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Abstract. We consider the stochastic ranking process with space-time dependent
jump rates for the particles. The process is a simplified model of the time evolution
of the rankings such as sales ranks at online bookstores. We prove that the joint
empirical distribution of jump rate and scaled position converges almost surely to
a deterministic distribution, and also the tagged particle processes converge almost
surely, in the infinite particle limit. The limit distribution is characterized by a sys-
tem of inviscid Burgers-like integral-partial differential equations with evaporation
terms, and the limit process of a tagged particle is a motion along a characteristic
curve of the differential equations except at its Poisson times of jumps to the origin.

1. Introduction.

A stochastic ranking process is a model of ranking system, such as the sales
ranks found at online bookstores. Let us consider N particles, which we label
by 1, 2, . . . , N , and each of which are exclusively located at one of the positions

1, 2, . . . , N . We denote the position of particle i at time t by X
(N)
i (t), and its initial

position by x
(N)
i = X

(N)
i (0). Each particle jumps to position 1 according to its

Poisson clock. When a jump of the particle at position k occurs, the particle moves
to position 1 and the locations of the particles at 1, 2, . . . , k − 1 are shifted by +1.
The figure below is the time evolution at time t when the particles i1, i2, . . . , iN are
aligned from left-hand side to right-hand side at time t− and a jump of the particle
at position k occurs.
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For example, if N = 4 and (x
(N)
1 , x

(N)
2 , x

(N)
3 , x

(N)
4 ) = (4, 1, 3, 2), namely, the par-

ticles are aligned in the order of 2, 4, 3, 1 (corresponding to i1, i2, i3, i4 in the figure)
at time 0, and if the clock of particle i = 3 rings first, then the particles realign in the

order of 3, 2, 4, 1, or equivalently, X(N)(t) = (X
(N)
1 (t), X

(N)
2 (t), X

(N)
3 (t), X

(N)
4 (t)) =

(4, 2, 1, 3). Particles whose Poisson clocks rang recently have small X
(N)
i ’s, and the

others have large X
(N)
i ’s. We regard the number for each particle as the particle’s

rank. This system enables us to give ranks to N particles, and we call the time
evolution of the particles given by this ranking system a stochastic ranking process.

In this paper we consider a hydrodynamic limit of the stochastic ranking pro-
cesses whose jump rates depend not only on time but also on their positions. Here
we used the term hydrodynamic limit in the sense that we scale the length so that
the N particles aligned are contained in a (macroscopic) unit length, and take the
limit as the number of the particles N to ∞.

A Poisson clock, or a Poisson random measure, is determined by its intensity
measure, which represents how often the Poisson clock rings (i.e. how often the
jumps occur in our model). Our main concern in this paper is to consider mathe-
matically the case where the intensity measures have position dependence as well

as time dependence. Since the position X
(N)
i of the particle i is a random variable,

the intensity measure is also random. To avoid mathematical complexity in apply-
ing a general theory of stochastic integration (see Ikeda and Watanabe (1989)), we
introduce a Poisson random measure νi(dξ ds) on [0,∞)× [0,∞) with the uniform
intensity measure dξ ds. We do not give Poisson clocks to each position. Instead,
we incorporate the space-time dependence of the Poisson jumps of the particle i

through a function w
(N)
i (k, t) and denote the number of times the jumps to rank 1

occurred for the particle i in the time interval a < s ≦ b by

∫

s∈(a,b]

∫

ξ∈[0,∞)
1ξ∈[0,w

(N)
i

(X
(N)
i

(s−),s))
νi(dξds) (1.1)

where 1B is the indicator function of an event B. If the jump rate is a constant

w
(N)
i (k, t) = w, then (1.1) is equal to νi([0, w] × (a, b]) which further is equal in

distribution to the Poisson distribution with mean (b− a)w, hence we see that the

function w
(N)
i (k, t) works as a ‘density function’ for the intensity measure of the

Poisson random measure representing the random jump to rank 1 of the particle
i. A precise definition of the stochastic ranking processes introduced so far is
summarized in the stochastic differential equation (2.2) of Section 2.
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In taking an infinite particle limit, we scale the ranking (regarded as position).

We therefore assume w
(N)
i (k, t) = wi(

k − 1

N
, t) for N = 1, 2, 3, . . . with some func-

tion wi on [0, 1]× [0,∞), and introduce the scaled rank Y
(N)
i (t) =

1

N
(X

(N)
i (t)− 1).

Consider the joint empirical distribution of wi and the normalized position, given
by

µ
(N)
t =

1

N

N
∑

i=1

δ
(wi,Y

(N)
i

(t))
,

where δc is a unit measure concentrated at c. µ
(N)
· is a stochastic process taking

values in the set of Borel probability measures.
The main result of this paper, stated informally, is the following. Assume that the

initial configuration µ
(N)
0 converges as N → ∞ to a probability measure µ0 . Then

µ
(N)
· converges almost surely as N → ∞ to a deterministic probability-measure-

valued time-evolution µ·. Furthermore, for each integer L, the tagged particle

system (Y
(N)
1 (t), Y

(N)
2 (t), . . . , Y

(N)
L (t)) converges to a limit process uniformly in

t ∈ [0, T ] as N → ∞, if the system of the initial scaled positions converges. The
components of the limit are independent of each other. This fact implies that
the propagation of chaos occurs in our model. A precise statement is given in
Theorem 2.2 of Section 2.

The limit of the tagged-particle system is characterized by a stochastic differ-
ential equation which contains a quantity determined by the distribution function
U(dw, y, t) = µt(dw× [y, 1)). (See (2.28) and (2.18) of Section 2.) The distribution
function U , and consequently the limit measure µt, is characterized by a global
Lipschitz solution to a system of quasilinear integral partial differential equations.
A precise form of the system of equations which characterizes the limit measure is
given in Theorem 2.1 of Section 2.

It has been found that the ranking numbers such as those found in the webpages
of online retails, e.g., the sales ranks of books at the Amazon online bookstore, follow
the predictions of the stochastic ranking processes (see Hattori and Hattori (2009a,
2010); Hattori (2011b,a)). In the ranking of books, at each time when a book is sold,
its ranking spontaneously jumps to small numbers (relatively close to 1), regardless

of how bad its previous position was (largeX
(N)
i (t), in our notation), and regardless

of how unpopular (small w
(N)
i , in our notation) the book is. The stochastic process

which we consider here: at each time when a book is sold its ranking jumps to 1
instantaneously, is a mathematical simplification of this observation. In view that
the process is a model of such online and in real time rankings of a large number
of items according to their popularity, we call the model the stochastic ranking
processes.

One might guess that such a naive ranking rules of spontaneous jump to 1 at
each sale, as in the definition of the stochastic ranking processes, will not be a
good index for the popularity of books. But with a closer look, one notices that
the well-sold books are dominant near the top position, while books near the tail
position are rarely sold. Though the rankings of each book are stochastic with
sudden jumps, the spatial distribution of the jump rates is more stable. On the
side of bookstores, what matters is not a specific book, but the total of sales. This
observation motivates us to consider the evolution of the joint empirical distribution
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of position and jump rates similarly to the hydrodynamic limit of realistic fluid,
and to prove mathematically the expectation that the spatial distribution of the
jump rates is deterministic at the limit as N → ∞.

If the model is independent of spatial position, i.e., if wi(x, t)’s are independent
of x, then the law of the process reduces to that of Hariya et al. (2011, eq. (2)) and
Nagahata (2010, eq. (1)), and the stochastic ranking process with time-dependent
(but position-independent) intensities. Thus our process is an extension of Hariya
et al. (2011); Nagahata (2010) to the case where the dynamics is dependent on the

value of X
(N)
i (t) , i.e., to the position-dependent case.

If, furthermore, wi’s are positive constants, our process further reduces to the
homogeneous case considered in Hattori and Hattori (2009b,a). A discrete-time
version of the homogeneous case has been known in Tsetlin (1963), and has been
extensively studied and is called move-to-front (MTF) rules in McCabe (1965); Hen-
dricks (1972); Burville and Kingman (1973); Letac (1974); Kingman et al. (1975).
The process and its generalization have, in particular, been extensively studied in
the field of information theory as a model of least-recently-used (LRU) caching
(see Rivest (1976); Fagin (1977); Bitner (1979); Chung et al. (1988); Blom and
Holst (1991); Rodrigues (1995); Fill (1996a); Fill and Holst (1996); Fill (1996b); Je-
lenković (1999); Sugimoto and Miyoshi (2006); Jelenković and Radovanović (2008);
Barrera and Fontbona (2010); Hirade and Osogami (2010)), and also is noted as a
time-reversed process of top-to-random shuffling.

In Hattori and Hattori (2009b,a); Hariya et al. (2011); Nagahata (2010), the
explicit formula of the limit distributions of the joint empirical distributions of
scaled position and the jump rate are found in the cases of position-independent
jump rates. The limit is characterized by a solution to a system of inviscid Burgers-
like equations with a term representing evaporation, in the terminology of fluid
dynamics. The limit formula is successfully applied to the time developments of
ranking numbers such as those found in the webpages of online bookstores (see
Hattori and Hattori (2009a, 2010); Hattori (2011b)). Furthermore, convergence of
the joint empirical distributions as a process and convergence of tagged-particle
processes are proved in Nagahata (2010).

In the present paper, we mathematically extend the previous results to the case
where the jump rates are both position and time dependent. A motivation for
an online web-retail store to provide the sales ranks, in their webpages for public
access, would be to give information on the popularity of each products which the
store provides, to attract consumers’ attention on popular products. We extend the
previous results to the case of position-dependent jump rates corresponds to provid-
ing a mathematical framework for considering a possibility of such expected effect
of popular products receiving extra attention and effectively increase their jump
rates according to their rankings. For the case of position-dependent jump rates
which we consider in this paper, the non-locality of the equation characterizing the
limit is inevitable, because of the position-dependence of the jump rate functions.
Hence, we need to consider a harder problem of a system of integral–differential
equations compared with the previous cases.

The plan of the present paper is as follows. In Section 2 we give a mathematical
formulation of the stochastic ranking process with space-time dependent intensities
and state the main results. In Section 3 we prove Theorem 2.1, and in Section 4
we prove Theorem 2.2.
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2. Formulation and main results.

The precise formulation of the stochastic ranking process which we consider in
this paper is as follows.

Let {νi(dξds)}i=1,2,3,... be independent Poisson random measures on [0,∞) ×
[0,∞) with the intensity measure dξds. Let W be a set of non-negative valued C1

functions
w : [0, 1]× [0,∞) → [0,∞),

such that, for each T > 0,

Rw(T ) := sup
w∈W

sup
(y,t)∈[0,1]×[0,T ]

max

{

w(y, t),

∣

∣

∣

∣

∂ w

∂y
(y, t)

∣

∣

∣

∣

}

< ∞. (2.1)

Let wi, i = 1, 2, . . . be a sequence in W , and for a positive integer N , put

w
(N)
i (k, t) := wi(

k − 1

N
, t), k = 1, 2, . . . , N, t ∈ [0,∞), i = 1, 2, . . . , N.

Also, let x
(N)
1 , x

(N)
2 , . . ., x

(N)
N be a permutation of 1, 2, . . . , N . Let (Ω,F , P ) be a

probability space, and define a process

X(N) = (X
(N)
1 , . . . , X

(N)
N )

by

X
(N)
i (t) = x

(N)
i

+

N
∑

j=1

∫

s∈(0,t]

∫

ξ∈[0,∞)
1X

(N)
i (s−)<X

(N)
j (s−) 1ξ∈[0,w

(N)
j (X

(N)
j (s−),s))

νj(dξds)

+

∫

s∈(0,t]

∫

ξ∈[0,∞)

(1−X
(N)
i (s−))1ξ∈[0,w

(N)
i

(X
(N)
i

(s−),s))
νi(dξds),

i = 1, 2, . . . , N, t ≧ 0,

(2.2)

where, 1B is the indicator function of event B. The integrands in the (2.2) are
predictable, hence the right hand side of (2.2) is well-defined as the Ito–integrals
(see Ikeda and Watanabe (1989, §IV.9)).

