows from our choice of the compact set K, Lemma 6.2,
and the almost sure convergence of φε to φ0. Since η′ > 0 was arbitrary, we see
that P(dM1

∞ (T̃ε ◦φε, Tε ◦φ0) ≥ η) → 0 for any η > 0. Combining this with (6.4) we
conclude that

lim
ε→0

P(dM1
∞ (χ∗

ε ,−v
−1/κ
P Tε ◦ φ0) ≥ η) = 0, ∀η > 0. (6.5)

Finally, note that the definition of Tε and φ0 imply that

v
−1/κ
P Tε(φ0(t)) = v

−1/κ
P ε1/κ(TvP t/ε − t/ε) = Tε/vP

(t),

so that (6.5) proves the coupling part of Theorem 1.6 in the case κ ∈ (1, 2). Since
mε/vP

◦R−1 is the quenched distribution of −Tε/vP
, andR is a continuous operator,

the continuous mapping theorem implies that mε ◦ R−1 =⇒ µλ,κ ◦ R−1. The
coupling now implies that we also have pε,ω =⇒ µλ,κ ◦R−1.

6.3. Case III: κ = 1. The proof here is similar to the proof in the case κ ∈ (1, 2),

so we will omit some of the details. As above, let T̃x and φ(t) be as above, so that

T̃φ(t) = t. We claim that

lim
t→∞

φ(t)

t/ log t
=

1

A
in P-probability, (6.6)

where A is the positive constant from Theorem 1.1. To see this, first note that by

Theorem 1.1, limn→∞
Tn

n log n = A in P-probability, hence also limx→∞
T̃x

x log x = A

in P-probability. Using x = φ(t) gives us

lim
t→∞

t

φ(t) log(φ(t))
= A in P-probability,

which proves (6.6).
The function δ(x) = sup{u > 0 : uD(u) ≤ x}, x > 0, satisfies δ(x) ∼ x/(A log x)

as x → ∞ and δ(x)D(δ(x)) = x + o(δ(x)) as x → ∞. We define φε ∈ D∞ by
φε(t) = φ(t/ε)/δ(1/ε). Then the asymptotics of φ from (6.6) and the asymptotics
of δ imply that for any t ≥ 0,

lim
ε→0

φε(t) = lim
ε→0

φ(t/ε)

δ(1/ε)
= t in P-probability.

Once again, since φε is non-decreasing, and the identity function is continuous,
φε converges uniformly on compact subsets (and thus also in the dJ1

∞ metric), in
P-probability, to the identity function.
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Let T̃ε(t) = ε(T̃t/ε − t/εD(1/ε)), t ≥ 0. Then

T̃δ(1/ε)−1 (φε(t)) = δ(1/ε)−1
(

T̃φε(t)δ(1/ε) − φε(t)δ(1/ε)D(δ(1/ε))
)

= δ(1/ε)−1

(

T̃φ(t/ε) −
φ(t/ε)

δ(1/ε)

(

1

ε
+ o(δ(1/ε))

))

= δ(1/ε)−1

(

t/ε−
X∗

t/ε +O(1)

δ(1/ε)

(

1

ε
+ o(δ(1/ε))

)

)

=
1

εδ(1/ε)2

(

tδ(1/ε)−X∗
t/ε

)

+ o(1)
X∗

t/ε

δ(1/ε)
+O

(

1

εδ(1/ε)2

)

= −χ∗
ε(t) + o(1)

X∗
t/ε

δ(1/ε)
+O

(

1

εδ(1/ε)2

)

,

where in the third equality we used that |φ(t)−X∗
t | ≤ 1 for all t. Since ε−1δ(1ε )

−2 ∼
A2ε log2(1/ε) → 0 as ε→ 0, while X∗

t/ε/δ(1/ε) converges in probability by Theorem

1.1, this implies that

lim
ε→0

dU∞(χ∗
ε ,−T̃δ(1/ε)−1 ◦ φε) = 0 in P-probability. (6.7)

As in case κ ∈ (1, 2) we can use the fact that φε converges to the identity function
to show that for any η > 0,

lim
ε→0

P

(

dM1
∞ (T̃δ(1/ε)−1 ◦ φε, T̃δ(1/ε)−1 ) ≥ η

)

= 0. (6.8)

Combining (6.7), (6.8) and Lemma 6.1 establishes the coupling part of Theorem
1.6, and the rest is the same as in the case κ ∈ (1, 2).

