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Abstract. We consider pairs of 3-dimensional Brownian paths, started at the ori-
gin and conditioned to have no intersections after time zero. We show that there
exists a unique measure on pairs of paths that is invariant under this conditioning,
while improving the rate of convergence to stationarity from Lawler (1998).

1. Introduction

Suppose W 1
t , W 2

t are independent Brownian motions taking values in R
3, starting

at different points. It is well known Dvoretzky et al. (1950) that

lim
t→∞

P{W 1[0, t] ∩ W 2[0, t] = ∅} = 0,

and, from this, one can conclude that the paths of the Brownian motions almost
surely have double points. Using a subadditivity argument Burdzy and Lawler
(1990); Burdzy et al. (1989), one can show that there exists a ξ, called the (3-
dimensional) Brownian intersection exponent, such that

P{W 1[0, t2] ∩ W 2[0, t2] = ∅} ≈ t−ξ, t → ∞,

where ≈ indicates that the logarithms of both sides are asymptotic. The value of ξ
is not known exactly. Rigorous estimates Burdzy and Lawler (1990); Lawler (1996)
show that .5 < ξ < 1 and previous numerical simulations Burdzy et al. (1989)
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suggest a value of approximately .58. If we define the set of cut points for W 1 to
be

{W 1
s : W 1[0, s) ∩ W 1[s,∞) = ∅},

then it was proved in Lawler (1996) that, with probability one, the Hausdorff di-
mension of the set of cut points is 2 − ξ.

To understand the behavior of a Brownian path W near a typical cut point,
one is led to study the distribution of Wt, when 0 ≤ t ≤ 2, given that W1 is a
cut point. This conditioning is on an event of probability zero, and in order to
make this conditioning precise, one needs to take a limit, e.g, one can condition on
W [0, 1 − ε] ∩ W [1 + ε, 2] = ∅ and then take the limit as ε → 0. Equivalently, by
translating so that W1 is the origin and using W 1, W 2 to denote the “past” and
the “future” of the walk, we can consider the measure on pairs of paths (W 1

t , W 2
t ),

when 0 ≤ t ≤ 1, conditioned so that W 1
t [ε, 1]∩W 2

t [ε, 1] = ∅. A similar limit, where ε
is replaced with the first visit to the sphere of radius ε, was studied in Lawler (1998)
for dimensions 2 and 3 and Lawler (1995) for dimension 2, where it was shown that
there exists a unique limit distribution which can be considered an invariant (or,
as sometimes called, quasi-invariant) measure for the nonintersecting paths.

In this paper, we will reprove the result in Lawler (1998), making an important
improvement in the rate of convergence to the invariant measure. More precisely,
our proof gives an exponential rate of convergence. The reason for establishing this
result is not just to make an improvement of a result in the literature. We hope to
extend these ideas to the more general intersection exponents. See Section 6 for a
discussion of some goals for this program of research. The final section summarizes
the results of some simulations we have done for the exponent.

2. Main result

2.1. Preliminaries. Throughout this paper, Wt, W
1
t , W 2

t will denote standard Brow-
nian motions taking values in R

3. We write elements of R
3 as w, w1, w2, . . . and we

use w = (w1, w2) for ordered pairs of points in R
3. Let Bn denote the open ball

of radius en about the origin and let B = B0. Although the notation n suggests
integer values, unless specified otherwise, n can take on real values. We write ∂B2

for (∂B)2, the space of couples of points from ∂B. Let

Tn = inf{t : Wt ∈ ∂Bn},

and define T 1
n , T 2

n similarly.
We state, without proof, some standard facts about Brownian motion.

Lemma 2.1 (Gambler’s ruin estimate). Let Va = {(x, y, z) ∈ R
3 : x = a} and

suppose w = (1, y, z). For n ≥ 1, let τn be the first time t that a Brownian motion
Wt visits V0 ∪ Vn. Then

Pw{Wτn
∈ Vn} = 1/n.

Lemma 2.2 (Harnack inequality). If U ⊂ R
3 is open and connected and K ⊂ U

is compact, then there exists c = c(K, U) < ∞ such that if f : U → (0,∞) is
harmonic, then f(w1) ≤ c f(w2) for all w1, w2 ∈ K.

Lemma 2.3. If w ∈ ∂B and k > 0, then

Pw{W [0,∞) ∩ ∂B−k 6= ∅} = e−k. (2.1)
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Lemma 2.4 (Cone estimate). Suppose U is a (relatively) open subset of ∂B con-
taining w = (1, 0, 0). Let O denote the corresponding cone

O = {rw : r > 0, w ∈ U}.

Then there exist 0 < c, α < ∞, depending on U, such that for all positive integers n

Pw{W [0, Tn] ⊂ O} ≥ ce−nα. (2.2)

Remark 2.5. One can further show that

Pw{W [0, Tn] ⊂ O} � e−αn

for some α < ∞, where � means ”within multiplicative constants of”. One way to
do this is to follow an argument similar to (but easier than) the argument in this
paper. See Lawler (1999). We will not need this stronger result.

If Wt is started at |w| < 1, then the density of WT0
with respect to surface

measure is given by the Poisson kernel

H(w, z) = c
1 − |w|2

|w − z|3
, |w| < 1, |z| = 1.

Using this, we easily conclude the following.

Lemma 2.6. There exists c < ∞ such that if r ≤ 1 and |w1|, |w2| ≤ r, then we
can define standard Brownian motions W 1

t , W 2
t on the same probability space such

that W 1
0 = w1, W

2
0 = w2 and

P
{

W 1
T 1

0

= W 2
T 2

0

}

≥ 1 − c r.

Slightly more generally, using maximal coupling (see Lindvall, 1992), we have
the following result.

Lemma 2.7 (Coupling). There exists c < ∞ such that the following holds. Suppose
w1, w2 ∈ ∂B. Then we can find a probability space on which we can define W 1

t , W 2
t ,

Brownian motions with W j
0 = wj , such that for all n ≥ 0,

P
{

W 1
t+T 1

n
= W 2

t+T 2
n

for all t ≥ 0
}

≥ 1 − c e−n.

2.2. Intersection exponent. Suppose W 1
t , W 2

t are independent Brownian motions.
Let An denote the event that the paths do not intersect before reaching ∂Bn,

An = {W 1[0, T 1
n ] ∩ W 2[0, T 2

n ] = ∅}.

More generally, if K1, K2 are closed subsets of R
3, let

An(K1, K2) = {(W 1[0, T 1
n ] ∪ K1) ∩ (W 2[0, T 2

n] ∪ K2) = ∅ or {0}}.

This event is trivial unless K1 ∩ K2 = ∅ or {0}. Let Fn denote the σ-algebra
generated by

{

W 1
s , W 2

t : 0 ≤ s ≤ T 1
n , 0 ≤ t ≤ T 2

n

}

.