As mentioned in Section 1, the function wi on [0, 1] × [0,∞) is introduced to

control the jump rate of X
(N)
i . Indeed, the mass of νi(dξds) on the complement of

[0, wi)× (0, t] is ignored on the right-hand side of (2.2).
X(N)(t) is a permutation of 1, 2, . . . , N for all t ≧ 0, which we regard as ranks

or positions of particles 1, 2, . . . , N at time t. Moreover, for i = 1, 2, . . . , N , and
t > t0 ≧ 0, let

J
(N)
i (t0, t) =

{

∫

s∈(t0,t]

∫

ξ∈[0,∞)
1ξ∈[0,w

(N)
i

(X
(N)
i

(s−),s))
νi(dξds) > 0

}

. (2.3)

Then, the last term on the right hand side of (2.2) implies that J
(N)
i (t0, t) denotes

the event that the particle i jumps to the top position (X
(N)
i (s) = 1) in the time

interval (t0, t]. In other words, the last term of (2.2) represents the definition of the

stochastic ranking process that the particle i jumps to the top rank X
(N)
i (t) = 1

with jump rate determined by w
(N)
i . Also, the second term on the right hand side

of (2.2) implies that on the complement J
(N)
i (t0, t)

c of J
(N)
i (t0, t),

X
(N)
i (s)−X

(N)
i (s−) = 0 or 1, (2.4)
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for t0 < s ≦ t, where the latter occurs if and only if a particle k at tail side

(X
(N)
k (s) > X

(N)
i (s)) jumps to top at time s. In other words, the second term of

(2.2) represents the increase in the ranking number of particle i, when the other
particles at the lower rank (larger ranking number) jumps to rank 1.

We introduce the normalized position for each particle i at time t

Y
(N)
i (t) =

1

N
(X

(N)
i (t)− 1), (2.5)

and consider the joint empirical distribution of jump rate and normalized position,
given by

µ
(N)
t =

1

N

N
∑

i=1

δ
(wi,Y

(N)
i (t))

. (2.6)

(We will denote a unit measure on any space by δc.) For each T > 0, µ
(N)
t , t ∈ [0, T ],

is regarded as a stochastic process taking values in the set of probability measures
on C1,0([0, 1]× [0, T ])× [0, 1]. Here C1,0([0, 1]× [0, T ]) is the total set of functions

f ∈ C([0, 1]× [0, T ]) such that
∂ f

∂y
∈ C([0, 1]× [0, T ]). Since C1,0([0, 1]× [0, T ]) is

a Polish space with norm

sup
(y,t)∈[0,1]×[0,T ]

{

|w(y, t)|,

∣

∣

∣

∣

∂ w

∂y
(y, t)

∣

∣

∣

∣

}

,

so is C1([0, 1]× [0, T ])× [0, 1] (see Bauer (2001, Example 26.2)). We assume a stan-
dard topology of weak convergence of probability measures on C1([0, 1]× [0, T ])×
[0, 1].

To prove convergence of measures, we work with a distribution function. For
each integer N define

U (N)(dw, y, t) = µ
(N)
t (dw × [y, 1)) =

1

N

N
∑

i=1

1X
(N)
i

(t)≧Ny+1
δwi

(dw) ,

0 ≦ y ≦ 1, t ≧ 0.

(2.7)

For each (y, t), U (N)(·, y, t) is a Borel measure on W . Note that U (N)(dw, y, t) is
non-increasing in y and satisfies

∫

W

U (N)(dw, y, t) =
[N (1− y)]

N
, 0 ≦ y ≦ 1, t ≧ 0, (2.8)

where, for real z, [z] is the largest integer not exceeding z.
As an analog of the corresponding results in Hattori and Hattori (2009a); Hariya

et al. (2011), the infinite-particle scaling limit U of U (N) turns out to be character-
ized by a system of inviscid Burgers-like integral–partial differential equations with
evaporation terms. Denote the set of ‘boundary points’ and of ‘initial points’ by

Γb = {(0, t0) | t0 ≧ 0}, (2.9)

and
Γi = {(y0, 0) | 0 ≦ y0 ≦ 1}, (2.10)

respectively, and put
Γ = Γb ∪ Γi . (2.11)

Also, for t ≧ 0 put

Γt = {(y0, t0) ∈ Γ | t0 ≦ t} = Γi ∪ {(0, t0) | 0 ≦ t0 ≦ t}. (2.12)
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Theorem 2.1. Let λ be a Borel probability measure on W , and ρ : W × [0, 1] →
[0, 1] be a non-negative Borel measurable function continuous in y, such that
∂ ρ

∂y
(w, y) exists for almost all y, is bounded, satisfying

∂ ρ

∂y
(w, y) ≦ 0, for almost all (y, w) ∈ [0, 1]×W, (2.13)

ρ(w, 0) = 1 and ρ(w, 1) = 0 for w ∈ W . Define a Borel measure on W with
parameter y ∈ [0, 1] by

U0(dw, y) = ρ(w, y)λ(dw), y ∈ [0, 1], w ∈ W. (2.14)

In particular, U0(dw, 0) = λ(dw). Assume also

U0(W, y) =

∫

W

U0(dw, y) = 1− y, 0 ≦ y ≦ 1. (2.15)

Then there exists a unique pair of functions

yC : {(γ, t) ∈ Γ× [0,∞) | γ ∈ Γt} → [0, 1],

and U = U(dw, y, t) on [0, 1]× [0,∞) taking values in the non-negative Borel mea-
sures on W such that

(i) yC(γ, t) and
∂ yC
∂t

(γ, t) are continuous,

(ii) for each t > 0, yC(·, t) : Γt → [0, 1] is surjective,

(iii) for all bounded continuous h : W → R, U(h, y, t) :=

∫

W

h(w)U(dw, y, t)

is Lipschitz continuous in (y, t) ∈ [0, 1] × [0, T ] for any T > 0, and non-
increasing in y, and

(iv) the following (2.16), (2.17), (2.19), and (2.20) hold:

yC(γ, t0) = y0 and U(dw, y0, t0) = U0(dw, y0), γ = (y0, t0) ∈ Γ, (2.16)

U(h, yC(γ, t), t) = U0(h, y0)−

∫ t

t0

V (h, yC(γ, s), s) ds, t ≧ t0, γ = (y0, t0) ∈ Γ,

(2.17)
for all bounded continuous function h : W → R, where

U(h, y, t) :=

∫

W

h(w)U(dw, y, t),

and

V (h, y, t) =

∫

W

h(w)w(y, t)U(dw, y, t) +

∫ 1

y

∫

W

h(w)
∂ w

∂z
(z, t)U(dw, z, t) dz,

(2.18)
and

∂ yC
∂t

(γ, t) = V (1W , yC(γ, t), t), t ≧ t0, γ = (y0, t0) ∈ Γ, (2.19)

where 1W (w) = 1 for all w ∈ W , and

U(1W , y, t) = 1− y, 0 ≦ y ≦ 1, t ≧ 0. (2.20)

3
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The claim (2.20), together with continuity and monotonicity of U , implies that
U determines a Borel probability measure µt on the direct product W × [0, 1] with
parameter t by

U(dw, y, t) = µt(dw × [y, 1)), 0 ≦ y ≦ 1, t ≧ 0. (2.21)

If U(h, y, t) in Theorem 2.1 is C1 in a neighborhood of (y, t) ∈ (0, 1) × (0,∞),
then differentiating (2.17) by t, using (2.19), and noting that yC(·, t) : Γt → [0, 1]
is surjective, we have

∂ U

∂t
(h, y, t) + V (1W , y, t)

∂ U

∂y
(h, y, t) = −V (h, y, t), (2.22)

where V is as in (2.18). yC in (2.19) determines the characteristic curves for (2.22).
In terms of Bressan (2000, §3.4), we can therefore say that Theorem 2.1 claims
global existence of the Lipschitz solution (broad solution which is Lipschitz contin-
uous) to the system of quasilinear partial differential equations (2.22), with com-
ponents parametrized by (possibly continuous) w. To be more precise, we have
extended the definition in Bressan (2000, §3.4) of Lipschitz solution for (2.22) to
the non-local case (see (2.18)), and for the case where V (1W , y, t) in the left-hand
side of Theorem 2.1 is common for all h. We have also generalized the notion of
domain of determinancy defined in Bressan (2000, §3.4), which in the present case
corresponds to

{(y, t) ∈ [0, 1]× [0,∞) | y ≧ yC((0, 0), t)},

to the domain determined by boundary conditions

{(y, t) ∈ [0, 1]× [0,∞) | y < yC((0, 0), t)},

with initial data U(h, ·, 0) = U0(h, ·) and the boundary condition U(h, 0, t) =
U0(h, 0), t ≧ 0, as obtained in (2.16).

As an example, where the jump rates are finitely many space-time constants,
we can identify W (the space of jump rate functions) with the finite set of the

constant jump rates W̃ = {w(1), w(2), . . . , w(A)} for some positive integer A, and
the distribution of the jump rates U0(·, 0) = λ(·) can be identified with

λ =

A
∑

a=1

r(a) δw(a) , (2.23)

for some positive constants r(a), a = 1, 2, . . . , A, satisfying

A
∑

a=1

r(a) = 1. In this

example, (2.22) reduces to

∂ Ua

∂t
(y, t) +

A
∑

b=1

w(b)Ub(y, t)
∂ Ua

∂y
(y, t) = −w(a)Ua(y, t), (2.24)

where we wrote Ua(y, t) = U(ha, y, t) and Va(y, t) = V (ha, y, t) = w(a)Ua(y, t).
Here, ha : W → R is defined by ha(w

(a)) = 1 and ha(w
(b)) = 0, if b 6= a,

where we identified W with W̃ . In particular,

A
∑

a=1

ha = 1W , so that V (1W , y, t) =

A
∑

a=1

w(a)Ua(y, t).
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The example of the limit distribution determined by (2.23) can be realized from
the stochastic ranking process as follows. To simplify the notation, we give the

case A = 2 and r(1) =
q

p
for positive integers p and q satisfying p > q. Given

i ≧ 1, consider the decomposition i = mp + r, where m and r are non-negative
integers satisfying 0 ≦ r < p. Then let wi = wmp+r = w(1) for m = 0, 1, 2, . . .

and r = 0, 1, . . . , q − 1, and wi = wmp+r = w(2) for m = 0, 1, 2, . . . and r =
q, q + 1, . . . , p− 1. This determines the jump rates for all the particles i = 1, 2, . . .,
hence, with an initial configuration (x1, x2, . . . , xN ) the stochastic ranking process
is defined. We see that the limit U0(·, 0) = λ(·) of the distribution of jump rates is

given in this example by (2.23) for A = 2, r(1) =
q

p
and r(2) = 1−

q

p
. An extension

to general A and (r(1), r(2), . . . , r(A)) should be clear.
If A = 1 and the right hand side of (2.24) is 0, the partial differential equation

is known as the inviscid Burgers equation, in the terminology of fluid dynamics. In
terms of fluid dynamics, the right hand side of (2.24) could be interpreted as the
evaporation of the fluid. That this term is equal (with h = 1W ) to the negative
velocity of the fluid, the coefficient to the y-derivative of U in the left hand side
of (2.22), implies that the motion of fluid is fully driven by the evaporation. This
intuitively implies that there are no ‘shock waves’ in our model (see Hattori and
Hattori (2009a)). This is perhaps in contrast with a general interest where Burgers
equations are noted for the existence of shock waves.

The case of constant jump rates (2.24) can be solved explicitly by using charac-
teristic curves (see Hattori and Hattori (2009a)). The results of the case that the
jump rates are time-dependent, i.e. the jump rates w(b) are changed to the func-
tions w(b)(t) in (2.24), which also can be solved by using characteristic curves, and
the solution is given in Hariya et al. (2011). For the case (2.22) which we consider
in this paper, the non-locality of interaction is inevitable, because of the position
dependence of the jump rate functions. Hence, we need to consider a harder prob-
lem of a system of differential–integral equations compared with the previous cases.
In fact, the case corresponding to (2.24) with position dependence on w(a) leads to
(assuming regularity on solution)

∂ Ua

∂t
(y, t)−

A
∑

b=1

∫ 1

y

w(b)(z, t)
∂ Ub

∂z
(z, t) dz

∂ Ua

∂y
(y, t) =

∫ 1

y

w(a)(z, t)
∂ Ua

∂z
(z, t) dz.

(2.25)
Though we have no hope to obtain solutions explicitly, we will show in Section 3
that we can nevertheless prove uniqueness and existence of the global solution,
using the characteristic curves yC .

Now we give a norm of measures in order to state the limit theorem. Let || · ||var
be the total variation norm for Borel measures on W , i.e. for a signed measure µ
on W define ||µ||var by

||µ||var = µ+(W ) + µ−(W ),

where µ+ and µ− are the positive part and the negative part obtained by Hahn-
Jordan decomposition of µ respectively.