7. M1(R)-valued Stable Lévy process limits

In this section we discuss Corollary 1.12. We begin with a short proof of the
convergence of the finite dimensional distributions of Φ(mε). Let m ≥ 1 and 0 ≤
t1 < t2 < . . . < tm be given, and define Φt1,...,tm : M1(D∞) → M1(R)

m by

Φt1,t2,...,tm(µ) = (Φt1(µ),Φt2(µ), . . . ,Φtm(µ)).

It is easy to see that Φt1,t2,...,tm is continuous at every µ ∈ M1(D∞) concentrated
on paths that are continuous at ti, i = 1, 2, . . . ,m; see p. 383 in Whitt (2002).
Since mε =⇒ µλ,κ and µλ,κ is, with probability, one concentrated on paths that
are continuous at ti, i = 1, 2, . . . ,m, then the continuous mapping theorem implies
that Φt1,t2,...,tm(mε) =⇒ Φt1,t2,...,tm(µλ,κ). This proves the convergence of finite
dimensional distributions claimed in Corollary 1.12.

We now turn to the stated properties of the randommeasure-valued path Φ(µλ,κ),
namely that Φ(µλ,κ) is a stable Lévy process on M1(R). We start by recalling the
notions of stable random variables and Lévy processes on M1(R); the reader is
referred to Shiga and Tanaka (2006) for more details.

Definition 7.1. AM1(R)-valued random variable µ is a stable random variable
on M1(R) if for any n ≥ 2 there exist constants bn ∈ R and cn > 0 such that

(µ1 ∗ µ2 ∗ · · · ∗ µn) (bn + c−1
n ·) Law

= µ(·).
Here µ1, µ2, . . . µn are independent copies of µ. Moreover, if bn = 0 for every n ≥ 2,
then µ is a strictly stable random variable on M1(R).
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Definition 7.2. A M1(R)-valued stochastic process {Ξ(t)}t≥0 is a Lévy process
on M1(R) if there exists a two parameter family ofM1(R)-valued random variables
{Ξs,t}0≤s<t such that Ξ(t) = Ξ0,t and

(1) Ξ(0) = δ0 with probability one.
(2) For any n ≥ 2 and 0 = t0 < t1 < t2 < · · · < tn = t, {Ξti−1,ti}ni=1 are

independent and

Ξ(t) = Ξt0,t1 ∗ Ξt1,t2 ∗ · · · ∗ Ξtn−1,tn , almost surely.

(3) For any 0 < s < t, Ξ(t− s)
Law
= Ξs,t.

(4) For any fixed t0 ≥ 0, the process {Ξ(t)}t≥0 is continuous at t0 in probability.
(5) There is an event of probability 1 on which every path {t 7→ Ξ(t)} is in

D∞(M1(R)).

Remark 7.3. Part (2) of Definition 7.2 is a version of the independent increments
property for stochastic processes with values inM1(R) with convolution of measures
playing the role of addition. The version of the independent increments property
used in the above definition is necessary due to absence of an inverse operation to
convolution.

Definition 7.4. A Lévy process {Ξ(t)}t≥0 on M1(R) is a (strictly) stable Lévy
process on M1(R) if for every fixed t ≥ 0, Ξ(t) is a (strictly) stable random
variable on M1(R).

We are now ready to show that Φ(µλ,κ) is a stable Lévy process on M1(R) and
is strictly stable when κ 6= 1. It is easy to check that for any t ≥ 0, Φt(µλ,κ) is a
stable random variable on M1(R) and is strictly stable if κ 6= 1 (see the Remark 1.5
and the paragraph following Remark 1.6 in Peterson and Samorodnitsky, 2010), so
we will concentrate on showing that Φ(µλ,κ) is a Lévy process on M1(R).