We use P(w1,w2) to denote probabilities assuming W 1
0 = w1, W

2
0 = w2; if the w

does not appear, then the implicit assumption is w = (0, 0).

If w = (w1, w2) ∈ B
2
, let

qn(w) = qn(w1, w2) = Pw(An).
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If n ≥ 0, let

q̃n = sup
w∈∂B2

qn(w) = sup
w∈B2

qn(w).

We conjecture that the supremum is taken on if w2 = −w1, but this has not been
proved. However, it is not difficult to show that for fixed n, qn(w) is continuous in
w and hence there exists w = w(n) ∈ ∂B2 at which the supremum is attained. Let
qn denote the probability assuming that the starting points are chosen uniformly
and independently on ∂B,

qn = P{W 1[T 1
0 , T 1

n ] ∩ W 2[T 2
0 , T 2

n ] = ∅} =

∫

∂B

qn(w1, w2) ds(w2).

Here w1 is any point on ∂B and s denotes surface measure on ∂B normalized to have
total mass one. Rotational invariance implies that this quantity does not depend
on the choice of w1.

If 0 ≤ m ≤ n, let

Am,n = {W 1[T 1
m, T 1

n ] ∩ W 2[T 2
m, T 2

n ] = ∅}.

The strong Markov property and Brownian scaling imply

qm+n(w) = Pw(Am+n)

≤ Pw(Am ∩ Am,m+n)

= Pw(Am)Pw(Am,m+n | Am)

≤ qm(w) q̃n.

(2.3)

In particular, q̃m+n ≤ q̃m q̃n. From the subadditivity of log q̃n, we see that there
exists ξ > 0 such that

q̃n ≈ e−nξ, q̃n ≥ e−nξ,

where ≈ means that the logarithms of both sides are asymptotic. Using Lemma
2.1, it is easy to check that ξ ≤ 2. In fact, it can be shown that 1/2 < ξ < 1, but we
will not need this estimate in this paper. While the exact value of ξ is not known,
simulations point to a value close to .57 (see Section 7).

Using the Harnack inequality, one can see that there is a c < ∞ such that for all

w ∈ B
2
,

qn+1(w) ≤ Pw(A1,n+1) ≤ cP0(A1,n+1) = c qn,

and hence

q̃n+1 ≤ c qn. (2.4)

The first major step in establishing the existence of the invariant measure is to
prove that q̃n � e−nξ, meaning q̃n is within multiplicative constants of e−nξ. Note
that this immediately implies qn � e−nξ.

Proposition 2.8. There exists c∗ < ∞ such that

e−nξ ≤ q̃n ≤ c∗ e−nξ. (2.5)

Proof : Although this was essentially proved in Lawler (1996), we give the proof
in Section 3. We start by remarking that the second inequality follows from the
super-multiplicativity inequality

q̃n q̃m ≤ c q̃n+m, (2.6)

which is what we will prove. �
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2.3. Notation and definitions. If Wt is a standard Brownian motion starting at
the origin, then the path Wt, for 0 ≤ t ≤ Tn, can be scaled to give a continuous
path from 0 to ∂B. This gives a Markov process indexed by n on the path space.
This process is not ergodic in a strict sense, since one never completely forgets the
beginning of the path. However, if we only look at the path from the first time
it reaches ∂B−k to the first time it reaches ∂B, then it is ergodic. We set up the
appropriate notation in this subsection.

Let C denote the set of continuous paths γ : [0, tγ ] → B with γ(0) = 0, |γ(tγ)| = 1
and 0 < |γ(s)| < 1 for 0 < s < tγ . If γ ∈ C, for k ≥ 0, let

sk = sk(γ) = inf
{

t : |γ(t)| = e−k
}

be the first visit of γ to B−k and let πkγ denote the curve starting at γ(sk),

πkγ : [0, tγ − sk] → B, πkγ(t) = γ(t + sk).

If γ, γ′ ∈ C, we write γ =k γ′ if πkγ = πkγ′. We sometimes write just γ for the set
γ[0, tγ].

If γ ∈ C, we can consider a Brownian motion starting at γ(tγ) as a process in C
with initial condition γ. To be more specific, let W be a Brownian motion starting
at γ(tγ). For n ≥ 1, define γ̃n to be the path obtained by attaching the Brownian
motion, stopped when it first reaches ∂Bn. In other words, the path γ̃n has time
duration tγ + Tn and

γ̃n(t) =

{

γ(t), 0 ≤ t ≤ tγ
Wt−tγ

, tγ ≤ t ≤ tγ + Tn.

Let γn be the curve in C obtained from γ̃n by Brownian scaling:

γn(t) = e−n γ̃n(te2n), 0 ≤ t ≤ e−2n [tγ + Tn].

Observe that the path γn is not continuous in n. For our purposes, we will only
need to consider the process for integer times n.

Let X denote the set of ordered pairs γ = (γ1, γ2) ∈ C × C with γ1 ∩ γ2 = {0}.
We write πkγ = (πkγ1, πkγ2) and γ =k γ′ if πkγ = πkγ′.

Suppose γ = (γ1, γ2) ∈ X with endpoint (w1, w2) ∈ ∂B2. Let W 1, W 2 be inde-
pendent Brownian motions starting at w1, and w2 respectively. Define γj

n as above,
by attaching to γj the Brownian motion W j stopped at ∂Bn and then scaling. Let
γn = (γ1

n, γ2
n). Note that γn ∈ C×C, but it is possible that γn 6∈ X . If γn 6∈ X , then

γm 6∈ X for all m ≥ n. Let An(γ) denote the event An(γ1, γ2) as in the previous
section and note that we can write

An(γ) =
{

γ1
n ∩ γ2

n = {0}
}

= {γn ∈ X} .

Let

qn(γ) = P [An(γ)] .

Note that for every w1, w2 ∈ ∂B1,

qn(w1, w2) = sup qn(γ), (2.7)

where the supremum on the right is over all γ = (γ1, γ2) ∈ X whose terminal
points are w1, w2, respectively. Indeed, it is clear from the definition that qn(γ) ≤
qn(w1, w2) for each such γ, and if we choose the curves to be straight lines from 0 to
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w1, w2, respectively, then qn(γ) = qn(w1, w2). Here we use the fact that Brownian
motions in R

3 do not hit lines. Similarly,

q̃n = sup
γ∈X

qn(γ). (2.8)

Let W denote the Wiener measure on C × C, that is to say the measure induced
by taking two independent Brownian motions and stopping them when they reach
∂B. More generally, if γ ∈ X , let Wn(γ) denote the probability measure induced
by γn as above. If µ is a probability measure on C × C, let πkµ denote the measure
generated from µ by the projection γ 7→ πkγ. Note that if k < n, then πkWn(γ) is
mutually absolutely continuous with respect to πkW .