We consider a scaling limit of the stochastic ranking process as N → ∞, the
limit for the number of particles to infinity. The result obtained in this paper is
a non-trivial limit theorem of the law of large numbers for dependent variables.
A non-trivial dependence is suggested by the fact, which we state in the following
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Theorem, that the limit distribution satisfies (2.17) or more intuitively, non-linear
equations (2.22). The previous results in Hattori and Hattori (2009b); Hariya
et al. (2011) are also the law of large numbers for dependent variables, but in the
previous results, where the jump rate functions are independent of spatial positions,

a special combination of quantities (U (N)(B, Y
(N)
C (y0, t0, t), t), in terms of notations

in Section 4, turns out to be a sum of independent random variables. However, the
position-dependence of jump rates, as considered in the present paper, implies that
the dependence of random variables are built-in in the model, so that the proofs
in Hattori and Hattori (2009b); Hariya et al. (2011) do not work in the present
case. Inspired partly by Nagahata (2010), where the case of finite types of position
independent particles are proved (see Nagahata (2010, Prop. 1.1 and Thm. 1.2)),
we extend his result to our position-dependent case, and obtain a convergence of
empirical distribution and also the limiting dynamics of fixed finite particles (tagged
particles) for the case of jump rate functions with space-time dependence as follows.

Theorem 2.2. Assume that with probability 1,

lim
N→∞

sup
y∈[0,1)

||U (N)(·, y, 0)− U0(·, y)||var = 0, (2.26)

where U0(dw, y) satisfies all the assumptions in Theorem 2.1. Then the following
hold.

(i) With probability 1, for all T > 0,

lim
N→∞

sup
(y,t)∈[0,1)×[0,T ]

‖U (N)(·, y, t)− U(·, y, t)‖var = 0,

where U is the solution claimed in Theorem 2.1.
(ii) Assume in addition that,

lim
N→∞

1

N
x
(N)
i = yi , i = 1, 2, . . . , L, (2.27)

for a positive integer L and yi ∈ [0, 1), i = 1, 2, . . . , L. Then, with proba-
bility 1, for all T > 0, the tagged particle system

(Y
(N)
1 (t), Y

(N)
2 (t), . . . , Y

(N)
L (t))

converges as N → ∞, uniformly in t ∈ [0, T ] to a limit (Y1(t), Y2(t), . . .,
YL(t)). Here, for each i = 1, 2, . . . , L, Yi is the unique solution to

Yi(t) = yi +

∫ t

0

V (1W , Yi(s−), s)ds

−

∫

s∈(0,t]

∫

ξ∈[0,∞)

Yi(s−)1ξ∈[0,wi(Yi(s−),s)) νi(dξds),
(2.28)

where, V is as in (2.18).

3

Theorem 2.2 implies propagation of chaos for the stochastic ranking processes.

For eachN all of {Y
(N)
i } are random and interact with each other and U (N)(dw, y, t)

is also random. However, the limit U(dw, y, t) is deterministic. Furthermore, the
randomness of the limit process Yi of the tagged particles depends only on its own
Poisson random measure νi, and is independent of Yj or νj with j 6= i. Indeed, in

the proof of Theorem 2.2 (Section 4) we focus at martingale terms M
(N)
U and M

(N)
i

(definitions are in (4.8) and (4.29), respectively) and show that they converge to 0
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in sense of square martingales. This implies that the fluctuation disappears as the
number of particles goes to infinity. In this sense, Theorem 2.2 can be regarded as
a law of large numbers.

We give one more remark on Theorem 2.2. By taking the role of V for yC into
account, we have that the tagged particle Yi in the limit system behaves just as the
characteristic curve yC((yi, 0), ·) before the particle’s own jump occurs. So, we can

approximately know yC by checking the behavior of one particle Y
(N)
i in the N -

particle system. Note also that a discrete correspondence Y
(N)
C of the characteristic

curves yC is defined in (4.1), which has been a key quantity of the limit theorems
since Hattori and Hattori (2009b).

When {wi; i = 1, 2, 3, . . .} is a finite set of W , because of Proposition 5.1 in
Appendix, we obtain the following corollary easily.

Corollary 2.3. When wi ∈ {w̃α ∈ W ;α = 1, 2, . . . , A} for i = 1, 2, 3, . . . , the
assumption (2.26) of Theorem 2.2 is relaxed as follows:

lim
N→∞

U (N)({w̃α}, y, 0) = U({w̃α}, y, 0), for each y ∈ [0, 1)

with probability 1 for α = 1, 2, . . . , A.

3. Proof of Theorem 2.1.

A basic idea of the proof of existence of the solution U(dw, y, t) is, as in the
standard quasilinear partial differential equations (see Bressan (2000)), to construct
the solution along a characteristic curve y = yC(γ, t), which is a curve that a
‘fluid particle’ starting from an initial point γ moves along under the dynamics
of the partial differential equation. For each starting point γ we put f(y0, t) =
yC(γ, t), if the starting point is in the initial line t = 0; and put γ = (y0, 0)
or g(t0, t) = yC(γ, t), if the starting point is in the boundary, i.e. γ = (0, t0)
(see (3.21)). Since we deal with differential–integral equations containing non-local
terms (for terms with integration, see (2.18)), the characteristic curves are not
obtained explicitly. This makes the argument technically complicated, and much
of the argument in this section deals with existence proof of the characteristic
curves yC by using iteration methods, and derivation of basic properties of yC . In
particular, g(t0, t), the characteristic curve starting from the boundary, is dependent
on all the other characteristic curves. Hence we need to prepare some lemmas before
proving existence of g(t0, t) in Lemma 3.4. Once yC is proved to exist, we are more
or less along a standard line to find ϕ(dw, γ, t) = U(dw, yC(γ, t), t) the solution
observed along the characteristic curve (see (3.25)).

Consider first the case (y0, t0) ∈ Γi, namely, the case t0 = 0.

Lemma 3.1. There exists a unique C1 function f : [0, 1]× [0,∞) → [0, 1] which
satisfies

f(y, t) = 1 +

∫

W

(∫ 1

y

∂ ρ

∂z
(w, z) exp(−

∫ t

0

w(f(z, s), s) ds) dz

)

U0(dw, 0),

y ∈ [0, 1], t ≧ 0,

(3.1)

where ρ and U0 are as in the assumptions of Theorem 2.1. 3
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Proof. For k ∈ Z+, define fk : [0, 1]× [0,∞) → [0, 1] inductively by

f0(y, t) = 1 +

∫

W

(∫ 1

y

∂ ρ

∂z
(w, z) exp(−

∫ t

0

w(z, s) ds) dz

)

U0(dw, 0),

and

fk+1(y, t) = 1

+

∫

W

(∫ 1

y

∂ ρ

∂z
(w, z) exp(−

∫ t

0

w(fk(z, s), s) ds) dz

)

U0(dw, 0),

k ∈ Z+.

(3.2)

Assume that fk is continuous and takes values in [0, 1]. Then (3.2) is well-defined.
This with (2.13) implies fk+1 ≦ 1. Similarly, using also (2.14) and (2.15),

fk+1(y, t)

≧ 1 +

∫

W

(∫ 1

y

∂ ρ

∂z
(w, z) dz

)

U0(dw, 0) = 1 +

∫

W

U0(dw, 1)−

∫

W

U0(dw, y) = y

≧ 0.

By assumption of Theorem 2.1,
∂ ρ

∂z
(w, z) is bounded almost surely, hence (3.2)

implies that fk+1 is continuous. By induction, fk is continuous and takes values in
[0, 1], for all k.

For k ∈ Z+, put Fk(y, t) = |fk+1(y, t) − fk(y, t)|. Then, using (2.1) and the
assumptions of Theorem 2.1 as above, we have

Fk+1(y, t) ≦ Rw(T )

∫ 1

y

∫ t

0

Fk(z, s) ds dz, y ∈ [0, 1], t ∈ [0, T ], k ∈ Z+, (3.3)

for any T > 0. Since all fk’s are continuous and take values in [0, 1], Fk, k = 1, 2, . . .,
are also continuous and take values in [0, 1]. Then it holds by the argument of
Bressan (2000, §3.8, Lemma 3.4), that

0 ≦ Fk(y, t) ≦ e2Rw(T )t2−k, y ∈ [0, 1], t ∈ [0, T ], k ∈ Z+. (3.4)

In fact, since F0 takes values in [0, 1], (3.4) holds for k = 0. Assume (3.4) holds for
some k. Then (3.3) implies

Fk+1(y, t) ≦ 2−kRw(T )

∫ 1

y

∫ t

0

e2Rw(T )s ds ≦ e2Rw(T )t2−k−1, 0 ≦ y < 1, 0 ∈ [0, T ].

By induction, (3.4) holds for all k ∈ Z+. In particular, f0(y, t) +
∞
∑

k=0

Fk(y, t)

converges uniformly in (y, t) for any bounded range of t. Hence, fk(y, t) = f0(y, t)+
k−1
∑

j=0

(fj+1(y, t)− fj(y, t)) converges as k → ∞ to a function, continuous in y and t.

Let

f(y, t) = lim
k→∞

fk(y, t), y ∈ [0, 1], t ≧ 0.

Then (3.2) implies that f satisfies (3.1). Also, 0 ≦ fk ≦ 1 implies

0 ≦ f(y, t) ≦ 1, 0 ≦ y ≦ 1, t ≧ 0. (3.5)

The right hand side of (3.1), with the assumptions in Theorem 2.1 implies that
f(y, t) is C1.
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Next, we prove the uniqueness. Suppose for i = 1, 2, f (i) : [0, 1]× [0,∞) → [0, 1]
are continuous functions which satisfy (3.1). Then |f (1)(y, 0)− f (2)(y, 0)| = 0 and,
as above, for each T > 0,

|f (1)(y, t)− f (2)(y, t)| ≦ Rw(T )
∫ 1

y

∫ t

0 |f (1)(z, s)− f (2)(z, s)| ds dz,

y ∈ [0, 1], t ∈ [0, T ],

which implies f (1) = f (2). 2

Next, consider the case (y0, t0) ∈ Γb, namely, the case y0 = 0.

Lemma 3.2. For each continuous function g̃ : {(s, t) ∈ [0,∞)2 | 0 ≦ s ≦ t} →
[0, 1], there exists a unique non-negative function η : W × [0,∞) → [0,∞), inte-
grable with respect to U0(dw, 0), continuous in the second variable, which satisfy,
for each w ∈ W ,

η(w, t) =

∫ t

0

η(w, u)w(g̃(u, t), t) exp(−

∫ t

u

w(g̃(u, v), v) dv) du

−

∫ 1

0

∂ ρ

∂z
(w, z)w(f(z, t), t) exp(−

∫ t

0

w(f(z, v), v) dv) dz,

t ≧ 0,

(3.6)

where ρ is as in the assumption of Theorem 2.1, and f is the function given by
Lemma 3.1.

Moreover, it holds that
∫ t

0

η(w, u) exp(−

∫ t

u

w(g̃(u, v), v) dv) du

= 1 +

∫ 1

0

∂ ρ

∂z
(w, z) exp(−

∫ t

0

w(f(z, s), s) ds) dz.

(3.7)

In particular, for any T > 0, there exists C(T ) > 0, which is independent of g̃, such
that

0 ≦

∫

W

η(w, t)U0(dw, 0) ≦ C(T ), 0 ≦ t ≦ T. (3.8)

3

Proof. Define a sequence of continuous functions ηk : W × [0,∞) → [0,∞), k =
0, 1, 2, . . ., inductively, by

η0(w, t) = 0, w ∈ W, t ≧ 0,

and

ηk+1(w, t) =

∫ t

0

ηk(w, u)w(g̃(u, t), t) exp(−

∫ t

u

w(g̃(u, v), v) dv) du

−

∫ 1

0

∂ ρ

∂z
(w, z)w(f(z, t), t) exp(−

∫ t

0

w(f(z, v), v) dv) dz.