We already know that the paths of Φ(µλ,κ) are inD∞(M1(R)); see the discussion
before Theorem 1.12. It is also obvious that Φ0(µλ,κ) = δ0 with probability one
since Nλ,κ((0,∞] × {0}) = 0 with probability one. Next, recall the stochastic
process Zλ,κ defined in (1.10). Then Φt(µλ,κ) is the distribution of Zλ,κ(t) under
the measure Pτ , and we define for any 0 ≤ s < t

Φ(µλ,κ)s,t = Pτ (Zλ,κ(t)− Zλ,κ(s) ∈ ·) .
Then, the independent increments condition (2) in Definition 7.2 follows from the
fact that {Nλ,κ(· ∩

(

(0,∞] × (ti−1, ti]
)

}ni=1 are independent for any 0 = t0 < t1 <
· · · < tn, and the stationarity condition (3) in Definition 7.2 follows from the shift
invariance of the Lebesgue measure governing the time component of the Poisson
random measure Nλ,κ. Finally, stochastic continuity of Φ(µλ,κ) at fixed points
follows from the fact that for each fixed t0, Nλ,κ((0,∞]×{t0}) = 0 with probability
1.

7.1. Topologies on D∞(M1(R)). We now give a brief discussion of the difficulties of
extending Corollary 1.12 to a full weak convergence Φ(mε) =⇒ Φ(µλ,κ) of M1(R)-
valued path processes. It is first necessary to decide on a topology for D∞(M1(R)),
the space of càdlàg paths taking values in the space of probability measures on R.
Recall that the Prohorov metric ρ on M1(R) induces the topology of convergence
in distribution and that (M1(R), ρ) is a Polish space. Then, both the uniform and
the J1-topologies have natural extensions to D∞(M1(R)).
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In the proof of Theorem 1.4, it was necessary to equip D∞ with theM1-topology
to accommodate the fact that the macroscopic jumps of the process of ladder loca-
tion hitting times were an accumulation of smaller jumps Ti − Ti−1 for i between
consecutive ladder locations. The M1-topology naturally accomodates such accu-
mulations of jumps while the J1-topology does not. A similar phenomenon occurs
when trying to establish weak convergence Φ(mε) =⇒ Φ(µλ,κ) in the space of prob-
ability measure-valued functions, and thus it is natural to try to equip D∞(M1(R))
with a SkorohodM1-topology. This is less standard than defining the Skorohod J1-
topology2, but, since convex combinations (1−θ)µ+θπ of two probability measures
form a “line segment” between µ and π in M1(R), one can define the M1-topology
and metric on Dt(M1(R)) and D∞(M1(R)) in the natural way. Moreover, the
resulting M1-topology on D∞(M1(R)) defined in this way is the topology of a
complete separable metric space.

Unfortunately, to this point we have been unable to prove weak convergence
Φ(mε) =⇒ Φ(µλ,κ) in theM1-topology (as defined above) on D∞(M1(R)). In fact,
some preliminary computations suggest that {Φ(mε)}ε>0 is not a tight family of
D∞(M1(R))-valued random variables in this topology, and thus a weaker topology
on D∞(M1(R)) may be needed. We hope to address this in a future paper.

We close this section with an example that demonstrates some of the difficulties
establishing weak convergence Φ(mε) =⇒ Φ(µλ,κ). A natural approach to proving
Φ(mε) =⇒ Φ(µλ,κ) would be to apply Theorem 1.4 and the continuous mapping
theorem. Unfortunately, the mapping Φ : M1(D∞) → D∞(M1(R)) is not con-
tinuous. The following example demonstrates this lack of continuity even when
in M1(D∞) we endow the space D∞ with the strongest of the Skorohod topolo-
gies, the J1-topology, and endow D∞(M1(R)) with the weakest of the Skorohod
topologies, the M2-topology.