2.4. Results. Our main result discusses a measure on X . In order to avoid talking
about general measures, let us restrict to a family of measures, that we will call W-
probability measures on X . We say that ν is a W-probability measure on X ⊂ C×C
if, for each 0 ≤ k < ∞, πkν is absolutely continuous with respect to πkW . In order
to specify such a probability measure, it suffices to specify the measures {πkν} and
to show that the curves have finite time duration. To show the latter we need to
show that the time durations under the measures πkν are tight.

If γ ∈ X , let µn(γ) denote the probability measure on X obtained as the distri-
bution of γn, given the event An(γ). Note that µn(γ) is absolutely continuous with
respect to Wn(γ).

Theorem 2.9. There exists a W-probability measure ν on X , a function Q : X →
(0,∞), and constants β > 0, c < ∞ such that if γ ∈ X and n ≥ 1.

|eξn qn(γ) − Q(γ)| ≤ c e−β n,

‖πn/2µn(γ) − πn/2 ν‖ ≤ c e−βn,

where ‖ · ‖ denotes variation distance.

The proof uses a coupling argument and the main work is to prove the following.

Theorem 2.10. There exist constants β > 0, c < ∞ such that if γ, γ′ ∈ X and
n ≥ 1,

‖πn/2µn(γ) − πn/2µn(γ′)‖ ≤ c e−βn.

The rest of the paper is organized as follows. In Section 3, we prove Proposition
2.8. The coupling result (Theorem 2.10) is proved in Section 4 and convergence to
an invariant measure and the proof of Theorem 2.9 are done in Section 5.

3. Up-to-constants estimates

3.1. Separation lemma. The key technical lemma that allows the argument to work
is the separation lemma. The statement is very believable — two paths that are
conditioned not to intersect are likely to be not very close at their endpoints. The
separation lemma gives a stronger statement that, no matter how close the paths
are when they reach ∂Bn, those that reach ∂Bn+1 have a good chance of having
separated. More precisely, it asserts that there is a uniform estimate for the con-
ditional probability of separation of the paths at times (T 1

n+1, T
2
n+1), uniform over

all possible configurations up to time (T 1
n , T 2

n). It is an analogue of the boundary
Harnack principle.
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x = e
−r−1/8

x = −e
−r−1/8

x

e
−r

Figure 3.1. A separation event.

There are many ways to define the “separation” event; we will make one arbitrary
choice. Let

I(r) = {(x, y, z) ∈ R
3 : x ≥ er},

and let Sep denote the set of γ = (γ1, γ2) ∈ X such that for all 0 ≤ r ≤ 1/2,

γ1[s1
r, t

1] ⊂ I

(

−r −
1

8

)

, γ2[s2
r, t

2] ⊂ −I

(

−r −
1

8

)

,

γ1(s1
r) ∈ I

(

−r −
1

16

)

, γ2(s2
r) ∈ −I

(

−r −
1

16

)

.

Here tj = tγj and sj
r = inf{t : |γj(t)| = e−r}. A typical pair γ ∈ Sep is pictured

above, viewed as projected on the xz-plane. The inner and outer balls have radii
e−1/2 and 1, respectively, and separation is illustrated for an arbitrary 0 ≤ r ≤ 1/2.

Lemma 3.1 (Separation lemma). There exists ρ1 > 0 such that if γ ∈ X and
n ≥ 1,

P {γn ∈ Sep | An(γ)} ≥ ρ1. (3.1)

We first note that it suffices to prove (3.1) for n = 1; the general case can be
deduced by applying this case to γn−1. More generally, we can see that for all
n ≥ 1,

P [An(γ) ∩ {γn ∈ Sep}|Fn−1] ≥ ρ1 P [An(γ)|Fn−1] .



724 Gregory F. Lawler and Brigitta Vermesi

Let Jn denote the event

Jn = {γn ∈ Sep}.

Note that, for n ≥ 1, if γn ∈ X , then the separation event does not depend on
γ. In particular, we can consider as initial configuration the pair γ = (K1, K2),
where K1, K2 are closed subsets of B and define Jn just as above for this initial
configuration. We will prove this slightly stronger form of the lemma for n = 1.

Lemma 3.2 (Separation lemma, alternative form). There exists ρ1 > 0 such that
if K1, K2 are closed subsets of B and w = (w1, w2) ∈ ∂B2 with Kj ∩ ∂B = {wj},
then

Pw(A1(K1, K2) ∩ J1) ≥ ρ1 Pw(A1(K1, K2)).

Proof : Let

D = D(K1, K2, w1, w2) = min {dist(w1, K2), dist(w2, K1)} .

Let

un =

∞
∑

j=n

j2 2−j .

Let J(r1, r2) be the event that the following facts hold for r1 ≤ s ≤ r2:

W 1[T 1
s , T 1

r2
] ⊂ I

(

s −
1

8

)

, W 2[T 2
s , T 2

r2
] ⊂ −I

(

s −
1

8

)

,

W 1(T 1
s ) ∈ I

(

s −
1

16

)

, W 2(T 2
s ) ∈ −I

(

s −
1

16

)

.

Using this notation, we observe that J1 = J(1/2, 1).
For n sufficiently large so that un ≤ 1/4, let hn be

hn = inf
Pw(A1−r(K1, K2) ∩ J(1

2 − r, 1 − r))

Pw(A1−r(K1, K2))
, (3.2)

where the infimum is over 0 ≤ r ≤ un; all closed K1, K2 in B; and all w = (w1, w2) ∈
∂B2 such that D(K1, K2, w1, w2) ≥ 2−n. The lemma will follow if we prove that
infn hn > 0 and then letting n → ∞. For this, it suffices to show that hn > 0, for
each n, and that there exists a summable sequence δn < 1 such that

hn+1 ≥ hn [1 − δn]. (3.3)

We claim that there exist c1, α such that for all K1, K2, w1, w2 as above,

Pw(A2(K1, K2) ∩ J(1/4, 5/4)) ≥ c1 Dα. (3.4)

To see this, we find infinite cones O1, O2 as in Lemma 2.4 and vertices z1, z2 such
that the following hold:

• D/100 < |zj − wj | < D/20.
• wj ∈ Oj + zj and D/100 < dist(wj , ∂Oj) < D/20.

• The intersection of Oj + zj with B is contained in the ball of radius D/10
about wj .

• If Vj = (Oj + zj) ∩ (R3 \ B1/16), then dist(V1, V2) ≥ 1/1000.
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≥ 1/1000

1

O2 O1

e1/16

e1/8

w2

z2

w1

z1

Figure 3.2. Separation into cones.