(3.9)

For k ∈ Z+ put Hk(t) =

∫

W

|ηk+1(w, t) − ηk(w, t)|U0(dw, 0). Non-negativity of

w ∈ W and (2.1) imply

Hk+1(t) ≦ Rw(T )

∫ t

0

Hk(u) du, 0 ≦ t ≦ T.
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Bressan (2000, §3.8, Lemma 3.4) implies that there exists a positive constant C(T )
such that

Hk(t) ≦ C(T ) 2−k, t ∈ [0, T ], k ∈ Z+,

hence, as in the proof of Lemma 3.1, η(w, t) = lim
k→∞

ηk(w, t) exists, is continuous,

non-negative, and satisfies (3.6). Integrability inductively follows from (3.9) by

sup
t∈[0,T ]

∫

W

ηk+1(w, t)U0(dw, 0)

≦ Rw(T ) sup
t∈[0,T ]

∫

W

∫ t

0

ηk(w, u) duU0(dw, 0)

+Rw(T )

∫

W

∫ 1

0

(

−
∂ ρ

∂z
(w, z)

)

dz U0(dw, 0)

= Rw(T ) sup
t∈[0,T ]

∫

W

∫ t

0

ηk(w, u) duU0(dw, 0) +Rw(T ),

where we also used (2.13), (2.14) and (2.15).
Next, we prove the uniqueness. Suppose for i = 1, 2, η(i) : W × [0,∞) →

[0,∞) are functions, continuous in the second variable and satisfy (3.6). Then
|η(1)(w, 0)− η(2)(w, 0)| = 0 and, as above, for each T > 0,

|η(1)(w, t)− η(2)(w, t)| ≦ Rw(T )

∫ t

0

|η(1)(w, s) − η(2)(w, s)| ds t ∈ [0, T ],

which implies η(1) = η(2).
Changing the variable t in (3.6) to s, and then integrating from 0 to t, and

changing the order of integration in the first term on the right hand side, we have
∫ t

0

η(w, s) ds

= −

∫ t

0

η(w, u)

(∫ t

u

∂

∂s
exp(−

∫ s

u

w(g̃(u, v), v) dv)ds

)

du

+

∫ 1

0

∂ ρ

∂z
(w, z)

(∫ t

0

∂

∂s
exp(−

∫ s

0

w(f(z, v), v) dv)ds

)

dz

=

∫ t

0

η(w, u)

(

1− exp(−

∫ t

u

w(g̃(u, v), v) dv)

)

du

−

∫ 1

0

∂ ρ

∂z
(w, z)

(

1− exp(−

∫ t

0

w(f(z, v), v) dv)

)

dz,

which, with ρ(w, 0) = 1 and ρ(w, 1) = 0, proves (3.7).

Combining (3.6) and (2.1), together with
∂ ρ

∂z
(w, z) ≦ 0, ρ(w, 0) = 1 and

ρ(w, 1) = 0, we see that
∫

W

η(w, t)U0(dw, 0) ≦ Rw(T )

∫ t

0

∫

W

η(w, u)U0(dw, 0) du +Rw(T ).

Bressan (2000, §3.8, Lemma 3.4) again implies that there exists C(T ) > 0, inde-

pendent of g̃, such that

∫

W

η(w, t)U0(dw, 0) ≦ C(T ), 0 ≦ t ≦ T . 2
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Corollary 3.3. For i = 1, 2, let ηi be η in Lemma 3.2 with gi in place of g̃,
respectively. Then, for each T > 0 there exists a positive constant C(T ) such that
∫

W

|η1(w, t)− η2(w, t)|U0(dw, 0) ≦ C(T )

∫ t

0

sup
v∈[u,T ]

|g1(u, v)− g2(u, v)| du. (3.10)

3

Proof. Put

∆η(t) =

∫

W

|η1(w, t) − η2(w, t)|U0(dw, 0)

and

∆g(u) = sup
v∈[u,T ]

|g1(u, v)− g2(u, v)|.

Lemma 3.2, in particular, (3.6), (3.8), and (2.1), implies that

∆η(t) ≦ C1(T )

∫ t

0

∆η(u) du+ C2(T )

∫ t

0

∆g(u) du, t ∈ [0, T ],

for each T and for positive constants Ci(T ), i = 1, 2. Hence

∆η(t) ≦ C2(T )

∫ t

0

eC1(T )(t−s)∆g(s) ds ≦ C2(T )e
TC1(T )

∫ t

0

∆g(s) ds,

which implies (3.10). 2

Lemma 3.4. There exists a unique C1 function g : {(s, t) ∈ [0,∞)2 | 0 ≦ s ≦

t} → [0, 1] such that

g(s, t) = 1 +

∫

W

∫ 1

0

∂ ρ

∂z
(w, z) exp(−

∫ t

0

w(f(z, u), u) du) dz U0(dw, 0)

−

∫

W

∫ s

0

η(w, u) exp(−

∫ t

u

w(g(u, v), v) dv) duU0(dw, 0),

0 ≦ s ≦ t.

(3.11)

Here, f(s, t) is defined in (3.1) and η is the function given by Lemma 3.2 with g in
place of g̃. 3

Proof. For k ∈ Z+, define a sequence of functions, gk and ηk, inductively by g0(s, t) =
1, 0 ≦ s ≦ t, and, for k ∈ Z+, ηk the function η in Lemma 3.2 with gk in place of
g̃, and

gk+1(s, t) = 1 +

∫

W

∫ 1

0

∂ ρ

∂z
(w, z) exp(−

∫ t

0

(f(z, u), u) du) dz U0(dw, 0)

−

∫

W

∫ s

0

ηk(u) exp(−

∫ t

u

w(gk(u, v), v) dv) duU0(dw, 0),

0 ≦ s ≦ t.

(3.12)

Note that (2.13) and ηk(w, z) ≧ 0 implies gk(s, t) ≦ 1, and that (3.7) and (2.15),
with ηk(w, z) ≧ 0 imply

1− gk(s, t) ≦

∫

W

ρ(w, 0)U0(dw, 0) = 1.

Hence by 0 ≦ gk(s, t) ≦ 1, ηk is well-defined.
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Put ∆gk = |gk+1 − gk| and ∆ηk = |ηk+1 − ηk|. Repeating the arguments in
Lemma 3.1 or Lemma 3.2, we see that (3.12) implies, with (3.8),

∆gk+1(s, t) ≦

∫

W

∫ s

0

∆ηk(w, u) duU0(dw, 0) + C1(T )

∫ s

0

(∫ t

u

∆gk(u, v) dv

)

du,

for 0 ≦ s ≦ t ≦ T , where C1(T ) is a positive constant. Putting Gk(s) =
sup

t∈[s,T ]

∆gk(s, t), we have, with Corollary 3.3,

Gk+1(s) ≦ C2(T )

∫ s

0

(∫ u

0

Gk(v) dv

)

du+ T C1(T )

∫ s

0

Gk(u) du

≦ (C2(T ) + C1(T ))T

∫ s

0

Gk(u) du,

where C2(T ) is a positive constant. As in the proof of Lemma 3.1 or Lemma 3.2, this
implies that the limit g = lim

k→∞
gk exists and is continuous. Also, 0 ≦ gk(s, t) ≦ 1

implies

0 ≦ g(s, t) ≦ 1, t ≧ s ≧ 0. (3.13)

Then η = lim
k→∞

ηk also exist and are continuous, and these functions satisfy (3.6)

with g in place of g̃, and (3.11). C1 properties follow from the right hand side of
(3.11), and uniqueness also follows as in the proof of Lemma 3.2. 2

Corollary 3.5. The following hold.

f(y, 0) = y, y ∈ [0, 1]. (3.14)

∂ f

∂y
(y, t) > 0,

∂ f

∂t
(y, t) ≧ 0, (y, t) ∈ [0, 1]× [0,∞). (3.15)

∂ g

∂s
(s, t) ≦ 0,

∂ g

∂t
(s, t) ≧ 0, 0 ≦ s ≦ t. (3.16)

g(t, t) = 0, t ≧ 0. (3.17)

g(0, t) = f(0, t), t ≧ 0. (3.18)

3

Proof. The claims on f , (3.14) and (3.15), are consequences of (3.1) and the assump-
tions in Theorem 2.1. The only perhaps less obvious claim is that the derivative of
f in y cannot be 0 in (3.15), which follows from (2.13) and (2.1), with

∂ f

∂y
(y, t)

≧ −e−T Rw(T )

∫

W

∂ ρ

∂y
(w, y)U0(dw, 0) = −e−T Rw(T ) ∂

∂y
U0(1W , y) = e−T Rw(T )

> 0.

Differentiating (3.7) with g̃ replaced by g,

η(w, t) −

∫ t

0

η(w, u)w(g(u, t), t) exp(−

∫ t

u

w(g(u, v), v) dv) du

= −

∫ 1

0

∂ ρ

∂z
(w, z)w(f(z, t), t) exp(−

∫ t

0

w(f(z, s), s) ds) dz.

(3.19)
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Integrating (3.19) over W with measure U0(dw, 0), and recalling that η and w ∈ W
are non-negative, and using (3.1) and (3.15),
∫

W

η(w, t)U0(dw, 0)

≧ −

∫

W

∫ 1

0

∂ ρ

∂z
(w, z)w(f(z, t), t) exp(−

∫ t

0

w(f(z, s), s) ds) dz U0(dw, 0)

=
∂ f

∂t
(0, t) ≧ 0.

(3.20)

Differentiating (3.11) by s and using (3.20), we then have

∂ g

∂s
(s, t) = −

∫

W

η(w, s) exp(−

∫ t

s

w(g(s, v), v) dv)U0(dw, 0) ≦ 0.

Similarly, differentiating g(s, t) by t and using (3.11) and (3.15),

∂ g

∂t
(s, t) ≧

∂ f

∂t
(0, t) ≧ 0.

The rest of the claims are obtained easily. Indeed, (3.17) follows from (2.15),
(3.11) and (3.7), and (3.18) from (3.11) and (3.1). 2

We are ready to define the characteristic curves y = yC(γ, t) for (2.22). For
γ = (y0, t0) ∈ Γ and t ≧ t0, put

yC(γ, t) :=

{

f(y0, t) if γ ∈ Γi , i.e., t0 = 0,
g(t0, t) if γ ∈ Γb , i.e., y0 = 0.

(3.21)

Note that (3.18) implies that (3.21) is well-defined on (y0, t0) = (0, 0) ∈ Γi ∩ Γb.
Lemma 3.1 and Lemma 3.4 imply continuity of yC(γ, t), and C1 property in t. (In
fact, it is also C1 in (γ, t) except on y = yC((0, 0), t).) Also, (3.14) and (3.17) imply
the first equality in (2.16).

Note also that, for each t ≧ 0, yC(·, t) : Γt → [0, 1] is surjective. In fact, f and
g are continuous, (3.14) and (3.15) imply f(1, t) ≧ f(1, 0) = 1. These and (3.17)
and (3.18) imply that yC is surjective:

{yC(γ, t) | γ ∈ Γt} = [0, 1].

Note that (3.15) implies that there exists a unique C1, increasing, one-to-one

onto inverse function f̂ : [f(0, t), 1] → [0, 1] of f(y, t) with respect to y. For
y < yC(0, 0, t) = f(0, t) = g(0, t) we define ĝ : [0, g(0, t)] → [0, t] by

ĝ(y, t) = inf{s ≧ 0 | g(s, t) = y}. (3.22)

Since, as noted above, g(·, t) : [0, t] → [0, g(0, t)] is surjective, ĝ is well-defined,
and since g is continuous, g(ĝ(y, t), t) = y. Also (3.16) implies that ĝ(y, t) is non-
increasing with respect to y. Put

γ̂(y, t) =

{

(f̂(y, t), 0) ∈ Γi if f(0, t) ≦ y ≦ 1,
(0, ĝ(y, t)) ∈ Γb ∩ Γt if 0 ≦ y ≦ g(0, t).

(3.23)

The definition implies

yC(γ̂(y, t), t) = y, y ∈ [0, 1], and γ̂(yC(γ, t), t) = γ, γ ∈ Γi. (3.24)

Note that the second equality may fail on γ ∈ Γb.
For t ≧ 0, define a measure valued function

ϕ(dw, ·, t) : Γt → [0,∞)
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as follows. If γ = (y0, 0) ∈ Γi,

ϕ(dw, γ, t) := −

∫ 1

y0

∂ ρ

∂z
(w, z) exp(−

∫ t

0

w(f(z, s), s) ds) dz U0(dw, 0), (3.25)

where f is as in Lemma 3.1; and if γ = (0, t0) ∈ Γb ∩ Γt,

ϕ(dw, γ, t)

:= −

∫ 1

0

∂ ρ

∂z
(w, z) exp(−

∫ t

0

w(f(z, s), s) ds) dz U0(dw, 0)

+

∫ t0

0

η(w, u) exp(−

∫ t

u

w(g(u, v), v)dv) duU0(dw, 0),

(3.26)

where, f is as in Lemma 3.1, and η and g are as in Lemma 3.4. Let

ϕ(h, γ, t) :=

∫

W

h(s)ϕ(dw, γ, t)

for a continuous bounded function h, γ ∈ Γ and t ∈ [0,∞).