We restrict everything to the interval [0, 1] and consider real-valued stochastic
processes X = (X(t), 0 ≤ t ≤ 1) and Xn = (Xn(t), 0 ≤ t ≤ 1), n = 1, 2, . . ., on the
probability space

(

[0, 1],B,Leb
)

, defined by

X(t;ω) =







0, 0 ≤ t < 1
2 ,

1, 1
2 ≤ t ≤ 1, 0 ≤ ω ≤ 1

2 ,
2, 1

2 ≤ t ≤ 1, 1
2 < ω ≤ 1,

and

Xn(t;ω) =















0, 0 ≤ t < 1
2 − 1

2n+1 ,
1, 1

2 − 1
2n+1 ≤ t ≤ 1, 0 ≤ ω ≤ 1

2 ,
0, 1

2 − 1
2n+1 ≤ t < 1

2 + 1
2n+1 ,

1
2 < ω ≤ 1,

2, 1
2 + 1

2n+1 ≤ t ≤ 1, 1
2 < ω ≤ 1,

n = 1, 2, . . .. Clearly, each process X and Xn has its sample paths in D1 = D[0, 1].
We denote by µ (correspondingly, µn) the probability measures these processes
generate on the cylindrical sets in D[0, 1].

Obviously, for any ω ∈ [0, 1], dJ1(X,Xn) ≤ 2−(n+1), so, with probability 1,
Xn → X in D[0, 1] equipped with the J1-topology, so that ρJ1(µn, µ) → 0.

Next, in the notation of (1.9), we have

Φt(µ) =

{

δ0, 0 ≤ t < 1
2 ,

1
2δ1 +

1
2δ2,

1
2 ≤ t ≤ 1

2For instance, Whitt defines the Skorohod M1-topology on Dt(Ψ) if Ψ is a separable Banach
space Whitt (2002, p. 382), but M1(R) is not a Banach space.
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and

Φt(µn) =







δ0, 0 ≤ t < 1
2 − 1

2n+1 ,
1
2δ0 +

1
2δ1,

1
2 − 1

2n+1 ≤ t < 1
2 + 1

2n+1 ,
1
2δ1 +

1
2δ2,

1
2 + 1

2n+1 ≤ t ≤ 1,

n = 1, 2, . . ., where for x ∈ R, δx is the point mass at x. Note that for any n, there
is a point on the completed graph of the element Φ(µn) of D1(M1(R)) with the
second component equal to (1/2)δ0 + (1/2)δ1, and the distance from that point to
the completed graph of the Φ(µ) has a positive lower bound that does not depend
on n. Therefore, Φ(µn) does not converge to Φ(µ) in D1(M1(R)) even if the latter
space is endowed with the M2-topology (see Section 11.5 in Whitt, 2002 for the
definition of the M2-topology).

Appendix A. Estimation of the term in (5.17)

In order to finish the proof of Proposition 4.2 we need to estimate the term in
(5.17). In this appendix we achieve that by proving the following lemma.

Lemma A.1. If κ ∈ [1, 2), then for all 0 < s <∞ and η > 0,

lim
δ→0

lim sup
n→∞

Q



sup
t≤s

∣

∣

∣

∣

∣

∣

n−1/κ

⌊tn⌋
∑

i=1

{

βi1{βi≤δn1/κ} − EQ[β11{β1≤δn1/κ}]
}

∣

∣

∣

∣

∣

∣

≥ η



 = 0.

Remark A.2. Lemma A.1 is an improvement of Peterson and Samorodnitsky (2010,
Lemma 5.5), which stated that

lim
δ→0

lim sup
n→∞

Q

(∣

∣

∣

∣

∣

n−1/κ
n
∑

i=1

{

βi1{βi≤δn1/κ} − EQ[β11{β1≤δn1/κ}]
}

∣

∣

∣

∣

∣

≥ η

)

, ∀η > 0.