Note that these conditions imply that (O1 +z1)∩K2 = ∅ and (O2 +z2)∩K1 = ∅.
We leave it to the reader to see that such cones can be found. Moreover, we can
choose the same O1, O2, up to a rotation, for each value of D. Given this, Lemma 2.4
and Brownian scaling imply that there exist c, α such that with probability at least
c Dα, W j [0, T j

1/8] ⊂ Oj + zj for j = 1, 2. Note that, on this event, the paths do not

intersect and are somewhat “separated”. It is not hard to convince oneself that,
given this event, there is a positive probability that the extended paths do not have
an intersection and are in J(1/4, 5/4). This establishes (3.4), and from this we see
that hn > 0 for each n with un ≤ 1/4. Furthermore, from (3.4), we get that for all
n with un ≤ 1/4,

hn ≥ c12
−nα.

Let

Kj(s) = e−s
(

Kj ∪ W j [0, T j
s ]

)

,

Ds = D
(

K1(s), K2(s), e
−s W 1(T 1

s ), e−s W 2(T 2
s )

)

,

τ̃n = min
{

s : Ds ≥ 2−n
}

, τn = (n22−n) ∧ τ̃n.

It is easy to see that there is a p > 0 such that given F0, the probability that
D2·2−n ≥ 2−n is at least p. Iterating this, we see that there exists c2, α

′ such that

P{τn = n2 2−n} ≤ c2 2−α′ n2

. (3.5)

Start with a configuration that satisfies D ≥ 2−(n+1). Assume 0 ≤ r ≤ un+1 and
hence 0 ≤ r + τn ≤ un. Note that on the event {τn < n22−n}, we have Dτn

≥ 2−n.
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Therefore,

P

(

A1−r ∩ J(
1

2
− r, 1 − r)

)

≥ P

(

A1−r ∩ J(
1

2
− r, 1 − r); τn < n2 2−n

)

≥ P

(

A1−r ∩ J(
1

2
− r, 1 − r); Dτn

≥ 2−n

)

≥ hn P(A1−r ; τn < n2 2−n).

where the second inequality follows from the definition of hn in (3.2). However,
(3.5) followed by (3.4) imply that

P(A1−r ; τn < n2 2−n) ≥ P(A1−r) − c2 2−α′n2

≥ P(A1−r)

[

1 −
c2

c1
2nα−n2α′

]

.

Let δn = (c2/c1) 2nα−n2α′

and then, for all configurations satisfying D ≥ 2−(n+1)

and 0 ≤ r ≤ un+1,

P
(

A1−r ∩ J(1
2 − r, 1 − r)

)

P(A1−r)
≥ hn[1 − δn] .

Taking infimums, (3.3) now follows directly from the definition of hn+1 in (3.2). �

The lemma implies that there exists ρ2 > 0 such that for all n ≥ 0,

q̃n+1 ≥ ρ2 q̃n. (3.6)

Indeed, it is not difficult to see that there exists c > 0 such that

P(An+1 | An, γn ∈ Sep) ≥ c,

which together with Lemma 3.1 establish (3.6) for n ≥ 1. It is also easy to see that
q̃1 ≥ c̃ q̃0.

Remark 3.3. A similar argument as above can prove boundary Harnack inequalities
for many domains. The basic idea is that if a process is distance 2−n from the
boundary then, except for an event of small probability, in a short amount of time
it must either hit the boundary or increase its distance to 2−n+1. (This requires
some assumptions about the boundary.) It is important that we have assumed that
K1, K2 are subsets of B and that w1, w2 ∈ ∂B. This guarantees that the paths
with D = 2−n have a positive probability of separating to D = 2−n+1, without
intersecting by the time they reach radius 1 + O(2−n).

3.2. Proof of Proposition 2.8. The separation lemma was the hard work. The re-
sults in this subsection are not as difficult. The main goal is to prove the following
lemma.

Lemma 3.4. There exists ρ3 > 0 such that if γ ∈ Sep and m ≥ 0,

qm(γ) ≥ ρ3 q̃m.

By combining Lemmas 3.1 and 3.4, we see that for all n ≥ 1, m ≥ 0,

q̃n+m ≥ ρ1 ρ3 q̃n q̃m.

Hence this establishes (2.5) for n ≥ 1, m ≥ 0. Of course, (2.5) follows trivially for
n = 0. By combining the lemma with (2.5) and (3.1) we get the following corollary.
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Corollary 3.5. If γ ∈ X and m ≥ 1,

ρ1 ρ3 q1(γ) e−ξ(m−1) ≤ qm(γ) ≤ c∗ q1(γ) e−ξ(m−1) (3.7)

We now proceed with the proof of Lemma 3.4. Recall (2.7) and (2.8).

Lemma 3.6. There exists C3 < ∞ such that if w1, w2 ∈ ∂B and n ≥ 1,

qn(w1, w2) ≤ C3 |w1 − w2|
ξ/2 q̃n.

In particular, there exists C4 > 0 such that for each n, there exists w = (w1, w2) ∈

B
2

with |w1 − w2| ≥ C4 and

qn(w1, w2) = q̃n.

Proof : If |w1 −w2| ≥ 1, the inequality follows trivially. So let us write |w1 −w2| =
e−s. Using (3.6),

qn(w1, w2) ≤ q1(w1, w2) q̃n−1 ≤ ρ−1
2 q1(w1, w2) q̃n.

Since the ball of radius 1 about w1 is contained in B1, we can see by scaling that

q1(w1, w2) ≤ q̃s ≤ c e−sξ/2 = c |w1 − w2|
ξ/2,

where the second inequality follows from the relation q̃n ≈ e−nξ. To prove the last

assertion in the lemma, choose C4 such that it satisfies C3 C
ξ/2
4 < 1 and note that

existence of a pair (w1, w2) ∈ ∂B2 which maximizes qn was already proved in the
introduction. �

Lemma 3.7. Let Ej
n be the event {W j [0, T j

n]∩B−1 = ∅} and En = E1
n ∩E2

n. Then
for every n, there exists w = (w1, w2) ∈ ∂B2 with |w1 − w2| ≥ C4 and

Pw(An ∩ En) ≥ (1 − 2e−1) q̃n.

Proof : Choose (w1, w2) with |w1−w2| ≥ C4 and qn(w1, w2) = q̃n as in Lemma 3.6.
Using (2.1), we see that if wj ∈ ∂B,

Pwj [(Ej
n)c] ≤ Pwj{W j[0,∞) ∩ B−1 6= ∅} = e−1.