Proposition 3.6. The following hold.

yC(γ, t) = 1− ϕ(1W , γ, t) := 1−

∫

W

ϕ(dw, γ, t), γ ∈ Γt, t ≧ 0. (3.27)

ϕ(dw, γ, t0) = U0(dw, y0), γ = (y0, t0) ∈ Γ. (3.28)

For bounded continuous h : W → R and t > 0,

∂ ϕ

∂t
(h, (y0, 0), t) =

∫

W

∫ 1

y0

w(yC((z, 0), t), t)
∂ ϕ

∂z
(h, (z, 0), t) dz U0(dw, 0),

0 ≦ y0 ≦ 1,

(3.29)

and
∂ ϕ

∂t
(h, (0, t0), t) =

∂ ϕ

∂t
(h, (0, 0), t)

−

∫

W

∫ t0

0

w(yC((0, u), t), t)
∂ ϕ

∂u
(h, (0, u), t) duU0(dw, 0),

0 ≦ t0 ≦ t.

(3.30)

3

Proof. The definitions (3.21), (3.25) and (3.26), with Lemma 3.1 and Lemma 3.4
imply (3.27), and (3.28) follows from (3.7), (3.25) and (3.26). The definitions (3.21)
and (3.25) imply that both hand sides of (3.29) are equal to

∫

W

h(w)

∫ 1

y0

∂ ρ

∂z
(w, z)w(f(z, t), t) exp(−

∫ t

0

w(f(z, s), s) ds) dz U0(dw, 0).

Similarly, (3.21) and (3.26) imply that both hand sides of (3.30) are equal to

∂ ϕ

∂t
(h, (0, 0), t)

−

∫

W

h(w)

∫ t0

0

η(w, u)w(g(u, t), t) exp(−

∫ t

u

w(g(u, v), v) dv) duU0(dw, 0).

2
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For (y, t) ∈ [0, 1]× [0,∞) put

U(dw, y, t) := ϕ(dw, γ̂(y, t), t) =

{

ϕ(dw, (f̂ (y, t), 0), t) f(0, t) ≦ y ≦ 1,
ϕ(dw, (0, ĝ(y, t)), t) 0 ≦ y ≦ g(0, t),

(3.31)

where γ̂ is defined in (3.23).

Theorem 3.7. It holds that

ϕ(dw, γ, t) = U(dw, yC(γ, t), t), γ ∈ Γt, t ≧ 0. (3.32)

Furthermore, for bounded continuous function h : W → R, U(h, ·, ·) : [0, 1] ×
[0,∞) → [0,∞) is Lipschitz continuous in (y, t) ∈ [0, 1]× [0, T ] for any T > 0, and
satisfies the second equality in (2.16), (2.17), (2.19), and (2.20). 3

Proof. For γ ∈ Γi, (3.32) follows from (3.24). The point is the case γ ∈ Γb, where
yC((0, s), t) = g(s, t), as a function of s, may fail to be one-to-one. Suppose g(s, t) =
g(s′, t) for some s and s′ satisfying 0 ≦ s < s′ ≦ t. Then (3.11) and non-negativity
of η(w, u) implies

∫ s′

s

η(w, u) exp(−

∫ t

u

w(g(u, v), v)dv) du = 0, U0(dw, 0)–almost surely.

Hence (3.26) implies ϕ(dw, (0, s′), t) = ϕ(dw, (0, s), t). On the other hand, the first
equality of (3.24) implies

yC(γ̂(yC(γ, t), t), t) = yC(γ, t), γ ∈ Γb.

Therefore, ϕ(dw, γ̂(yC(γ, t), t), t) = ϕ(dw, γ, t), with which (3.31) implies

U(dw, yC(γ, t), t) = ϕ(dw, γ̂(yC(γ, t), t), t) = ϕ(dw, γ, t),

so that (3.32) holds.
The Lipschitz continuity of U(h, y, t) for f(0, t) ≦ y ≦ 1, 0 ≦ t ≦ T is obvious,

since the definitions (3.31), (3.25), and the definition of f̂ stated just before (3.22)
imply that U(h, y, t) is C1. To prove the Lipschitz continuity of U(h, y, t) for
0 ≦ g(0, t) = f(0, t) ≦ y ≦ 1, 0 ≦ t ≦ T , let (y, t) and (y′, t′) be 2 points in
this domain. Use (3.31) to decompose

|U(h, y′, t′)− U(h, y, t)|
≦ |ϕ(h, γ̂(y′, t′), t′)− ϕ(h, γ̂(y′, t′), t)|+ |ϕ(h, γ̂(y′, t′), t)− ϕ(h, γ̂(y, t), t)|.

Since by definition (3.26) ϕ(h, γ, t) is C1 in t, the first term on the right-hand side
is bounded by a global constant times |t′ − t|. To evaluate the second term, let M
be a positive constant such that |h(w)| ≦ M , w ∈ W , and denote by h+ and h− the
positive and negative part of h, respectively, so that h = h+ − h−, 0 ≦ h± ≦ M .
Definitions (3.23) and (3.26), and the non-negativity of η imply

|ϕ(h, γ̂(y′, t′), t)− ϕ(h, γ̂(y, t), t)|

=

∣

∣

∣

∣

∫ ĝ(y,t)

ĝ(y′,t′)

∫

W

h(w) η(w, u) exp(−

∫ t

u

w(g(u, v), v)dv)U0(dw, 0) du

∣

∣

∣

∣

≦ 2M

∣

∣

∣

∣

∫ ĝ(y,t)

ĝ(y′,t′)

∫

W
1W (w) η(w, u) exp(−

∫ t

u

w(g(u, v), v)dv)U0(dw, 0) du

∣

∣

∣

∣

,

which, by (3.23), (3.26), and (3.27), is equal to
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2M |yC(γ̂(y
′, t′), t)− yC(γ̂(y, t), t)|.

This with (3.24) implies

|ϕ(h, γ̂(y′, t′), t)− ϕ(h, γ̂(y, t), t)|

≦ 2M |yC(γ̂(y
′, t′), t′)− yC(γ̂(y

′, t′), t)|+ 2M |yC(γ̂(y
′, t′), t′)− yC(γ̂(y, t), t)|

= 2M |yC(γ̂(y
′, t′), t′)− yC(γ̂(y

′, t′), t)|+ 2M |y′ − y|.

Since yC(γ, t) is C
1 in t, we have the global Lipschitz continuity.

The property (2.20) follows from (3.27) and (3.24). The second equality in (2.16)
then follows from (3.28), (3.32), (3.32), and the first equality in (2.16). (Note that
the first equality in (2.16) and other claims in Theorem 2.1 for yC is proved below
(3.21).)

To prove (2.17) for (y0, t0) ∈ Γi, namely, for t0 = 0, use (2.18), (3.31), (3.32),
and (3.25), and change the order of integration, to find

−V (h, yC((y0, 0), t), t)

= −

∫

W

h(w)w(yC ((y0, 0), t), t)ϕ(dw, (y0, 0), t)

+

∫

W

h(w)

∫ 1

yC((y0,0),t)

∂ w

∂z
(z, t)

(∫ 1

f̂(z,t)

∂ ρ

∂z′
(w, z′) exp(−

∫ t

0

w(f(z′, s), s) ds) dz′
)

dzU0(dw, 0)

= −

∫

W

h(w)w(yC ((y0, 0), t), t)ϕ(dw, (y0, 0), t)

+

∫

W

h(w)

∫ 1

y0

(∫ yC((z′,0),t)

yC((y0,0),t)

∂ w

∂z
(z, t)dz

)

∂ ρ

∂z′
(w, z′)

exp(−

∫ t

0

w(f(z′, s), s) ds) dz′U0(dw, 0),

which, by the definition (3.25), is equal to
∂ ϕ

∂t
(h, γ, t). Integrating from t0 to t and

using (3.32) and (3.28), we have (2.17).
To prove (2.17) for (y0, t0) ∈ Γb, namely, for y0 = 0, first decompose the inte-

gration range in (2.18) with y = yC((0, t0), t) as

[yC((0, t0), t), 1] = [g(t0, t), g(0, t)] ∪ [f(0, t), 1],

then use the definitions (3.31) and (3.25) or (3.26), and change the order of inte-
gration, to find

−V (h, yC((0, t0), t), t)
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= −

∫

W

h(w)w(yC((0, t0), t), t)ϕ(dw, (0, t0), t)

−

∫

W

h(w)

∫ g(0,t)

g(t0,t)

∂ w

∂z
(z, t)

(

−

∫ 1

0

∂ ρ

∂z′
(w, z′) exp(−

∫ t

0

w(f(z′, s), s) ds) dz′

+

∫ ĝ(z,t)

0

η(w, u) exp(−

∫ t

u

w(g(u, v), v)dv) du

)

dz U0(dw, 0)

+

∫

W

h(w)

∫ 1

f(0,t)

∂ w

∂z
(z, t)

(∫ 1

f̂(z,t)

∂ ρ

∂z′
(w, z′) exp(−

∫ t

0

w(f(z′, s), s)ds)dz′
)

dz

× U0(dw, 0),

= −

∫

W

h(w)w(yC((0, t0), t), t)ϕ(dw, (0, t0), t)

+

∫

W

h(w) (w(g(0, t), t) − w(g(t0, t), t))
∫ 1

0

∂ ρ

∂z′
(w, z′) exp(−

∫ t

0

w(f(z′, s), s)ds)dz′U0(dw, 0)

−

∫

W

h(w)

∫ t0

0

η(w, u) exp(−

∫ t

u

w(g(u, v), v)dv)
(
∫ g(u,t)

g(t0,t)

∂ w

∂z
(z, t) dz

)

duU0(dw, 0)

+

∫

W

h(w)

∫ 1

0

∂ ρ

∂z′
(w, z′) exp(−

∫ t

0

w(f(z′, s), s) ds)
(∫ f(z′,t)

f(0,t)

∂ w

∂z
(z, t) dz

)

dz′U0(dw, 0)

By using (3.26), this is further simplified as

∫

W

h(w)

(

−

∫ t0

0

η(u)w(g(u, t), t) exp(−

∫ t

u

w(g(u, v), v)dv) du

+

∫ 1

0

∂ ρ

∂z′
(w, z′)w(f(z′, t), t) exp(−

∫ t

0

w(f(z′, s), s) ds) dz′
)

U0(dw, 0),

which, by using (3.26), is seen to be equal to
∂ ϕ

∂t
(h, γ, t). Integrating from t0 to t

and using (3.32) and (3.28), we have (2.17).
Substituting h = 1W in (2.17), and using (2.20), (3.27) and (3.32), we have

(2.19). 2

To complete a proof of Theorem 2.1, it only remains to prove uniqueness. Besides
the pair yC and U which we constructed and proved so far to satisfy the properties
stated in Theorem 2.1, assume that there are another such pair ỹC and Ũ . For
T > 0, let L(T ) > 0 be a positive constant such that

max{|U(h, y, t)− U(h, y′, t′)|, |Ũ(h, y, t)− Ũ(h, y′, t′)|}
≦ L(T ) ‖(y, t)− (y′, t′)‖ , (y, t), (y′, t′) ∈ [0, 1]× [0, T ],
h : W → [−1, 1]; continuous.

Put

I(t) = sup
h: W→[−1,1]; conti.

sup
y∈[0,1]

|U(h, y, t)− Ũ(h, y, t)|



592 Tetsuya Hattori and Seiichiro Kusuoka

and

J(t) = sup
γ∈Γt

|ỹC(γ, t)− yC(γ, t)|.

Then (2.16) and its correspondence for Ũ imply I(0) = 0. Since yC(·, t) : Γt → [0, 1]
is onto,

I(t) = sup
h: W→[−1,1]; conti.

sup
γ∈Γt

|U(h, yC(γ, t), t)− Ũ(h, yC(γ, t), t)|. (3.33)

Note also that since Ũ(dw, y, t) is, by assumption, a non-negative measure, for h
with |h(w)| ≦ 1, w ∈ W , we have

Ũ(h, y, t) ≦ Ũ(1W , y, t) = 1− y ≦ 1,

where we also used (2.20).
It holds that

I(t) ≦ L(T )J(t)

Subtracting

Ũ(h, ỹC(γ, t), t) = U0(h, y0)−

∫ t

t0

Ṽ (h, ỹC(γ, s), s) ds, (3.34)

from (2.17), and using (3.33), (2.18) and (2.1), we have

|ỹC(γ, t)− yC(γ, t)| = |Ũ(1W , ỹC(γ, t), t)− U(1W , y(γ, t), t)|

≦ 2Rw(T )

∫ t

t0

J(s) ds+Rw(T )

∫ t

t0

I(s) ds+Rw(T )L(T )

∫ t

t0

J(s) ds.