Before giving the proof of Lemma A.1, we introduce new notation. Recall that
ρx = (1− ωx)/ωx, and for i ≤ j let

Πi,j =

j
∏

k=i

ρk, Ri,j =

j
∑

k=i

Πi,k, Wi,j =

j
∑

k=i

Πk,j , Wj =

j
∑

k=−∞

Πk,j . (A.1)

This notation is often useful for writing certain quenched expectations or proba-
bilities in compact form. For instance, it is easy to show that Ei

ω[Ti+1] = 1 + 2Wi

(see Zeitouni, 2004 for a reference). In particular,

βi = Eω [Tνi − Tνi−1 ] =

νi−1
∑

j=νi−1

Ej
ω [Tj+1] = νi − νi−1 + 2

νi−1
∑

j=νi−1

Wj . (A.2)

It will be important for us to be able to control the tails, under the measure
Q, of the random variables of the type Wνm−1. Since under Q the environment is
stationary under shifts by the ladder locations, these random variables all have the
same distribution under Q asW−1. Further, it was shown in Peterson and Zeitouni
(2009, Lemma 2.2) that W−1 has, under Q, exponential tails. That is, there exist
constants C1, C2 > 0 such that for any x > 0,

Q(W−1 > x) ≤ C1e
−C2x. (A.3)

We now proceed to prove Lemma A.1.
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Proof of Lemma A.1: First, note that βi1{βi≤δn1/κ} = βi∧δn1/κ−δn1/κ1{βi>δn1/κ}.
Thus,

Q



sup
t≤s

∣

∣

∣

∣

∣

∣

n−1/κ

⌊tn⌋
∑

i=1

{

βi1{βi≤δn1/κ} − EQ[β11{β1≤δn1/κ}]
}

∣

∣

∣

∣

∣

∣

≥ η





≤ Q



sup
t≤s

∣

∣

∣

∣

∣

∣

n−1/κ

⌊tn⌋
∑

i=1

{

βi ∧ δn1/κ − EQ[βi ∧ δn1/κ]
}

∣

∣

∣

∣

∣

∣

≥ η/2



 (A.4)

+Q



δ sup
t≤s

∣

∣

∣

∣

∣

∣

⌊tn⌋
∑

i=1

1{βi>δn1/κ} − ⌊tn⌋Q(βi > δn1/κ)

∣

∣

∣

∣

∣

∣

≥ η/2



 . (A.5)

Note that (2.3) implies that ⌊tn⌋Q(βi > δn1/κ) → tC0δ
−κ and, moreover, that the

convergence is uniform in t ∈ [0, s]. Therefore, to bound the term in (A.5) it is
enough to show that for all 0 < s <∞ and η > 0,

lim
δ→0

lim sup
n→∞

Q



δ sup
t≤s

∣

∣

∣

∣

∣

∣

⌊tn⌋
∑

i=1

1{βi>δn1/κ} − tC0δ
−κ

∣

∣

∣

∣

∣

∣

≥ η



 = 0. (A.6)

Now, for any δ > 0 let Gδ : Mp((0,∞]× [0,∞)) → D+
∞ (we equip the latter space

with the J1 topology) be defined by

Gδ(ζ)(t) = ζ((δ,∞]× [0, t]), t ≥ 0.

Then
∑⌊tn⌋

i=1 1{βi>δn1/κ} = Gδ(N1/n)(t). It is easy to see that Gδ is continuous on

the set of point processes with no atoms on the line {δ}× [0,∞). Since Nλ,κ belongs

to this set with probability 1, and N1/n
Q
=⇒ Nλ,κ, the continuous mapping theorem

implies that Gδ(N1/n)
Q
=⇒ Gδ(Nλ,κ). Furthermore, the supremum over a compact

interval is a continuous mapping from D+
∞ equipped with the J1 topology to the

real line. Therefore,

lim sup
n→∞

Q

(

δ sup
t≤s

∣

∣

∣

∣

∣

tn
∑

i=1

1{βi>δn1/κ} − tC0δ
−κ

∣

∣

∣

∣

∣

≥ η

)

≤ Q

(

δ sup
t≤s

∣

∣Gδ(Nλ,κ)(t)− tC0δ
−κ
∣

∣ ≥ η

)

.