Let ρ be the first time that W 1 visits B−1 and σ the first time greater than ρ that
W 1 is on ∂B. Then,

Pw(An ∩ (E1
n)c) = Pw{ρ < T 1

n}Pw{W 1[σ, T 1
n ] ∩ W 2[0, T 2

n ] = ∅ | ρ < T 1
n} ≤ e−1 q̃n.

The same holds for E2
n and hence for this choice of w = (w1, w2) ∈ B

2
,

Pw(An ∩ En) ≥ (1 − 2e−1)q̃n. �

If w ∈ ∂B, let

Lε(w) =

{

z ∈ R
3 : |z| ≤ e,

∣

∣

∣

∣

z

|z|
− w

∣

∣

∣

∣

≤ ε

}

.

In other words, Lε(w) is a cone centered around the line segment from 0 to ew.
Three-dimensional Brownian motions do not hit line segments. Using this fact, the
next lemma and corollary are almost immediate; we omit the proofs.

Lemma 3.8. For every δ > 0, there exists ε > 0 such that if w = (w1, w2) ∈ ∂B2

with |w1 − w2| ≥ C4, then

Pw2

{

W 2[0,∞) ∩ Lε(w1) 6= ∅
}

≤ δ.
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Corollary 3.9. There exists ε1 > 0 such that the following is true. Let Un = Un,ε1

be the event that

W j [0, T j
n] ∩ Lε1(W

3−j
0 ) = ∅, j = 1, 2.

Then for every n, there exists w = (w1, w2) ∈ ∂B2 with |w1 − w2| ≥ C4 such that

Pw(An ∩ En ∩ Un) ≥
1 − 2e−1

2
q̃n.

Proposition 3.10. For every ε > 0 there is a cε > 0 such that the following is
true. Suppose w = (w1, w2) ∈ ∂B2 with |w1 − w2| ≥ ε. Let Λn = Λn,ε denote the
event

Λn =
{

W j [0, T j
n] ∩ B1 ⊂ Lε(W

j
0 ) \ B−ε

}

.

Then

Pw(An ∩ Λn) ≥ cε q̃n.

Proof : We will not discuss the entire proof. First we will prove the result for
n+4. Start with w1, w2 and consider the line segments to e2w1, e

2w2. Let z1, z2 be
maximizers for n for Corollary 3.9 and take line segments from e2w1 to e4z1 and
e2w2 to e4z2. (If these intersect or get very close, interchange z1 and z2.) We now
consider the event that Brownian motions start at w1, w2 and follow these lines
very closely until they reach e4z1, e

4z2. After this we attach paths as in Corollary
3.9. We leave the details to the reader. �

Proof of Lemma 3.4: Choose ε = 1/100 (or any other sufficiently small number) in
the previous proposition and note that if γ ∈ Sep, then An ∩ Λn ⊂ An(γ). We
choose ρ3 = c1/100. �

4. Proof of Theorem 2.10

It suffices to prove Theorem 2.10 for integers n. We will use upper case N rather
than n for the index in the statement of the theorem. We restate the result in terms
of coupling.

Theorem 4.1 (Equivalent form of Theorem 2.10). There exist 0 < c, β < ∞ such
that for all positive integers N and all γ, γ′ ∈ X , we can define γN , γ′

N on the same
probability space (Ω,F ,P) such that γN has the distribution µN (γ), γ′

N has the
distribution µN (γ′), and

P
{

γN =N/2 γ′
N

}

≥ 1 − ce−βN .

Recall that, for all N , γN are pairs of paths from the origin to ∂B, so Ω will not
depend on N .

4.1. Preliminary estimates. Let WN (γ) denote the measure on C ×C induced from
γ using Wiener measure as in Section 2.3. Note that this is not a measure on X
since it gives nonzero measure to paths γn = (γ1

n, γ2
n) with γ1

n ∩ γ2
n 6= {0}.

Definition 4.2. If n ≤ N , let µn,N = µn,N (γ) be the probability measure on X
induced by γn conditioned on the event AN (γ), with Radon-Nikodym derivative

dµn,N

dWN
(γn) =

qN−n(γn)

qN (γ)
1{γn ∈ X}.
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Note that µn,N is supported on X and is absolutely continuous with respect to
WN (γ) (which is essentially the same as Wn(γ) if we only view the curves up to
the time they first reach ∂Bn). If we write

µN (γ1|γ) =
dµ1,N

dWN
(γ1) =

qN−1(γ1)

qN (γ)
1{γ1 ∈ X},

then for positive integers n ≤ N ,

dµn,N

dWN
(γn) = 1{γn ∈ X}

n−1
∏

j=0

µN−j(γj+1 | γj).

If γ and γ′ have the same endpoints, then WN (γ) is the same as WN (γ′), and
we can define γ1, γ

′
1 by attaching the same Brownian motion. If the paths γ, γ′

agree, except near the origin, it is reasonable to believe that
µN (γ1|γ)

µN (γ′
1|γ

′)
is close to

1. Although we do not know if there exists a uniform estimate that holds for all
paths, there is a uniform estimate if we restrict to a good set of paths. Let

Goodk = {γ ∈ X : q1(γ) ≥ e−k/2}.

Note that ∪kGoodk = X , and (3.7) implies that if n ≥ 1, then

qn(γ) ≥ ρ1ρ3 e−k/2 e−(n−1)ξ, γ ∈ Goodk, (4.1)

qn(γ) ≤ c∗ e−k/2 e−(n−1)ξ, γ ∈ X \ Goodk, (4.2)

Let

Nicek,m := {γ ∈ X : πmγ ∩ B−k−m = ∅}.

In other words, Nicek,m is the set of ordered pairs of paths that do not enter B−k−m

after the first visit to B−m. Note that if γ ∈ Nicek,m and γ =m γ′, then γ′ ∈ Nicek,m.
Most paths γ which have a positive chance of non-intersection are Nice and Good.
More precisely, we have the following lemma:

Lemma 4.3. There exists c0 < ∞ such that if k, m, n are positive integers with
m ≤ n, then for all γ ∈ Goodk,

|P [An(γ) ∩ {γm ∈ Nicek,m}] − qn(γ)| ≤ c0 e−k/2 qn(γ),

|P [An+1(γ) ∩ {γm ∈ Nicek,m ∩ Goodk}] − qn+1(γ)| ≤ c0 e−k/2 qn+1(γ).

Proof : Let k, m, n be given and let (W 1, W 2) denote Brownian motions starting at
the endpoints of (γ1, γ2). Let

Ej
m,k = {W j[0, T j

m] ∩ ∂B−k = ∅}, Em,k = E1
m,k ∩ E2

m,k.

Using (2.1), for all |wj | = 1 we have

Pwj [(Ej
m,k)c] ≤ Pwj

{

sup
0≤t<∞

|Wt| ≤ e−k

}

= e−k.