Therefore,

J(t) ≦ 2Rw(T )

∫ t

t0

J(s) ds+Rw(T )

∫ t

t0

I(s)ds+Rw(T )L(T )

∫ t

t0

J(s) ds.

Then,

I(t) ≦ L(T )

(

2Rw(T )

∫ t

t0

J(s) ds+Rw(T )

∫ t

t0

I(s)ds+Rw(T )L(T )

∫ t

t0

J(s) ds

)

,

so that if we put K(t) = max{I(t), J(t)}, then there exists C(T ) such that

K(t) ≦ C(T )

∫ t

t0

K(s) ds, K(t0) = 0.

This implies K(t) = 0. Hence Ũ = U and ỹC = yC .
This completes a proof of Theorem 2.1.

4. Proof of Theorem 2.2.

Let Γ be as in (2.11). To simplify the notation, for γ = (y0, t0) ∈ Γ, we will write
yC((y0, t0), t) defined in (3.21) as yC(y0, t0, t).

We define a stochastic process (Y
(N)
C (y0, t0, t); t ≧ t0) by

Y
(N)
C (y0, t0, t) = y0 +

1

N

∑

i; X
(N)
i

(t0)≧Ny0+1

1J
(N)
i

(t0,t)
,

(y0, t0) ∈ [0, 1)× [0,∞), t > t0 ,

(4.1)
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where J
(N)
i is defined in (2.3). The process (Y

(N)
C (y0, t0, t); t ≧ t0) is an ana-

logue to yC(t) = yC(y0, t0, t). Indeed, Y
(N)
C (y0, t0, t) is non-decreasing in t and

increases when the jumps occur for the particles whose numbers of their posi-

tion are larger than Y
(N)
C (y0, t0, t−). One can find similarity for Y

(N)
C (y0, t0, t) to

yC(t) = yC(y0, t0, t) by regarding the jumps of particles as evaporation. Later it

will be shown that Y
(N)
C (y0, t0, t) converges as N → ∞ to yC(t) = yC(y0, t0, t), for

(y0, t0) ∈ Γ, t ≧ t0.
We put, as an analogue to (2.5),

y
(N)
i =

1

N
(x

(N)
i − 1), i = 1, 2, . . . , N. (4.2)

Then, (2.3) and (2.4) imply

Y
(N)
i (t) ≧ Y

(N)
C (y0, t0, t) ⇔ Y

(N)
i (t0) ≧ y0 and J

(N)
i (t0, t) does not hold.

(4.3)
Hence, we have

Y
(N)
C (y0, t0, t) = y0 +

1

N

∑

i

∫

s∈(t0,t]

∫

ξ∈[0,∞)
1Y

(N)
i

(s−)≧Y
(N)
C

(y0,t0,s−) 1ξ∈[0,wi(Y
(N)
i

(s−),s))
νi(dξds).

(4.4)

For the spatially homogeneous case, Y
(N)
A (t0, t) in Hariya et al. (2011) is equal to

Y
(N)
C (0, t − t0, t), Y

(N)
B (y0, t) to Y

(N)
C (y0, 0, t), and Y

(N)
C (t) in Hariya et al. (2011)

is equal to Y
(N)
C (0, 0, t) of (4.1).

Let Γ be as in (2.11). Let (y0, t0) ∈ Γ, t ≧ t0. The definition (2.7) and the prop-

erties (2.3), (2.4), and (4.3) imply that for B ∈ B(W ), U (N)(B, Y
(N)
C (y0, t0, t), t) as

a function of t changes its value if and only if J
(N)
i (t0, t) occurs for some i satisfying

y
(N)
i ≧ y0 and wi ∈ B. Therefore, for B ∈ B(W )

U (N)(B, Y
(N)
C (y0, t0, t), t)− U (N)(B, y0, t0)

= −
1

N

∑

i; wi∈B

∫

s∈(t0,t]

∫

ξ∈[0,∞)
1Y

(N)
i

(s−)≧Y
(N)
C

(y0,t0,s−)1ξ∈[0,wi(Y
(N)
i

(s−),s))
νi(dξds).

In analogy to (2.18) define for B ∈ B(W )

V (N)(B, y, t) =

∫

B

w(y, t)U (N)(dw, y, t) +

∫ 1

y

∫

B

∂ w

∂z
(z, t)U (N)(dw, z, t) dz. (4.5)

By definition (2.7), for B ∈ B(W )

V (N)(B, y, t) =
1

N

∑

m≧Ny+1

∑

i; wi∈B

wi(
m− 1

N
, t) 1X

(N)
i

(t−)=m

=
1

N

∑

i; wi∈B, Y
(N)
i

(t−)≧y

wi(Y
(N)
i (t−), t).

(4.6)

Denote the compensated Poisson process by

ν̃i(dξds) = νi(dξds)− dξds, (4.7)
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and put for B ∈ B(W )

M
(N)
U (B, y0, t0, t) = −

1

N

∑

i; wi∈B
∫

s∈(t0,t]

∫

ξ∈[0,∞)
1Y

(N)
i

(s−)≧Y
(N)
C

(y0,t0,s−) 1ξ∈[0,wi(Y
(N)
i

(s−),s))
ν̃i(dξds).

(4.8)

This martingaleM
(N)
U (B, y0, t0, t) means the oscillation of U (N)(B, Y

(N)
C (y0, t0, t), t)

generated by the random jumps of other particles. Indeed, we have for B ∈ B(W )

U (N)(B, Y
(N)
C (y0, t0, t), t)

= U (N)(B, y0, t0) +M
(N)
U (B, y0, t0, t)

−
1

N

∑

i; wi∈B

∫

s∈(t0,t]

∫

ξ∈[0,∞)
1Y

(N)
i

(s−)≧Y
(N)
C

(y0,t0,s−) 1ξ∈[0,wi(Y
(N)
i

(s−),s))
dξds

= U (N)(B, y0, t0) +M
(N)
U (B, y0, t0, t)

−
1

N

∑

i; wi∈B

∫ t

t0

wi

(

Y
(N)
i (s−), s

)

1Y
(N)
i

(s−)≧Y
(N)
C

(y0,t0,s−)
ds

= U (N)(B, y0, t0) +M
(N)
U (B, y0, t0, t)−

∫ t

0

V (N)(B, Y
(N)
C (y0, t0, s), s)ds.

Later we will show that M
(N)
U (B, y0, t0, t) vanishes as N goes to infinity. The van-

ishment implies that the limit processes become almost deterministic. Combining
this equality with (2.17), we have for B ∈ B(W )

U (N)(B, Y
(N)
C (y0, t0, t), t)− U(B, yC(y0, t0, t), t)

= U (N)(B, y0, t0)− U(B, y0, t0) +M
(N)
U (B, y0, t0, t)

−

∫ t

t0

(

V (N)(B, Y
(N)
C (y0, t0, s), s)− V (B, yC(y0, t0, s), s)

)

ds.

(4.9)

Put

W (N)(t) = sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

|Y
(N)
C (y0, t0, s)− yC(y0, t0, s)|

∨ sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

||U (N)(·, Y
(N)
C (y0, t0, s), s)− U(·, yC(y0, t0, s), s)||var

∨ sup
B∈B(W )

sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

|V (N)(B, Y
(N)
C (y0, t0, s), s)−V (B, yC(y0, t0, s), s)|.

(4.10)
Now we prepare some estimates in order to apply Gronwall’s inequality to

W (N)(t). First we consider an estimate for

sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

||U (N)(·, Y
(N)
C (y0, t0, s), s)− U(·, yC(y0, t0, s), s)||var.
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Since for all z ∈ [0, 1) there exist (y0, t0) ∈ Γ such that yC(y0, t0, t) = z, for
B ∈ B(W )

sup
z∈[0,1]

|U (N)(B, z, t)− U(B, z, t)|

≦ sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

|U (N)(B, yC(y0, t0, s), s)− U(B, yC(y0, t0, s), s)|

≦ sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

|U (N)(B, Y
(N)
C (y0, t0, s), s)− U(B, yC(y0, t0, s), s)|

+ sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

|U (N)(B, Y
(N)
C (y0, t0, s), s)− U (N)(B, yC(y0, t0, s), s)|.

Hence,

sup
z∈[0,1]

|U (N)(B, z, t)− U(B, z, t)|

≦ W (N)(t) + sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

|U (N)(B, Y
(N)
C (y0, t0, s), s)

− U (N)(B, yC(y0, t0, s), s)|.

(4.11)

By (2.7) it holds that

sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

|U (N)(B, Y
(N)
C (y0, t0, s), s)− U (N)(B, yC(y0, t0, s), s)|

≦ sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

|Y
(N)
C (y0, t0, s)− yC(y0, t0, s)|+

1

N
.

(4.12)
By (4.11) and (4.12) we obtain

sup
z∈[0,1]

|U (N)(B, z, t)− U(B, z, t)| ≦ 2W (N)(t) +
1

N
. (4.13)

This implies

sup
z∈[0,1]

||U (N)(·, z, t)− U(·, z, t)||var ≦ 4W (N)(t) +
2

N
. (4.14)

By (4.9) and (4.10), we have for B ∈ B(W )
∣

∣

∣
U (N)(B, Y

(N)
C (y0, t0, t), t)− U(B, yC(y0, t0, t), t)

∣

∣

∣

≦
∣

∣

∣U (N)(B, y0, t0)− U(B, y0, t0)
∣

∣

∣+
∣

∣

∣M
(N)
U (B, y0, t0, t)

∣

∣

∣+

∫ t

t0

W (N)(s)ds.

(4.15)
Next we consider an estimate for

sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

|Y
(N)
C (y0, t0, s)− yC(y0, t0, s)|.

By using (4.4), (4.6) and (4.8), we have

Y
(N)
C (y0, t0, t) = y0 +M

(N)
U (W, y0, t0, t) +

∫ t

t0

V (N)(W,Y
(N)
C (y0, t0, s), s) ds. (4.16)
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Combining with (2.19),

Y
(N)
C (y0, t0, t)− yC(y0, t0, t)

= M
(N)
U (W, y0, t0, t)

+

∫ t

t0

[

V (N)(W,Y
(N)
C (y0, t0, s), s)− V (W, yC(y0, t0, s), s)

]

ds.

(4.17)

Hence, by (4.10) we have

∣

∣

∣Y
(N)
C (y0, t0, t)− yC(y0, t0, t)

∣

∣

∣ ≦ |M
(N)
U (W, y0, t0, t)|+

∫ t

t0

W (N)(s)ds. (4.18)

Finally we consider an estimate for

sup
B∈B(W )

sup
(y0,t0)∈Γ;t0≦t

sup
s∈[t0,t]

|V (N)(B, Y
(N)
C (y0, t0, s), s)− V (B, yC(y0, t0, s), s)|.

Similarly, combining (4.5) with (2.18), we have

V (N)(B, Y
(N)
C (y0, t0, t), t)− V (B, yC(y0, t0, t), t)

=

∫

B

w(Y
(N)
C (y0, t0, t), t)

(

U (N)(dw, Y
(N)
C (y0, t0, t), t)− U(dw, yC(y0, t0, t), t)

)

+

∫

B

(

w(Y
(N)
C (y0, t0, t), t)− w(yC(y0, t0, t), t)

)

U(dw, yC(y0, t0, t), t)

+

∫ 1

Y
(N)
C

(y0,t0,t)

∫

B

∂ w

∂z
(z, t)

(

U (N)(dw, z, t)− U(dw, z, t)
)

dz

−

∫ Y
(N)
C

(y0,t0,t)

yC(y0,t0,t)

∫

B

∂ w

∂z
(z, t)U(dw, z, t) dz.

Hence, using this estimate, (2.1), (4.14) and the fact that 0 ≦ U (N) ≦ 1, we have
for B ∈ B(W )

∣

∣

∣
V (N)(B, Y

(N)
C (y0, t0, t), t)− V (B, yC(y0, t0, t), t)

∣

∣

∣

≦ Rw(T )||U (N)(·, Y
(N)
C (y0, t0, t), t)− U(·, yC(y0, t0, t), t)||var

+2Rw(T )
∣

∣

∣Y
(N)
C (y0, t0, t)− yC(y0, t0, t)

∣

∣

∣

+Rw(T )

(

4

∫ t

t0+

W (N)(s)ds+
2

N

)

.