Note that Gδ(Nλ,κ) is a homogeneous one-dimensional Poisson process with rate
λ/κδ−κ = C0δ

−κ. Therefore, using once again the Lp-maximum inequality for
martingales, we have

Q

(

δ sup
t≤s

∣

∣Gδ(Nλ,κ)(t) − tC0δ
−κ
∣

∣ ≥ η

)

≤ δ2

η2
VarQ (Gδ(Nλ,κ)(s)) =

λsδ2−κ

η2κ
.

Since κ < 2 this last term vanishes as δ → 0 for any η > 0 and s < ∞. This
completes the proof of (A.6) and, therefore, it only remains to estimate the term
in (A.4).



Weak quenched limits for paths 565

To this end, we assume for (notational) simplicity that s = 1, in which case our
task reduces to showing that for any η > 0,

lim
δ→0

lim sup
n→∞

Q

(

max
k≤n

∣

∣

∣

∣

∣

n−1/κ
k
∑

i=1

{

βi ∧ δn1/κ − EQ[β1 ∧ δn1/κ]
}

∣

∣

∣

∣

∣

> η

)

= 0. (A.7)

For a fixed n and δ ∈ (0, 1] denote

Sj = n−1/κ

j
∑

i=1

{

βi ∧ δn1/κ − EQ[β1 ∧ δn1/κ]
}

, j = 1, . . . , n. (A.8)

For η > 0 let Am = {maxj<m |Sj | ≤ η < |Sm|}. Then,

Q

(

max
k≤n

∣

∣

∣

∣

∣

n−1/κ
k
∑

i=1

{

βi ∧ δn1/κ − EQ[β1 ∧ δn1/κ]
}

∣

∣

∣

∣

∣

> η

)

=
n
∑

m=1

Q(Am)

≤ Q (|Sn| ≥ η/2) +
n−1
∑

m=1

Q (Am ∩ {|Sn| ≤ η/2})

≤ Q (|Sn| ≥ η/2) +
n−1
∑

m=1

Q (Am ∩ {|Sn − Sm| > η/2}) . (A.9)

It was shown in the proof of Lemma 5.5 in Peterson and Samorodnitsky (2010) that
for some constant C,

VarQ

(

n
∑

i=1

βi ∧ δn1/κ

)

≤ Cδ2−κn2/κ. (A.10)

By Markov’s inequality this shows that the term Q (|Sn| ≥ η/2) does not contribute
to the limit in (A.7). Therefore, it remains only to bound the sum on the right
in (A.9). If the βi were independent, then the general term in this sum would be
equal to Q(Am)Q(|Sn − Sm| > η/2) and the sum could be handled in the same
way as the term Q (|Sn| ≥ η/2) above. While the βi are not independent under Q,
they have good mixing properties and the following lemma gives an upper bound
on the general term in the sum, not far off from what it would be if the βi were
independent.

Lemma A.3. There are constants C,C′ > 0 such that for any n = 1, 2, . . ., δ ∈
(0, 1], m = 1, . . . , n and η > 0,

Q(Am ∩ {|Sn − Sm| > η}) ≤ Ce−C′ηn1/κ/ logn +
1

η2
Cδ2−κ (Q(Am) + 1/n) .