Using the strong Markov property and (2.5), we can see that

P[An(γ) | (Ej
m,k)c] ≤ q̃n ≤ c∗ e−nξ.

Therefore, for all γ ∈ X ,

P [An(γ) ∩ {γm 6∈ Nicek,m}] = P[An(γ) ∩ (Em,k)c] ≤ 2 e−k c∗ e−nξ. (4.3)
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Using (4.1), we can find a constant c0, depending on ρ1, ρ3, ξ and c∗ such that

P [An(γ) ∩ {γm 6∈ Nicek,m}] ≤ 2 e−k c∗ e−nξ ≤ c0 e−k/2 qn(γ)

which proves the first inequality. For the second inequality, for all γ ∈ X , using
(3.7) and (4.2),

P [An+1(γ) ∩ {γm 6∈ Goodk}] ≤ P[Am(γ)] P [An+1(γ) | Am(γ), γm 6∈ Goodk]

≤
[

c∗q1(γ)e−(m−1)ξ
] [

c∗ e−(n−m)ξ e−k/2
]

≤ c q1(γ) e−nξ e−k/2

≤ c′ qn+1(γ) e−k/2 .

The inequality follows from this, together with the first part of the lemma.
�

Lemma 4.4. There exists c′0 < ∞ such that if n, k are positive integers, γ, γ′ ∈ X
with γ ∈ Goodk, and γ =k γ′, then

|qn(γ) − qn(γ′)| ≤ c′0 e−k/2 qn(γ). (4.4)

Proof : Using the notation of the previous lemma, we see that if γ =k γ′ and we
attach the same Brownian motions to γ and γ′, and if additionally the attached
Brownian motions do not enter B−k before reaching ∂Bn, then non-intersection
probabilities for the pairs starting with γ and γ′, respectively, are equal. Formally,

P[An(γ) ∩ En,k] = P[An(γ′) ∩ En,k].

Using (4.3), which holds for all γ, γ′ ∈ X , we see that

|qn(γ) − qn(γ′)| ≤ P[An(γ) ∩ (En,k)c] + P[An(γ′) ∩ (En,k)c] ≤ c e−k e−nξ. (4.5)

But since γ ∈ Goodk, (4.1) implies that qn(γ) ≥ c′ e−k/2 e−nξ and the lemma
follows. We note that γ′ need not be in Goodk. �

4.2. Coupling. Fix a large integer N and assume γ, γ′ ∈ X . In order to show that
the distributions µN (γ) and µN (γ′) are close, we will define a coupling. If, for k
large enough, γ =k γ′, then the paths stay coupled with high probability, depending
only on k. However, if k is not large, or even if γ and γ′ do not have the same
endpoints, the coupling can be started, with positive probability. We prove these
facts in the next two propositions.

Proposition 4.5. There exists C0 such that the following holds. Suppose k, m, N
are positive integers with m ≤ N , and γ, γ′ ∈ X with γ ∈ Goodk and γ =k γ′.
Then we can define γm, γ′

m on the same probability space (Ω,F ,P) such that γm

has distribution µm,N(γ), γ′
m has distribution µm,N (γ′), and

P {γm =k+m γ′
m} ≥ 1 − C0e

−k/2.

Moreover, if N ≥ m + 1,

P {γm ∈ Goodk} ≥ 1 − C0e
−k/2.

Proof : Using maximal coupling (see Lindvall, 1992), the estimate on the cou-
pling rate follows directly from estimates on the total variation distance between
µm,N(γm) and µm,N(γ′

m). Recall that these measures are described in Definition
4.2.



Fast convergence of non-intersecting Brownian paths 731

First we consider the case m < N. Suppose we attach Brownian motions that
result in γm ∈ Nicek,m∩Goodk. Then clearly γm ∈ X if and only if γ′

m ∈ X . Lemma

4.4 applied to γ and γm implies that for all k large, satisfying c′0e
−k/2 < 1/2, using

the notation from Definition 4.2,
∣

∣

∣

∣

dµm,N

dWN
(γm) −

dµm,N

dWN
(γ′

m)

∣

∣

∣

∣

≤ 4c′0e
−k/2 dµm,N

dWN
(γm) . (4.6)

For γm /∈ Nicek,m ∩ Goodk, we have by Lemma 4.3,

µm,N [(Goodk ∩ Nicek,m)c] ≤ c0e
−k/2. (4.7)

The coupling rate now follows from putting together (4.6) and (4.7):

P{γm 6=k+m γ′
m} =

1

2
‖µm,N(γ) − µm,N(γ′)‖ ≤ (4c′0 + c0)e

−k/2 .

For m = N , we recall that

dµN,N

dWN
(γN ) =

1{γN ∈ X}

qN (γ)
,

and using the same argument as above, along with the first inequality in Lemma
4.3, we get

P{γN 6=k+N γ′
N} ≤ (c′0 + c0)e

−k/2 .

Take C0 = 4c′0+c0 and note that the second inequality in the proposition follows
immediately from (4.7).

�

We now fix an integer K such that

C0e
−

K−2

2 <
1

2
, (4.8)

where C0 is the constant of the previous proposition. We will use the coupling
described above for k ≥ K − 2. Otherwise we will use the following.

Proposition 4.6. There exists b > 0, such that if K ≤ N − 1 and γ, γ′ ∈ X , then
we can find a coupling of µK,N (γ) and µK,N (γ′) such that with probability at least
b,

γK =K−2 γ′
K ,

and

γK ∈ GoodK−2.

Proof : This is proved in the same way as Proposition 3.10. Starting with γ and γ′,
we attach Brownian paths up to first time they hit ∂BK in the following way. From
the Separation Lemma, with positive probability, by the time the paths reach ∂B1,
they have separated, that is γ1, γ

′
1 ∈ Sep. With positive probability, we can attach

paths from ∂B1 to ∂B2 so that γ2 and γ′
2 have the same endpoints and γ2, γ

′
2 ∈ Sep.

After this, we can attach the same Brownian paths, which stay very close to the
radial lines up to the first time they reach ∂BK . Thus γK =K−2 γ′

K with positive
probability b(K) and the separation ensures γK ∈ GoodK . The probability depends
on K, but we have fixed a particular value of K and we let b = min{b(K), 1/2}. �
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Proof of Theorem 4.1: Let K be as defined in (4.8), and let m be the largest in-
teger such that mK ≤ N − 1. We will start by giving a coupling of µmK,N (γ)
and µmK,N (γ′). We will do this one step at a time: first defining (γK , γ′

K), then
(γ2K , γ′

2K), etc. At each stage n ≤ m, we define the random variable σ(n) to be
the maximal nonnegative integer j such that, in the coupling,

γnK =j γ′
nK

and

γnK ∈ Goodj .