(4.19)
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By (2.1), (4.15), (4.19), and (4.18), we obtain for B ∈ B(W )
∣

∣

∣
V (N)(B, Y

(N)
C (y0, t0, t), t)− V (B, yC(y0, t0, t), t)

∣

∣

∣

≦ Rw(T )||U
(N)(·, y0, t0)− U(·, y0, t0)||var + 7Rw(T )

∫ t

t0

W (N)(s)ds

+3Rw(T )
∣

∣

∣M
(N)
U (B, y0, t0, t)

∣

∣

∣+
2Rw(T )

N
.

(4.20)

We are now ready to apply Gronwall’s inequality to W (N)(t). By (4.10), (4.15),
(4.18), and (4.20) we have

W (N)(t) ≦ C1 sup
(y0,t0)∈Γ

||U (N)(·, y0, t0)− U(·, y0, t0)||var

+ (1 +Rw(T )) sup
B∈B(W )

sup
(y0,t0)∈Γ;t0≦t

∣

∣

∣M
(N)
U (B, y0, t0, t)

∣

∣

∣

+ C2

∫ t

0

W (N)(s)ds+
2Rw(T )

N

where C1 and C2 are constants depending on A, T,Rw(T ). Hence, Gronwall’s in-
equality implies

sup
t∈[0,T ]

W (N)(t)

≦ eC2T

[

C1 sup
(y0,t0)∈Γ

||U (N)(·, y0, t0)− U(·, y0, t0)||var

+(1 +Rw(T )) sup
B∈B(W )

sup
(y0,t0)∈Γ;t0≦t

∣

∣

∣M
(N)
U (B, y0, t0, t)

∣

∣

∣+
2Rw(T )

N

]

.

(4.21)

Next we show that

lim
N→∞

E

[

sup
B∈B(W )

sup
(y0,t0)∈Γ; t0≦T

sup
t∈[t0,T ]

∣

∣

∣M
(N)
U (B, y0, t0, t)

∣

∣

∣

2
]

= 0.

By the definition of Γ, we have

E

[

sup
B∈B(W )

sup
(y0,t0)∈Γ,t0≦T

sup
t∈[t0,T ]

∣

∣

∣M
(N)
U (B, y0, t0, t)

∣

∣

∣

2
]

≦ E

[

sup
B∈B(W )

sup
y0∈[0,1)

sup
t∈[0,T ]

∣

∣

∣
M

(N)
U (B, y0, 0, t)

∣

∣

∣

2
]

+E

[

sup
B∈B(W )

sup
0≦t0≦t≦T

∣

∣

∣M
(N)
U (B, 0, t0, t)

∣

∣

∣

2
]

.

(4.22)

First we show the first term of the right-hand side of (4.22) vanishes as N goes to in-

finity. Note that Y
(N)
i (t) ∈ {0, 1/N, . . . (N−1)/N} for t ∈ [0, T ] and i = 1, 2, . . . , N ,

Y
(N)
C (y0, t0, ·) is a process of pure jumps by 1/N and for each k = 1, 2, . . . , N ,
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Y
(N)
C (y0, t0, ·) − y0 is independent of y0 as long as y0 ∈ (k − 1/N, k/N ]. Also,

note that {M
(N)
U (B, ·, 0, ·);B ∈ B(W )} = {M

(N)
U (B, ·, 0, ·);B ∈ 2{wi;i=1,2,...,N}}.

By (4.8)

E

[

sup
B∈B(W )

sup
y0∈[0,1)

sup
t∈[0,T ]

∣

∣

∣M
(N)
U (B, y0, 0, t)

∣

∣

∣

2
]

=
1

N2
E



 sup
B∈B(W )

sup
y0∈[0,1)

sup
t∈[0,T ]

∣

∣

∣

∣

∣

∣

∑

i;wi∈B

∫

s∈(0,t]

∫

ξ∈[0,∞)

1Y
(N)
i

(s−)≧Y
(N)
C

(y0,0,s−) 1ξ∈[0,wi(Y
(N)
i

(s−),s))
ν̃i(dξds)

∣

∣

∣

∣

∣

2




=
1

N2
sup

B∈2{wi;i=1,2,...,N}

max
k=0,1,...,N−1

E



 sup
t∈[0,T ]

∣

∣

∣

∣

∣

∣

∑

i;wi∈B

∫

s∈(0,t]

∫

ξ∈[0,∞)

1Y
(N)
i

(s−)≧Y
(N)
C

(k/N,0,s−) 1ξ∈[0,wi(Y
(N)
i

(s−),s))
ν̃i(dξds)

∣

∣

∣

∣

∣

2


 .

Hence, by Doob’s martingale inequality (see (6.16) of Chapter I in Ikeda andWatan-
abe (1989)) and (3.9) of Chapter II in Ikeda and Watanabe (1989) we have

E

[

sup
B∈B(W )

sup
y0∈[0,1)

sup
t∈[0,T ]

∣

∣

∣M
(N)
U (B, y0, 0, t)

∣

∣

∣

2
]

≦
C3

N2
max

k=0,1,...,N−1
E

[

∑

i

∫

s∈(0,T ]

∫

ξ∈[0,∞)
1ξ∈[0,wi(Y

(N)
i

(s−),s))
dξds

]

≦
C3Rw(T )T

N

where C3 is a positive constant. Thus, it holds that

lim
N→∞

E

[

sup
B∈B(W )

sup
y0∈[0,1)

sup
t∈[0,T ]

∣

∣

∣M
(N)
U (B, y0, 0, t)

∣

∣

∣

2
]

= 0. (4.23)

Next we show the second term of the right-hand side of (4.22) vanishes as N
goes to infinity. By (4.8) again, similarly to the case of t0 = 0

E

[

sup
B∈B(W )

sup
0≦t0≦t≦T

∣

∣

∣M
(N)
U (B, 0, t0, t)

∣

∣

∣

2
]

=
1

N2
sup

B∈2{wi;i=1,2,...,N}

E



 sup
0≦t0≦t≦T

∣

∣

∣

∣

∣

∣

∑

i;wi∈B

∫

s∈(t0,t]

∫

ξ∈[0,∞)

1Y
(N)
i

(s−)≧Y
(N)
C

(0,t0,s−) 1ξ∈[0,wi(Y
(N)
i

(s−),s))
ν̃i(dξds)

∣

∣

∣

∣

∣

∣

2





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=
1

N2
sup

B∈2{wi;i=1,2,...,N}

E



 sup
0≦t0≦t≦T

∣

∣

∣

∣

∣

∣

∑

i;wi∈B

∫

s∈(0,t]

∫

ξ∈[0,∞)

1Y
(N)
i

(s−)≧Y
(N)
C

(0,t0,s−) 1ξ∈[0,wi(Y
(N)
i

(s−),s))
ν̃i(dξds)

−
∑

i;wi∈B

∫

s∈(0,t0]

∫

ξ∈[0,∞)
1Y

(N)
i

(s−)≧Y
(N)
C

(0,t0,s−)1ξ∈[0,wi(Y
(N)
i

(s−),s))̃
νi(dξds)

∣

∣

∣

∣

∣

∣

2






≦
1

N2
sup

B∈2{wi;i=1,2,...,N}

E







2 sup
0≦t≦T

∣

∣

∣

∣

∣

∣

∑

i;wi∈B

∫

s∈(0,t]

∫

ξ∈[0,∞)

1Y
(N)
i

(s−)≧Y
(N)
C

(0,t0,s−) 1ξ∈[0,wi(Y
(N)
i

(s−),s))
ν̃i(dξds)

∣

∣

∣

∣

∣

∣





2





.

Hence, by Doob’s martingale inequality and (3.9) of Chapter II in Ikeda and Watan-
abe (1989) imply

E

[

sup
B∈B(W )

sup
0≦t0≦t≦T

∣

∣

∣M
(N)
U (B, 0, t0, t)

∣

∣

∣

2
]

≦
4C3

N2
E

[

∑

i

∫

s∈(0,T ]

∫

ξ∈[0,∞)
1ξ∈[0,wi(Y

(N)
i

(s−),s))
dξds

]

≦
4C3Rw(T )T

N
.

Thus, we obtain

lim
N→∞

E

[

sup
B∈B(W )

sup
0≦t0≦t≦T

∣

∣

∣M
(N)
U (B, 0, t0, t)

∣

∣

∣

2
]

= 0. (4.24)

Combining (4.22), (4.23) and (4.24), we have

lim
N→∞

E

[

sup
B∈B(W )

sup
(y0,t0)∈Γ; t0≦T

sup
t∈[t0,T ]

∣

∣

∣M
(N)
U (B, y0, t0, t)

∣

∣

∣

2
]

= 0. (4.25)

On the other hand, by (2.26) we have

lim
N→∞

||U (N)(·, 0, t0)−U(·, 0, t0)||var = lim
N→∞

||U (N)(·, 0, 0)−U0(·, 0)||var = 0. (4.26)

Thus, (4.26) and (2.26) implies

lim
N→∞

sup
(y0,t0)∈Γ

||U (N)(·, y0, t0)− U(·, y0, t0)||var = 0. (4.27)

(4.21), (4.25) and (4.27) yields

lim
N→∞

E

[

sup
t∈[0,T ]

W (N)(t)2

]

= 0.
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Hence, there exists a subsequence {N(k)} such that

lim
k→∞

sup
t∈[0,T ]

W (N(k))(t) = 0

almost surely. However, the argument above is also available even if we replace N
by any subsequence N(k). Therefore, we have

lim
N→∞

sup
t∈[0,T ]

W (N)(t) = 0

almost surely. This proves the first assertion of Theorem 2.2.
We turn to a proof of the second assertion of Theorem 2.2. First, we show the

uniqueness of the stochastic differential equation (2.28). Note that

E

[

∫

s∈(0,t]

∫

ξ∈[0,Rw(T )]

νi(dξds)

]

= tRw(T )

and that for all i

∫

s∈(0,t]

∫

ξ∈[0,∞)

Yi(s−)1ξ∈[0,wi(Yi(s−),s)) νi(dξds)

=

∫

s∈(0,t]

∫

ξ∈[0,Rw(T )]

Yi(s−)1ξ∈[0,wi(Yi(s−),s)) νi(dξds).

Moreover, there exists a constant CT such that

sup
s∈[0,T ]

|V (W,x, s)− V (W, y, s)| ≦ CT |x− y|, x, y ∈ [0, 1).

The proof of Theorem 9.1 in Chapter IV of Ikeda and Watanabe (1989) is available
by taking U := [0, Rw(T )] and U0 := ∅. Thus, we obtain the uniqueness.

Next, we show that (Y
(N)
1 (t), Y

(N)
2 (t), . . . , Y

(N)
L (t)) converges to (Y1(t), Y2(t), . . . ,

YL(t)) uniformly in t ∈ [0, T ] almost surely and also converges in the sense of L2.
Let i ∈ {1, 2, . . . , L} be fixed. By (4.6) it is easy to see

Y
(N)
i (t) = y

(N)
i +M

(N)
i (t) +

∫ t

0

V (N)(W,Y
(N)
i (s−), s)ds

−

∫

s∈(0,t]

∫

ξ∈[0,∞)

Y
(N)
i (s−)1ξ∈[0,wi(Y

(N)
i

(s−),s))
νi(dξds)

(4.28)

where

M
(N)
i (t) :=

1

N

N
∑

j=1

∫

s∈(0,t]

∫

ξ∈[0,∞)
1Y

(N)
i

(s−)<Y
(N)
j

(s−) 1ξ∈[0,wj(Y
(N)
j

(s−),s))
ν̃j(dξds).

(4.29)
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Hence, (2.28) and (4.28) imply

E

[

sup
s∈[0,t]

|Y
(N)
i (s)− Yi(s)|

2

]

≦ 4|y
(N)
i − yi|

2 + 4E

[

sup
s∈[0,t]

|M
(N)
i (s)|2

]

+ 4

∫ t

0

E
[

|V (N)(W,Y
(N)
i (s−), s)− V (W,Yi(s−), s)|2

]

ds

+ 4E

[

sup
s∈[0,t]

∣

∣

∣

∣

∣

∫

u∈(0,s]

∫

ξ∈[0,∞)

[Y
(N)
i (u−)1ξ∈[0,wi(Y

(N)
i

(u−),u))

− Yi(u−)1ξ∈[0,wi(Yi(u−),u))]νi(dξdu)

∣

∣

∣

∣

∣

2


 .