Assuming the statement of Lemma A.3, the proof of Lemma A.1 can be com-
pleted by writing (changing the constants as necessary)

n−1
∑

m=1

Q(Am ∩ {|Sn − Sm| > η/2})

≤
n−1
∑

m=1

{

Ce−C′ηn1/κ/ log n +
1

η2
Cδ2−κ (Q(Am) + 1/n)

}

≤ Cne−C′ηn1/κ/ logn +
Cδκ−2

η2
.
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Both terms vanish under the limits in (A.7), so we only need to prove Lemma
A.3. �

Proof of Lemma A.3: Define a (discrete time) filtration on Ω = [0, 1]Z by Gn =
σ(ωi : i ≤ n), n = 0, 1, 2, . . .. Then for each m = 0, 1, 2, . . ., νm − 1 is a stopping
time with respect to that filtration, and we denote Fm = Gνm−1, m = 1, 2, . . ..
Since each βj with j ≤ m is Fm-measurable, so is each Sj with j ≤ m. Therefore,

Q (Am ∩ {|Sn − Sm| > η}) = EQ

[

1{Am}Q
(

|Sn − Sm| > η
∣

∣Fm

)]

. (A.11)

Conditioned on Fm, the difference Sn − Sm no longer has zero mean, but we will
show that the conditional mean is typically small. We begin by comparing the
conditional and unconditional means of βj ∧ δn1/κ. To this end we make explicit
the dependence of βj on Fm. Recall the definitions of Πi,j , Wi,j and Ri,j in (A.1)
and note that Wi = Wk,i + Πk,iWk−1 for any k ≤ i. Therefore, for any 1 ≤ m < j
we can rewrite(A.2) as

βj = νj − νj−1 + 2

νj−1
∑

i=νj−1

(Wνm,i +Wνm−1Πνm,i)

= νj − νj−1 + 2

νj−1
∑

i=νj−1

Wνm,i + 2Wνm−1Πνm,νj−1−1Rνj−1,νj−1

=: βm,j + 2Wνm−1Πνm,νj−1−1Rνj−1,νj−1.

Note that βm,j is independent of Fm. We enlarge, if necessary, the probability

space to define a random variable W̃ with the same distribution as Wνm−1 and

independent of all (ωx); in particular, W̃ is independent of Fm. Denote β̃j =

βm,j + 2W̃Πνm,νj−1−1Rνj−1,νj−1, so that

EQ

[

βj ∧ δn1/κ
∣

∣Fm

]

− EQ[βj ∧ δn1/κ] = EQ

[

βj ∧ δn1/κ − β̃j ∧ δn1/κ
∣

∣Fm

]

.

Observe that Rνj−1,νj−1 ≤ βm,j ≤ min(βj , β̃j). Thus, if Rνj−1,νj−1 ≥ δn1/κ, then

both βj and β̃j are larger than δn1/κ as well. This implies that
∣

∣

∣EQ

[

βj ∧ δn1/κ
∣

∣Fm

]

− EQ[βj ∧ δn1/κ]
∣

∣

∣ (A.12)

≤ EQ

[

|βj − β̃j |1{Rνj−1,νj−1≤δn1/κ}

∣

∣Fm

]

= EQ

[

2Πνm,νj−1−1Rνj−1,νj−1|Wνm−1 − W̃ |1{Rνj−1,νj−1≤δn1/κ}

∣

∣Fm

]

≤ 2
(

EQ[Π0,ν−1]
)j−m−1

EQ[R0,ν−11{R0,ν−1≤δn1/κ}]
(

EQ[W̃ ] +Wνm−1

)

,

where in the last inequality we used the fact that the blocks of environment between
ladder locations are i.i.d. under the measure Q. Since R0,ν−1 ≤ β1, there exists a
constant C so that Q(R0,ν−1 > x) ≤ Cx−κ. This implies that

EQ[R0,ν−11{R0,ν−1≤δn1/κ}] ≤ EQ[R0,ν−1] <∞, when κ > 1

and EQ[R0,ν−11{R0,ν−1≤δn1/κ}] ≤ C logn when κ = 1 for some other C. Thus, we
can always bound this expectation by C logn for some C > 0. Also, the definition of
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ν implies that r := EQ[Π0,ν−1] < 1 and (A.3) implies that EQ[W̃ ] = EQ[W−1] <∞.
Thus, there exists a constant C so that

∣

∣

∣EQ

[

βj ∧ δn1/κ
∣

∣Fm

]

− EQ[βj ∧ δn1/κ]
∣

∣

∣ ≤ C logn rj−m−1 (1 +Wνm−1) ,

implying that

|EQ[Sn − Sm | Fm]| ≤ n−1/κ
n
∑

j=m+1

∣

∣

∣EQ

[

βj ∧ δn1/κ
∣

∣Fm

]

− EQ[βj ∧ δn1/κ]
∣

∣

∣

≤ Cn−1/κ logn (1 +Wνm−1) .