We define σ(N) to be the maximal nonnegative integer j such that in the coupling

γN =j γ′
N .

and do not require the “good” condition at N . Suppose that we have defined
(γnK , γ′

nK).

• If σ(n) ≥ K−2, we define (γ(n+1)K , γ′
(n+1)K) using a coupling as in Propo-

sition 4.5.
• If σ(n) < K−2, we define (γ(n+1)K , γ′

(n+1)K) using a coupling as in Propo-

sition 4.6.

Let Fn denote the σ-algebra generated by (γnK , γ′
nK). Proposition 4.5 implies that

if j ≥ K − 2 and n < m, then

P {σ(n + 1) = K + j|Fn} ≥ (1 − C0e
−j/2) 1{σ(n) = j}.

Proposition 4.6 along with (4.8) give

P {σ(n + 1) ≥ K − 2|Fn} ≥ b.

By comparison with a Markov chain (see, e.g., Vermesi, 2008), we can find c > 0
and β ≤ 1/4 such that

P{σ(m) ≤ mK/2} ≤ c e−βmK .

We have thus produced a coupling of µmK,N (γ) and µmK,N (γ′) such that, with
probability at least 1− c e−βmK , we have γmK =mK/2 γ′

mK and γmK ∈ GoodmK/2.
To complete the proof, use Proposition 4.5 to couple the paths for the last

N − mK steps. It is easy to see that there exists C, depending on K, such that,
with probability at least 1− Ce−βN , we have γN =N/2 γ′

N , without requiring that
γN ∈ Goodj for some j in this last step. �

4.3. Some corollaries. Here we establish some straightforward corollaries of the
coupling result.

Proposition 4.7. There exist c > 0, β < ∞ such that for all 0 ≤ m ≤ n and all
γ, γ′ ∈ X ,

|P(An(γ) | Am(γ)) − P(An(γ′) | Am(γ′))| ≤ c e−mβ e−ξ(n−m).

Proof : Let Fm denote the σ-algebra generated by γm, γ′
m. Then

P (An(γ) | Fm) = 1{γm ∈ X} qn−m(γm).

Using Theorem 4.1, we can find a coupling of γm, γ′
m so that, with probability at

least 1 − Ce−βm,

γm =m/2 γm.
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If γm =m/2 γ′
m, then from (4.5) we have

|qn−m(γm) − qn−m(γ′
m)| ≤ c e−m/2 e−(n−m)ξ.

If γm 6=m/2 γ′
m, we use the fact that for all γ∗ ∈ X ,

qn−m(γ∗) ≤ c∗ e−(n−m)ξ.

Now the proposition follows from putting these two estimates together and recalling
that β ≤ 1/4.

�

Proposition 4.8. Let Qn(γ) = enξ qn(γ). There exist a bounded function Q : X →
(0,∞) and c > 0, β < ∞ such that if γ ∈ X , then the following hold:

lim
n→∞

Qn(γ) = Q(γ),

|Q(γ) − Qn(γ)| ≤ c Q(γ) e−nβ ,

1

c
≤

Q(γ)

q1(γ)
≤ c.

Proof : Note that
qn+1(γ)

qn(γ)
= En[q1(γ

∗)],

where the expectation on the right denotes the expectation with respect to the
probability measure µn(γ) over all γ∗ ∈ X . Using the separation lemma, and more
specifically Corollary 3.5, we see that there exists a constant c > 0 such that for
n ≥ 1,

c ≤
qn+1(γ)

qn(γ)
≤ 1.

Consider two initial configurations γ, γ′ ∈ X . By (4.5), if γn =n/2 γ′
n, then

|q1(γn) − q1(γ
′
n)| ≤ c e−n/2.

But by Theorem 4.1, we have γn 6=n/2 γ′
n with probability at most Ce−βn. Using

this and the bound β ≤ 1/4,
∣

∣

∣

∣

qn+1(γ)

qn(γ)
−

qn+1(γ
′)

qn(γ′)

∣

∣

∣

∣

≤ c e−βn.

A similar argument shows that for m ≤ n, and all γ, γ′ ∈ X ,
∣

∣

∣

∣

qn+1(γ)

qn(γ)
−

qm+1(γ
′)

qm(γ′)

∣

∣

∣

∣

≤ c e−βm.

In particular, the limit

lim
n→∞

qn+1(γ)

qn(γ)

exists and is independent of the initial configuration γ. Since qn(γ) � q1(γ) e−nξ,
the limit must equal e−ξ. Therefore,

|Qn+1(γ) − Qn(γ) | ≤ c e−nβ Qn(γ),

and by iterating this, we see for all positive integers m,

|Qn+m(γ) − Qn(γ) | ≤ c e−nβ Qn(γ),
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with a different constant c. In particular, the sequence {Qn(γ)} is a Cauchy se-
quence in n and has a limit Q(γ) satisfying

|Qn(γ) − Q(γ) | ≤ c e−nβ Q(γ).

This establishes the result for integer n, but it is easy to extend it to non-integer
n ≥ 1. Recalling that for all n ≥ 1 and all γ ∈ X , we have Qn(γ) ≤ c∗, this result
also proves the first claim in Theorem 2.9.

The last assertion follows from a direct application of Corollary 3.5 �

Definition 4.9. If K1, K2 ⊂ R
3 are compact subsets of R

3 with K1 ∩ K2 finite,
and w = (w1, w2) ∈ R

3 × R
3, let

Qn(K; w) = enξ Pw[An(K1, K2)].

Q(K; w) = lim
n→∞

Qn(K; w) = lim
n→∞

enξPw[An(K1, K2)]. (4.9)

If K1 ∩ K2 is infinite, we define Q(K; w) = 0

Proposition 4.10. The limit (4.9) exists. If K1, K2 ⊂ B are disjoint and w1, w2 ∈
B, and n ≥ 1,

|Q(K; w) − Qn(K; w) | ≤ C e−nβ Q(K; w). (4.10)

Q satisfies the scaling rule

Q(erK; erw) = erξ Q(K; w), (4.11)

and it is translation invariant

Q(K + z; w + z) = Q(K; w).