(4.30)

Now we prepare some estimates in order to apply Gronwall’s inequality to (4.30).
First we estimate the third term of the right-hand side of (4.30). By (2.18) and
(4.5), we have

V (N)(W,Y
(N)
i (t−), t)− V (W,Yi(t−), t)

=

∫

W

w(Y
(N)
i (t−), t)

(

U (N)(dw, Y
(N)
i (t−), t)− U(dw, Yi(t−), t)

)

+

∫

W

(

w(Y
(N)
i (t−), t)− wi(Yi(t−), t)

)

U(dw, Yi(t−), t)

+

∫ 1

Y
(N)
i

(t−)

∫

W

∂ w

∂z
(z, t)

(

U (N)(dw, z, t)− U(dw, z, t)
)

dz

−

∫ Y
(N)
i

(t−)

Yi(t−)

∫

W

∂ w

∂z
(z, t)U(dw, z, t) dz.

Hence, noting that 0 ≦ U (N) ≦ 1 and 0 ≦ U ≦ 1, we have positive constants C4

and C5 such that

|V (N)(W,Y
(N)
i (t−), t)− V (W,Yi(t−), t)|

≦ C4|Y
(N)
i (t−)− Yi(t−)|+ C5 sup

z∈[0,1)

||U (N)(·, z, t)− U(·, z, t)||var.
(4.31)

Next we estimate the fourth term of the right-hand side of (4.30). First we show
that

∫

ξ∈[0,∞)

|x1ξ∈[0,wi(x,t))−y 1ξ∈[0,wi(y,t)) |
2dξ ≦ C4|x− y|, x, y ∈ [0, 1) (4.32)



602 Tetsuya Hattori and Seiichiro Kusuoka

where C4 is a positive constant. Let x, y ∈ [0, 1) and consider the case that
wi(y, t) ≦ wi(x, t). Then,

∫

ξ∈[0,∞)

|x1ξ∈[0,wi(x,t))−y 1ξ∈[0,wi(y,t)) |
2dξ

=

∫

ξ∈[0,∞)

|(x − y)1ξ∈[0,wi(x,t))+y 1ξ∈[wi(y,t),wi(x,t)) |
2dξ

≦

∫

ξ∈[0,∞)

(

2(x− y)2 1ξ∈[0,wi(x,t))+2y2 1ξ∈[wi(y,t),wi(x,t))

)

dξ

= 2(x− y)2wi(x, t) + y2(wi(x, t) − wi(y, t)).

Since wi and the spatial derivative of wi are bounded, we have
∫

ξ∈[0,∞)

|x1ξ∈[0,wi(x,t))−y 1ξ∈[0,wi(y,t)) |
2dξ ≦ C4|x− y|, x, y ∈ [0, 1),

where C4 is a positive constant. Therefore, (4.32) holds for the case that wi(y, t) ≦
wi(x, t). The case that wi(y, t) ≧ wi(x, t) is shown similarly.

By (4.7), Doob’s martingale inequality and (3.9) of Chapter II in Ikeda and
Watanabe (1989), there exists a positive constant C6 such that

E

[

sup
s∈[0,t]

∣

∣

∣

∣

∣

∫

u∈(0,s]

∫

ξ∈[0,∞)

[Y
(N)
i (u−)1ξ∈[0,wi(Y

(N)
i (u−),u))

− Yi(u−)1ξ∈[0,wi(Yi(u−),u))]νi(dξdu)

∣

∣

∣

∣

∣

2




≦ 2E

[

sup
s∈[0,t]

∣

∣

∣

∣

∣

∫

u∈(0,s]

∫

ξ∈[0,∞)

[Y
(N)
i (u−)1ξ∈[0,wi(Y

(N)
i

(u−),u))

− Yi(u−)1ξ∈[0,wi(Yi(u−),u))]ν̃i(dξdu)

∣

∣

∣

∣

∣

2




+2E

[

sup
s∈[0,t]

∣

∣

∣

∣

∣

∫

u∈(0,s]

∫

ξ∈[0,∞)

[Y
(N)
i (u−)1ξ∈[0,wi(Y

(N)
i

(u−),u))

− Yi(u−)1ξ∈[0,wi(Yi(u−),u))]dξdu

∣

∣

∣

∣

∣

2




≦ 2C6E

[

sup
s∈[0,t]

∫

u∈(0,s]

∫

ξ∈[0,∞)

∣

∣

∣Y
(N)
i (u−)1ξ∈[0,wi(Y

(N)
i

(u−),u))

− Yi(u−)1ξ∈[0,wi(Yi(u−),u))

∣

∣

∣

∣

∣

2

dξdu





+2E

[

sup
s∈[0,t]

∣

∣

∣

∣

∫ s

0

[Y
(N)
i (u−)wi(Y

(N)
i (u−), u)− Yi(u−)wi(Yi(u−), u)]du

∣

∣

∣

∣

2
]

.
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By (4.32) and boundedness of the spatial derivative of wi, there exists a positive
constant C7 such that

E

[

sup
s∈[0,t]

∣

∣

∣

∣

∣

∫

u∈(0,s]

∫

ξ∈[0,∞)

[Y
(N)
i (u−)1ξ∈[0,wi(Y

(N)
i

(u−),u))

− Yi(u−)1ξ∈[0,wi(Yi(u−),u))]νi(dξdu)

∣

∣

∣

∣

∣

2




≦ 2C4C6E

[∫ t

0

∣

∣

∣Y
(N)
i (u−)− Yi(u−)

∣

∣

∣ du

]

+ 2C7E

[

sup
s∈[0,t]

(∫ s

0

∣

∣

∣Y
(N)
i (u−)− Yi(u−)

∣

∣

∣ du

)2
]

≦ 2C4C6

∫ t

0

E

[

∣

∣

∣Y
(N)
i (u−)− Yi(u−)

∣

∣

∣

2
]

du

+ 2C7tE

[∫ t

0

∣

∣

∣Y
(N)
i (u−)− Yi(u−)

∣

∣

∣

2

du

]

.

Thus, we obtain for t ∈ [0, T ]

E

[

sup
s∈[0,t]

∣

∣

∣

∣

∣

∫

u∈(0,s]

∫

ξ∈[0,∞)

[Y
(N)
i (u−)1ξ∈[0,wi(Y

(N)
i

(u−),u))

− Yi(u−)1ξ∈[0,wi(Yi(u−),u))]νi(dξdu)

∣

∣

∣

∣

∣

2




≦ (2C4C6 + 4TC7)

∫ t

0

E

[

∣

∣

∣
Y

(N)
i (u−)− Yi(u−)

∣

∣

∣

2
]

du.

(4.33)

We are now ready to apply Gronwall’s inequality to (4.30). By (4.30), (4.31)
and (4.33) we have, for t ∈ [0, T ],

E

[

sup
s∈[0,t]

|Y
(N)
i (s)− Yi(s)|

2

]

≦ 4|y
(N)
i − yi|

2 + 4E

[

sup
s∈[0,t]

|M
(N)
i (s)|2

]

+ 4

∫ t

0

E
[

(C4|Y
(N)
i (s−)− Yi(s−)|

+ C5 sup
z∈[0,1),s∈[0,T ]

||U (N)(·, z, s)− U(·, z, s)||var)
2

]

ds

+ 4(2C4C6 + 4TC7)

∫ t

0

E

[

∣

∣

∣Y
(N)
i (u−)− Yi(u−)

∣

∣

∣

2
]

du
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≦ 4|y
(N)
i − yi|

2 + 4E

[

sup
s∈[0,t]

|M
(N)
i (s)|2

]

+ 8C2
5E

[

sup
z∈[0,1),s∈[0,T ]

||U (N)(·, z, s)− U(·, z, s)||2var

]

+ [8C2
4 + 4(2C4C6 + 4TC7)]

∫ t

0

E

[

sup
u∈[0,s]

|Y
(N)
i (u)− Yi(u)|

2

]

ds.

By Gronwall’s inequality, we obtain

E

[

sup
t∈[0,T ]

|Y
(N)
i (t)− Yi(t)|

2

]

≦ 4eC8T

(

|y
(N)
i − yi|

2 + E

[

sup
t∈[0,T ]

|M
(N)
i (t)|2

]

+ 2C2
5E

[

sup
z∈[0,1),s∈[0,T ]

||U (N)(·, z, s)− U(·, z, s)||2var

])

,

(4.34)

where C8 is a positive constant.
To show that the right-hand side of (4.34) vanishes as N goes to infinity, we

prove that E
[

supt∈[0,T ] |M
(N)
i (t)|2

]

converges to 0 as N goes to infinity. Doob’s

martingale inequality and (3.9) of Chapter II in Ikeda and Watanabe (1989) and
(4.29) imply there exists a positive constant C9 such that

E

[

sup
s∈[0,t]

|M
(N)
i (s)|2

]

≦
C9

N2
E





N
∑

j=1

∫

s∈(0,t]

∫

ξ∈[0,∞)
1Y

(N)
i

(s−)<Y
(N)
j

(s−) 1ξ∈[0,wj(Y
(N)
j

(s−),s))
dξds





≦
C9Rw(T )t

N
.

Hence,

lim
N→∞

E

[

sup
s∈[0,t]

|M
(N)
i (s)|2

]

= 0. (4.35)

Therefore, by the first assertion of Theorem 2.2, (2.27), (4.34) and (4.35) we obtain

lim
N→∞

E

[

sup
t∈[0,T ]

|Y
(N)
i (t)− Yi(t)|

2

]

= 0

for i = 1, 2, . . . , L. This implies that (Y
(N)
1 (t), Y

(N)
2 (t), . . . , Y

(N)
L (t)) converges to

(Y1(t), Y2(t), . . . , YL(t)) uniformly in t ∈ [0, T ] in the sense of L2.
To show the almost sure convergence, observe that there exists a subsequence

{N(k)} such that (Y
(N(k))
1 (t), Y

(N(k))
2 (t), . . . , Y

(N(k))
L (t)) converges to (Y1(t), Y2(t),

. . . , YL(t)) uniformly in t ∈ [0, T ] almost surely. However, the argument above is
also available even if we replace N by any subsequence N(k). Therefore, we have
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(Y
(N)
1 (t), Y

(N)
2 (t), . . . , Y

(N)
L (t)) converges to (Y1(t), Y2(t), . . . , YL(t)) uniformly in

t ∈ [0, T ] almost surely.
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5. Appendix

Proposition 5.1. Let {φn} be nondecreasing functions on [0, 1] and φ be a con-
tinuous function on [0, 1]. Assume that φn(x) converges to φ(x) for all x ∈ [0, 1].
Then, φn(x) converges to φ(x) uniformly in x ∈ [0, 1]. 3

Proof. Let ε > 0. Since φ is uniformly continuous on [0, 1], we can choose a positive
integer N such that

|φ(x) − φ(y)| < ε, |x− y| ≦
1

N
.

By the assumption, there exists a integer n0 such that
∣

∣

∣

∣

φn

(

k

N

)

− φ

(

k

N

)∣

∣

∣

∣

< ε, n ≧ n0 and k = 1, 2, . . . , N.

For all x ∈ [0, 1] we can choose kx ∈ {1, 2, . . . , N} such that 0 ≦ x − kx/N ≦ 1/N .
Hence, we have for all x ∈ [0, 1] and n ≧ n0

|φn(x) − φ(x)|

≦

∣

∣

∣

∣

φn (x)− φn

(

kx
N

)∣

∣

∣

∣

+

∣

∣

∣

∣

φn

(

kx
N

)

− φ

(

kx
N

)∣

∣

∣

∣

+

∣

∣

∣

∣

φ

(

kx
N

)

− φ (x)

∣

∣

∣

∣

< φn

(

kx + 1

N

)

− φn

(

kx
N

)

+ 2ε

≦

∣

∣

∣

∣

φn

(

kx + 1

N

)

− φ

(

kx + 1

N

)∣

∣

∣

∣

+

∣

∣

∣

∣

φ

(

kx + 1

N

)

− φ

(

kx
N

)∣

∣

∣

∣

+

∣

∣

∣

∣

φ

(

kx
N

)

− φn

(

kx
N

)∣

∣

∣

∣

+ 2ε

≦ 5ε.

This completes the proof. 2
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