Applying Chebyshev’s inequality conditionally, we obtain

Q (|Sn − Sm| > η | Fm)

≤ 1{|EQ[Sn − Sm | Fm]| > η/2}+Q (|Sn − Sm − EQ[Sn − Sm | Fm]| > η/2)

≤ 1{1 +Wνm−1 > n1/κη/(2C logn)}+ 4

η2
VarQ (Sn − Sm | Fm) . (A.13)

To handle the conditional variance in (A.13) we write

VarQ (Sn − Sm | Fm) = n−2/κ
n
∑

j=m+1

VarQ

(

βj ∧ δn1/κ | Fm

)

+ 2n−2/κ
∑

m<j<k≤n

CovQ

(

βj ∧ δn1/κ, βk ∧ δn1/κ | Fm

)

.

(A.14)

Upper bounds on the conditional variance and conditional covariance terms above
can be obtained in a similar manner to the proof of (49) in Peterson and Samorod-
nitsky (2010). One adapts this approach to take into account the conditioning on
Fm, by replacing βj by βm,j , and then controlling the difference between the two
similarly to what was done above when bounding E[Sn − Sm | Fm]. Doing this we
obtain that there exist constants C > 0 and r ∈ (0, 1) such that

VarQ

(

βj ∧ δn1/κ | Fm

)

≤ Cδ2−κn2/κ−1
(

1 + rj−m−1W 2
νm−1

)

and

CovQ

(

βj ∧ δn1/κ, βk ∧ δn1/κ | Fm

)

≤ Cδ2−κn2/κ−1
(

1 + rj−m−1W 2
νm−1

)

√
rk−j−1.

Using these bounds in (A.14), we see that for some C > 0,

VarQ(Sn − Sm | Fm) ≤ Cδ2−κ

(

1 +
W 2

νm−1

n

)

. (A.15)

Combining (A.11), (A.13), and (A.15) we obtain

Q(Am ∩ {|Sn − Sm| > η})

≤ Q(C′(1 +Wνm−1) > ηn1/κ/ logn) +
1

η2
Cδ2−κEQ

[

1{Am}

(

1 +W 2
νm−1/n

)]

≤ Ce−C′ηn1/κ/ logn +
1

η2
Cδ2−κ (Q(Am) + 1/n)

where the constants C,C′ may change from line to line (in the last inequality we
used (A.3) and the fact that Wνm−1 has the same distribution as W−1 under Q).
This gives us the statement of the lemma. �
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45 (3), 685–709 (2009). MR2548499.

J. Peterson and G. Samorodnitsky. Weak quenched limiting distributions for tran-
sient one-dimensional random walk in a random environment (2010). To appear
in Ann. Inst. Henri Poincaré Probab. Stat.

J. Peterson and O. Zeitouni. Quenched limits for transient, zero speed one-
dimensional random walk in random environment. Ann. Probab. 37 (1), 143–188
(2009). MR2489162.

S. I. Resnick. Extreme values, regular variation and point processes. Springer Series
in Operations Research and Financial Engineering. Springer, New York (2008).
ISBN 978-0-387-75952-4. Reprint of the 1987 original. MR2364939.

G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes. Sto-
chastic Modeling. Chapman & Hall, New York (1994). ISBN 0-412-05171-0.
Stochastic models with infinite variance. MR1280932.

T. Shiga and H. Tanaka. Infinitely divisible random probability distributions with
an application to a random motion in a random environment. Electron. J. Probab.
11, no. 44, 1144–1183 (electronic) (2006). MR2268541.
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