Proof : The proof of (4.10) is essentially the same as that of Proposition 4.8. Brow-
nian scaling implies that

Perw [Ar+n(erK1, e
rK2)] = Pw [An(K1, K2)] ,

from which (4.11) follows immediately. Also, if |z| = 1, the closed disk of radius en

about z contains Blog(en−1) and is contained in Blog(en+1). Hence, if z = (z1, z2),

Pw
[

Alog(en+1)(K1, K2)
]

≤ Pw+z [An(K1 + z1, K2 + z2)]

≤ Pw
[

Alog(en−1)(K1, K2)
]

,

taking n → ∞ proves the last assertion. �

5. Invariant measure

With the coupling result, the proof of the existence of the measure ν proceeds
as in Lawler (1995); Lawler et al. (2002b); Vermesi (2008). We start by defining
πkν for positive integers k. The coupling result implies that for any γ ∈ X , the
collection of measures {πkµn(γ) : n = 1, 2, . . .} is a Cauchy sequence of measures.
Indeed, if n ≥ m ≥ 2k,

‖πkµn(γ) − πkµm(γ)‖ ≤ c e−βm,

with the same β as in the coupling estimates from the previous section. Here ‖ · ‖
denotes variation distance, but since measures for fixed k are absolutely continuous
with respect to an appropriate Wiener measure, we can also consider it as an L1-
metric on the density with respect to Wiener measure. Hence, there exists a limit
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which we denote by πkν which is also absolutely continuous with respect to Wiener
measure. The same coupling argument shows that for any γ ∈ X and n ≥ 2k,

‖πkµn(γ) − πkν‖ ≤ c e−βn.

Using this we can see that the {πkν} satisfy the appropriate consistency condition
so we can combine them to give the measure ν.

There is a minor technical detail to show that the paths under measure ν have
finite time duration. Let Tk(γ) denote the sum of the time durations of γ1 and
γ2 between the times of the first visit to ∂B−k to the first visit to ∂B1−k. Using
standard estimates for Brownian motion, one can easily show that there exist c, α
such that

ν {γ : T1(γ) ≥ r} ≤ c e−αr.

Using this, Brownian scaling, and (5.1) below we see that there exists c′ such that
for all r > 0,

ν
{

γ : Tk(γ) ≥ r e−2k
}

≤ c′ e−αr.

Using a Borel-Cantelli argument, we can see that this implies that

ν

{

γ :
∞
∑

k=1

Tk(γ) = ∞

}

= 0.

This completes the proof of Theorem 2.9.
If Y is a function on X , we write ν[Y ] =

∫

Y dν. We omit the easy proof of the
next proposition which gives some properties of the measure ν.

Proposition 5.1. For all n > 0,

µn[ν] = ν,

ν[qn] = e−nξ, ν[Qn] = 1.

ν[Sep] ≥ ρ1,

dπnν

dν
(γ) = Qn(γ). (5.1)

Let us define the measure ν by

dν

dν
(γ) = Q(γ).

Remark 5.2. We have defined analogues of measures that are sometimes called
quasi-invariant measures for subMarkov chains.

6. Future directions

We plan on extending these coupling results to more general intersection expo-
nents. Briefly, let W 1

t , ..., Wm+n
t be independent 3-dimensional Brownian motions,

started uniformly on ∂B. As before, for 1 ≤ j ≤ m + n, let T j
k = inf{t : W j

t ∈ ∂Bk}
and let

Γ1
k = W 1[0, T 1

k ]∪· · ·∪Wm[0, T m
k ] , Γ2

k = Wm+1[0, T m+1
k ]∪· · ·∪Wm+n[0, T m+n

k ].

Then the intersection exponent ξ(m, n) is defined as

P{Γ1
k ∩ Γ2

k = ∅} ≈ e−ξ(m,n)k.

Note that ξ = ξ(1, 1) and that ξ(m, n) measures the probability that a set of m
independent paths avoids a set of n independent paths. These exponents can be
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extended in a natural way for all λ ≥ 0 to ξ(k, λ). They were first introduced in
Lawler and Werner (1999) and their existence follows, as before, from a subaddi-
tivity argument.

While in 2 dimensions all these exponents have been computed (see Lawler et al.,
2001 and Lawler et al., 2002c), not much is known of their 3-dimensional counter-
parts. The only known values are ξ(k, 0) = 0 and ξ(2, 1) = ξ(1, 2) = 1. Looking
at ξ(k, λ) as functions of λ, it was proved in Lawler (1998) that they are strictly
concave. One question of interest is whether these functions are also analytic. In
Lawler et al. (2002a), an exponential coupling of weighted Brownian paths was used
to prove that 2-dimensional intersection exponents are analytic. While the coupling
from Lawler et al. (2002a) relies on conformal invariance of planar Brownian mo-
tion and cannot be generalized to three dimensions, we believe that our coupling
argument carries over from ξ(1, 1) to ξ(k, λ), hence providing a fast convergence to
an invariant measure in the general case. This in turn should be sufficient to prove
analyticity of 3-dimensional exponents.

A long range goal is to give an effective way to study the multifractal nature of
the Brownian path.

7. Simulations for ξ

The value of the intersection exponent ξ is not known, and it is possible that
it will never be known exactly. However, one can do simulations, and we report
the results of our recent trials. In Burdzy and Lawler (1990), it was proved that
Brownian exponents and simple random walk exponents are the same. That is to
say, if S1 and S2 are simple random walks started at the origin, then

P{S1(0, n] ∩ S2(0, n] = ∅} ≈ n−ζ ,

where ζ = ξ/2. It is believed that this probability is asymptotic to cn−ζ for some
c, and this is what we assume here.

Therefore, as in Burdzy et al. (1989), we do simulations of the random walk
exponent. Suppose we run M pairs of independent simple random walks, started at
the origin. If M(n) denotes the number of (pairs of) paths that have no intersections
in the time interval (0, n], then the probability of no intersection by time n is
estimated by M(n)/M . Let

k(n) =
log M − log M(n)

log n
.

This quantity should converge to ζ as n → ∞.
We ran one million pairs of 3-dimensional random walks of length 100, 000,

started at the origin. We use the same number of walks as in Burdzy et al. (1989),
but our walks are much longer. Our simulation results are included in Table 7.1.
Our simulations suggest ξ = 2ζ is around .57, which is consistent with simulations
in Burdzy et al. (1989).

Similar to the simulation analysis in Burdzy et al. (1989), one can estimate ζ
using the sequence

h(n) =
log M(n) − log M(n + m)

log(m + n) − log n
,
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which should also converge to ζ as n → ∞. Let m = 10, 000. We observe that our
simulations lead to more variation in the value of h(n) than in the value of k(n),
as it can be seen in Table 7.1, but again suggests ξ is around .57.

n M(n) k(n) h(n)
10,000 74,629 0.2818 0.2874
20,000 61,151 0.2822 0.2948
30,000 54,262 0.2827 0.2857
40,000 49,981 0.2827 0.2838
50,000 46,914 0.2828 0.2953
60,000 44,455 0.2830 0.2895
70,000 42,515 0.2831 0.2787
80,000 40,962 0.2830 0.2822
90,000 39,623 0.2830 0.2746
100,000 38,493 0.2829 –

Table 7.1. Simulations using 1, 000, 000 pairs of 100, 000 step walks.
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